EP2547568B1 - Method and device for train length detection - Google Patents

Method and device for train length detection Download PDF

Info

Publication number
EP2547568B1
EP2547568B1 EP11710157.6A EP11710157A EP2547568B1 EP 2547568 B1 EP2547568 B1 EP 2547568B1 EP 11710157 A EP11710157 A EP 11710157A EP 2547568 B1 EP2547568 B1 EP 2547568B1
Authority
EP
European Patent Office
Prior art keywords
main air
air line
train
line
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11710157.6A
Other languages
German (de)
French (fr)
Other versions
EP2547568A1 (en
Inventor
Walter Schlosser
Christoph Strasser
Götz WIEDMANN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Knorr Bremse Systeme fuer Schienenfahrzeuge GmbH
Original Assignee
Knorr Bremse Systeme fuer Schienenfahrzeuge GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Knorr Bremse Systeme fuer Schienenfahrzeuge GmbH filed Critical Knorr Bremse Systeme fuer Schienenfahrzeuge GmbH
Publication of EP2547568A1 publication Critical patent/EP2547568A1/en
Application granted granted Critical
Publication of EP2547568B1 publication Critical patent/EP2547568B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0054Train integrity supervision, e.g. end-of-train [EOT] devices

Definitions

  • the present invention relates to a method and apparatus for train length detection in a train consisting of many cars, which is braked via a pneumatic brake system in accordance with the pressure in a coupled from car to car main air line HL in several braking stages whose pressure p HL and flow V ⁇ and the ambient temperature T are detected sensor-technically along the time axis, from which the train length L is finally calculated by means of an electronic evaluation unit. Furthermore, the invention also relates to a method implementing device and a train in which such a device is installed.
  • a pneumatic brake system is preferably based on standardized specifications of the main air line HL to allow a general applicability. Derived from these properties, threshold values and gradients are defined for the flow values and pressure values, which allow conclusions to be drawn about the train length or the continuity of the main air line HL via signal processing. For example, if it is found that the continuity of the main air line HL is not given, it can be inferred as a disturbing cause of this on a closed shut-off valve within the main air line HL between two cars.
  • From the DE 199 02 777 A1 is a technical solution for monitoring the train completeness, which emits a message about the condition of the train by means of a compressed air sensor and a flow meter for determining the volume flow in the main air line HL.
  • the main air line of the train usually passes through all connected cars and can be monitored by sensors, for example, the relay valve on the traction unit, with the direction and amount of the volume flow of compressed air are measured by sensors known per se.
  • sensors for example, the relay valve on the traction unit
  • the measured values of the sensors monitoring the main air line HL are supplied to an electronic evaluation unit, which compares the detected measured values with predetermined values of the respective operating variables for a corresponding operating state of the train. Depending on the result of the comparison, it is concluded that the train is complete.
  • the evaluation and acquisition of the measured values for determining the train integrity information takes place only at a single point of the train, preferably in the train of the train, so that other means for detecting operating variables of the main air line HL at other points of the train - especially at the train - are not required ,
  • Out DE 199 33 798 A1 is a method for train length detection, in which directly measured the length of the train and transmitted to the locomotive.
  • volume and pressure signals in the main air line HL are determined by sensor technology, wherein in particular a timely transmission of information about the last car of the train follows the power tool.
  • an evaluation device checks whether the volume and pressure signals and physical variables derived therefrom are known to a known setpoint range stored in the evaluation unit for the train length correspond. Depending on this, a signal is output which provides the information as to whether the measured values lie within the stored setpoint ranges. It is also proposed to determine the stored in the evaluation of the traction unit length of the train to be measured train of a Switzerlanddorfnmesser and to transmit to the traction unit.
  • the train length can also be measured by an axle counter when starting or when leaving a station and transmitted to the locomotive.
  • a stationary measuring device is activated here on the track for Switzerlanddorffollistat.
  • a method for engine-based determination of the train length of a train formation in which only the physical state variables pressure, flow and temperature of the air in the main air line HL are measured in the region of the traction vehicle, from a defined sequence of about the driver's brake valve in the towing vehicle or other suitable actuators pressure changes in the main air line HL are generated, the associated flows temporally integrated and constant pressure - ie their steady state - determines the leakage rate and from these variables, the volume of the main air line HL is calculated, which can be deduced on the train length.
  • a method for train integrity monitoring which uses a connected at the end of the train to the main air line pressure relief valve through which escapes at normal operating pressure always a certain amount of air per unit time. If the pressure in the main air line is lowered during braking, the pressure relief valve closes so that the volume flow decreases. This in turn indicates that the last car with the pressure relief valve is still carried. When the pressure is increased back to the normal operating pressure, the pressure relief valve returns to its open position and the increasing volume flow indicates that the last car is still being carried.
  • the DE 198 28 906 C1 discloses another method for checking the completeness of a train, in which pressure and flow values in the main air line are correlated with driving conditions and operator actions of the train driver. In this way, pressure changes initiated by the tractor operator are clearly differentiated from pressure changes resulting from sudden leakage of the main airline due to carriage breakage.
  • the invention includes the solution that the sensor-technical measured variable detection is carried out only from the stationary state of an existing brake stage I during the execution of the next brake stage II, until a stationary state within this braking stage II is reached again.
  • the volume of the main air line HL is calculated taking into account the pressure prevailing in the initial and final state and the ambient temperature. From the volume calculated in this way, it is finally possible, in a manner known per se, to conclude the length of the main air line HL and thus the length of the train L given a known line cross-section.
  • the line length can thus be checked for each brake request which does not take place from the released state. This can be the Continuity of the main air line HL checked and a closed shut-off valve can be detected. If the cable length determination is integrated into the brake sample before the start of the journey, the system can issue a warning about a different train length compared to the information in the brake card. For example, if after the brake test other cars with a closed stopcock attached to the train, this error is detected when connecting the traction unit at the other end to change direction.
  • the leakage rate is dependent on the pressure level in the main air line HL.
  • the leakage is regarded as a nozzle in the main air line HL with a constant nozzle cross-section, which vents against the atmosphere.
  • p 1 corresponds to the absolute pressure before, p 2 the absolute pressure after the nozzle and T the temperature.
  • R 287 J kg * K it is the general gas constant.
  • V N leakage can thus be calculated approximately from the measured pressure curve in the main air line HL.
  • An advantage of the method results from the measure that the air flowing into the main air line HL is ignored during the first filling of the brake system. Because when Domauf commentary the air flows not only in the main air line HL, but also in the working chambers of the control valves and in various reservoirs of the car. In this case, the volume of the storage container of the individual carriages can vary, so that in practice a calculation-related correction of this disturbance variable is not possible. In addition, most of the initial state of the working chamber of the control valves and the reservoir is not known. The method completely excludes the measurement errors resulting therefrom.
  • the method provides in principle, the flow rate of the air only in the filled state, for example, after first filling while driving or in any stationary state of the main air line HL, in which the pressure p HL is constant, is detected.
  • the process avoids an unknown flow size, resulting in a more accurate measurement result.
  • the sensor-technical measured variable detection is only carried out until the pressure of the supply air tank connected to the main air line is reached.
  • the cross-section of the line cross-section which is used with the determined volume of the main air line HL for calculating the train length is both the cross section of the main air line HL passing through the individual carriages and the cross section the interposed line couplings is taken into account.
  • the train length L results - as stated above - from dividing the determined volume of the main air line HL by the line cross-section Q.
  • the volume flow thereby induced in the stationary state is additionally measured within the main air line HL, so that this measured variable can be used as a correction value for determining the train length for the computational elimination of the disturbance.
  • the air volume which is lost from the released state of the brake system by braking acceleration losses of the individual control valves associated with the brake cylinder is eliminated by computation during the determination of the train length.
  • the inventive method is based on the fact that the acceleration effect of the control valves of the brake system to determine the length of the main air line HL are excluded. However, if the line volume is determined once only, for example in the course of a brake test before the departure of the train, the resulting error in now known volume can be determined.
  • the train length can also be checked from the released state during brake requests in order to detect the demolition of a pulling part or a closed stopcock.
  • at least a pressure of about 0.1 bar should be vented via a nozzle until the acceleration effect in the individual control valves responds.
  • the acceleration effect now draws approximately a pressure of 0.3 bar locally from the main air line HL. Then the effect is complete and the control valves are absolutely sensitive.
  • the volume determination of the main air line HL can also take place in the so-called two-line mode.
  • two-line operation reservoirs, which can vary in size, and other compressed air consumers via a separate compressed air line, the main reservoir line HB filled.
  • the main tank line HB runs along the train in parallel to the main air line HL.
  • the method according to the invention can also be used in the case of a two-pipe operation in the case of aeration after first filling because there are no unknown volume sizes.
  • the determination of the volume of the main air line HL thus takes place during release of the brakes as a result of ventilation of the main air line HL.
  • two separate sensors 2b and 2b ' are provided for determining the flow rate V ⁇ in this embodiment. While the first sensor 2b is used during the changeover between the stationary states, ie during the transition from one braking stage to the next higher braking stage, the second sensor 2b 'is used only in the steady state for the purpose of leakage measurement. Since the change between stationary states produces a significantly higher flow rate V ⁇ , the first sensor 2b is dimensioned larger than the second sensor 2b ', which in contrast has only to determine very small flows V ⁇ . As a result of the different measuring ranges used as a result, the accuracy of the determination of the flows V ⁇ increases overall. However, a distinction must be made between single-line operation and two-pipe operation. In two-pipe operation, a sensor that measures both leakage and ventilation processes or two sensors with the same cross-section in series can be sufficient in the case of ventilation. The leakage sensor requires a smaller measuring range and can therefore achieve greater accuracy.
  • the electronic evaluation unit 4 takes into account both the cross-section of the running through the individual carriages la to 1c main air line HL and the cross section of the interposed line couplings 5 in determining the train length with respect to the line cross-section to achieve more accurate calculation results.
  • each individual car la to 1c at least one control valve 6 is arranged with connected thereto pneumatic brake cylinder 7 for actuating the brakes.
  • the train length detection is preferably carried out by starting from a stationary state of the brake system, which arises due to the applied braking stage I. First, a sensor-technical measured value detection of the physical values pressure p HL , flow V ⁇ of the main air line HL and the ambient temperature T takes place, namely during the execution of the next brake stage II. Until a stationary state is set again.
  • the flow V er determined in this way is integrated , taking into account the initial and final states of the prevailing pressure p HL and the ambient temperature T according to equation (I) given above.
  • the result of calculation is the volume V of the main air line HL. From this, the calculation of the known line cross-section Q of the main air line HL also calculates its length, which corresponds to the length L of the train.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren sowie eine Vorrichtung zur Zuglängenerkennung bei einem aus vielen Wagen bestehenden Zugverband, der über eine pneumatische Bremsanlage nach Maßgabe des Drucks in einer von Wagen zu Wagen gekuppelten Hauptluftleitung HL in mehreren Bremsstufen gebremst wird, deren Druck pHL und Durchfluss sowie die Umgebungstemperatur T sensortechnisch entlang der Zeitachse erfasst werden, woraus mittels elektronischer Auswerteeinheit schließlich die Zuglänge L berechnet wird. Weiterhin betrifft die Erfindung auch eine das Verfahren umsetzende Vorrichtung sowie einen Zugverband, in dem eine solche Vorrichtung verbaut ist.The present invention relates to a method and apparatus for train length detection in a train consisting of many cars, which is braked via a pneumatic brake system in accordance with the pressure in a coupled from car to car main air line HL in several braking stages whose pressure p HL and flow and the ambient temperature T are detected sensor-technically along the time axis, from which the train length L is finally calculated by means of an electronic evaluation unit. Furthermore, the invention also relates to a method implementing device and a train in which such a device is installed.

