EP2574760A1 - Verfahren und Steuervorrichtungen für einen Verbrennungsmotor - Google Patents

Verfahren und Steuervorrichtungen für einen Verbrennungsmotor Download PDF

Info

Publication number
EP2574760A1
EP2574760A1 EP12002810A EP12002810A EP2574760A1 EP 2574760 A1 EP2574760 A1 EP 2574760A1 EP 12002810 A EP12002810 A EP 12002810A EP 12002810 A EP12002810 A EP 12002810A EP 2574760 A1 EP2574760 A1 EP 2574760A1
Authority
EP
European Patent Office
Prior art keywords
cylinder
cylinders
air
ion current
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12002810A
Other languages
English (en)
French (fr)
Other versions
EP2574760B1 (de
Inventor
Gerald Rämisch
Gerd Hammer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP2574760A1 publication Critical patent/EP2574760A1/de
Application granted granted Critical
Publication of EP2574760B1 publication Critical patent/EP2574760B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/021Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using an ionic current sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio

Definitions

  • the present invention relates to methods for an internal combustion engine, in particular to methods for detecting and correcting cylinder unequal distributions in the air-fuel mixture, and to corresponding control devices.
  • cylinder equalization means that each cylinder contributes the same power contribution to the overall performance of the engine and, moreover, that the combustion process in each cylinder is as similar as possible under the same operating conditions.
  • One parameter is the lambda value of each cylinder. In gasoline engines, a lambda value of approximately 1 is usually desired and set via one or more lambda probes in the exhaust gas tract of the engine via a corresponding air-fuel mixture setting.
  • the individual cylinders may have different lambda values not equal to 1 due to the system or due to manufacturing tolerances of the injection valves. This can lead to a deterioration of emission values, an increase in fuel consumption or a rough running. Furthermore, due to legal requirements, such as the California On-Board Diagnostic Act (OBD Law), it may be necessary to detect such a lambda unequal distribution between the individual cylinders. In the prior art, therefore, various methods and devices for detecting unequal set cylinders are known.
  • OBD Law California On-Board Diagnostic Act
  • the DE 2 944 834 A1 relates to a method for controlling the air ratio lambda in a self-igniting internal combustion engine.
  • Gas constituents emerging from the combustion chambers of the internal combustion engine are detected in the form of an ion current by an ion current probe arranged in the immediate vicinity of an exhaust valve of the internal combustion engine.
  • the ion current serves as a control variable in a control device which influences the composition of the operating mixture with respect to the air ratio.
  • the ion current is integrated or averaged over a working cycle, because the occurring afterburning at their very maximum time points each has its maximum and also has over the course of a cycle greatly changing increases in the reactions and the resulting ion currents.
  • the DE 101 15 902 C1 relates to a lambda cylinder equalization method for lambda equalization with a lambda equal to 1 regulated, a catalyst in the exhaust system having multi-cylinder internal combustion engine.
  • an exhaust gas parameter is continuously recorded in the exhaust gas tract of the internal combustion engine downstream of the catalytic converter, which parameter shows a local minimum when the combustion in all cylinders takes place at lambda equal to 1.
  • the fuel supply to each two cylinders is depressed by simultaneous enrichment of the mixture for the one and emaciation for the other cylinder, wherein the trimming is selected so that the combined exhaust of both cylinders corresponds to an exhaust gas combustion of average lambda equal to 1 and the trimming so is set, that the exhaust gas parameter is minimized.
  • the exhaust parameter may include, for example, the exhaust gas temperature or the catalyst temperature or a NO x concentration.
  • the DE 10 2004 041 230 A1 relates to a cylinder equalization by means of ion current measurement.
  • cylinders assigned to a same exhaust gas collector form a cylinder group.
  • maximum cylinder pressures in a single cylinder are determined by means of ion current measurement and the cylinder-specific average values of the maximum pressures are formed.
  • cylinder-group-specific average values are formed by averaging.
  • Each of the cylinder-specific average values is compared with the associated cylinder-group-specific mean value and, depending on these comparisons, at least one cylinder is identified which is to be influenced in its operating behavior.
  • From the DE 10 2007 030 527 A1 is a method for cylinder equalization in a supercharged spark-ignition internal combustion engine known.
  • a relationship between the balance of a cylinder and the smoothness of the cylinder is determined and based on this relationship on the deviation of the mixture composition of the cylinder with each other and finally corrected based on the deviations of the mixture composition of each cylinder.
  • the DE 10 2009 026 839 A1 relates to a method for operating an internal combustion engine, in which the cylinders are equated by an evaluation of smoothness in cylinder-individual leaning of the mixture.
  • the DE 199 16 204 C1 a method for Verbrennungskenn Anlagennbetician an internal combustion engine ready.
  • an ion current curve is measured by an ion current probe during successive cycles. From the successively measured ion current curves, a combustion characteristic variable specific ion current characteristic and from this determines the combustion characteristic.
  • the air / fuel ratio, ie the lambda value of the air / fuel mixture to be combusted in the combustion chamber and the exhaust gas recirculation rate can be determined with this method as a combustion parameter.
  • the instantaneous composition of the air-fuel mixture can be determined.
  • the lambda value can be determined from the slope of the flank of the first ion current maximum in the course of an ion current analysis.
  • a diagnosis of cylinder unevenness in the air-fuel mixture (lambda) based on an ion current signal is very sensitive to cross-dependence and unwanted side effects.
  • a transverse dependence between the individual cylinders can occur, in particular, as a result of a variation of the residual gas due to a change in the timing of the intake and exhaust valves.
  • Even with engines with several groups of cylinders in V or W arrangement and asymmetric firing order accurate determination of the air-fuel mixture of individual cylinders is problematic.
  • different fuel qualities, as further undesirable side effects may negatively affect a diagnosis of cylinder unevenness based on an ion current signal.
  • the object of the present invention is therefore to provide improved methods for determining and correcting a cylinder inequality distribution in the air-fuel mixture.
  • this object is achieved by a method for an internal combustion engine according to claim 1, a method for an internal combustion engine according to claim 14, a control device for an internal combustion engine according to claim 16, a control device for an internal combustion engine according to claim 17 and a vehicle according to claim 19 ,
  • the dependent claims define preferred and advantageous embodiments of the invention.
  • a method for an internal combustion engine having at least one cylinder is provided.
  • a first ionic current is detected for the cylinder while the internal combustion engine is operating with a first air-fuel mixture.
  • a second ion current for the at least one cylinder is detected, while the internal combustion engine is operated with a second air-fuel mixture.
  • the first air-fuel mixture and the second air-fuel mixture are different.
  • an ion current difference is determined for the cylinder.
  • Changing the air-fuel mixture during operation of the internal combustion engine is also referred to as fuel trim. With the previously described Method is therefore determined a change in the ionic current as a function of the fuel trim.
  • the ion current difference can be determined individually for each cylinder of the internal combustion engine.
  • the ion current difference that occurs due to fuel trim is substantially independent of the absolute value of the ion current.
  • a cylinder unevenness distribution in the air-fuel mixture between a plurality of cylinders of the internal combustion engine may thus be determined in dependence on the ionic flow differences of the plurality of cylinders by first operating the internal combustion engine with the first air-fuel mixture, detecting the first ionic current for each of the cylinders, and thereafter is operated with the second air-fuel mixture, wherein the second ionic current is determined for each cylinder.
  • an injection amount for each cylinder of the plurality of cylinders of the internal combustion engine may be adjusted depending on the ion current differences of the plurality of cylinders so as to reduce a difference between the ion current differences of the plurality of cylinders. This achieves a robust correction of the injection quantity and thus a robust cylinder equalization on the basis of an ion current measurement.
  • the ion current can be detected, for example, in the combustion chamber of the respective cylinder, in particular by means of a spark plug arranged in the combustion chamber of the respective cylinder.
  • the ion current can be detected, for example, in a predetermined crankshaft angle range, for example in a crankshaft angle range of -20 ° to + 30 ° with respect to the top dead center of the respective cylinder.
  • the crankshaft angle range should be selected such that the ignition timing of the respective cylinder is not included in the crankshaft angle range.
  • a crankshaft angle range from the ignition point to + 30 ° with respect to the top dead center of the respective cylinder comprises a working range of the cylinder, in which the ion current indicates a characteristic statement about the air-fuel mixture to be burned. Therefore, this crankshaft angle range is particularly suitable.
  • the first and / or second ion currents are detected as follows: over the predetermined crankshaft angle range, for example, from the ignition point to + 30 ° with respect to the top dead center of the respective cylinder, an ion current profile is detected and integrated over the crankshaft angle.
  • the detected ionic current thus represents the integral of the ionic current profile over the predetermined crankshaft angle range.
  • the formation of the ion current integral over the predetermined crankshaft angle range may have a characteristic value of the ion current signal, which is independent of the actual ion current waveform and thus independent of the type of combustion (normal, lean or rich).
  • the integration of the ion current profile due to the integration of the ion current profile, fluctuations in the ion current profile due to measurement errors can be compensated.
  • multiple ion current waveforms can be acquired at multiple cycles of the respective cylinder and an average ion current waveform formed by averaging the multiple ion current waveforms, which is then integrated over the crankshaft angle to determine an ion current value.
  • an average ion current waveform formed by averaging the multiple ion current waveforms, which is then integrated over the crankshaft angle to determine an ion current value.
  • a plurality of second ion streams may be detected at different second air-fuel mixtures for each cylinder.
  • a plurality of second ion streams can be determined with different fuel trim and a relationship between the fuel trim and the second ion streams can be determined. From the course of the relationship between the second ion currents and the fuel trim, a region of the air-fuel mixture can be determined in which a fuel trim causes a characteristic change in the ion current. This range is usually close to 1 in lambda and therefore particularly suitable for cylinder equalization.
  • the first air-fuel mixture and the second air-fuel mixture differ by different amounts of fuel.
  • the amount of fuel in the second air-fuel mixture may be varied in a range of -40% to + 40% to the amount of fuel of the first air-fuel mixture.
