EP2567167B1 - Kältegerät und verdampfer dafür - Google Patents

Kältegerät und verdampfer dafür Download PDF

Info

Publication number
EP2567167B1
EP2567167B1 EP11712574.0A EP11712574A EP2567167B1 EP 2567167 B1 EP2567167 B1 EP 2567167B1 EP 11712574 A EP11712574 A EP 11712574A EP 2567167 B1 EP2567167 B1 EP 2567167B1
Authority
EP
European Patent Office
Prior art keywords
graphite
refrigerator
pipe
evaporator according
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11712574.0A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2567167A2 (de
Inventor
Stefan Holzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Bosch und Siemens Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Bosch und Siemens Hausgeraete GmbH filed Critical BSH Bosch und Siemens Hausgeraete GmbH
Publication of EP2567167A2 publication Critical patent/EP2567167A2/de
Application granted granted Critical
Publication of EP2567167B1 publication Critical patent/EP2567167B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F2013/005Thermal joints
    • F28F2013/006Heat conductive materials

Definitions

  • the present invention relates to a refrigerator according to the preamble of claim 1, in particular a household refrigerator, and a usable in such a refrigerator evaporator.
  • Such an evaporator is out US 6,536,227 B1 known.
  • Such an evaporator conventionally comprises a tube in which refrigerant circulates, a support plate to which the tube is attached and via which a heat exchange takes place between the tube and an interior of the refrigeration device cooled by the evaporator, and a tube arranged between the tube and the carrier plate Heat spreader layer, which provides efficient heat transfer between the carrier plate and the tube.
  • the heat spreader layer is made of metal.
  • an evaporator of this type is known in which the carrier plate is a molded in an inner container of the refrigerator freezer tray, around which the tube is wrapped.
  • metal plates may be disposed between the tube and the freezer tray. If such a metal plate touches the freezer well over a large area, it causes a good heat coupling of the tube to the freezer. However, it is hard and expensive.
  • a slightly cheaper solution is to glue a 30 micron thick aluminum foil to the outer surfaces of the freezer compartment and wrap and glue the tube around it. If the adhesive layer that fixes the tube to the aluminum foil is thin enough, sufficient thermal conductivity of the evaporator for practical requirements is readily achievable. However, it is precisely this thin adhesive layer that can not be reliably realized everywhere. Fluctuations in the ductility of the tube may cause individual turns of the tube to not conform tightly to the aluminum foil, leaving an air gap therebetween or creating a thick layer of adhesive that significantly impedes heat transfer. Although the aluminum foil is cheaper than a metal plate, but still there is a need for a more cost-effective solution that reliably ensures good heat exchange between the tube and the support plate.
  • Object of the present invention is to provide an evaporator for a refrigerator, which is at least the same value as the conventional evaporator in its thermal properties at low cost.
  • the object is achieved by graphite-containing in an evaporator for a refrigerator with a refrigerant-carrying tube, at least one support plate to which the tube is attached, and arranged between the tube and the carrier plate heat spreader layer graphite.
  • the thermal conductivity of graphite is better than that of many metals and only slightly lower than that of aluminum at significantly lower cost. Therefore, a layer thickness of the graphite which is only slightly larger than that of the aluminum foil is sufficient to provide an evaporator whose heat exchange performance is at least as great as that of a conventional evaporator of the same size of the type described above.
  • the graphite content of the heat spreader layer should preferably be at least 100 mg / cm 2 , more preferably at least 200 mg / cm 2 , corresponding in each case to a layer thickness of pure graphite of approximately 50 or 100 ⁇ m.
  • a graphite layer of this thickness can easily reach a heat transfer coefficient of 0.4 Wm -2 K -1 .
  • the heat spreader layer comprises a sheet of substantially pure graphite.
  • a graphite layer can be considered if any impurities present do not affect the thermal conductivity of the layer.
  • the heat spreader layer may comprise a graphite filled plastic film.
  • a plastic film must be generally thicker than a pure graphite foil to achieve the same thermal conductivity, but has the advantage of more convenient handling.
  • the film may have a macroscopically homogeneous structure with graphite particles embedded in a plastic matrix or else a sandwich structure with a graphite layer embedded between plastic layers.
  • the heat distribution layer can be a graphite-containing plastic plate.
  • One advantage of pure graphite is its compliance, which makes it possible to press a recess in the graphite layer when attaching the tube and thus to establish a close thermal contact between the tube and the heat spreader layer on a substantially larger surface than conventionally between the Pipe and a metal plate or a glued to a solid support plate metal foil would be possible. Also, in the graphite-filled plastic film such a depression can be easily formed, since such a film will generally be the more compliant the higher its graphite content. In the case of a graphite-containing plastic plate, such a recess may be formed in advance on the plate to subsequently lay the tube therein.
  • the plastic plate Due to their - relatively high stiffness compared to the films - the plastic plate can also have the tube clamping projections that produce a close thermal contact between the plastic plate and tube.
  • these projections have mutually opposite concave flanks, in which the tube can be inserted.
  • the projections may conveniently be formed as ribs extending along the tube.
  • the support plate may form a wall of a freezer compartment or a refrigerating compartment in a refrigerator according to the invention.
  • the heat distribution layer may comprise a graphite-containing plastic plate on a first of these walls and a foil on a second wall.
  • the tube Due to the higher carrying capacity of the plastic sheet compared to the foil, the tube can be laid closer to the first wall than to the second.