Die Hauptluftleitung HL in Zugverbänden wird in erster Linie zum Auslösen der pneumatisch betriebenen Bremse genutzt, welche im Sinne einer Signalübertragung durch Verminderung des Drucks in die Bremsstellung kommen und bei Druckanstieg gelöst werden. Die Hauptluftleitung HL, welche entlang aller Wagen eines Zugverbandes verläuft kann auch zur Gewinnung von Informationen über zugspezifische Eigenschaften genutzt werden. So ist es möglich, die Hauptluftleitung HL hinsichtlich einer Zugtrennung zu überwachen. Hierbei wird eine Kontrolle des nachgespeisten Volumenstroms und der Druckverhältnisse während des Fahrens mit gelösten Bremsen, beim Bremsen und während des Lösens durchgeführt. Grundlage für die Erkennung von Zugtrennungen oder für die Längenerkennung der

  • Hauptluftleitung HL und damit des gesamten Zugverbandes sind charakteristische Eigenschaften der Bremsanlage, wie beispielsweise die maximale Nachspeisung der Hauptluftleitung HL aufgrund der maximalen Leckage des Systems und der typischen längenabhängigen Durchschlagzeit, in welcher eine Änderung der Druckverhältnisse erkannt werden kann.
The main air line HL in train assemblies is used primarily for triggering the pneumatically operated brake, which come in the sense of a signal transmission by reducing the pressure in the braking position and are released when pressure increases. The main air line HL, which runs along all the wagons of a train, can also be used to obtain information about train-specific characteristics. It is thus possible to monitor the main air line HL with regard to train separation. Here, a check of the nachgespeisten volume flow and the pressure conditions during driving with brakes released, during braking and during the release is performed. Basis for the recognition of train separations or for the length recognition of the
  • Main air line HL and thus of the entire train are characteristic features of the brake system, such as the maximum make-up of the main air line HL due to the maximum leakage of the system and the typical length-dependent breakdown time in which a change in pressure conditions can be detected.

Diese und andere charakteristische Eigenschaften einer pneumatischen Bremsanlage stützen sich vorzugsweise auf genormten Festlegungen der Hauptluftleitung HL, um eine allgemein gültige Anwendbarkeit zu ermöglichen. Abgeleitet von diesen Eigenschaften werden Schwellwerte und Gradienten für die Durchflusswerte und Druckwerte definiert, welche über eine signaltechnische Verarbeitung Rückschlüsse auf die Zuglänge oder die Durchgängigkeit der Hauptluftleitung HL zulassen. Wird beispielsweise festgestellt, dass die Durchgängigkeit der Hauptluftleitung HL nicht gegeben ist, so kann als störende Ursache hierfür auf ein geschlossenes Absperrventil innerhalb der Hauptluftleitung HL zwischen zwei Wagen rückgeschlossen werden.These and other characteristic features of a pneumatic brake system are preferably based on standardized specifications of the main air line HL to allow a general applicability. Derived from these properties, threshold values and gradients are defined for the flow values and pressure values, which allow conclusions to be drawn about the train length or the continuity of the main air line HL via signal processing. For example, if it is found that the continuity of the main air line HL is not given, it can be inferred as a disturbing cause of this on a closed shut-off valve within the main air line HL between two cars.

Aus der DE 199 02 777 A1 geht eine technische Lösung zur Überwachung der Zugvollständigkeit hervor, welche mittels eines Druckluftsensors und eines Durchflussmessers zur Ermittlung des Volumenstroms in der Hauptluftleitung HL eine Meldung über den Zustand des Zugverbandes abgibt. Die Hauptluftleitung des Zugverbandes verläuft üblicherweise durch alle angeschlossenen Wagen und kann beispielsweise am Relaisventil auf dem Triebfahrzeug sensortechnisch überwacht werden, wobei Richtung und Menge des Volumenstroms an Druckluft durch an sich bekannte Sensoren gemessen werden. Insgesamt herrscht im stationären Zustand der Bremsanlage ein Gleichgewicht zwischen Ein- und Ausströmen der Luftmenge. Die einströmende Druckluft ersetzt dabei lediglich die durch Undichtigkeiten ausströmende Luft aus der Bremsanlage, welche über die gesamte Länge der Hauptluftleitung HL austritt. Falls gebremst wird, wird der Luftdruck in der Hauptluftleitung HL definiert in meist mehreren Bremsstufen abgesenkt.From the DE 199 02 777 A1 is a technical solution for monitoring the train completeness, which emits a message about the condition of the train by means of a compressed air sensor and a flow meter for determining the volume flow in the main air line HL. The main air line of the train usually passes through all connected cars and can be monitored by sensors, for example, the relay valve on the traction unit, with the direction and amount of the volume flow of compressed air are measured by sensors known per se. Overall, there is a balance between inflow and outflow of air in the stationary state of the brake system. The incoming compressed air replaces only the leakage of air leakage from the brake system, which emerges over the entire length of the main air line HL. If it is braked, the air pressure in the main air line HL defined in most braking stages is lowered.