  • the engine can be operated in a range including both lean and rich combustion.
  • lambda values of below and above 1 can be approached reliably.
  • a reliable operation of the internal combustion engine is ensured in this area, so that the method during operation of the internal combustion engine can be performed without unpleasant effects on the operation of the internal combustion engine and thus on the operation of a vehicle in which the internal combustion engine is housed can occur.
  • the internal combustion engine is switched abruptly between an operation with the first air-fuel mixture and an operation with the second air-fuel mixture.
  • jumpy means that, for example, the first ion current is first determined for each cylinder during operation with the first air-fuel mixture, and then the internal combustion engine is operated with the second air-fuel mixture during the next filling of a cylinder.
  • the sudden change between the first and second air-fuel mixture also causes a sudden change in the ionic current difference. Since the remaining parameters of the vehicle, such as Fresh air temperature, boost pressure of a turbocharger, engine temperature or oxygen content do not or only slightly change, boundary conditions when determining the ion current difference can be kept substantially constant.
  • a method for a multi-cylinder engine in which an ion flow for each cylinder is detected by at least two cylinders of the plurality of cylinders during operation of the internal combustion engine. Depending on the detected ion currents of the at least two cylinders, an ion current average is determined. For each of the at least two cylinders, a deviation of the ionic current from the average ionic current value is determined and a cylinder unevenness distribution in the air-fuel mixture between the at least two cylinders is determined as a function of the deviations of the at least two cylinders.
  • a cylinder inequality distribution in particular a lambda inequality distribution, can be determined from the ionic currents with simple means.
  • the ion currents can be determined from an integration of a respective ion current profile or an integration of a plurality of averaged ion current profiles.
  • the cylinder unevenness distribution in the air-fuel mixture which has been determined according to one of the methods described above, can be provided as on-board diagnostic information.
  • This on-board diagnostic information can be stored, for example, in a memory of an engine controller for documentation of the monitoring of the lambda inequality and, when exceeding a predetermined cylinder inequality, used to control, for example, a warning light in the vehicle.
  • a control apparatus for an internal combustion engine having at least one cylinder.
  • the internal combustion engine has an ion current detection means in the at least one cylinder.
  • the controller is coupleable to the ion current sensing means and configured to sense a first ion current for the at least one cylinder while operating the internal combustion engine with a first air-fuel mixture.
  • the control device is configured to detect a second ion current for the at least one cylinder while the internal combustion engine is operated with a second air-fuel mixture.
  • the first air-fuel mixture and the second air-fuel mixture are different. From the first ion current and the second ion current of the cylinder, the controller determines an ion current difference for the cylinder.
  • the control device is therefore suitable for carrying out the method described above and therefore also comprises the advantages described above.
  • control device for a multi-cylinder internal combustion engine.
  • an ion current detecting means is arranged in each of at least two cylinders of the plurality of cylinders of the internal combustion engine.
  • the control device can be coupled to the ion current detection means and detects, for each cylinder of the at least two cylinders, an ion current during operation of the internal combustion engine. Depending on the detected ion currents of the at least two cylinders, the control device determines an average ion current value.
  • the control device determines a deviation of the ion current of the respective cylinder from the average ionic current value and, depending on the respective deviations, determines an in-cylinder distribution in the air-fuel mixture between the at least two cylinders.
  • the control device is therefore suitable for carrying out the method described above and therefore also comprises the advantages described above.
  • a vehicle which comprises an internal combustion engine and one of the previously described control devices.
  • the internal combustion engine comprises at least one cylinder in which an ion current detection means is arranged.
  • an ion current signal can be used, which is for example determined at the electrodes of a spark plug in each cylinder of the internal combustion engine.
  • Such a diagnosis may be required, for example, due to legal requirements, such as the California On-Board Diagnostic Act (OBD).
  • OBD California On-Board Diagnostic Act
  • the ion current signal can be detected over a predetermined crankshaft angle range as an ion current signal profile and integrated over the predetermined crankshaft angle range. As a result, a characteristic ion current value can be obtained.
  • both the ion current signal and the integrated ion current signal are affected by lateral dependencies resulting, for example, from different amounts of residual gas.
  • fuel quality may affect the ion current signal as well as the integrated ion current signal.
  • FIG. 12 shows a change in an integrated ion current signal due to a change in intake camshaft angle for various cylinders of an internal combustion engine.
  • the diagram shows the integrated ion current signals (int.
  • Fig. 2 shows therefore method steps of an improved method 200 for determining a lambda unequal distribution.
  • a first step 201 ion current signals are measured for each cylinder in a speed-synchronous measuring grid.
  • additional engine information for example, an ignition angle, read by, for example, an engine electronics.
  • the ion current signals for each cylinder are defined in one Crankshaft angle window, which can be dependent on ignition, integrated.
  • Fig. 3 shows by way of example three ion current signals 301, 302 and 303, which can occur in a cylinder at different burns.
  • Curve 301 shows, for example, the course of the ion current signal in a normal combustion, ie in combustion with approximately lambda equal to 1, whereas the curve 302 combustion with a rich mixture, ie with an increased fuel fraction, and the curve 303 lean combustion, ie a combustion with a reduced fuel content, shows.
  • the corresponding ion curves 301-303 are compared with the crankshaft angle, which in Fig. 3 is shown integrated on the x-axis. Since the ion current can be detected, for example, by means of a spark plug in the corresponding cylinder of the internal combustion engine, the integration range is selected such that the influence of the spark does not fall within the integration range. In the in Fig.
  • the influence of the spark in the range of -20 ° to approximately -16 ° can be clearly seen. Therefore, the ion current is integrated, for example, in the range of -16 ° to approximately + 28 ° with respect to the top dead center of the corresponding cylinder.
  • the integration area is in Fig. 3 indicated by the arrow 304.
  • the cylinder-selective integral values are averaged over a predetermined number of cycles and yield a first ion current value, a so-called reference value (step 203).
  • the ion current signals for the respective reference values of the respective cylinders are detected before trimming the amount of fuel, that is, the reference values are averaged ion current integral values in an operation of the internal combustion engine with a first air-fuel mixture.
  • the fuel amount is de-rated for all cylinders, i. the internal combustion engine is subsequently operated with a second air-fuel mixture which is different from the first air-fuel mixture.
  • the second air-fuel mixture may be, for example, a richer or a leaner air-fuel mixture.
  • a mean ion current integral value for a defined number of cycles is determined from correspondingly detected ion current signals during operation with the second air-fuel mixture for each cylinder.
  • a second average ion current integral value is determined, a so-called trimming value.
  • Fig. 4 shows by way of example the effect of the fuel trim on the integrated ion current.
  • the diagram shows the percentage of fuel added.
  • Negative fuel trim indicates a corresponding decrease in fuel fraction in the air-fuel mixture and positive fuel trim indicates an increase in fuel fraction in the air-fuel mixture.
  • the integrated ion current is averaged over all cylinders on the y-axis (graph 401).
  • the ion current for fuel trim was normalized from 0% to zero.
  • the at the fuel trim -30%, -25%, -15%, -5%, 10%, 20% and 30% ranges 402-408 indicate a range of integrated ion fluxes of the individual cylinders at the respective fuel trim.
  • the integrated ion current varies at a fuel trim of, for example, -30% between the individual cylinders of an internal combustion engine in the range of approximately -7.5 to -9.5.
  • This bandwidth results from the above-mentioned transverse dependencies between the cylinders.
  • a change in the ion current integral is characteristic of a corresponding fuel trim, ie for a corresponding change in the amount of fuel. Therefore, in step 206, the absolute value of the integrated ion currents is not considered, but for each cylinder a difference between the reference value and the reference value is formed. Since the difference is independent of the abovementioned transverse dependencies, a lambda inequality can be determined on the basis of the differences in the ion current signals. In Fig.
  • a defined fuel trim 409 between -30% and -20% and a corresponding change in the ion current integral 410 is shown. Since the fuel trim was performed equally for all cylinders, a corresponding lambda unequal distribution of the individual cylinders can be determined from different differences between the trim value and the reference value of the individual cylinders. This lambda unequal distribution can be stored, for example, as on-board diagnostic information in an engine control or displayed to a driver of the vehicle via a corresponding display.
  • step 207 on the basis of the lambda unevenness distribution thus determined, a correction of the injection quantity for each cylinder can be carried out and thus an equalization of the lambda for all cylinders can be achieved.
  • the correction of the injection quantities causes a lambda change of the individual cylinders of the engine 208 and can be determined again as described above with the steps 201-206.
  • FIG. 10 shows a vehicle 500 having an internal combustion engine 208 with four cylinders 501-504.
  • a spark plug 505-508 is respectively disposed, which are coupled to a control device 509.
  • the control device 509 is capable of detecting an ion current with the aid of the spark plugs 505-508 in the combustion chambers of the cylinders 501-504, respectively.
  • the control device 509 as described above in connection with the flowchart 200 of FIGS Fig. 2 has been described, a lambda inequality.
  • the controller 509 drives a warning light 510 of the vehicle 500 to indicate to the driver that the lambda bias has exceeded the predetermined threshold.
  • the controller 509 may drive an engine controller (not shown) of the engine 208 to achieve lambda equalization, as in step 207 of FIG Fig. 2 has been described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren für einen Verbrennungsmotor (208) mit mindestens einem Zylinder (501-504). Bei dem Verfahren wird ein erster Ionenstrom (301-303) für den Zylinder (501-504) erfasst, während der Verbrennungsmotor (208) mit einem ersten Luft-Kraftstoffgemisch betrieben wird, und ein zweiter Ionenstrom (301-303) für den Zylinder (501-504) erfasst, während der Verbrennungsmotor (208) mit einem zweiten Luft-Kraftstoffgemisch betrieben wird. Das erste Luft-Kraftstoffgemisch und das zweite Luft-Kraftstoffgemisch sind unterschiedlich. Aus dem ersten und zweiten Ionenstrom (301-303) des Zylinders (501-504) wird eine Ionenstromdifferenz für den Zylinder (501-504) bestimmt.

