EP2557372A1 - Thermoelektrischer Energiespeicher - Google Patents

Thermoelektrischer Energiespeicher Download PDF

Info

Publication number
EP2557372A1
EP2557372A1 EP11009124A EP11009124A EP2557372A1 EP 2557372 A1 EP2557372 A1 EP 2557372A1 EP 11009124 A EP11009124 A EP 11009124A EP 11009124 A EP11009124 A EP 11009124A EP 2557372 A1 EP2557372 A1 EP 2557372A1
Authority
EP
European Patent Office
Prior art keywords
storage medium
heat
heating element
storage
induction coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11009124A
Other languages
English (en)
French (fr)
Inventor
André Dr. Biegner
Robert Dr. Eckl
Thomas Hecht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP2557372A1 publication Critical patent/EP2557372A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H7/00Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release
    • F24H7/02Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid
    • F24H7/04Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid with forced circulation of the transfer fluid
    • F24H7/0408Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid with forced circulation of the transfer fluid using electrical energy supply
    • F24H7/0433Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid with forced circulation of the transfer fluid using electrical energy supply the transfer medium being water

Definitions

  • the invention relates to a heat accumulator with a storage medium, a transfer device with which heat can be transferred to the storage medium, as well as a removal device, with the heat from the storage medium can be removed.
  • the demand for electricity is not constant in terms of time but has a daily, weekday-dependent and seasonal load profile.
  • thermoelectric energy storage devices which in principle can be built and operated at any location and thus contribute to the integration of renewable energies into the existing infrastructure while avoiding grid expansion.
  • thermoelectric energy storage converts electrical energy into heat and then passes this into a heat storage, from which they are removed again with a time lag and z. B. can be converted back into electrical energy via a steam turbine process.
  • the heat storage has as a storage medium, a liquid, such as a salt or molten metal, or solids, such as natural or refractory bricks, on. To minimize energy losses, the storage medium is thermally isolated from the environment.
  • the heating conductors can be arranged so that they surround the storage medium or are surrounded by storage medium.
  • the first case only the outer surface of the storage medium is available for heat transfer.
  • the heating conductors are arranged inside the storage medium, the effect described above does not occur because the heat transfer area can be increased linearly with the volume of the storage medium.
  • a disadvantage of this arrangement that in the case of electrical and / or mechanical damage to the heating conductors under certain circumstances, the storage medium must be removed with great technical and time required before a repair can be performed.
  • Object of the present invention is therefore to provide a heat accumulator of the generic type, which overcomes the disadvantages of the prior art.
  • the stated object is achieved in that the transmission device, an induction coil and an electrically conductive Heating element which is in direct contact with the storage medium, so that heat between the heating element and storage medium can be exchanged.
  • the induction coil is traversed by an alternating electrical current, which generates an alternating magnetic field.
  • the electrically conductive heating element which is electrically insulated from the induction coil, is arranged so that eddy currents can be induced in it by the alternating magnetic field, which lead to heating of the heating element due to the ohmic losses. If the heating element consists of a ferromagnetic material, such as an iron-silicon or an iron-nickel alloy or ⁇ -metal, so carry beyond Ummagnetmaschineshuse to heat the heating element and thus to form a temperature gradient between the heating element and storage medium.
  • the heat accumulator according to the invention thus makes it possible to convert electrical energy into heat and to store it.
  • the power with which heat can be transferred to the storage medium via the heating element increases with the amplitude of the magnetic field strength at the location of the heating element. Since this amplitude is greatest within the induction coil, the heating element is usefully placed inside the induction coil.
  • a heating element has the shape of a straight rod. It is also conceivable, for example, to perform a heating element as a ribbed rod or tube or as a ball.