Zur Überwachung der Zugvollständigkeit werden die Messwerte der die Hauptluftleitung HL überwachenden Sensoren einer elektronischen Auswerteeinheit zugeführt, welche die erfassten Messwerte mit vorbestimmten Werten der jeweiligen Betriebsgrößen für einen entsprechenden Betriebszustand des Zugverbandes vergleicht. In Abhängigkeit von dem Vergleichsergebnis wird auf die Vollständigkeit des Zuges geschlossen. Hierbei erfolgt die Auswertung und Gewinnung der Messwerte zur Bestimmung der Zugvollständigkeitsinformation lediglich an einer einzigen Stelle des Zugverbandes, vorzugsweise im Triebfahrzeug des Zuges, so dass weitere Einrichtungen zur Erfassung von Betriebsgrößen der Hauptluftleitung HL an anderen Stellen des Zugverbandes - insbesondere am Zugschluss - nicht erforderlich sind.In order to monitor train completion, the measured values of the sensors monitoring the main air line HL are supplied to an electronic evaluation unit, which compares the detected measured values with predetermined values of the respective operating variables for a corresponding operating state of the train. Depending on the result of the comparison, it is concluded that the train is complete. In this case, the evaluation and acquisition of the measured values for determining the train integrity information takes place only at a single point of the train, preferably in the train of the train, so that other means for detecting operating variables of the main air line HL at other points of the train - especially at the train - are not required ,

Allerdings hat diese Überwachung der Zugvollständigkeit den Nachteil, dass hierdurch gleichzeitig nicht präzise festgestellt werden kann, welche Zuglänge vorliegt. Die Kenntnisse der Zuglänge ist beispielsweise für die Feststellung sogenannter schwarzer Wagen von Nutzen. Die Reihung der Wagen und die Eigenschaften sind in der Regel anhand einer Wagenliste bekannt. Abgeleitet von der Wagenliste werden die wesentlichen Informationen für den Triebfahrzeugführer, wie Bremseigenschaften, auf einem sogenannten Bremszettel zusammengestellt. Ferner ist die Zuglänge beim Fahrbetrieb auf häufig befahrenen Strecken wichtig, um beispielsweise Sicherheitsabstände einhalten zu können.However, this monitoring of train completeness has the disadvantage that at the same time it can not be determined precisely which train length is present at the same time. The knowledge of the train length is useful, for example, for the detection of so-called black cars. The order of the cars and the properties are usually known from a car list. Derived from the car list, the essential information for the driver, such as braking characteristics, compiled on a so-called brake note. Furthermore, the train length when driving on frequently traveled routes is important to comply with safety distances, for example.

Aus DE 199 33 798 A1 geht ein Verfahren zur Zuglängenerkennung vor, bei welchen direkt die Länge des Zuges gemessen und an das Triebfahrzeug übermittelt wird. Hierzu werden Volumen und Drucksignale in der Hauptluftleitung HL sensortechnisch ermittelt, wobei insbesondere ein zeitnahes Übermitteln von Informationen über den letzten Wagen des Zugverbandes an das Triebwerkzeug folgt. Anschließend überprüft eine Auswerteeinrichtung, ob die Volumen- und Drucksignale und daraus abgeleitete physikalischen Größen einem bekannten in der Auswerteeinheit abgespeicherten Sollwertbereich für die Zuglänge entsprechen. Hiervon abhängig wird ein Signal ausgegeben, welches die Information liefert, ob die gemessenen Werte innerhalb der abgespeicherten Sollwertbereiche liegen. Ferner wird vorgeschlagen, die in der Auswerteeinheit des Triebfahrzeuges abzuspeichernde Länge des zu vermessenden Zugverbandes von einem Zuglängenmesser zu ermitteln und an das Triebfahrzeug zu übermitteln. Die Zuglänge kann daneben auch von einem Achszähler beim Anfahren oder beim Verlassen eines Bahnhofes gemessen und an das Triebfahrzeug übermittel werden. Somit wird hier eine stationäre Messeinrichtung an der Strecke zur Zuglängenmessung aktiviert.Out DE 199 33 798 A1 is a method for train length detection, in which directly measured the length of the train and transmitted to the locomotive. For this purpose, volume and pressure signals in the main air line HL are determined by sensor technology, wherein in particular a timely transmission of information about the last car of the train follows the power tool. Subsequently, an evaluation device checks whether the volume and pressure signals and physical variables derived therefrom are known to a known setpoint range stored in the evaluation unit for the train length correspond. Depending on this, a signal is output which provides the information as to whether the measured values lie within the stored setpoint ranges. It is also proposed to determine the stored in the evaluation of the traction unit length of the train to be measured train of a Zuglängenmesser and to transmit to the traction unit. The train length can also be measured by an axle counter when starting or when leaving a station and transmitted to the locomotive. Thus, a stationary measuring device is activated here on the track for Zuglängenmessung.

All diese Maßnahmen erscheinen recht aufwändig, da außerhalb des Triebfahrzeuges, nämlich im letzten Wagen oder sogar außerhalb des Zugverbandes platzierte Sensoren zur Gewinnung von Messwerten zwecks Zuglängenerkennung verwendet werden.All of these measures appear quite complex, since sensors placed outside the locomotive, namely in the last car or even outside the train, are used to obtain measured values for train length detection.

Aus DE 100 09 324 A1 geht dagegen ein Verfahren zur triebwerkbasierten Bestimmung der Zuglänge eines Zugverbandes hervor, bei dem allein die physikalischen Zustandsgrößen Druck, Durchfluss und Temperatur der Luft in der Hauptluftleitung HL im Bereich des Triebfahrzeuges gemessen werden, wobei aus einer definierten Abfolge von über das Führerbremsventil im Zugfahrzeug oder andere geeignete Aktoren Druckänderungen in der Hauptluftleitung HL erzeugt werden, die damit einhergehende Strömungen zeitlich integriert und während konstant gehaltenen Drucks - also deren stationärer Zustände - die Leckagerate ermittelt sowie aus diesen Größen das Volumen der Hauptluftleitung HL berechnet wird, woraus sich auf die Zuglänge rückschließen lässt.Out DE 100 09 324 A1 On the other hand, a method for engine-based determination of the train length of a train formation, in which only the physical state variables pressure, flow and temperature of the air in the main air line HL are measured in the region of the traction vehicle, from a defined sequence of about the driver's brake valve in the towing vehicle or other suitable actuators pressure changes in the main air line HL are generated, the associated flows temporally integrated and constant pressure - ie their steady state - determines the leakage rate and from these variables, the volume of the main air line HL is calculated, which can be deduced on the train length.

Zwar berücksichtigt diese Berechnungsmethode die systembedingt vorhandene Leckage der Bremsanlage, jedoch bleiben andere Störgrößen, wie etwa lokale Entlüftungen im Bereich der den einzelnen Bremszylindern der Wagen zugeordneten Steuerventile während deren Beschleunigung unberücksichtigt. Denn die Steuerventile sorgen zur Bremsbeschleunigung in der ersten Bremsstufe für eine vorübergehend zusätzliche Entlüftung der Hauptluftleitung HL.Although this calculation method takes into account the system-inherent leakage of the brake system, other disturbances, such as local vents in the area of the control valves associated with the individual brake cylinders of the carriages, are not taken into account during their acceleration. Because the control valves provide the braking acceleration in the first braking stage for a temporary additional ventilation of the main air line HL.

Diese Maßnahme führt allerdings zu ungenauen Messergebnissen bei der Bestimmung der Zuglänge.However, this measure leads to inaccurate measurement results in determining the train length.