Description

  • Die vorliegende Erfindung betrifft Verfahren für einen Verbrennungsmotor, insbesondere Verfahren zur Erkennung und Korrektur von Zylinderungleichverteilungen im Luft-Kraftstoffgemisch, sowie entsprechende Steuervorrichtungen.
  • Im Rahmen einer sauberen und effizienten Verbrennung von Kraftstoff in einem Verbrennungsmotor von Fahrzeugen, beispielsweise Personenkraftwagen oder Lastkraftwagen, wird eine sogenannte Zylindergleichstellung angestrebt. Unter der Zylindergleichstellung fällt beispielsweise, dass jeder Zylinder einen gleichen Leistungsbeitrag zur Gesamtleistung des Motors beiträgt und darüber hinaus in jedem Zylinder bei gleichen Betriebsbedingungen der Verbrennungsvorgang möglichst gleich ist. Eine Kenngröße ist dabei der Lambda-Wert eines jeden Zylinders. Bei Ottomotoren wird üblicherweise ein Lambda-Wert von näherungsweise 1 angestrebt und über eine oder mehrere Lambda-Sonden im Abgastrakt des Motors über eine entsprechende Luft-Kraftstoff-Gemischeinstellung eingestellt. Auch wenn im Abgastrakt im Wesentlichen der Wert Lambda gleich 1 erreicht wird, können die einzelnen Zylinder systembedingt oder aufgrund von Fertigungstoleranzen der Einspritzventile unterschiedliche Lambdawerte ungleich 1 aufweisen. Dies kann zu einer Verschlechterung von Emissionswerten, einer Erhöhung des Kraftstoffverbrauchs oder einer Laufunruhe führen. Weiterhin kann es aufgrund gesetzlicher Anforderungen, beispielsweise gemäß dem Kalifornischen On-Board-Diagnose-Gesetz (OBD-Gesetz) erforderlich sein, eine derartige Lambda-Ungleichverteilung zwischen den einzelnen Zylindern zu erkennen. In dem Stand der Technik sind daher verschiedene Verfahren und Vorrichtungen zur Erkennung von ungleich eingestellten Zylindern bekannt.
  • Die DE 2 944 834 A1 betrifft ein Verfahren zur Regelung der Luftzahl Lambda bei einer selbstzündenden Brennkraftmaschine. Aus den Brennräumen der Brennkraftmaschine austretende Gasbestandteile werden durch eine in unmittelbarer Nähe eines Auslassventils der Brennkraftmaschine angeordnete Ionenstromsonde in Form eines Ionenstroms erfasst. Der Ionenstrom dient als Regelgröße in einer Regeleinrichtung, welche die Zusammensetzung des Betriebsgemisches bezüglich der Luftzahl beeinflusst. Der Ionenstrom wird über ein Arbeitsspiel integriert bzw. gemittelt, weil die auftretende Nachverbrennung zu sehr unterschiedlichen Zeitpunkten jeweils ihr Maximum hat und auch über den Verlauf eines Arbeitsspiels stark wechselnde Anstiege der Reaktionen und der resultierenden Ionenströme aufweist.
  • Die DE 101 15 902 C1 betrifft ein Lambda-Zylindergleichstellungsverfahren zur Lambda-Gleichstellung bei einer auf Lambda gleich 1 geregelten, einen Katalysator im Abgastrakt aufweisende Mehrzylinder-Brennkraftmaschine. Bei dem Verfahren wird fortlaufend im Abgastrakt der Brennkraftmaschine stromabwärts des Katalysators ein Abgäsparameter erfasst, der ein lokales Minimum zeigt, wenn die Verbrennung in allen Zylindern bei Lambda gleich 1 erfolgt. Die Kräftstoffversorgung bei jeweils zwei Zylindern wird durch gleichzeitige Anreicherung des Gemisches für den einen und Abmagerung für den anderen Zylinder vertrimmt, wobei die Vertrimmung so gewählt ist, dass das zusammengeführte Abgas beider Zylinder einem Abgas einer Verbrennung von gemittelt Lambda gleich 1 entspricht und die Vertrimmung so eingestellt wird, dass der Abgasparameter minimiert wird. Der Abgasparameter kann beispielsweise die Abgastemperatur oder die Katalysatortemperatur oder eine NOx-Konzentration umfassen.
  • Die DE 10 2004 041 230 A1 betrifft eine Zylindergleichstellung mittels Ionenstrommessung. Bei einem Verbrennungsmotor mit mehreren Zylindern und mindestens einem Abgassammler bilden Zylinder, die einem gleichen Abgassammler zugeordnet sind, eine Zylindergruppe. Für ein Zeitintervall werden maximale Zylinderdrücke in einem einzelnen Zylinder mittels Ionenstrommessung ermittelt und die zylinderspezifischen Mittelwerte der maximalen Drücke gebildet. Aus den zylinderspezifischen Mittelwerten jeder Zylindergruppe werden durch Mittelung zylindergruppenspezifische Mittelwerte gebildet. Jeder der zylinderspezifischen Mittelwerte wird mit dem zugehörigen zylindergruppenspezifischen Mittelwert verglichen und in Abhängigkeit dieser Vergleiche mindestens ein Zylinder identifiziert, welcher in seinem Betriebsverhalten zu beeinflussen ist.
  • Aus der DE 10 2007 030 527 A1 ist ein Verfahren zur Zylindergleichstellung bei einer aufgeladenen fremdgezündeten Brennkraftmaschine bekannt. Bei dem Verfahren wird ein Zusammenhang zwischen der Vertrimmung eines Zylinders und der Laufruhe des Zylinders ermittelt und auf Basis dieses Zusammenhangs auf die Abweichung der Gemischzusammensetzung der Zylinder untereinander geschlossen und schließlich auf Basis der Abweichungen die Gemischzusammensetzung jedes Zylinders korrigiert.
  • Die DE 10 2009 026 839 A1 betrifft ein Verfahren zum Betreiben einer Brennkraftmaschine, bei dem die Zylinder durch eine Auswertung der Laufruhe bei zylinderindividueller Abmagerung des Gemischs gleichgestellt werden.
  • Schließlich stellt die DE 199 16 204 C1 ein Verfahren zur Verbrennungskenngrößenbestimmung einer Brennkraftmaschine bereit. Bei dem Verfahren wird während aufeinanderfolgender Arbeitsspiele jeweils eine Ionenstromkurve durch einen Ionenstromsonde gemessen. Aus den aufeinanderfolgend gemessenen Ionenstromkurven wird eine verbrennungskenngrößenspezifische Ionenstromkenngröße und aus dieser die Verbrennungskenngröße bestimmt. Insbesondere kann mit diesem Verfahren als Verbrennungskenngröße das Luft/Kraftstoff-Verhältnis, d.h. der Lambda-Wert des im Brennraum zu verbrennenden Luft-Kraftstoff-Gemischs und die Abgasrückführrate ermittelt werden. Durch Messung des Ionenstroms an einer Zündkerze in jedem einzelnen Zylinder kann die momentane Zusammensetzung des Luft-Kraftstoff-Gemischs bestimmt werden. Dazu kann der Lambda-Wert aus der Steigung der Flanke des ersten Ionenstrommaximums im Rahmen einer Ionenstromanalyse bestimmt werden.
  • Eine Diagnose einer Zylinderungleichverteilung im Luft-Kraftstoffgemisch (Lambda) auf der Grundlage eines Ionenstromsignals ist jedoch sehr empfindlich gegenüber Querabhängigkeiten und unerwünschten Nebeneffekten. Eine Querabhängigkeit zwischen den einzelnen Zylindern kann insbesondere durch eine Variation des Restgases aufgrund einer Veränderung von Steuerzeiten der Ein- und Auslassventile auftreten. Auch bei Motoren mit mehreren Zylindergruppen in V- oder W-Anordnung und asymmetrischer Zündfolge ist eine genaue Bestimmung des Luft-Kraftstoffgemischs einzelner Zylinder problematisch. Darüber hinaus können beispielsweise unterschiedliche Kraftstoffqualitäten als weitere unerwünschte Nebeneffekte eine Diagnose einer Zylinderungleichverteilung auf der Grundlage eines Ionenstromsignals negativ beeinflussen.
  • Aufgabe der vorliegenden Erfindung ist es daher, verbesserte Verfahren zur Bestimmung und Korrektur einer Zylinderungleichverteilung im Luft-Kraftstoffgemisch bereitzustellen.
  • Gemäß der vorliegenden Erfindung wird diese Aufgabe durch ein Verfahren für einen Verbrennungsmotor nach Anspruch 1, ein Verfahren für einen Verbrennungsmotor nach Anspruch 14, eine Steuervorrichtung für einen Verbrennungsmotor nach Anspruch 16, eine Steuervorrichtung für einen Verbrennungsmotor nach Anspruch 17 und ein Fahrzeug nach Anspruch 19 gelöst. Die abhängigen Ansprüche definieren bevorzugte und vorteilhafte Ausführungsformen der Erfindung.