  • the heat accumulator according to the invention may comprise more than one electrically conductive heating element, wherein each of the heating elements is in direct contact with the storage medium.
  • a plurality of heating elements are distributed in the storage medium and adapted in their geometries and dimensions so that the most homogeneous heating of the storage medium is possible, and inactive, not or only insufficiently involved in the heat storage areas are avoided.
  • the heat accumulator may, for. B. comprise a matrix or grid structure, with the help of which the heating elements distributed approximately homogeneously in the storage medium and their positions are fixed simultaneously.
  • an expedient embodiment of the invention provides that the device for removing heat from the storage medium is designed as a heating element.
  • a device is a straight tube surrounded by storage medium, which is preferably made of a ferromagnetic material, such as an iron-nickel alloy.
  • a preferred embodiment of the heat exchanger according to the invention provides that the induction coil is arranged outside a storage container containing the storage medium.
  • the induction coil is relatively easily accessible and can be repaired in the event of a malfunction, without, for example, the storage medium must be removed.
  • the container containing the storage medium of a non-electrically conductive material, such.
  • the storage container is disposed within the induction coil, whereby the induction coil at least partially surrounds the storage medium.
  • the storage container made of an electrically conductive material, so that currents are induced in the storage tank.
  • the heat generation or heat input into the storage material is then divided depending on the material properties and geometry between the container wall and one or more heating elements.
  • the invention provides for the storage medium to be surrounded by a heat-insulating housing, which can be designed as single or multi-shell.
  • a heat-insulating housing which can be designed as single or multi-shell.
  • the possibility should not be excluded to surround the induction coil with one or more heat-insulating layers and thus to thermally isolate from the environment.
  • the heat accumulator according to the invention comprises as a storage medium a molten salt (for example KNO 3 , NaNO 3 ), as used for example for heat storage in solar thermal power plants.
  • a molten salt for example KNO 3 , NaNO 3
  • other molten salts eg thiosulfates
  • Liquids such as water or oils, or solids, such as sand or concrete, or gases, such as air, or mixtures of solids and / or liquids and / or gases can be used as a storage medium.
  • phase change materials such as phase change materials or PCM
  • phase change materials such as paraffins
  • FIG. 1 schematically illustrated embodiment.
  • the FIG. 1 shows a heat accumulator with an induction coil, within which a storage medium is arranged.
  • the heat storage S comprises an induction coil I, in the interior of which a storage container E is located.
  • the storage container E which contains a storage medium M and a heating element H, is equipped with a removal device R, can be removed via the heat from the storage medium M.
  • the heating element H is made of a ferromagnetic material
  • the storage container E is made of a non-ferromagnetic material, such as concrete, and therefore can be penetrated by magnetic fields.
  • the induction coil I is connected to an alternating current source W, so that an alternating magnetic field can be generated, which has its greatest field strength at the location of the heating element H, in which it induces eddy currents.
  • a heat transfer medium 1 such as a thermal oil or water, with a temperature which is lower than the temperature of the storage medium M in the removal device R and passed through the storage container E are performed. Due to the temperature difference, the heat transfer medium 1 withdraws heat from the storage medium M, so that a warmed-up heat transfer medium 2 can be withdrawn from the heat accumulator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Induction Heating (AREA)

Abstract

Die Erfindung betrifft einen Wärmespeicher (S) mit einem Speichermedium (M), einer Übertragungseinrichtung (I,H), mit der Wärme auf das Speichermedium (M) übertragbar ist, sowie eine Entnahmeeinrichtung (R), mit der Wärme aus dem Speichermedium (M) entnommen werden kann. Die Übertragungseinrichtung des Wärmespeichers umfasst eine Induktionsspule (I) sowie ein elektrisch leitfähiges Heizelement (H), das mit dem Speichermedium (M) in direktem Kontakt steht, so dass Wärme zwischen Heizelement (H) und Speichermedium (M) ausgetauscht werden kann.