Aus der DE 101 12 920 A1 ist ein Verfahren zur Zugvollständigkeitsüberwachung bekannt, das sich eines am Ende des Zuges an die Hauptluftleitung angeschlossenen Überdruckventils bedient, durch das bei Regelbetriebsdruck stets eine gewisse Menge Luft je Zeiteinheit entweicht. Wird der Druck in der Hauptluftleitung beim Bremsen abgesenkt, schließt das Überdruckventil, so dass der Volumenstrom abnimmt. Dies wiederum zeigt an, dass der letzte Wagen mit dem Überdruckventil noch mitgeführt wird. Wird der Druck wieder auf den Regelbetriebsdruck erhöht, kehrt das Überdruckventil in seine Öffnungsstellung zurück, und der zunehmende Volumenstrom zeigt an, dass der letzte Wagen noch mitgeführt wird.From the DE 101 12 920 A1 a method for train integrity monitoring is known which uses a connected at the end of the train to the main air line pressure relief valve through which escapes at normal operating pressure always a certain amount of air per unit time. If the pressure in the main air line is lowered during braking, the pressure relief valve closes so that the volume flow decreases. This in turn indicates that the last car with the pressure relief valve is still carried. When the pressure is increased back to the normal operating pressure, the pressure relief valve returns to its open position and the increasing volume flow indicates that the last car is still being carried.

Die DE 198 28 906 C1 offenbart ein weiteres Verfahren zur Überprüfung der Vollständigkeit eines Zuges, bei dem Druck- und Strömungswerte in der Hauptluftleitung mit Fahrzuständen und Bedienhandlungen des Zugführers korreliert werden. Auf diese Weise werden Druckänderungen, die vom Zugführer ausgelöst wurden, klar von solchen Druckänderungen unterschieden, die von einer plötzlichen Leckage der Hauptluftleitung durch Wagenabriss herrühren.The DE 198 28 906 C1 discloses another method for checking the completeness of a train, in which pressure and flow values in the main air line are correlated with driving conditions and operator actions of the train driver. In this way, pressure changes initiated by the tractor operator are clearly differentiated from pressure changes resulting from sudden leakage of the main airline due to carriage breakage.

Es ist daher die Aufgabe der vorliegenden Erfindung ein Verfahren sowie eine Vorrichtung zur Zuglängenerkennung zu schaffen, bei welcher allein mit zugverbandinterner Sensorik eine präzise Längenbestimmung möglich ist.It is therefore an object of the present invention to provide a method and a device for train length detection, in which a precise length determination is possible only with zugverbinterner sensors.

Die Aufgabe wird ausgehend von einem Verfahren gemäß dem Oberbegriff von Anspruch 1 in Verbindung mit dessen kennzeichnenden Merkmalen gelöst. Die nachfolgenden abhängigen Ansprüche geben vorteilhafte Weiterbildungen der Erfindung wieder. Hinsichtlich einer zu dem Verfahren korrespondierenden Vorrichtung wird auf Anspruch 9 verwiesen. In Anspruch 11 ist ein diese Vorrichtung enthaltener Zugverband angegeben.The object is achieved on the basis of a method according to the preamble of claim 1 in conjunction with its characterizing features. The following dependent claims give advantageous developments of the invention. With regard to a device corresponding to the method, reference is made to claim 9. In claim 11, a train that contains this device is specified.

Die Erfindung schließt die Lösung ein, dass die sensortechnische Messgrößenerfassung erst ab dem stationären Zustand einer bestehenden Bremsstufe I. während der Ausführung der nächstfolgenden Bremsstufe II. durchgeführt wird, bis wieder ein stationärer Zustand innerhalb dieser Bremsstufe II. erreicht ist. Durch nachfolgendes Aufintegrieren des Durchflusses während des Entlüftens der Hauptluftleitung HL zur Ausführung der nächstfolgenden Bremsstufe II. wird unter Berücksichtigung des im Anfangs- und Endzustand herrschenden Drucks sowie der Umgebungstemperatur das Volumen der Hauptluftleitung HL berechnet. Aus dem so berechneten Volumen kann in an sich bekannter Weise schließlich bei bekanntem Leitungsquerschnitt der Hauptluftleitung HL auf deren Länge und damit auf die Zuglänge L geschlossen werden. Dabei wird bei zuvor zumindest einmaliger Bestimmung des Volumens (V) der Hauptluftleitung (HL) als Korrekturwert das Luftvolumen (V), welches durch Bremsbeschleunigungsverluste der einzelnen den Bremszylindern (7) zugeordneten Steuerventile (6) aus dem gelösten Zustand der Bremsanlage verlorengeht, rechentechnisch bei der Ermittlung der Zuglänge (L) eliminiert.The invention includes the solution that the sensor-technical measured variable detection is carried out only from the stationary state of an existing brake stage I during the execution of the next brake stage II, until a stationary state within this braking stage II is reached again. By subsequently integrating the flow during the venting of the main air line HL to perform the next following brake stage II, the volume of the main air line HL is calculated taking into account the pressure prevailing in the initial and final state and the ambient temperature. From the volume calculated in this way, it is finally possible, in a manner known per se, to conclude the length of the main air line HL and thus the length of the train L given a known line cross-section. In this case, when previously determined at least once the volume (V) of the main air line (HL) as a correction value, the air volume (V), which is lost by Bremsbeschleunigungsverluste the individual brake cylinders (7) associated control valves (6) from the dissolved state of the brake system at computationally the determination of the train length (L) eliminated.

Über folgenden formelmäßigen Zusammenhang kann das Volumen konkret ermittelt werden: V = T * p n T n * t 1 t 2 V N * dt t 1 t 2 d p * dt = T * p n T n * t 1 t 2 V N * dt p t 2 p t 1

Figure imgb0001
The volume can be determined concretely via the following formulaic relationship: V = T * p n T n * t 1 t 2 V N * dt t 1 t 2 d p * dt = T * p n T n * t 1 t 2 V N * dt p t 2 - p t 1
Figure imgb0001

Aus L = V Q

Figure imgb0002
ergibt sich schließlich die Leitungslänge und damit die Zuglänge L des Zugverbandes. Der Querschnitt der Hauptluftleitung HL und der Kupplungen ist im Allgemeinen bekannt.Out L = V Q
Figure imgb0002
finally results in the line length and thus the train length L of the train. The cross section of the main air line HL and the couplings is generally known.

Mit dem beschriebenen Verfahren kann somit bei jeder Bremsanforderung, die nicht aus dem gelösten Zustand erfolgt, die Leitungslänge überprüft werden. Damit kann die Durchgängigkeit der Hauptluftleitung HL überprüft und ein geschlossener Absperrhahn detektiert werden. Wird die Leitungslängenbestimmung in die Bremsprobe vor Beginn der Fahrt integriert, kann das System eine Warnung über eine abweichende Zuglänge im Vergleich zu den Angaben im Bremszettel ausgeben. Wurden beispielsweise nach der Bremsprobe weitere Wagen mit einem geschlossenen Absperrhahn an den Zugverband angehängt, wird beim Anschluss des Triebfahrzeugs am anderen Ende zur Richtungsänderung dieser Fehler erkannt.With the method described, the line length can thus be checked for each brake request which does not take place from the released state. This can be the Continuity of the main air line HL checked and a closed shut-off valve can be detected. If the cable length determination is integrated into the brake sample before the start of the journey, the system can issue a warning about a different train length compared to the information in the brake card. For example, if after the brake test other cars with a closed stopcock attached to the train, this error is detected when connecting the traction unit at the other end to change direction.

Um den korrekten Volumenstrom zu erfassen, muss bei oben vorgestelltem Verfahren die Leckage mitbetrachtet werden. Bei Einbremsung aus einer bestehenden Bremsstufe wird die Hauptluftleitung HL mit Ausnahme der Leckage komplett über die Führerbremsanlage entlüftet, und somit von der Durchflussmessung erfasst. Die Leckagerate muss zusätzlich zum Volumenstrom addiert werden. Es gilt folgender Zusammenhang: V N gesamt = V N Mess + V N Leckage

Figure imgb0003
To detect the correct volume flow, the leakage must be considered in the above procedure. When decelerating from an existing braking stage, the main air line HL is vented completely, except for the leakage, via the driver's brake system, and thus detected by the flow measurement. The leakage rate must be added in addition to the volume flow. The following relationship applies: V N total = V N measuring + V N leakage
Figure imgb0003

Die Leckagerate ist vom Druckniveau in der Hauptluftleitung HL abhängig. Zur Berechnung wird die Leckage als eine Düse in der Hauptluftleitung HL mit konstantem Düsenquerschnitt betrachtet, die gegen Atmosphäre entlüftet.The leakage rate is dependent on the pressure level in the main air line HL. For the calculation, the leakage is regarded as a nozzle in the main air line HL with a constant nozzle cross-section, which vents against the atmosphere.