  • Gemäß der vorliegenden Erfindung wird ein Verfahren für einen Verbrennungsmotor mit mindestens einem Zylinder bereitgestellt. Bei dem Verfahren wir ein erster Ionenstrom für den Zylinder erfasst, während der Verbrennungsmotor mit einem ersten Luft-Kraftstoffgemisch betrieben wird. Weiterhin wird ein zweiter Ionenstrom für den mindestens einen Zylinder erfasst, während der Verbrennungsmotor mit einem zweiten Luft-Kraftstoffgemisch betrieben wird. Das erste Luft-Kraftstoffgemisch und das zweite Luft-Kraftstoffgemisch sind unterschiedlich. In Abhängigkeit von dem ersten Ionenstrom und dem zweiten Ionenstrom wird für den Zylinder eine Ionenstromdifferenz bestimmt. Das Verändern des Luft-Kraftstoffgemischs im Betrieb des Verbrennungsmotors wird auch als Kraftstoffvertrimmung bezeichnet. Mit dem zuvor beschriebenen Verfahren wird daher eine Veränderung des Ionenstroms in Abhängigkeit der Kraftstoffvertrimmung bestimmt. Die Ionenstromdifferenz kann für jeden Zylinder des Verbrennungsmotors individuell bestimmt werden. Die Ionenstromdifferenz, welche aufgrund der Kraftstoffvertrimmung auftritt, ist im Wesentlichen unabhängig von dem Absolutwert des Ionenstroms. Dadurch können die oben genannten Querabhängigkeiten und Nebeneffekte, welche im Wesentlichen den Absolutwert des Ionenstroms beeinflussen, wirksam eliminiert werden. Eine Zylinderungleichverteilung im Luft-Kraftstoffgemisch zwischen mehreren Zylindern des Verbrennungsmotors kann somit in Abhängigkeit von den Ionenstromdifferenzen der mehreren Zylinder bestimmt werden, indem der Verbrennungsmotor zunächst mit dem ersten Luft-Kraftstoffgemisch betrieben wird, wobei der erste Ionenstrom für jeden der Zylinder erfasst wird, und danach mit dem zweiten Luft-Kraftstoffgemisch betrieben wird, wobei der zweite Ionenstrom für jeden Zylinder bestimmt wird. Da alle Zylinder mit der gleichen Kraftstoffvertrimmung betrieben wurden, zeigen unterschiedliche Ionenstromdifferenzen entsprechende Zylinderungleichverteilungen an. Bei gleichgestellten Zylindern sind die Ionenstromdifferenzen der einzelnen Zylinder bei gleicher Kraftstoffvertrimmung im Wesentlichen gleich, unabhängig von Querabhängigkeiten und der Kraftstoffqualität.
  • Dementsprechend kann gemäß einer Ausführungsform eine Einspritzmenge für einen jeweiligen Zylinder der mehreren Zylinder des Verbrennungsmotors in Abhängigkeit der Ionenstromdifferenzen der mehreren Zylinder derart eingestellt werden, dass ein Unterschied zwischen den Ionenstromdifferenzen der mehreren Zylinder verringert wird. Dadurch wird eine robuste Korrektur der Einspritzmenge und somit eine robuste Zylindergleichstellung auf der Grundlage einer Ionenstrommessung erreicht.
  • Der Ionenstrom kann beispielsweise im Brennraum des jeweiligen Zylinders erfasst werden, insbesondere mittels einer in dem Brennraum des jeweiligen Zylinders angeordneten Zündkerze. Der Ionenstrom kann beispielsweise in einem vorbestimmten Kurbelwellenwinkelbereich erfasst werden, beispielsweise in einem Kurbelwellenwinkelbereich von -20° bis +30° in Bezug auf den oberen Totpunkt des jeweiligen Zylinders. Um die Ionenstrommessung unabhängig von dem Zündfunken der Zündkerze zu erfassen, sollte der Kurbelwellenwinkelbereich derart gewählt werden, dass der Zündzeitpunkt des jeweiligen Zylinders nicht in dem Kurbelwellenwinkelbereich enthalten ist. Ein Kurbelwellenwinkelbereich vom Zündzeitpunkt bis +30° in Bezug auf den oberen Totpunkt des jeweiligen Zylinders umfasst einen Arbeitsbereich des Zylinders, in welchem der Ionenstrom eine charakteristische Aussage über das zu verbrennende Luft-Kraftstoffgemisch anzeigt. Daher ist dieser Kurbelwellenwinkelbereich besonders geeignet.
  • Gemäß einer Ausführungsform werden der erste und/oder zweite Ionenstrom folgendermaßen erfasst: Über dem vorbestimmten Kurbelwellenwinkelbereich, beispielsweise vom Zündzeitpunkt bis +30° in Bezug auf den oberen Totpunkt des jeweiligen Zylinders, wird ein Ionenstromverlauf erfasst und über den Kurbelwellenwinkel integriert. Der erfasste Ionenstrom stellt somit das Integral des Ionenstromverlaufs über dem vorbestimmten Kurbelwellenwinkelbereich dar. Da sich der Verlauf des Ionenstromsignals über dem Kurbelwellenwinkel in Abhängigkeit einer normalen, mageren und fetten Verbrennung erheblich unterscheiden kann, kann durch die Bildung des Ionenstromintegrals über dem vorbestimmten Kurbelwellenwinkelbereich ein charakteristischer Wert des Ionenstromsignals bestimmt werden, welcher unabhängig von dem tatsächlichen Ionenstromsignalverlauf und somit unabhängig von der Art der Verbrennung (normal, mager oder fett) ist. Darüber hinaus können durch die Integration des Ionenstromverlaufs Schwankungen im Ionenstromverlauf aufgrund von Messfehlern ausgeglichen werden.
  • Weiterhin können mehrere Ionenstromverläufe bei mehreren Arbeitsspielen des jeweiligen Zylinders erfasst werden und ein Mittelwertionenstromverlauf durch Mitteln der mehreren Ionenstromverläufe gebildet werden, welcher dann über den Kurbelwellenwinkel integriert wird, um einen Ionenstromwert zu bestimmen. Durch das Mitteln der Ionenstromverläufe über mehrere Arbeitsspiele des jeweiligen Zylinders können Messungenauigkeiten und punktuell auftretende Störungen ausgemittelt werden, so dass der integrierte Ionenstrom einen zuverlässigen charakteristischen Wert des Zylinders darstellt.
  • Gemäß einer weiteren Ausführungsform können für jeden Zylinder mehrere zweite Ionenströme bei unterschiedlichen zweiten Luft-Kraftstoffgemischen erfasst werden. Somit können mehrere zweite Ionenströme bei unterschiedlicher Kraftstoffvertrimmung bestimmt werden und ein Zusammenhang zwischen der Kraftstoffvertrimmung und den zweiten Ionenströmen bestimmt werden. Aus dem Verlauf des Zusammenhangs zwischen den zweiten Ionenströmen und der Kraftstoffvertrimmung kann ein Bereich des Luft-Kraftstoffgemischs bestimmt werden, in welchem eine Kraftstoffvertrimmung eine charakteristische Änderung des Ionenstroms bewirkt. Dieser Bereich ist üblicherweise in der Nähe von Lambda gleich 1 und daher für die Zylindergleichstellung besonders geeignet.
  • Gemäß einer Ausführungsform unterscheiden sich das erste Luft-Kraftstoffgemisch und das zweite Luft-Kraftstoffgemisch durch unterschiedliche Kraftstoffmengen. Beispielsweise kann die Kraftstoffmenge in dem zweiten Luft-Kraftstoffgemisch in einem Bereich von -40 % bis +40 % gegenüber der Kraftstoffmenge des ersten Luft-Kraftstoffgemischs verändert werden. Durch eine Veränderung der Kraftstoffmenge in dem vorgenannten Bereich kann der Verbrennungsmotor in einem Bereich betrieben, welcher sowohl eine magere Verbrennung als auch eine fette Verbrennung umfasst. Somit können Lambda-Werte von unter und über 1 zuverlässig angefahren werden. Trotzdem bleibt ein zuverlässiger Betrieb des Verbrennungsmotors in diesem Bereich gewährleistet, so dass das Verfahren im laufenden Betrieb des Verbrennungsmotors durchgeführt werden kann, ohne dass unangenehme Auswirkungen auf den Betrieb des Verbrennungsmotors und somit auf den Betrieb eines Fahrzeugs, in welchem der Verbrennungsmotor untergebracht ist, auftreten können.