Description

  • Die Erfindung betrifft einen Wärmespeicher mit einem Speichermedium, einer Übertragungseinrichtung, mit der Wärme auf das Speichermedium übertragbar ist, sowie eine Entnahmeeinrichtung, mit der Wärme aus dem Speichermedium entnommen werden kann.
  • Bei der Erzeugung und Einspeisung elektrischer Energie in das Stromnetz ist stets darauf zu achten, dass sich Stromangebot und -nachfrage die Waage halten, da es andernfalls zu Spannungs- und Frequenzschwankungen und im Extremfall sogar zu einem Ausfall des Netzes kommen kann. Grundsätzlich ist die Stromnachfrage zeitlich nicht konstant, sondern weist einen tageszeitlichen, wochentagsabhängigen und saisonalen Lastgang auf. Durch das Zu- und Abschalten bzw. Regeln der Erzeugerleistung und zum Teil durch Demand-Side-Management werden die Unterschiede zwischen Angebot und Nachfrage laufend ausgeglichen.
  • Die Nutzung erneuerbarer Energien, deren Anteil an der Stromversorgung sich in den nächsten Jahren deutlich erhöhen wird, verschärft die zeitliche und örtliche Diskrepanz zwischen Angebot und Nachfrage. Da insbesondere Sonne und Wind in ihrer Einspeisekapazität fluktuieren und nicht exakt prognostizierbar sind, werden auf Seiten des Stromangebotes schnelle und überraschende Schwankungen zunehmen, die durch dynamische Kraftwerke ausgeglichen werden müssen. Besondere Bedeutung haben hierbei Pumpspeicherkraftwerke, die besonders schnell regelbar sind und in Minuten zwischen Stromerzeugung und -verbrauch umgeschaltet werden können. Kraftwerke dieser Art können jedoch nicht in beliebiger Zahl errichtet werden, da die hierfür notwendigen geografischen bzw. geologischen Voraussetzungen nur an wenigen Orten erfüllt sind. Es werden daher technologische Alternativen, wie thermoelektrische Energiespeicher, diskutiert, die prinzipiell an beliebigen Orten errichtet und betrieben werden können und damit einen Beitrag zur Integration erneuerbarer Energien in die bestehende Infrastruktur unter Vermeidung des Netzausbaus leisten.
  • Ein thermoelektrischer Energiespeicher setzt elektrische Energie in Wärme um und leitet diese anschließend in einen Wärmespeicher ein, aus dem sie zeitversetzt wieder entnommen und z. B. über einen Dampfturbinenprozess in elektrische Energie zurückgewandelt werden kann. Der Wärmespeicher weist als Speichermedium eine Flüssigkeit, wie beispielsweise eine Salz- oder eine Metallschmelze, oder Feststoffe, wie Natur- oder Feuerfeststeine, auf. Um Energieverluste zu minimieren, ist das Speichermedium thermisch gegen die Umgebung isoliert.
  • Zur Umsetzung der elektrischen Energie in Wärme werden nach dem Stand der Technik Wärmepumpen und/oder Heizleiter vorgeschlagen. Mit Hilfe von Wärmepumpen kann die Umsetzung zwar sehr effektiv durchgeführt werden, die für die erforderlichen Apparate anfallenden Investitionskosten beeinträchtigen aber erheblich die Wirtschaftlichkeit der Energiespeicherung.
  • Um die erzeugte Wärme auf das Speichermedium zu übertragen, können die Heizleiter so angeordnet sein, dass sie das Speichermedium umgeben oder von Speichermedium umgeben sind. Im ersten Fall steht für die Wärmeübertragung lediglich die äußere Oberfläche des Speichermediums zur Verfügung. Mit einer derartigen Anordnung ist es nicht möglich, die Speicherkapazität beliebig zu vergrößern, da ab einem bestimmten Volumen die Oberfläche des Speichermediums nicht mehr ausreicht, um die zu speichernde Wärmemenge innerhalb einer sinnvollen Zeitspanne und unterhalb der zulässigen Temperaturen einzuspeisen. Werden die Heizleiter innerhalb des Speichermediums angeordnet, tritt der oben beschriebene Effekt nicht auf, da die Wärmeübertragungsfläche linear mit dem Volumen des Speichermediums Vergrößert werden kann. Nachteilig ist bei dieser Anordnung jedoch, dass im Falle eines elektrischen und/oder mechanischen Schadens an den Heizleitern unter Umständen das Speichermedium mit großem technischen und zeitlichen Aufwand entfernt werden muss, bevor eine Reparatur durchgeführt werden kann.