Aus dem Volumenstrom V̇ = A * (2 * R * T)0,5 * Y und der Beziehung V N = V * p 1 * T N p N * T

Figure imgb0004
ergibt sich mit dem Durchflusskoeffizienten Y folgender Ausdruck: V N = A * T N p N * T * 2 * 287 * T 0 , 5 * 60 * 10 3 * Y * p 1
Figure imgb0005
l min
Figure imgb0006
mit A in mm2 mit TN = 293,15K und pN = 1,013 barA, wobei gilt: Y = k k 1 * p 2 p 1 2 k p 2 p 1 k + 1 k 0 , 5 ,
Figure imgb0007
wenn p 2 p 1 > 0 , 528
Figure imgb0008
mit k=1,402, sonst Y=0,484. p1 entspricht dabei dem Absolutdruck vor, p2 dem Absolutdruck nach der Düse und T der Temperatur. Bei R = 287 J kg * K
Figure imgb0009
handelt es sich um die allgemeine Gaskonstante.From the volume flow V̇ = A * (2 * R * T ) 0.5 * Y and the relationship V N = V * p 1 * T N p N * T
Figure imgb0004
with the flow coefficient Y, the following expression results: V N = A * T N p N * T * 2 * 287 * T 0 . 5 * 60 * 10 - 3 * Y * p 1
Figure imgb0005
l min
Figure imgb0006
with A in mm 2 with T N = 293.15K and p N = 1.013 barA, where: Y = k k - 1 * p 2 p 1 2 k - p 2 p 1 k + 1 k 0 . 5 .
Figure imgb0007
if p 2 p 1 > 0 . 528
Figure imgb0008
with k = 1,402, otherwise Y = 0,484. p 1 corresponds to the absolute pressure before, p 2 the absolute pressure after the nozzle and T the temperature. At R = 287 J kg * K
Figure imgb0009
it is the general gas constant.

Nach Bestimmen der Leckrate bei einem konstanten Druckniveau kann somit über den formellen Zusammenhang [III] der konstante Düsenquerschnitt A in Abhängigkeit der Temperatur ermittelt werden. VNLeckage kann somit aus dem gemessenen Druckverlauf in der Hauptluftleitung HL näherungsweise berechnet werden.After determining the leak rate at a constant pressure level, the constant nozzle cross section A as a function of the temperature can thus be determined via the formal relationship [III]. V N leakage can thus be calculated approximately from the measured pressure curve in the main air line HL.

Ein Vorteil des Verfahrens resultiert aus der Maßnahme, dass die in die Hauptluftleitung HL einströmende Luft während des Erstauffüllens der Bremsanlage außer acht gelassen wird. Denn beim Erstauffüllen strömt die Luft nicht nur in die Hauptluftleitung HL, sondern ebenfalls in die Arbeitskammern der Steuerventile sowie in diverse Vorratsbehälter der Wagen. Dabei kann das Volumen der Vorratsbehälter der einzelnen Wagen variieren, so dass praktisch eine berechentechnische Korrektur dieser Störgröße nicht möglich ist. Zusätzlich ist meist der Ausgangszustand der Arbeitskammer der Steuerventile und der Vorratsbehälter nicht bekannt. Das Verfahren schließt die hieraus resultierenden Messfehler vollständig aus. Zur Lösung dieses Problematik sieht das Verfahren im Prinzip vor, die Durchflussmenge der Luft erst im aufgefüllten Zustand, beispielsweise nach Erstauffüllung während der Fahrt oder in einem beliebigen stationären Zustand der Hauptluftleitung HL, bei welcher der Druck pHL konstant ist, erfasst wird. Durch den Ausschluss der Beschleunigungswirkung vermeidet das Verfahren eine unbekannte Durchflussgröße, was zu einem genaueren Messergebnis führt.An advantage of the method results from the measure that the air flowing into the main air line HL is ignored during the first filling of the brake system. Because when Erstauffüllen the air flows not only in the main air line HL, but also in the working chambers of the control valves and in various reservoirs of the car. In this case, the volume of the storage container of the individual carriages can vary, so that in practice a calculation-related correction of this disturbance variable is not possible. In addition, most of the initial state of the working chamber of the control valves and the reservoir is not known. The method completely excludes the measurement errors resulting therefrom. To solve this problem, the method provides in principle, the flow rate of the air only in the filled state, for example, after first filling while driving or in any stationary state of the main air line HL, in which the pressure p HL is constant, is detected. By excluding the acceleration effect, the process avoids an unknown flow size, resulting in a more accurate measurement result.

Gemäß einer die Erfindung verbessernden Maßnahme wird vorgeschlagen, dass zur Ermittlung der Zuglänge während des Belüftens der Hauptluftleitung HL die sensortechnische Messgrößenerfassung nur bis zum Erreichen des Drucks des an die Hauptluftleitung angeschlossenen Vorratsluftbehälters durchgeführt wird. Während eines solchen Einleitungsbetriebs ist bei gängigen Bremsauslegungen also auch die Auswertung des Füllvorgangs der Hauptluftleitung bis zum Einsetzen der Vorratsbehälternachspeisung nach dem erfindungsgemäßen Verfahren möglich. Der Durchfluss wird dabei bis zu einem Druckwert unterhalb des Vorratsbehälterdrucks ausgewertet. Bei diesem Vorgang wird vorteilhafterweise die unbekannte Vorratsbehältergröße ausgeschlossen.According to a measure improving the invention, it is proposed that, to determine the train length during ventilation of the main air line HL, the sensor-technical measured variable detection is only carried out until the pressure of the supply air tank connected to the main air line is reached. During such Einleitungsbetriebs with standard brake designs so the evaluation of the filling process of the main air line to the onset of Vorratsbehälternachspeisung according to the method of the invention is possible. The flow rate is evaluated up to a pressure value below the reservoir pressure. In this process, the unknown reservoir size is advantageously excluded.

Gemäß einer die Erfindung im Hinblick auf ein präzises Messergebnis weiter verbessernden Maßnahme wird vorgeschlagen, dass beim Leitungsquerschnitt, welcher mit dem ermittelten Volumen der Hauptluftleitung HL zur Kalkulation der Zuglänge herangezogen wird, sowohl der Querschnitt der durch die einzelnen Wagen verlaufenden Hauptluftleitung HL als auch der Querschnitt der dazwischen angeordneten Leitungskupplungen berücksichtigt wird. Die Zuglänge L ergibt sich - wie vorstehend angeführt - aus Division des ermittelten Volumens der Hauptluftleitung HL durch den Leitungsquerschnitt Q.According to a measure which further improves the invention with regard to a precise measuring result, it is proposed that the cross-section of the line cross-section which is used with the determined volume of the main air line HL for calculating the train length is both the cross section of the main air line HL passing through the individual carriages and the cross section the interposed line couplings is taken into account. The train length L results - as stated above - from dividing the determined volume of the main air line HL by the line cross-section Q.