  • Gemäß einer weiteren Ausführungsform wird der Verbrennungsmotor sprunghaft zwischen einem Betrieb mit dem ersten Luft-Kraftstoffgemisch und einem Betrieb mit dem zweiten Luft-Kraftstoffgemisch umgestellt. Sprunghaft bedeutet in diesem Zusammenhang, dass beispielsweise zunächst für jeden Zylinder der erste Ionenstrom bei einem Betrieb mit dem ersten Luft-Kraftstoffgemisch bestimmt wird und dann bei der nächsten Füllung eines Zylinders der Verbrennungsmotor mit dem zweiten Luft-Kraftstoffgemisch betrieben wird. Durch den sprunghaften Wechsel zwischen dem ersten und zweiten Luft-Kraftstoffgemisch findet auch eine sprunghafte Änderung der Ionenstromdifferenz statt. Da sich die übrigen Parameter des Fahrzeugs, wie z.B. Frischlufttemperatur, Ladedruck eines Turboladers, Motortemperatur oder Sauerstoffgehalt nicht oder nur geringfügig ändern, können Randbedingungen beim Bestimmen der lonenstromdifferenz im Wesentlichen konstant gehalten werden.
  • Gemäß der vorliegenden Erfindung wird weiterhin ein Verfahren für einen Verbrennungsmotor mit mehreren Zylindern bereitgestellt, bei welchem ein Ionenstrom für jeden Zylinder von mindestens zwei Zylindern der mehreren Zylinder während eines Betriebs des Verbrennungsmotors erfasst wird. In Abhängigkeit von den erfassten Ionenströmen der mindestens zwei Zylinder wird ein Ionenstrommittelwert bestimmt. Für jeden der mindestens zwei Zylinder wird eine Abweichung des Ionenstroms von dem Ionenstrommittelwert bestimmt und eine Zylinderungleichverteilung im Luft-Kraftstoffgemisch zwischen den mindestens zwei Zylindern in Abhängigkeit von den Abweichungen der mindestens zwei Zylinder untereinander bestimmt. Da der Ionenstrom im Wesentlichen von der Zusammensetzung des Luft-Kraftstoffgemischs in dem jeweiligen Zylinder abhängt, kann eine Zylinderungleichverteilung, insbesondere eine Lambda-Ungleichverteilung, mit einfachen Mitteln aus den Ionenströmen bestimmt werden. Die Ionenströme können insbesondere, wie zuvor beschrieben wurde, aus einer Integration eines jeweiligen Ionenstromverlaufs oder einer Integration mehrerer gemittelter Ionenstromverläufe bestimmt werden.
  • Gemäß einer weiteren Ausführungsform kann die Zylinderungleichverteilung im Luft-Kraftstoffgemisch, welche nach einem der zuvor beschriebenen Verfahren bestimmt wurde, als On-Board-Diagnose-Information bereitgestellt werden. Diese On-Board-Diagnose-Information (OBD-Information) kann beispielsweise in einem Speicher einer Motorsteuerung zur Dokumentation der Überwachung der Lambda-Ungleichverteilung gespeichert werden und, beim Überschreiten einer vorbestimmten Zylinderungleichverteilung, dazu verwendet werden, beispielsweise eine Kontrollleuchte im Fahrzeug anzusteuern.
  • Gemäß der vorliegenden Erfindung wird weiterhin eine Steuervorrichtung für einen Verbrennungsmotor mit mindestens einem Zylinder bereitgestellt. Der Verbrennungsmotor weist in dem mindestens einen Zylinder ein Ionenstromerfassungsmittel auf. Die Steuervorrichtung ist mit dem Ionenstromerfassungsmittel koppelbar und ausgestaltet, einen ersten Ionenstrom für den mindestens einen Zylinder zu erfassen, während der Verbrennungsmotor mit einem ersten Luft-Kraftstoffgemisch betrieben wird. Weiterhin ist die Steuervorrichtung ausgestaltet, einen zweiten Ionenstrom für den mindestens einen Zylinder zu erfassen, während der Verbrennungsmotor mit einem zweiten Luft-Kraftstoffgemisch betrieben wird. Das erste Luft-Kraftstoffgemisch und das zweite Luft-Kraftstoffgemisch sind unterschiedlich. Aus dem ersten Ionenstrom und dem zweiten Ionenstrom des Zylinders bestimmt die Steuervorrichtung eine Ionenstromdifferenz für den Zylinder. Die Steuervorrichtung ist somit zur Durchführung des zuvor beschriebenen Verfahrens geeignet und umfasst daher auch die zuvor beschriebenen Vorteile.
  • Gemäß der vorliegenden Erfindung wird eine weitere Steuervorrichtung für einen Verbrennungsmotor mit mehreren Zylindern bereitgestellt. In jedem von mindestens zwei Zylindern der mehreren Zylinder des Verbrennungsmotors ist ein Ionenstromerfassungsmittel angeordnet. Die Steuervorrichtung ist mit den Ionenstromerfassungsmitteln koppelbar und erfasst für jeden Zylinder der mindestens zwei Zylinder einen Ionenstrom während eines Betriebs des Verbrennungsmotors. In Abhängigkeit von den erfassten Ionenströmen der mindestens zwei Zylinder bestimmt die Steuervorrichtung einen Ionenstrommittelwert. Weiterhin bestimmt die Steuervorrichtung für jeden der mindestens zwei Zylinder eine Abweichung des Ionenstroms des jeweiligen Zylinders von dem Ionenstrommittelwert und bestimmt in Abhängigkeit von den jeweiligen Abweichungen eine Zylinderungleichverteilung im Luft-Kraftstoffgemisch zwischen den mindestens zwei Zylindern. Die Steuervorrichtung ist somit zur Durchführung des zuvor beschriebenen Verfahrens geeignet und umfasst daher auch die zuvor beschriebenen Vorteile.
  • Schließlich wird gemäß der vorliegenden Erfindung ein Fahrzeug bereitgestellt, welches einen Verbrennungsmotor und eine der zuvor beschriebenen Steuervorrichtungen umfasst. Der Verbrennungsmotor umfasst mindestens einen Zylinder, in welchem ein Ionenstromerfassungsmittel angeordnet ist.
  • Die vorliegende Erfindung wird nachfolgend unter Bezugnahme auf die Zeichnungen im Detail beschrieben werden.
    • Fig. 1 zeigt Ionenstromintegralwerte verschiedener Zylinder eines Verbrennungsmotors bei Variation der Einlassventilansteuerung.
    • Fig. 2 zeigt ein Ablaufdiagramm zur Zylindergleichstellung gemäß einer Ausführungsform der vorliegenden Erfindung.
    • Fig. 3 zeigt Ionenstromsignalverläufe bei Variation einer Einspritzmenge.
    • Fig. 4 zeigt Ionenstromintegralwerte in Abhängigkeit einer Kraftstoffvertrimmung.
    • Fig. 5 zeigt ein Fahrzeug gemäß einer Ausführungsform der vorliegenden Erfindung.
  • Zur Bestimmung und Diagnose einer Zylinderungleichverteilung im Luft-Kraftstoffgemisch, einer sogenannten Lambda-Ungleichverteilung, zwischen den einzelnen Zylindern kann beispielsweise ein Ionenstromsignal verwendet werden, welches beispielsweise an den Elektroden einer Zündkerze in einem jeden Zylinder des Verbrennungsmotors bestimmt wird. Eine derartige Diagnose kann beispielsweise aufgrund von gesetzlichen Anforderungen, wie z.B. dem Kalifornischen On-Board-Diagnose-Gesetz (OBD-Gesetz) erforderlich sein. Zur Bestimmung des Ionenstromsignals kann das Ionenstromsignal über einem vorbestimmten Kurbelwellenwinkelbereich als Ionenstromsignalverlauf erfasst werden und über den vorbestimmten Kurbelwellenwinkelbereich integriert werden. Dadurch kann ein charakteristischer Ionenstromwert gewonnen werden. Insbesondere bei Motoren mit einer Vielzahl von Zylindern in beispielsweise einer V- oder W-Anordnung und asymmetrischer Zündfolge oder bei Motoren mit veränderlicher Ventilsteuerung werden jedoch sowohl das Ionenstromsignal als auch das integrierte Ionenstromsignal von Querabhängigkeiten, welche beispielsweise aus unterschiedlichen Restgasmengen resultieren, beeinflusst. Darüber hinaus kann eine Kraftstoffqualität das Ionenstromsignal als auch das integrierte Ionenstromsignal beeinflussen. Fig. 1 zeigt beispielsweise eine Veränderung eines integrierten Ionenstromsignals aufgrund einer Veränderung eines Einlassventilnockenwellenwinkels für verschiedene Zylinder eines Verbrennungsmotors. In dem in Fig. 1 gezeigten Diagramm sind die integrierten Ionenstromsignale (int. Ionenstromsig.) für verschiedene Zylinder (Zyl.) bei verschiedenen Nockenwellenwinkeln, zu denen die entsprechenden Einlassventile geöffnet werden, dargestellt. Insbesondere durch Querabhängigkeiten zwischen den Zylindern in Bezug auf das Restgas unterscheiden sich die integrierten Ionenstromsignale der einzelnen Zylinder erheblich. Daher ist eine Betrachtung der Absolutwerte der integrierten Ionenstromsignale für eine Erkennung einer Lambda-Ungleichverteilung ungeeignet.