  • Aufgabe der vorliegenden Erfindung ist es daher, einen Wärmespeicher der gattungsgemäßen Art anzugeben, der die Nachteile des Standes der Technik überwindet.
  • Die gestellte Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Übertragungseinrichtung eine Induktionsspule sowie ein elektrisch leitfähiges Heizelement umfasst, das mit dem Speichermedium in direktem Kontakt steht, so dass Wärme zwischen Heizelement und Speichermedium ausgetauscht werden kann.
  • Im Betrieb des Wärmespeichers wird die Induktionsspule von einem elektrischen Wechselstrom durchflossen, der ein magnetisches Wechselfeld erzeugt. Das elektrisch leitfähige Heizelement, das von der Induktionsspule elektrisch isoliert ist, ist so angeordnet, dass in ihm durch das magnetische Wechselfeld Wirbelströme induziert werden können, die aufgrund der ohmschen Verluste zur Erwärmung des Heizelements führen. Besteht das Heizelement aus einem ferromagnetischen Material, wie beispielsweise einer Eisen-Silizium- oder einer Eisen-Nickel-Legierung oder µ-Metall, so tragen darüber hinaus Ummagnetisierungsverluste zur Erwärmung des Heizelements und damit zur Ausbildung eines Temperaturgradienten zwischen Heizelement und Speichermedium bei. Der erfindungsgemäße Wärmespeicher erlaubt es somit, elektrische Energie in Wärme umzuwandeln und diese zu speichern. Die Leistung, mit der Wärme über das Heizelement auf das Speichermedium übertragen werden kann, steigt mit der Amplitude der magnetischen Feldstärke am Ort des Heizelements. Da diese Amplitude innerhalb der Induktionsspule am größten ist, wird das Heizelement sinnvollerweise innerhalb der Induktionsspule angeordnet.
  • In seiner einfachsten Variante besitzt ein Heizelement die Form eines geraden Stabes. Vorstellbar ist jedoch beispielsweise auch, ein Heizelement als berippten Stab oder als Rohr oder als Kugel auszuführen. Der erfindungsgemäße Wärmespeicher kann mehr als ein elektrisch leitfähiges Heizelement umfassen, wobei jedes der Heizelemente mit dem Speichermedium in direktem Kontakt steht. Vorzugsweise sind mehrere Heizelemente so im Speichermedium verteilt und in ihren Geometrien und Abmessungen so angepasst, dass eine möglichst homogene Erwärmung des Speichermediums möglich ist, und inaktive, nicht oder nur ungenügend an der Wärmespeicherung beteiligte Bereiche vermieden werden. Liegen sowohl das Speichermedium als auch die Heizelemente in granularer Form vor, so kann dieses Ziel durch intensive Vermischung der beiden Granulate erreicht werde, wobei ein weitgehend homogenes Stoffgemisch entsteht. Handelt es sich bei dem Speichermedium um eine Flüssigkeit, kann der Wärmespeicher z. B. eine Matrix bzw. Gitterstruktur umfassen, mit deren Hilfe die Heizelemente annähernd homogen im Speichermedium verteilt und ihre Positionen gleichzeitig fixiert sind.
  • Eine zweckmäßige Ausgestaltung der Erfindung sieht vor, dass die Einrichtung zur Entnahme von Wärme aus dem Speichermedium als Heizelement ausgeführt ist. Bei einer derartigen Einrichtung handelt es sich im einfachsten Fall um ein gerades, von Speichermedium umgebenes Rohr, das vorzugsweise aus einem ferromagnetischen Material, wie beispielsweise aus einer Eisen-Nickel-Legierung, gefertigt ist.
  • Eine bevorzugte Ausführungsform des erfindungsgemäßen Wärmetauschers sieht vor, dass die Induktionsspule außerhalb eines Speicherbehälters angeordnet ist, der das Speichermedium enthält. Durch diese Anordnung ist die Induktionsspule relativ leicht zugänglich und kann im Falle einer Störung repariert werden, ohne dass beispielsweise das Speichermedium entfernt werden muss. Zweckmäßigerweise ist der das Speichermedium enthaltende Behälter aus einem nicht elektrisch leitenden Material, wie z. B. Beton, gefertigt, so dass das von der Induktionsspule erzeugte magnetische Wechselfeld im Heizelement, das sinnvollerweise eine hohe magnetische Permeabilität aufweist, konzentriert wird und dieses aufwärmt. Vorzugsweise ist der Speicherbehälter innerhalb der Induktionsspule angeordnet, wodurch die Induktionsspule das Speichermedium wenigstens teilweise umgibt.