Zur rechentechnischen Kompensation der Leckage als weitere Störgröße innerhalb der Bremsanlage wird vorgeschlagen, dass zusätzlich die hierdurch im stationären Zustand herbeigeführte Volumenströmung innerhalb der Hauptluftleitung HL gemessen wird, so dass diese Messgröße zur rechentechnischen Eliminierung der Störgröße als Korrekturwert bei der Ermittlung der Zuglänge genutzt werden kann. Der zur Berechnung notwendige Durchflusskoeffizent kann vereinfacht im Bereich 0,45 bis 0,5 festgelegt werden, wenn das Druckverhältnis p2 zu p1 den Wert Y=0,484 +/- 10% ergibt. Auch bei einem Verhältnis größer diesem Wert bleibt der Fehler relativ gering, da mit abnehmendem Druck in der Hauptluftleitung HL auch die Leckage abnimmt. Ist die Leckage der pneumatischen Bremsanlage berechnet oder festgelegt, kann durch Einbeziehung in die Berechnung der Zuglänge ein qualitativ besseres Ergebnis erzielt werden.For computational compensation of the leakage as a further disturbance variable within the brake system, it is proposed that the volume flow thereby induced in the stationary state is additionally measured within the main air line HL, so that this measured variable can be used as a correction value for determining the train length for the computational elimination of the disturbance. The flow coefficient necessary for the calculation can be simplified in the range 0.45 to 0.5, if the pressure ratio p2 to p1 gives the value Y = 0.484 +/- 10%. Even with a ratio greater than this value, the error remains relatively low, since with decreasing pressure in the main air line HL and the leakage decreases. Is the leakage of the pneumatic Brake system calculated or fixed, can be obtained by inclusion in the calculation of the train length a qualitatively better result.

Erfindungsgemäß wird bei zuvor zumindest einmaliger Bestimmung des Volumens der Hauptluftleitung HL als Korrekturwert das Luftvolumen, welches durch Bremsbeschleunigungsverluste der einzelnen im Bremszylinder zugeordneten Steuerventile aus dem gelösten Zustand der Bremsanlage verloren geht, rechentechnisch bei der Ermittlung der Zuglänge eliminiert. Das erfindungsgemäße Verfahren basiert darauf, dass die Beschleunigungswirkung der Steuerventile der Bremsanlage zu Ermittlung der Länge der Hauptluftleitung HL ausgeschlossen werden. Wird nun das Leitungsvolumen allerdings einmalig bestimmt, beispielsweise im Zuge einer Bremsprobe vor der Abfahrt des Zugverbandes, kann der hieraus resultierende Fehler bei jetzt bekannten Volumen ermittelt werden. Der Hintergrund dafür ist, dass während der Zugfahrt beim Einbremsen die Zuglänge auch bei Bremsanforderungen aus dem gelösten Zustand überprüft werden kann, um den Abriss eines Zugteils oder einen geschlossenen Absperrhahn zu detektieren. Vorzugsweise sollte zur Durchführung dieser Maßnahme zumindest ein Druck von ca. 0,1 bar über eine Düse entlüftet werden, bis die Beschleunigungswirkung in den einzelnen Steuerventilen anspricht. Die Beschleunigungswirkung entnimmt nun ca. einen Druck von 0,3bar lokal aus der Hauptluftleitung HL. Anschließend ist die Wirkung abgeschlossen und die Steuerventile sind absolut empfindlich. Über diesen Zusammenhang ist nun eine annähernde Berechnung der dadurch verlorengegangenen Luftmenge über die ideale Gasgleichung möglich. Es gilt: p vorher * V vorher = p danach * V danach

Figure imgb0010
According to the invention, when the volume of the main air line HL has previously been determined at least once as a correction value, the air volume which is lost from the released state of the brake system by braking acceleration losses of the individual control valves associated with the brake cylinder is eliminated by computation during the determination of the train length. The inventive method is based on the fact that the acceleration effect of the control valves of the brake system to determine the length of the main air line HL are excluded. However, if the line volume is determined once only, for example in the course of a brake test before the departure of the train, the resulting error in now known volume can be determined. The reason for this is that during the train ride during braking, the train length can also be checked from the released state during brake requests in order to detect the demolition of a pulling part or a closed stopcock. Preferably, to carry out this measure, at least a pressure of about 0.1 bar should be vented via a nozzle until the acceleration effect in the individual control valves responds. The acceleration effect now draws approximately a pressure of 0.3 bar locally from the main air line HL. Then the effect is complete and the control valves are absolutely sensitive. By this connection, an approximate calculation of the amount of air lost as a result of the ideal gas equation is now possible. The following applies: p previously * V previously = p after that * V after that
Figure imgb0010

Gemäß eine andere die Erfindung weiterbildenden Maßnahme kann die Volumenbestimmung der Hauptluftleitung HL auch im sogenannten Zweileitungsbetrieb erfolgen. Beim Zweileitungsbetrieb werden Vorratsbehälter, welche in der Größe variieren können, und weitere Druckluftverbraucher über eine separate Druckluftleitung, die Hauptbehälterleitung HB gefüllt. Die Hauptbehälterleitung HB verläuft entlang des Zugverbandes parallel zu Hauptluftleitung HL. Somit kann das erfindungsgegenständliche Verfahren beim Zweileitungsbetrieb auch im Belüftungsfall nach Erstauffüllen angewandt werden, weil keine unbekannten Volumengrößen existieren. Mit anderen Worten erfolgt die Bestimmung des Volumens der Hauptluftleitung HL also während des Lösens der Bremsen in Folge Belüftung der Hauptluftleitung HL.According to another measure further developing the invention, the volume determination of the main air line HL can also take place in the so-called two-line mode. In two-line operation, reservoirs, which can vary in size, and other compressed air consumers via a separate compressed air line, the main reservoir line HB filled. The main tank line HB runs along the train in parallel to the main air line HL. Thus, the method according to the invention can also be used in the case of a two-pipe operation in the case of aeration after first filling because there are no unknown volume sizes. In other words, the determination of the volume of the main air line HL thus takes place during release of the brakes as a result of ventilation of the main air line HL.

Der Füllvorgang der Hauptluftleitung HL kann zwischen zwei beliebigen stationären Zuständen über das erfindungsgemäße Verfahren zur Bestimmung der Zuglänge ausgewertet werden. Da keine Beschleunigungswirkung beim Belüftungsvorgang auftritt, muss lediglich die Leckage als Störfaktor mitberücksichtigt werden. Im Gegensatz zur Volumenbestimmung über die Entlüftung muss im Zweileitungsbetrieb die Leckage in Abhängigkeit des Drucks vom gemessenen Volumenstrom subtrahiert werden. Man erhält also: V ˙ Ngesamt = V ˙ Nmess + V ˙ Nleckage

Figure imgb0011
The filling process of the main air line HL can be evaluated between any two stationary states via the method according to the invention for determining the train length. Since no acceleration effect occurs during the ventilation process, only the leakage must be taken into account as a disruptive factor. In contrast to the volume determination via the vent, in two-line operation, the leakage must be subtracted from the measured volume flow as a function of the pressure. So you get: V ˙ N total = V ˙ Nmess + V ˙ Nleckage
Figure imgb0011

Im Rahmen der Sensortechnik sind bei diesem Ausführungsbeispiel zwei separate Sensoren 2b und 2b' zur Bestimmung des Durchflusses vorgesehen. Während der erste Sensor 2b beim Wechsel zwischen den stationären Zuständen, also beim Übergang von einer Bremsstufe zu nächst höheren Bremsstufe zum Einsatz kommt, wird der zweite Sensor 2b' nur im stationären Zustand zwecks Leckagemessung genutzt. Da der Wechsel zwischen stationären Zuständen einen wesentlich höheren Durchfluss erzeugt, ist der erste Sensor 2b größer dimensioniert als der zweite Sensor 2b', welcher demgegenüber nur sehr kleine Durchflüsse zu ermitteln hat. Durch die hierdurch verwendeten unterschiedlichen Messbereiche steigt die Genauigkeit der Bestimmung der Durchflüsse insgesamt. Dabei muss allerdings zwischen Einleitungsbetrieb und Zweileitungsbetrieb unterschieden werden. Im Zweileitungsbetrieb kann im Belüftungsfall ein Sensor durchaus ausreichend sein, der sowohl Leckage und Belüftungsvorgänge misst oder zwei Sensoren mit gleichem Querschnitt in Reihe, Der Leckagesensor benötigt dabei einen geringeren Messbereich und kann dadurch eine höhere Genauigkeit erzielen.As part of the sensor technology, two separate sensors 2b and 2b 'are provided for determining the flow rate in this embodiment. While the first sensor 2b is used during the changeover between the stationary states, ie during the transition from one braking stage to the next higher braking stage, the second sensor 2b 'is used only in the steady state for the purpose of leakage measurement. Since the change between stationary states produces a significantly higher flow rate , the first sensor 2b is dimensioned larger than the second sensor 2b ', which in contrast has only to determine very small flows . As a result of the different measuring ranges used as a result, the accuracy of the determination of the flows V̇ increases overall. However, a distinction must be made between single-line operation and two-pipe operation. In two-pipe operation, a sensor that measures both leakage and ventilation processes or two sensors with the same cross-section in series can be sufficient in the case of ventilation. The leakage sensor requires a smaller measuring range and can therefore achieve greater accuracy.