  • Fig. 2 zeigt daher Verfahrensschritte eines verbesserten Verfahrens 200 zur Bestimmung einer Lambda-Ungleichverteilung. In einem ersten Schritt 201 werden für jeden Zylinder in einem drehzahlsynchronen Messraster Ionenstromsignale gemessen. Weiterhin werden zusätzliche Motorinformationen, beispielsweise ein Zündwinkel, von beispielsweise einer Motorelektronik eingelesen. Im Schritt 202 werden die Ionenstromsignale für jeden Zylinder in einem definierten Kurbelwellenwinkelfenster, welcher zündwinkelabhängig sein kann, integriert. Fig. 3 zeigt beispielhaft drei Ionenstromsignale 301, 302 und 303, welche in einem Zylinder bei unterschiedlichen Verbrennungen auftreten können. Die Kurve 301 zeigt beispielsweise den Verlauf des Ionenstromsignals bei einer normalen Verbrennung, d.h. bei einer Verbrennung mit näherungsweise Lambda gleich 1, wohingegen die Kurve 302 eine Verbrennung mit einem fetten Gemisch, d.h. mit einem erhöhten Kraftstoffanteil, und die Kurve 303 eine magere Verbrennung, d.h. eine Verbrennung mit einem verminderten Kraftstoffanteil, zeigt. Zur Bestimmung des Ionenstromintegralwerts werden die entsprechenden Ionenkurven 301-303 über dem Kurbelwellenwinkel, welcher in Fig. 3 auf der x-Achse gezeigt ist, integriert. Da der Ionenstrom beispielsweise mit Hilfe einer Zündkerze in dem entsprechenden Zylinder des Verbrennungsmotors erfasst werden kann, wird der Integrationsbereich derart gewählt, dass der Einfluss des Zündfunkens nicht in den Integrationsbereich fällt. In dem in Fig. 3 gezeigten Beispiel ist der Einfluss des Zündfunkens im Bereich von -20° bis näherungsweise -16° deutlich zu erkennen. Daher wird der Ionenstrom beispielsweise im Bereich von -16° bis näherungsweise +28° bezogen auf den oberen Totpunkt des entsprechenden Zylinders integriert. Der Integrationsbereich ist in Fig. 3 durch den Pfeil 304 gekennzeichnet.
  • Die zylinderselektiven Integralwerte werden über eine vorbestimmte Anzahl von Arbeitsspielen gemittelt und ergeben einen ersten Ionenstromwert, einen sogenannten Referenzwert (Schritt 203). Die Ionenstromsignale für die jeweiligen Referenzwerte der jeweiligen Zylinder werden vor einer Vertrimmung der Kraftstoffmenge erfasst, d.h., die Referenzwerte sind gemittelte Ionenstromintegralwerte bei einem Betrieb des Verbrennungsmotors mit einem ersten Luft-Kraftstoffgemisch. Im Schritt 204 wird die Kraftstoffmenge für alle Zylinder vertrimmt, d.h. der Verbrennungsmotor wird nachfolgend mit einem zweiten Luft-Kraftstoffgemisch betrieben, welches unterschiedlich zu dem ersten Luft-Kraftstoffgemisch ist. Das zweite Luft-Kraftstoffgemisch kann beispielsweise ein fetteres oder ein magereres Luft-Kraftstoffgemisch sein. Im Schritt 205 werden aus entsprechend erfassten Ionenstromsignalen beim Betrieb mit dem zweiten Luft-Kraftstoffgemisch für jeden Zylinder jeweils ein mittlerer Ionenstromintegralwert über eine definierte Anzahl von Arbeitsspielen bestimmt. Somit wird für jeden Zylinder ein zweiter gemittelter Ionenstromintegralwert bestimmt, ein sogenannter Vertrimmwert.
  • Fig. 4 zeigt beispielhaft die Auswirkung der Kraftstoffvertrimmung auf den integrierten Ionenstrom. Auf der x-Achse des in Fig. 4 gezeigten Diagramms ist die Kraftstoffvertrimmung in Prozent aufgetragen. Eine negative Kraftstoffvertrimmung gibt eine entsprechende Verringerung des Kraftstoffanteils in dem Luft-Kraftstoffgemisch an und eine positive Kraftstoffvertrimmung eine Erhöhung des Kraftstoffanteils in dem Luft-Kraftstoffgemisch. Auf der y-Achse ist der integrierte Ionenstrom über alle Zylinder gemittelt aufgetragen (Graph 401). Zusätzlich wurde der Ionenstrom für die Kraftstoffvertrimmung von 0 % auf 0 normiert. Die bei den Kraftstoffvertrimmungen -30 %, -25 %, -15 %, -5 %, 10 %, 20 % und 30 % dargestellten Bereiche 402-408 zeigen eine Bandbreite der integrierten Ionenströme der einzelnen Zylinder bei den entsprechenden Kraftstoffvertrimmungen an. So variiert der integrierte Ionenstrom bei einer Kraftstoffvertrimmung von beispielsweise -30 % zwischen den einzelnen Zylindern eines Verbrennungsmotors im Bereich von näherungsweise -7,5 bis -9,5. Diese Bandbreite resultiert aus den oben genannten Querabhängigkeiten zwischen den Zylindern. Eine Änderung des Ionenstromintegrals ist jedoch charakteristisch für eine entsprechende Kraftstoffvertrimmung, d.h. für eine entsprechende Änderung der Kraftstoffmenge. Daher wird im Schritt 206 nicht der Absolutwert der integrierten Ionenströme betrachtet, sondern für jeden Zylinder eine Differenz aus Vertrimmwert minus Referenzwert gebildet. Da die Differenz unabhängig von den oben genannten Querabhängigkeiten ist, kann anhand der Differenzen der Ionenstromsignale eine Lambda-Ungleichstellung bestimmt werden. In Fig. 4 ist beispielsweise eine definierte Kraftstoffvertrimmung 409 zwischen -30 % und -20 % und eine entsprechende Änderung des Ionenstromintegrals 410 dargestellt. Da die Kraftstoffvertrimmung für alle Zylinder gleichermaßen durchgeführt wurde, kann aus unterschiedlichen Differenzen aus Vertrimmwert und Referenzwert der einzelnen Zylinder eine entsprechende Lambda-Ungleichverteilung der einzelnen Zylinder bestimmt werden. Diese Lambda-Ungleichverteilung kann beispielsweise als On-Board-Diagnose-Information in einer Motorsteuerung abgelegt werden oder über eine entsprechende Anzeige einem Fahrer des Fahrzeugs angezeigt werden.
  • Im Schritt 207 kann auf der Grundlage der so festgestellten Lambda-Ungleichverteilung eine Korrektur der Einspritzmenge für jeden Zylinder durchgeführt werden und somit eine Gleichstellung des Lambda für alle Zylinder erreicht werden. Die Korrektur der Einspritzmengen bewirkt eine Lambda-Änderung der einzelnen Zylinder des Motors 208 und kann wie zuvor beschrieben mit den Schritten 201-206 erneut bestimmt werden.
  • Fig. 5 zeigt ein Fahrzeug 500 mit einem Verbrennungsmotor 208 mit vier Zylindern 501-504. In jedem der vier Zylinder 501-504 ist jeweils eine Zündkerze 505-508 angeordnet, welche mit einer Steuervorrichtung 509 gekoppelt sind. Die Steuervorrichtung 509 ist in der Lage, mit Hilfe der Zündkerzen 505-508 in den Brennräumen der Zylinder 501-504 jeweils einen Ionenstrom zu erfassen. In Abhängigkeit der erfassten Ionenströme bestimmt die Steuervorrichtung 509, wie zuvor in Zusammenhang mit dem Ablaufdiagramm 200 der Fig. 2 beschrieben wurde, eine Lambda-Ungleichverteilung. Wenn die Lambda-Ungleichverteilung einen vorbestimmten Schwellenwert überschreitet, steuert die Steuervorrichtung 509 eine Kontrollleuchte 510 des Fahrzeugs 500 an, um dem Fahrer anzuzeigen, dass die Lambda-Ungleichverteilung den vorbestimmten Schwellenwert überschritten hat. Darüber hinaus kann die Steuervorrichtung 509 eine (nicht gezeigte) Motorsteuerung des Verbrennungsmotors 208 derart ansteuern, dass eine Lambda-Gleichstellung erreicht wird, wie im Schritt 207 der Fig. 2 beschrieben wurde.