  • Aufgrund konstruktiver und/oder werkstofflicher Vorgaben kann es erforderlich sein, den Speicherbehälter aus einem elektrisch leitenden Werkstoff zu fertigen, so dass auch im Speicherbehälter Ströme induziert werden. Die Wärmeerzeugung bzw. Wärmeeinbringung in das Speichermaterial teilt sich dann je nach Materialeigenschaften und Geometrie zwischen der Behälterwand und einem oder mehreren Heizelementen auf.
  • Um Wärmeverluste zu minimieren, ist erfindungsgemäß vorgesehen, das Speichermedium mit einer wärmeisolierenden Einhausung zu umgeben, die ein- oder mehrschalig ausgeführt sein kann. Hierbei soll die Möglichkeit nicht ausgeschlossen werden, auch die Induktionsspule mit einer oder mehreren wärmeisolierenden Schichten zu umgeben und so gegenüber der Umgebung thermisch zu isolieren.
  • Vorzugsweise umfasst der erfindungsgemäße Wärmespeicher als Speichermedium eine Salzschmelze (z. B. KNO3, NaNO3), wie sie beispielsweise zur Wärmespeicherung in solarthermischen Kraftwerken eingesetzt wird. Allerdings sind auch andere Salzschmelzen (z. B. Thiosulfate) vorstellbar. Weiterhin können andere Flüssigkeiten, wie beispielsweise Wasser oder Öle, oder Feststoffe, wie beispielsweise Sand oder Beton, oder Gase, wie beispielsweise Luft, oder Mischungen aus Feststoffen und/oder Flüssigkeiten und/oder Gasen als Speichermedium eingesetzt werden. Besonders vorteilhaft ist der Einsatz von Phasenwechselmaterialien (bekannt als Phase Change Materials oder PCM), wie beispielsweise Paraffinen, in denen Energie sowohl als fühlbare als auch als latente Wärme gespeichert wird, wobei der Phasenübergang typischerweise von fest nach flüssig erfolgt.
  • Im Folgenden soll die Erfindung anhand eines in der Figur 1 schematisch dargestellten Ausführungsbeispiels näher erläutert werden.
  • Die Figur 1 zeigt einen Wärmespeicher mit einer Induktionsspule, innerhalb der ein Speichermedium angeordnet ist.
  • Der Wärmespeicher S umfasst eine Induktionsspule I, in deren Innerem sich ein Speicherbehälter E befindet. Der Speicherbehälter E, der ein Speichermedium M sowie ein Heizelement H enthält, ist mit einer Entnahmeeinrichtung R ausgerüstet, über die Wärme aus dem Speichermedium M entnommen werden kann. Während das Heizelement H aus einem ferromagnetischen Material besteht, ist der Speicherbehälter E aus einem nicht-ferromagnetischen Material, wie beispielsweise aus Beton, gefertigt, und kann daher von magnetischen Feldern durchdrungen werden. Die Induktionsspule I ist mit einer Wechselstromquelle W verbunden, so dass ein magnetisches Wechselfeld erzeugbar ist, das seine größte Feldstärke am Ort des Heizelements H besitzt, in welchem es Wirbelströme induziert. Aufgrund von Ummagnetisierungs- und ohmschen Verlusten im Heizelement H produzierte Wärme geht auf das Speichermedium M über und erhöht dessen Wärmeinhalt und Temperatur. Um das Abfließen der gespeicherten Wärme an die Umgebung zu erschweren, sind die Wände des Speicherbehälters E als thermische Isolatoren ausgeführt. Zusätzlich ist die Induktionsspule I mit einer thermischen Isolation U umgeben. Um Wärme aus dem Wärmespeicher S zu entnehmen, kann ein Wärmeträger 1, wie beispielsweise ein Thermalöl oder Wasser, mit einer Temperatur, die geringer ist als die Temperatur des Speichermediums M in die Entnahmeeinrichtung R eingeleitet und durch den Speicherbehälter E geführt werden. Aufgrund der Temperaturdifferenz entzieht der Wärmeträger 1 dem Speichermedium M Wärme, so dass ein angewärmter Wärmeträger 2 aus dem Wärmespeicher abgezogen werden kann.