  • the first wall is a back wall or a bottom wall of the freezer compartment.
  • the use of the plastic plate makes sense, because it is not practical here to anchor the tube by wrapping around the freezer.
  • a denser installation of the pipe may be desirable in order to provide a high cooling capacity for rapid freezing of stored refrigerated goods.
  • the invention is also applicable to an evaporator, the support plate is arranged freely in an interior of the refrigerator.
  • Fig. 1 shows a section through a combination household refrigeration appliance with a body 1, a normal refrigerated compartment 2, a freezer compartment 3 and doors 4, 5 for closing the two compartments 2, 3.
  • the compartments 2, 3 are in a conventional manner by deep-drawn plastic inner container delimited by a surrounding insulating material layer 6.
  • the inner containers are each box-shaped with a front side open to the door 4 or 5, a rear wall 7, ceiling floor and side walls 8, 9 and 10, respectively.
  • the insulation material layer 6 facing outer sides of the walls 8, 9, 10 of the freezer compartment Inner container are covered with a graphite or graphite-filled plastic film, which in Fig. 1 is not visible due to its small thickness.
  • the foil may be glued individually piece by piece to each wall 8, 9, 10, or it may be wound in one piece around all four walls 8, 9, 10.
  • An aluminum refrigerant tube 11 extends helically over the walls 8, 9, 10 of the inner container in close contact with the foil.
  • Fig. 2 shows an alternative embodiment of a refrigeration device according to the invention.
  • an inner container surrounded by an insulating material layer 6 delimits an inner space 12 which is subdivided by a box 13 mounted therein into a freezer compartment (inside the box 13) and a normal refrigerated compartment 2 (outside the box 13).
  • the molded plastic or metal walls of the box 13 are externally covered with a sheet of graphite or graphite-filled plastic, and around the film is helically a refrigerant pipe 11 looped.
  • Fig. 3 shows schematically and not to scale a partial section through the freezer compartment inner container of the refrigerator Fig. 1 or box 13 Fig. 2 ,
  • the ceiling wall 8 and adjacent parts of the side walls 10 can be seen.
  • the sheet of graphite or of graphite-filled plastic, designated here by 14 extends integrally over the walls 8, 10.
  • the forces occurring around the container when the pipe 11 is wound around it are the pipe 11 in particular in the vicinity of rounded edges 15 between the walls 8, 10 pressed into the resilient sheet 14.
  • the original thickness of the film 14 at these locations is indicated by a dashed line. From this flexibility of the film results in a large-area contact between the film 14 and the tube 11 in the vicinity of the edges 15, which in turn provides for a highly efficient heat transfer between the tube 11 and the film 14.
  • Fig. 4 shows a section through a part of the ceiling wall 8, at which it is clearly visible how the tube 11 has pressed into the film 14.
  • the film 14 In practice, however, it is not a problem to give the film 14 also an at least equivalent heat transfer coefficient. If the film 14 is made of pure graphite, a thickness of 100 to 200 .mu.m is sufficient to achieve a heat transfer coefficient of about 0.5 Wm -2 K -1 , which corresponds to that of a conventional aluminum foil of 30 .mu.m thick. This layer thickness corresponds to a graphite amount of about 100 to 200 mg / cm 2 , and it is to be assumed that a corresponding amount of graphite will also be sufficient in a graphite-filled film in order to achieve a heat transfer coefficient of the same level.
  • a plastic plate 16 whose thermal conductivity is increased by the addition of graphite. While the amount of graphite that can be added to most plastics without losing their strength is limited, the thermal conductivity of plastic sheet 16 will generally be significantly less than that of pure graphite. However, this disadvantage is of little importance, since suitable plastics are available inexpensively, so that a heat transfer coefficient of at least 0.4 watts per square meter Kelvin, which is sufficient for practical purposes, can be achieved, in which the thickness of the plastic sheet 16 is chosen to be sufficiently large. In practice, a thickness of the plate 16 of 1 to 2 mm is sufficient to accommodate the required amount of graphite from about 100 to 200 mg / cm 2 .
  • a major advantage of the plastic plate 16 is that on her, as in the view of Fig. 5 protrusions 17 can be formed which clamp the tube 11 and thus provide efficient heat transfer between the tube 11 and the plate 16.
  • Such projections may be formed, for example, as hooks which press the tube against the plate; preferred is the in Fig. 5 shown embodiment in which the projections 17 are formed as elongated ribs, each pairwise define a groove in which the tube 11 is clamped.
  • the rib-shaped projections 17 have the Fig. 5 facing concave flanks 18, whose radius of curvature corresponds in each case to the outer radius of the tube 11, so that the flanks 18 and the tube 11 touch more than half of the pipe circumference.
  • Fig. 6 shows in a perspective view obliquely from below a freezer compartment inner container according to a further development of the present invention.
  • Ceiling bottom and side walls 8, 9, 10 of the inner container are as with respect to Fig. 1 to 3 described coated with a graphite-containing foil 14, and a in Fig. 6 shown in phantom section 19 of the refrigerant tube 11 extends in contact with the film 14 helically around the walls 8, 9, 10. Since on the rear wall 7 of the inner container, the tube 11 can not be secured by sloshing as in the case of section 19 is here a plate 16 of the with reference to Fig.
  • a second plate 21 of graphite-containing plastic is attached here: it can be glued to the film 14, or the film 14 is recessed in the area occupied by the plate 21.
  • a segment 22 of the around the walls 8, 9, 10 wound pipe section 19 extends over the plastic plate 21 in the longitudinal direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
EP11712574.0A 2010-05-04 2011-04-07 Kältegerät und verdampfer dafür Not-in-force EP2567167B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010028527A DE102010028527A1 (de) 2010-05-04 2010-05-04 Kältegerät und Verdampfer dafür
PCT/EP2011/055404 WO2011138117A2 (de) 2010-05-04 2011-04-07 Kältegerät und verdampfer dafür