Beim Einleitungsbetrieb mit Leckagemessung sind zwingend zwei Sensoren notwendig bzw. ein Gerät das bidirektionales Messen ermöglicht, da der Durchfluss beim Einbremsen dem Durchfluss bei der Leckagemessung entgegengesetzt ist. Auch hier gilt, dass der Querschnitt der Hauptluftleitung HL nicht verengt werden darf und der Leckagesensor einen geringeren Messbereich erfordert und damit eine höhere Genauigkeit erzielbar ist.In the case of single-line operation with leakage measurement, two sensors are absolutely necessary or one device that allows bidirectional measuring since the flow during braking is opposite to the flow during the leakage measurement. Again, that the cross section of the main air line HL may not be narrowed and the leakage sensor requires a smaller measuring range and thus a higher accuracy can be achieved.

Die elektronische Auswerteeinheit 4 berücksichtigt bei der Ermittlung der Zuglänge hinsichtlich des Leitungsquerschnitts sowohl den Querschnitt der durch die einzelnen Wagen la bis 1c verlaufenden Hauptluftleitung HL als auch den Querschnitt der dazwischen angeordneten Leitungskupplungen 5, um genauere Rechenergebnisse zu erreichen.The electronic evaluation unit 4 takes into account both the cross-section of the running through the individual carriages la to 1c main air line HL and the cross section of the interposed line couplings 5 in determining the train length with respect to the line cross-section to achieve more accurate calculation results.

In jedem einzelnen Wagen la bis 1c ist mindestens ein Steuerventil 6 mit hieran angeschlossenen pneumatischen Bremszylinder 7 zur Betätigung der Bremsen angeordnet.In each individual car la to 1c at least one control valve 6 is arranged with connected thereto pneumatic brake cylinder 7 for actuating the brakes.

Zum Zwecke der Bremsbeschleunigung entweicht auch Luftvolumen aus den Steuerventilen 6, das als Korrekturwert erfassbar ist, um diese rechentechnisch bei der Ermittlung der Zuglänge zu berücksichtigen.For the purpose of braking acceleration also escapes air volume from the control valves 6, which can be detected as a correction value in order to consider this computationally when determining the train length.

Gemäß Figur 2 erfolgt die Zuglängenerkennung vorzugsweise, indem ausgehend von einem stationären Zustand der Bremsanlage, welcher durch die anliegende Bremsstufe I. entsteht. Zunächst eine sensortechnische Messgrößenerfassung der physikalischen Werte Druck pHL, Durchfluss der Hauptluftleitung HL sowie der Umgebungstemperatur T erfolgt, und zwar während der Ausführung der nächstfolgenden Bremsstufe II. Bis wieder ein stationärer Zustand eingestellt ist.According to FIG. 2 the train length detection is preferably carried out by starting from a stationary state of the brake system, which arises due to the applied braking stage I. First, a sensor-technical measured value detection of the physical values pressure p HL , flow V̇ of the main air line HL and the ambient temperature T takes place, namely during the execution of the next brake stage II. Until a stationary state is set again.

Anschließend erfolgt ein Aufintegrieren des so ermittelten Durchflusses unter Berücksichtigung der Anfangs- und Endzustände des herrschenden Drucks pHL sowie der Umgebungstemperatur T gemäß vorstehend angegebener Gleichung [I]. Als Rechenergebnis ergibt sich das Volumen V der Hauptluftleitung HL. Hieraus wird durch die ebenfalls vorstehend angegebene Rechenbeziehung bei bekanntem Leitungsquerschnitt Q der Hauptluftleitung HL deren Länge berechnet, welcher der Zuglänge L entspricht.Subsequently, the flow V er determined in this way is integrated , taking into account the initial and final states of the prevailing pressure p HL and the ambient temperature T according to equation (I) given above. The result of calculation is the volume V of the main air line HL. From this, the calculation of the known line cross-section Q of the main air line HL also calculates its length, which corresponds to the length L of the train.

Die Erfindung ist nicht beschränkt auf das vorstehend beschriebene bevorzugte Ausführungsbeispiel. Es sind vielmehr auch Abwandlungen hiervon denkbar, welche vom Schutzbereich der nachfolgenden Ansprüche mit umfasst sind. Es ist auch möglich, weitere störende Einflussgrößen zu ermitteln und als Korrekturwerte rechentechnisch zu berücksichtigen, damit eine präzise Zuglängenerkennung realisiert werden kann.The invention is not limited to the preferred embodiment described above. On the contrary, modifications are conceivable which are included within the scope of the following claims. It is also possible to determine further disturbing influencing variables and to take them into account as correction values in order to realize precise train length detection.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Wagendare
22
Sensorsensor
33
Triebfahrzeugtrain
44
Auswerteeinheitevaluation
55
Leitungskupplungline coupling
66
Steuerventilcontrol valve
77
Bremszylinderbrake cylinder
88th
VorratsluftbehälterAir reservoir
HLHL
HauptluftleitungMain air line
HBHB
HauptbehälterleitungMain reservoir pipe
VV
Volumen der HauptluftleitungVolume of the main air line
QQ
Leitungsquerschnitt der HauptluftleitungCable cross-section of the main air line
pHL p HL
Druck in HauptluftleitungPressure in main air line
V
Durchfluss durch die HauptluftleitungFlow through the main air line
TT
Umgebungstemperaturambient temperature
LL
Zuglängetrain length

Claims (8)

  1. Method for train length detection in a train formation consisting of many carriages (1a - 1c), which is braked via a pneumatic brake system in several braking stages in accordance with the pressure in a main air line (HL) looped from carriage (1a) to carriage (1c), the pressure (pHL) and flow rate (V) of the main air line (HL) and the ambient temperature (T) being measured by sensor-technological means along the time axis, wherefrom the train length (L) is calculated by means of an electronic evaluation device (4), wherein the sensor-technological detection of measured variables is carried out from the stationary state of an existing braking stage (I.) during the next braking stage (II.) until a stationary state is once again reached, whereupon, by integrating the flow rate (V) during the venting of the main air line (HL) for carrying out the next braking stage (II.), the volume (V) of the main air line (HL) is calculated taking account of the pressure (pHL) prevailing in the starting and the end state and of the ambient temperature (T), in order to determine therefrom, at a known line cross-section (Q), the train length (L) corresponding to the length of the main air line,
    characterised in that, if the volume (V) of the main air line (HL) has previously been determined at least once, the air volume (V) lost by brake acceleration losses of the individual control valves (6) assigned to the brake cylinders (7) from the released state of the brake system is eliminated computationally as a correction value in the determination of the train length (L).
  2. Method according to claim 1,
    characterised in that, for determining the train length (L) during the ventilation of the main air line (HL), the sensor-technological detection of measured variables is carried out only until the pressure (pHL) of the air reservoir (8) connected to the main air line (HL) is reached.
  3. Method according to claim 1,
    characterised in that in the line cross-section (Q) both the cross-section of the main air line (HL) running through the individual carriages (1a - 1c) and the cross-section of the line couplings (5) located in between are taken into account.
  4. Method according to claim 1,
    characterised in that, in the stationary state, the volumetric flow rate (V Nleck) caused by leakage of the pneumatic brake system is measured in order to use this measured variable in the computational elimination of the disturbance variable as correction value in the determination of the train length (L).
  5. Method according to claim 1,
    characterised in that, in a two-line operation, in which the compressed air users are charged via a separate main reservoir line (HB), while the main air line (HL) is exclusively used for braking, the volume (V) of the main air line (HL) is determined while the brakes are released as a result of the ventilation of the main air line (HL).
  6. Method according to claim 5,
    characterised in that the correction value representing the leakage of the brake system is subtracted from the measured flow rate (V) as a function of the pressure (pHL).
  7. Device for train length detection in a train formation consisting of many carriages (1a - 1c), the pneumatic brake system of which brakes in several braking stages in accordance with the pressure in a main air line (HL) looped from carriage (1a) to carriage (1b), wherein sensors (2a - 2c) detect the pressure (pHL) and flow rate (V) and the ambient temperature (T) along the time axis, wherefrom an electronic evaluation unit (4) calculates the train length (L), wherein the evaluation unit (4) carries out the sensor-technological detection of measured variables from the stationary state of an existing braking stage (I.) during the next braking stage (II.) until a stationary state is once again reached, in order to calculate, by integrating the flow rate (V) during the venting of the main air line (HL) for carrying out the next braking stage (II.), the volume (V) of the main air line (HL), taking account of the pressure (pHL) prevailing in the starting and the end state and of the ambient temperature (T), in order to determine therefrom, at a known line cross-section (Q), the train length (L) corresponding to the length of the main air line,
    characterised in that the sensor (2b) is used for measuring the flow rate (V) of the main air line (HL) during the switch between the stationary states, while a second sensor (2b') of smaller dimensions is used for measuring leakage in a stationary state, and in that the electronic evaluation unit (4) is designed to eliminate, if the volume (V) of the main air line (HL) has previously been determined at least once, the air volume (V) lost by brake acceleration losses of the individual control valves (6) assigned to the brake cylinders (7) from the released state of the brake system as a correction value computationally in the determination of the train length (L).
  8. Train formation consisting of many carriages (1a - 1c), each of which can be braked by a pneumatic brake system in accordance with a looped-through main air line (HL), comprising a device for train length detection according to claim 7.
EP11710157.6A 2010-03-18 2011-03-16 Method and device for train length detection Active EP2547568B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010011949 DE102010011949A1 (en) 2010-03-18 2010-03-18 Method and apparatus for train length detection
PCT/EP2011/053950 WO2011113856A1 (en) 2010-03-18 2011-03-16 Method and device for train length detection