Claims (8)

  1. Wärmespeicher mit einem Speichermedium, einer Übertragungseinrichtung, mit der Wärme auf das Speichermedium übertragbar ist, sowie eine Entnahmeeinrichtung, mit der Wärme aus dem Speichermedium entnommen werden kann, dadurch gekennzeichnet, dass die Übertragungseinrichtung eine Induktionsspule sowie ein elektrisch leitfähiges Heizelement umfasst, das mit dem Speichermedium in direktem Kontakt steht, so dass Wärme zwischen Heizelement und Speichermedium ausgetauscht werden kann.
  2. Wärmespeicher nach Anspruch 1, dadurch gekennzeichnet, dass das Heizelement innerhalb der Induktionsspule angeordnet ist.
  3. Wärmespeicher nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Induktionsspule außerhalb eines Speicherbehälters angeordnet ist, der das Speichermedium enthält.
  4. Wärmespeicher nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Heizelement ganz oder zum Teil aus ferromagnetischem Material beseht.
  5. Wärmespeicher nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass er mehr als ein Heizelement umfasst.
  6. Wärmespeicher nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Einrichtung zur Entnahme von Wärme aus dem Speichermedium als Heizelement ausgeführt ist.
  7. Wärmespeicher nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Induktionsspule und/oder das Speichermedium von einer thermisch isolierenden Einhausung umgeben sind.
  8. Wärmespeicher nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Speichermedium fest und/oder flüssig und/oder gasförmig vorliegt.
EP11009124A 2011-08-09 2011-11-17 Thermoelektrischer Energiespeicher Withdrawn EP2557372A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011109779A DE102011109779A1 (de) 2011-08-09 2011-08-09 Thermoelektrischer Energiespeicher

Publications (1)

Publication Number Publication Date
EP2557372A1 true EP2557372A1 (de) 2013-02-13

Family

ID=45217121

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11009124A Withdrawn EP2557372A1 (de) 2011-08-09 2011-11-17 Thermoelektrischer Energiespeicher

Country Status (2)