Publications (2)

Publication Number Publication Date
EP2567167A2 EP2567167A2 (de) 2013-03-13
EP2567167B1 true EP2567167B1 (de) 2014-03-05

Family

ID=44625709

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11712574.0A Not-in-force EP2567167B1 (de) 2010-05-04 2011-04-07 Kältegerät und verdampfer dafür

Country Status (5)

Country Link
EP (1) EP2567167B1 (zh)
CN (1) CN102869941B (zh)
DE (1) DE102010028527A1 (zh)
RU (1) RU2528799C2 (zh)
WO (1) WO2011138117A2 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011100192A1 (de) * 2011-05-02 2012-11-08 Liebherr-Hausgeräte Ochsenhausen GmbH Wärmeübertrager und Kühl- und/oder Gefriergerät mit einem Wärmeübertrager
DE202012103540U1 (de) * 2012-09-17 2013-12-20 Uponor Innovation Ab Wärmeleitplatte, insbesondere zum Kühlen oder Heizen eines Gebäudes
WO2014086860A1 (en) * 2012-12-05 2014-06-12 Arcelik Anonim Sirketi A cooling device comprising an evaporator
EP2829828B1 (en) * 2013-07-25 2016-06-29 Electrolux Appliances Aktiebolag Method for manufaturing a refrigerating apparatus
DE102014011672A1 (de) * 2013-11-04 2015-05-07 Liebherr-Hausgeräte Lienz Gmbh Kühl- und/oder Gefriergerät
DE102014210679A1 (de) 2014-06-05 2015-12-17 BSH Hausgeräte GmbH Kältegerät mit einem Verdampfer
CN106839573A (zh) * 2017-01-22 2017-06-13 合肥华凌股份有限公司 冰箱