Claims (19)

  1. Verfahren für einen Verbrennungsmotor mit mindestens einem Zylinder, umfassend:
    - Erfassen eines ersten Ionenstroms (301-303) für den mindestens einen Zylinder (501-504), während der Verbrennungsmotor (208) mit einem ersten Luft-Kraftstoffgemisch betrieben wird,
    - Erfassen eines zweiten Ionenstroms (301-303) für den mindestens einen Zylinder (501-504), während der Verbrennungsmotor (208) mit einem zweiten Luft-Kraftstoffgemisch betrieben wird, wobei das erste Luft-Kraftstoffgemisch und das zweite Luft-Kraftstoffgemisch verschieden sind, und
    - Bestimmen einer Ionenstromdifferenz für den mindestens einen Zylinder (501-504) aus dem ersten und zweiten Ionenstrom (301-303) des mindestens einen Zylinders (501-504).
  2. Verfahren nach Anspruch 1, wobei der Verbrennungsmotor (208) mehrere Zylinder (501-504) umfasst, wobei für jeden Zylinder von mindestens zwei Zylindern der mehreren Zylinder jeweils eine Ionenstromdifferenz aus dem ersten und zweiten Ionenstrom (301-303) des jeweiligen Zylinders (501-504) bestimmt wird, wobei das Verfahren ferner umfasst:
    - Bestimmen einer Zylinderungleichverteilung im Luft-Kraftstoffgemisch zwischen den mindestens zwei Zylindern in Abhängigkeit von den Ionenstromdifferenzen der mindestens zwei Zylinder.
  3. Verfahren nach Anspruch 2, wobei das Verfahren ferner für jeden der mindestens zwei Zylinder umfasst:
    - Korrigieren einer Einspritzmenge für den jeweiligen Zylinder (501-504) in Abhängigkeit der Ionenstromdifferenzen der mindestens zwei Zylinder derart, dass ein Unterschied zwischen den Ionenstromdifferenzen der mindestens zwei Zylinder verringert wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste und/oder zweite Ionenstrom (301-303) im Brennraum des jeweiligen Zylinders (501-504) erfasst wird.
  5. Verfahren nach Anspruch 4, wobei der erste und/oder zweite Ionenstrom (301-303) mittels einer in dem Brennraum des jeweiligen Zylinders angeordneten Zündkerze (505-508) erfasst wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste und/oder zweite Ionenstrom (301-303) in einem vorbestimmten Kurbelwellenwinkelbereich (304) erfasst wird.
  7. Verfahren nach Anspruch 6, wobei der vorbestimmte Kurbelwellenwinkelbereich (304) einen Kurbelwellenwinkelbereich von -20° bis +30° in Bezug auf einen oberen Totpunkt des jeweiligen Zylinders umfasst.
  8. Verfahren nach Anspruch 6 oder 7, wobei das Erfassen des erste und/oder zweite lonenstrom (301-303) umfasst:
    - Erfassen eines Ionenstromverlaufs über dem vorbestimmten Kurbelwellenwinkelbereich (304), und
    - Integrieren des Ionenstromverlaufs über dem Kurbelwellenwinkelbereich (304).
  9. Verfahren nach Anspruch 8, wobei der Schritt des Erfassens des Ionenstromverlaufs umfasst:
    - Erfassen mehrerer Ionenstromverläufe bei mehreren Arbeitsspielen des jeweiligen Zylinders, und
    - Bilden eines Mittelwertionenstromverlaufs durch Mitteln der mehreren Ionenstromverläufe.
  10. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Schritt des Erfassens des zweiten Ionenstroms (301-303) für den jeweiligen Zylinder (501-504) umfasst:
    - Erfassen mehrerer zweiter Ionenströme mit unterschiedlichen zweiten Luft-Kraftstoffgemischen.
  11. Verfahren nach einem der vorhergehenden Ansprüche, wobei das erste Luft-Kraftstoffgemisch und das zweite Luft-Kraftstoffgemisch unterschiedliche Kraftstoffmengen aufweisen.
  12. Verfahren nach Anspruch 11, wobei die Kraftstoffmenge in dem zweiten Luft-Kraftstoffgemisch in einem Bereich von -40% bis +40% gegenüber der Kraftstoffmenge des ersten Luft-Kraftstoffgemischs verändert ist.
  13. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Verbrennungsmotor (208) sprunghaft zwischen einem Betrieb mit dem ersten Luft-Kraftstoffgemisch und einem Betrieb mit dem zweiten Luft-Kraftstoffgemisch umgestellt wird.
  14. Verfahren für einen Verbrennungsmotor mit mehreren Zylindern, wobei das Verfahren umfasst:
    - Erfassen eines Ionenstroms (301-303) für jeden Zylinder (501-504) von mindestens zwei Zylindern der mehreren Zylinder während eines Betriebs des Verbrennungsmotors,
    - Bestimmen eines Ionenstrommittelwerts (401) in Abhängigkeit von den erfassten Ionenströmen der mindestens zwei Zylinder,
    - für jeden der mindestens zwei Zylinder: Bestimmen einer Abweichung (402-408) des Ionenstroms von dem Ionenstrommittelwert (401), und
    - Bestimmen einer Zylinderungleichverteilung im Luft-Kraftstoffgemisch zwischen den mindestens zwei Zylindern in Abhängigkeit von den Abweichungen (402-408) der mindestens zwei Zylinder.
  15. Verfahren nach Anspruch 2 oder 14, ferner umfassend:
    - Bereitstellen einer On-Board-Diagnose-Information in Abhängigkeit von der bestimmten Zylinderungleichverteilung im Luft-Kraftstoffgemisch.
  16. Steuervorrichtung für einen Verbrennungsmotor mit mindestens einem Zylinder, wobei der Verbrennungsmotor (208) in dem mindestens einen Zylinder (501-504) ein Ionenstromerfassungsmittel (505-508) aufweist, wobei die Steuervorrichtung (509) mit dem Ionenstromerfassungsmittel (505-508) koppelbar ist und ausgestaltet ist:
    - einen ersten Ionenstrom (301-303) für den mindestens einen Zylinder (501-504) zu erfassen, während der Verbrennungsmotor (208) mit einem ersten Luft-Kraftstoffgemisch betrieben wird,
    - einen zweiten Ionenstrom (301-303) für den mindestens einen Zylinder (501-504) zu erfassen, während der Verbrennungsmotor (208) mit einem zweiten Luft-Kraftstoffgemisch betrieben wird, wobei das erste Luft-Kraftstoffgemisch und das zweite Luft-Kraftstoffgemisch verschieden sind, und
    - eine Ionenstromdifferenz für den mindestens einen Zylinder (501-504) aus dem ersten und zweiten Ionenstrom (301-303) des mindestens einen Zylinders (501-504) zu bestimmen.
  17. Steuervorrichtung für einen Verbrennungsmotor mit mehreren Zylindern, wobei der Verbrennungsmotor (208) in jedem Zylinder von mindestens zwei Zylindern der mehreren Zylinder (501-504) jeweils ein Ionenstromerfassungsmittel (505-508) aufweist, wobei die Steuervorrichtung (509) mit den Ionenstromerfassungsmitteln (505-508) koppelbar ist und ausgestaltet ist:
    - für jeden Zylinder (501-504) der mindestens zwei Zylindern einen Ionenstrom (301-303) während eines Betriebs des Verbrennungsmotors (208) zu erfassen,
    - einen Ionenstrommittelwert (401) in Abhängigkeit von den erfassten Ionenströmen (301-303) der mindestens zwei Zylinder zu bestimmen,
    - für jeden der mindestens zwei Zylinder eine Abweichung (402-408) des Ionenstroms von dem Ionenstrommittelwert (401) zu bestimmen, und
    - eine Zylinderungleichverteilung im Luft-Kraftstoffgemisch zwischen den mindestens zwei Zylindern in Abhängigkeit von den Abweichungen der mindestens zwei Zylinder zu bestimmen.
  18. Steuervorrichtung nach Anspruch 16 oder 17, wobei die Steuervorrichtung (509) zur Durchführung des Verfahrens nach einem der Ansprüche 1-15 ausgestaltet ist.
  19. Fahrzeug, umfassend:
    - einen Verbrennungsmotor (208) mit mindestens einem Zylinder (501-504), wobei der Verbrennungsmotor (208) in dem mindestens einen Zylinder (501-504) ein Ionenstromerfassungsmittel (505-508) aufweist, und
    - eine Steuervorrichtung (509) nach einem der Ansprüche 16-18.
EP12002810.5A 2011-05-27 2012-04-21 Verfahren und Steuervorrichtungen für einen Verbrennungsmotor Not-in-force EP2574760B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011102652A DE102011102652A1 (de) 2011-05-27 2011-05-27 Verfahren und Steuervorrichtungen für einen Verbrennungsmotor