Publications (2)

Publication Number Publication Date
EP2547568A1 EP2547568A1 (en) 2013-01-23
EP2547568B1 true EP2547568B1 (en) 2016-05-11

Family

ID=44064679

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11710157.6A Active EP2547568B1 (en) 2010-03-18 2011-03-16 Method and device for train length detection

Country Status (7)

Country Link
EP (1) EP2547568B1 (en)
CN (1) CN102822032B (en)
AU (1) AU2011229236B2 (en)
DE (1) DE102010011949A1 (en)
ES (1) ES2586578T3 (en)
RU (1) RU2561481C2 (en)
WO (1) WO2011113856A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103697330A (en) * 2013-12-06 2014-04-02 中南大学 Train ultra-long pipeline leakage monitoring method
EP3476678B1 (en) * 2017-10-26 2020-04-22 KNORR-BREMSE Systeme für Schienenfahrzeuge GmbH Brake pipe length estimation
US11479280B2 (en) * 2019-02-26 2022-10-25 Cattron North America, Inc. Remote control locomotive systems and methods
CN112550375B (en) * 2020-11-24 2022-08-30 卡斯柯信号有限公司 Train conductor identification method and system based on satellite positioning
GB2606014A (en) * 2021-04-22 2022-10-26 Siemens Mobility Ltd Train integrity proving device and method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19828906C1 (en) * 1998-06-18 2000-05-04 Abb Daimler Benz Transp Procedure to establish and test integrity of train entails transmitting to vehicle at head of train a predefined pressure increase, retention and drop pattern which is recorded and evaluated by pressure measuring device
DE19902777A1 (en) 1999-01-25 2000-07-27 Ge Harris Railway Electronics Train integrity monitoring arrangement compares operating parameters detected by sensor with predefined values to draw conclusion re integrity or completeness of train
DE19933798C2 (en) 1999-07-19 2001-06-21 Siemens Ag Device and method for exhaust gas aftertreatment in an internal combustion engine
DE10009324A1 (en) 2000-02-22 2001-09-06 Daimler Chrysler Ag Determining train length from locomotive involves measuring pressure, mass flow, temperature in main air line, generating defined pressure change sequence, integrating flows
DE10112920B4 (en) * 2001-03-13 2008-03-13 Siemens Ag Device for train completion monitoring
RU2241627C2 (en) * 2002-07-19 2004-12-10 Государственное унитарное предприятие Российский научно-исследовательский и проектно-конструкторский институт информатизации, автоматизации и связи МПС Device to determine length of train
CN101554878B (en) * 2009-05-20 2012-05-30 北京交通大学 System and method for realizing remote monitoring of train integrity

Also Published As

Publication number Publication date
DE102010011949A1 (en) 2011-09-22
CN102822032B (en) 2016-03-02
AU2011229236A1 (en) 2012-10-11
CN102822032A (en) 2012-12-12
RU2561481C2 (en) 2015-08-27
AU2011229236B2 (en) 2015-01-29
EP2547568A1 (en) 2013-01-23
RU2012144281A (en) 2014-04-27
ES2586578T3 (en) 2016-10-17
WO2011113856A1 (en) 2011-09-22

Similar Documents

Publication Publication Date Title
EP2870039B1 (en) Method for detecting leaks in a brake pressure line, under braking pressure, of a rail vehicle
DE19636431B4 (en) Method and device for testing the functionality of a tank ventilation system
EP2547568B1 (en) Method and device for train length detection
EP2465744B1 (en) Device and method for detecting leaks in brake cylinder circuits
DE3501179A1 (en) ELECTRIC BRAKE SYSTEM
EP2162326B1 (en) Method for assessing the compatibility of braking systems of a vehicle combination, and compatibility assessment device
DE112009002305T5 (en) System and method for reducing a forced time for a train with distributed drive power
DE102007025835B4 (en) Diagnosis of leaks in compressed air systems, especially in commercial vehicles
DE102018123750A1 (en) Electropneumatic trailer control valve unit for North America
EP1800982A1 (en) Method of determination of the reliability of balancing of the braking systems of a tractor and a trailer
EP1995140B1 (en) Method for monitoring air-tightness of a compressed air system and electronic device provided for said method
DE102005024335A1 (en) Method and device for carrying out brake tests in motor vehicles with compressed-air brake system
DE10147906A1 (en) Method for measuring the tightness of wagons, in particular train wagons, and device for carrying out the measuring method
DE102016009879A1 (en) Method and device for determining the leakage rate of a hydraulic component of a vehicle and its remaining range
EP1506900A1 (en) Method and device for checking of pneumatic and/or hydraulic brakes of railroad vehicles
WO2019048261A1 (en) Brake device and method for operating a brake device
EP2323882B1 (en) Method for the functional testing of a brake system in a vehicle
DE102011080754B4 (en) Device for detecting the impact of an object on a vehicle
DE10009324A1 (en) Determining train length from locomotive involves measuring pressure, mass flow, temperature in main air line, generating defined pressure change sequence, integrating flows
CH715634A2 (en) Leak detection method for vehicles and vehicle equipped therefor.
DE102011087594A1 (en) Method for functional monitoring of vibration damper for wheel of passenger car, involves obtaining correct function and incorrect function of vibration damper, such that recognized incorrect function is provided in display
DE10010221A1 (en) Rail vehicle braking testing method has electronic control for skid protection supplied with braking values for air braking cylinders for operating optical or acoustic display
DE19503250B4 (en) Level control device for wheel suspensions of motor vehicles
DE1228437B (en) Testing device for air brake devices of motor trucks and / or truck trailers
DE102004020498B4 (en) Device for measuring a flow velocity in brake lines of rail vehicles without affecting the safety-relevant properties

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121018

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150616

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151104

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 798401

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011009734

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER AND PEDRAZZINI AG, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160511

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2586578

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20161017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160811

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160812

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011009734

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

26N No opposition filed

Effective date: 20170214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170316

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180326

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20180320

Year of fee payment: 8

Ref country code: IT

Payment date: 20180322

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180423

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160511

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 798401

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190316

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190316

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190317

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240328

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240327

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240401

Year of fee payment: 14