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1601053A1 (de) * 1967-11-14 1970-08-20 Bauknecht Gmbh G Kuehleinrichtung
SU1198360A1 (ru) * 1983-07-05 1985-12-15 Гнединцевский Газоперерабатывающий Завод Горизонтальный теплообменник-испаритель погружного типа
CN1087824C (zh) * 1998-02-12 2002-07-17 中国科学院低温技术实验中心 蓄热式不间断工作冷凝器
US6536227B1 (en) * 2002-01-29 2003-03-25 Daewoo Electronics Corporation Direct cooling type refrigerator
US20070053168A1 (en) * 2004-01-21 2007-03-08 General Electric Company Advanced heat sinks and thermal spreaders
DE202005000909U1 (de) 2004-12-28 2006-05-04 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und Gefriergerät
CN101048055A (zh) * 2006-03-30 2007-10-03 通用电气公司 先进的受热器和散热器
DE202006010757U1 (de) * 2006-07-11 2006-11-02 Sgl Carbon Ag Kühlvorrichtung
CN201306966Y (zh) * 2008-11-14 2009-09-09 河南新科隆电器有限公司 一种粘接式板管蒸发器

Also Published As

Publication number Publication date
WO2011138117A2 (de) 2011-11-10
CN102869941A (zh) 2013-01-09
DE102010028527A1 (de) 2011-11-10
CN102869941B (zh) 2015-09-30
WO2011138117A3 (de) 2012-02-23
EP2567167A2 (de) 2013-03-13
RU2528799C2 (ru) 2014-09-20
RU2012147335A (ru) 2014-06-10

Similar Documents

Publication Publication Date Title
EP2567167B1 (de) Kältegerät und verdampfer dafür
EP2567168B1 (de) Kältegerät und verdampfer dafür
EP1957907B1 (de) Kältegerät mit isolationsleiste zum thermischen entkoppeln der seitenwände
WO2011101391A1 (de) Wärmeableiter und elektrischer energiespeicher
EP2795210A1 (de) Kühlelement und kühlvorrichtung
EP1222433A1 (de) Wärmetauscher, wie verdampfer, verflüssiger oder dergl.
DE202006007585U1 (de) Kühl- und/oder Gefriergerät
EP2021721A1 (de) Kälte- und/oder wärmespeicher
DE102009017200A1 (de) Wärmeaustauscher
DE10143241A1 (de) Kältegerät mit Coldwall-Verdampfer
DE4007001A1 (de) Waermespeicher, insbesondere fuer durch motorabwaerme gespeiste kraftfahrzeugheizungen
DE10242463A1 (de) Kälte-/Wärmespeicher für eine Klimaeinrichtung
DE2627022A1 (de) Kaeltespeicherelement in plattenform
EP2614324B1 (de) Kältegerät mit skin-verflüssiger
DE4007004C3 (de) Wärmespeicher
DE102019210190B4 (de) Thermoelektrische kühleinheit
EP1774229A2 (de) Kältegerät und peltier-kühlvorrichtung dafür
DE3222346C2 (de) Kältetechnisches Gerät mit einem eine eutektische Lösung enthaltenden Kältespeicher
EP3425313B1 (de) Kältegerät
DE202005008376U1 (de) Kühl- und/oder Gefriergerät
WO2005050108A1 (de) Verdampfer für ein kühl- und/oder gefriergerät
DE102021214664A1 (de) Haushaltskältegerät mit elastisch verformbaren Multikammer-Formteil
EP0819899A2 (de) Wärmeisolierendes Gehäuse
DE102014011672A1 (de) Kühl- und/oder Gefriergerät
DE102020206613A1 (de) Kältegerät und Wandung dafür

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121204

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131014

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 655167

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011002317

Country of ref document: DE

Effective date: 20140417

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140605

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140705

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140605

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011002317

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140707

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141231

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

26N No opposition filed

Effective date: 20141208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140505

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011002317

Country of ref document: DE

Effective date: 20141208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140407

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011002317

Country of ref document: DE

Owner name: BSH HAUSGERAETE GMBH, DE

Free format text: FORMER OWNER: BSH BOSCH UND SIEMENS HAUSGERAETE GMBH, 81739 MUENCHEN, DE

Effective date: 20150409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110407

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140407

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 655167

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170430

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140305

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011002317

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181101