Country Link
EP (1) EP2557372A1 (de)
DE (1) DE102011109779A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2833092A3 (de) * 2013-08-01 2015-03-18 Dieter Schluckebier Verfahren sowie Vorrichtung zur Energiespeicherung
ES2536592A1 (es) * 2013-11-26 2015-05-26 Enolcon Gmbh Acumulador de calor de alta temperatura con calefacción por inducción y metal fundido y sistema de interconexión de acumuladores de calor
GB2559779A (en) * 2017-02-17 2018-08-22 Anthony Richardson Nicholas System and method of supplying steam
EP3907458A1 (de) 2020-05-07 2021-11-10 Marek Praciak Integrierte heiz- und thermospeichereinheit, set integrierter heiz- und thermospeicher und verfahren zu deren steuerung
IT202200005471A1 (it) * 2022-03-21 2023-09-21 Rudi Foini Dispositivo di nebulizzazione e metodo di scambio termico abbreviato per vaporizzazione sostanza liquida
EP4253893A1 (de) * 2022-03-30 2023-10-04 Uros Ravljen Vorrichtung zum speichern von photovoltaischer energie und verfahren zum speichern von photovoltaischer energie unter verwendung dieser vorrichtung
SE2251375A1 (en) * 2022-11-25 2024-05-26 Texel Energy Storage Ab Electric energy storage device
SE2251376A1 (en) * 2022-11-25 2024-05-26 Texel Energy Storage Ab Electric energy storage device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012210957A1 (de) * 2012-06-27 2014-01-02 Enolcon Gmbh Hochtemperatur-Wärmespeicher mit Induktionsheizung und Metallschmelze und Wärmespeicher-Verbundsystem
DE102016119668A1 (de) * 2016-10-14 2018-04-19 Heinrich Graucob Induktiver Wärmespeicher und Verfahren zur Umwandlung von thermischer Energie in elektrische Energie
DE102017217963A1 (de) * 2017-10-09 2019-04-11 Deutsches Zentrum für Luft- und Raumfahrt e.V. Wärmespeichervorrichtung und Verfahren zum Speichern von Wärme
DE102019207967A1 (de) 2019-05-29 2020-12-03 Deutsches Zentrum für Luft- und Raumfahrt e.V. Wärmespeichervorrichtung und Verfahren zum Speichern und/oder Übertragen von Wärme
DE102019120448B4 (de) * 2019-07-29 2024-03-07 Kraftanlagen München Gmbh Wärmespeichervorrichtung, Wärmespeichersystem und Verfahren zum Betreiben einer Wärmespeichervorrichtung
DE102022107240A1 (de) 2022-03-28 2023-09-28 Deutsches Zentrum für Luft- und Raumfahrt e.V. Wärmespeicheranordnung und Verfahren zur Speicherung und/oder Übertragung von Wärme
DE102022204303A1 (de) 2022-05-02 2023-11-02 Heuft Besitzgesellschaft Gmbh & Co. Kg Hochtemperatur-Thermoöl-Wärmespeicher

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3596034A (en) * 1969-12-08 1971-07-27 Hooker Chemical Corp Heat storage
DE2117103A1 (de) * 1971-04-07 1972-10-26 Vitt, Gerhard, 5070 Bergisch Glad bach, Baur, Eduard, Dipl Ing , 5256 Waldbruch Verfahren und Vorrichtung zum Erzeu gen eines erhitzten Mediums fur Beheizungs zwecke
DE2145097A1 (de) * 1971-09-09 1973-03-22 Gerhard Vitt Vorrichtung zum erzeugen eines erhitzten mediums fuer beheizungszwecke

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3596034A (en) * 1969-12-08 1971-07-27 Hooker Chemical Corp Heat storage
DE2117103A1 (de) * 1971-04-07 1972-10-26 Vitt, Gerhard, 5070 Bergisch Glad bach, Baur, Eduard, Dipl Ing , 5256 Waldbruch Verfahren und Vorrichtung zum Erzeu gen eines erhitzten Mediums fur Beheizungs zwecke
DE2145097A1 (de) * 1971-09-09 1973-03-22 Gerhard Vitt Vorrichtung zum erzeugen eines erhitzten mediums fuer beheizungszwecke