Publications (2)

Publication Number Publication Date
EP2574760A1 true EP2574760A1 (de) 2013-04-03
EP2574760B1 EP2574760B1 (de) 2018-10-24

Family

ID=46045692

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12002810.5A Not-in-force EP2574760B1 (de) 2011-05-27 2012-04-21 Verfahren und Steuervorrichtungen für einen Verbrennungsmotor

Country Status (2)

Country Link
EP (1) EP2574760B1 (de)
DE (1) DE102011102652A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016178072A1 (en) * 2015-05-07 2016-11-10 Emak S.P.A. A system for continuous control of air-fuel ratio with ionization current

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017209525A1 (de) * 2017-06-07 2018-12-13 Robert Bosch Gmbh Verfahren zur Berechnung einer Füllung einer Brennkraftmaschine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2944834A1 (de) 1979-11-07 1981-05-27 Robert Bosch Gmbh, 7000 Stuttgart Verfahren zur regelung der luftzahl lambda bei einer selbstzuendenden brennkraftmaschine
WO2000061932A1 (de) * 1999-04-10 2000-10-19 Daimlerchrysler Ag Verfahren zur verbrennungskenngrössenbestimmung einer brennkraftmaschine
DE10115902C1 (de) 2001-03-30 2002-07-04 Siemens Ag Lambda-Zylindergleichstellungsverfahren
DE102004041230A1 (de) 2004-08-26 2006-03-02 Volkswagen Ag Zylindergleichstellung mittels Ionenstrommessung
US20080053406A1 (en) * 2006-09-05 2008-03-06 Matthew Viele Compensating For Varying Fuel And Air Properties In An Ion Signal
DE102007030527A1 (de) 2007-06-30 2009-01-08 Daimler Ag Verfahren zur Zylindergleichstellung bei einer aufgeladenen fremdgezündeten Brennkraftmaschine für ein Kraftfahrzeug
DE102009026839A1 (de) 2009-06-09 2010-12-16 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine, bei dem die Zylinder durch eine Auswertung der Laufruhe bei zylinderindividueller Abmagerung des Gemischs gleichgestellt werden

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19816641C1 (de) * 1998-04-15 1999-10-07 Daimler Chrysler Ag Verfahren zur Bestimmung der Laufruhe eines Ottomotors
DE10008552B4 (de) * 2000-02-24 2007-01-04 Robert Bosch Gmbh Verfahren und Vorrichtung zur Auswertung eines Signals eines Ionenstrom-Sensor einer Brennkraftmaschine
DE10147171B4 (de) * 2001-09-25 2007-11-29 Siemens Ag Verfahren zum direkten Einspritzen von Kraftstoff in Form von zwei Einspritzungen mit unterschiedlichen Einspritzwinkeln und eine Steuereinrichtung zum Einspritzen

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2944834A1 (de) 1979-11-07 1981-05-27 Robert Bosch Gmbh, 7000 Stuttgart Verfahren zur regelung der luftzahl lambda bei einer selbstzuendenden brennkraftmaschine
WO2000061932A1 (de) * 1999-04-10 2000-10-19 Daimlerchrysler Ag Verfahren zur verbrennungskenngrössenbestimmung einer brennkraftmaschine
DE19916204C1 (de) 1999-04-10 2000-11-16 Daimler Chrysler Ag Verfahren zur Verbrennungskenngrößenbestimmung einer Brennkraftmaschine
DE10115902C1 (de) 2001-03-30 2002-07-04 Siemens Ag Lambda-Zylindergleichstellungsverfahren
DE102004041230A1 (de) 2004-08-26 2006-03-02 Volkswagen Ag Zylindergleichstellung mittels Ionenstrommessung
US20080053406A1 (en) * 2006-09-05 2008-03-06 Matthew Viele Compensating For Varying Fuel And Air Properties In An Ion Signal
DE102007030527A1 (de) 2007-06-30 2009-01-08 Daimler Ag Verfahren zur Zylindergleichstellung bei einer aufgeladenen fremdgezündeten Brennkraftmaschine für ein Kraftfahrzeug
DE102009026839A1 (de) 2009-06-09 2010-12-16 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine, bei dem die Zylinder durch eine Auswertung der Laufruhe bei zylinderindividueller Abmagerung des Gemischs gleichgestellt werden

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016178072A1 (en) * 2015-05-07 2016-11-10 Emak S.P.A. A system for continuous control of air-fuel ratio with ionization current
US10590868B2 (en) 2015-05-07 2020-03-17 Emak S.P.A. System for continuous control of air-fuel ratio with ionization current

Also Published As

Publication number Publication date
DE102011102652A1 (de) 2012-11-29
EP2574760B1 (de) 2018-10-24

Similar Documents

Publication Publication Date Title
DE102008042549B4 (de) Verfahren und Vorrichtung zur Diagnose einer Abgassonde
DE102006051465B4 (de) Verfahren und Vorrichtung zur Steuerung eines Verbrennungsmotors
DE102008001569B4 (de) Verfahren und Vorrichtung zur Adaption eines Dynamikmodells einer Abgassonde
WO2001059282A1 (de) Verfahren und einrichtung zur bestimmung zylinderindividueller unterschiede einer steuergröss bei einer mehrzylindrigen brennkraftmaschine
DE102007049705A1 (de) Verfahren zur Bestimmung der Zündwilligkeit von Kraftstoff mit unbekannter Kraftstoffqualität
WO2008040732A1 (de) Verfahren und vorrichtung zum überwachen einer abgassonde
DE102009027822A1 (de) Verfahren zur Bestimmung einer Zylindervertrimmung
DE102009045376A1 (de) Verfahren und Vorrichtung zur Diagnose der Dynamik eines Abgassensors
DE102013227023A1 (de) Verfahren zur Zylindergleichstellung einer lambdageregelten Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE102011087310B3 (de) Verfahren und Vorrichtung zum Betreiben einer linearen Lambdasonde
DE102019213092A1 (de) Verfahren zur Diagnostik von Verbrennungsaussetzern einer Verbrennungskraftmaschine
WO2009036890A2 (de) Verfahren und vorrichtung zum ermitteln einer abweichung eines lambdawerts wenigstens eines zylinders einer brennkraftmaschine von einem gesamt-lambdawert
EP2574760B1 (de) Verfahren und Steuervorrichtungen für einen Verbrennungsmotor
DE10308537B4 (de) Abgasemissions-Regelvorrichtung für Mehrzylinder-Verbrennungsmotoren
DE102012219725B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit einer Mehrzahl von Zylindern in einem Homogenbetrieb
DE102009026839B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine, bei dem die Zylinder durch eine Auswertung der Laufruhe bei zylinderindividueller Abmagerung des Gemischs gleichgestellt werden
DE102009046759B4 (de) Laufunruhe-basierter Ausgleich von Luftzahlunterschieden zwischen verschiedenen Brennräumen eines Verbrennungsmotors
DE102012204332B4 (de) Vorrichtung zum Betreiben einer Brennkraftmaschine
DE10305452B4 (de) Verfahren zur Diagnose eines Katalysators im Abgasstrom einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE102015203458B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102007030527A1 (de) Verfahren zur Zylindergleichstellung bei einer aufgeladenen fremdgezündeten Brennkraftmaschine für ein Kraftfahrzeug
EP2705234A1 (de) Einrichtung zur steuerung einer brennkraftmaschine
DE102017202766A1 (de) Verfahren zum Überwachen der Partikelemission einer Brennkraftmaschine
DE102014210849A1 (de) Verfahren und Vorrichtung zur Reduzierung einer Laufunruhe bei einer Brennkraftmaschine
WO2009135738A1 (de) Verfahren und vorrichtung zur diagnose der dynamik einer breitband-lambdasonde

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20131004

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20160602

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180621

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1056929

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012013654

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181024

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190124

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190224

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190124

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190224

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012013654

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190421

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200430

Year of fee payment: 9

Ref country code: FR

Payment date: 20200429

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1056929

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190421

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200429

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120421

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012013654

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210421

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024