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2833092A3 (de) * 2013-08-01 2015-03-18 Dieter Schluckebier Verfahren sowie Vorrichtung zur Energiespeicherung
ES2536592A1 (es) * 2013-11-26 2015-05-26 Enolcon Gmbh Acumulador de calor de alta temperatura con calefacción por inducción y metal fundido y sistema de interconexión de acumuladores de calor
GB2559779A (en) * 2017-02-17 2018-08-22 Anthony Richardson Nicholas System and method of supplying steam
GB2559779B (en) * 2017-02-17 2021-10-13 Anthony Richardson Nicholas System and method of supplying steam
EP3907458A1 (de) 2020-05-07 2021-11-10 Marek Praciak Integrierte heiz- und thermospeichereinheit, set integrierter heiz- und thermospeicher und verfahren zu deren steuerung
IT202200005471A1 (it) * 2022-03-21 2023-09-21 Rudi Foini Dispositivo di nebulizzazione e metodo di scambio termico abbreviato per vaporizzazione sostanza liquida
EP4253893A1 (de) * 2022-03-30 2023-10-04 Uros Ravljen Vorrichtung zum speichern von photovoltaischer energie und verfahren zum speichern von photovoltaischer energie unter verwendung dieser vorrichtung
SE2251375A1 (en) * 2022-11-25 2024-05-26 Texel Energy Storage Ab Electric energy storage device
SE2251376A1 (en) * 2022-11-25 2024-05-26 Texel Energy Storage Ab Electric energy storage device

Also Published As

Publication number Publication date
DE102011109779A1 (de) 2013-02-14

Similar Documents

Publication Publication Date Title
EP2557372A1 (de) Thermoelektrischer Energiespeicher
DE112012002387T5 (de) Speicher für thermische Energie und Anlage, Verfahren und Verwendung dafür
EP2418747B1 (de) Anordnung zum elektrisch leitenden Verbinden von zwei elektrischen Einheiten
EP2900943A2 (de) Kraft-wärme-kraftwerk und verfahren zum betrieb eines kraft-wärme-kraftwerks
EP2284845B1 (de) HTSL-Stromzuleitung zur Verbindung eines supraleitenden Verbrauchersystems mit einem Stromeinspeisepunkt
DE102007042711B4 (de) Anlage zur supraleitenden magnetischen Energiespeicherung, elektrolytischen Wasserzerlegung und wassersynthetisierenden Stromerzeugung
DE102016119668A1 (de) Induktiver Wärmespeicher und Verfahren zur Umwandlung von thermischer Energie in elektrische Energie
EP2770514A1 (de) Verfahren zum Kühlen eines supraleitfähigen Kabels
EP3205005B1 (de) Elektrische maschine
EP2833092B1 (de) Verfahren sowie Vorrichtung zur Energiespeicherung
WO2015062949A1 (de) Thermisches speichersystem mit hochtemperaturbatterie
DE102008048002A1 (de) Aggregat mit wenigstens einer Funktionszelle sowie Temperaturregeleinrichtung
DE2114538A1 (de) Verfahren zur Kühlung eines elektrischen Organes in einer durch Wärmeschilder thermisch isolierten Kammer
DE102011000492A1 (de) Flüssiggastank mit einer Stromversorgungseinrichtung für elektrische Einrichtungen und Verfahren zur Stromerzeugung einer elektrischen Einrichtung
EP2859196A1 (de) Energietransformations-system
DE2451949A1 (de) Stromzufuehrungsvorrichtung fuer supraleitende einrichtungen
DE112011103478T5 (de) Stromleitervorrichtung
DE102017205436B4 (de) Verfahren zum Betreiben eines supraleitenden magnetischen Energiespeichers und Kraftfahrzeug mit einem supraleitenden magnetischen Energiespeicher
DE202013002455U1 (de) Wärmespeicher und Wärmespeicherkraftwerk
DE102013017010A1 (de) Stromspeicherung über thermische Speicher und Luftturbine
EP3710758A1 (de) Heizmodul für einen fluiden wärmeüberträger sowie vorrichtung zur energiespeicherung
DE202014000378U1 (de) Wärme- und Kältespeicherelemente Typen : Konduktor, Konvektor und Kombinator
DE102015202638A1 (de) Stromzuführung für eine supraleitende Spuleneinrichtung
DE102016115421A1 (de) Verfahren zur Energiespeicherung und Energieabgabe in ein Energieversorgungsnetz, Druckgasspeicherkraftwerk und Computerprogramm
DD232955A1 (de) Thermogeneratoren als energiewandler, insbesondere zur gewinnung von elektroenergie aus abwaerme

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130814