EP2544779A2 - Tensiomètre individuel pour la mesure de tension d'une corde - Google Patents
Tensiomètre individuel pour la mesure de tension d'une cordeInfo
- Publication number
- EP2544779A2 EP2544779A2 EP11713847A EP11713847A EP2544779A2 EP 2544779 A2 EP2544779 A2 EP 2544779A2 EP 11713847 A EP11713847 A EP 11713847A EP 11713847 A EP11713847 A EP 11713847A EP 2544779 A2 EP2544779 A2 EP 2544779A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- biasing member
- gripping body
- rope
- tensiometer
- relative
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B51/00—Stringing tennis, badminton or like rackets; Strings therefor; Maintenance of racket strings
- A63B51/005—Devices for measuring the tension of strings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/04—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands
- G01L5/10—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means
- G01L5/102—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means using sensors located at a non-interrupted part of the flexible member
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/20—Distances or displacements
- A63B2220/24—Angular displacement
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/50—Force related parameters
- A63B2220/54—Torque
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/50—Force related parameters
- A63B2220/58—Measurement of force related parameters by electric or magnetic means
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2220/00—Measuring of physical parameters relating to sporting activity
- A63B2220/80—Special sensors, transducers or devices therefor
- A63B2220/83—Special sensors, transducers or devices therefor characterised by the position of the sensor
Definitions
- the present invention generally relates to tension measuring apparatus for string-type elongated element.
- the invention more particularly relates to an individual tensiometer for measuring the tension of a racket rope, said tensiometer comprising:
- seizure body capable of being manually grasped
- said biasing member comprising at least two support elements spaced apart from one another, such as studs or fingers, positionable on either side of an individual rope,
- said gripping body and said biasing member being displaceable in each other substantially in a relative pivotal movement
- Said relative angle corresponds to an elongation of the helical spring biased in tension.
- the tensiometer described in US Pat. No. 5,481,926 operates only in a single direction of rotation of the gripping body corresponding to the direction in which the spring can be elongated. Such a solution thus poses problems for left-handed people when the tensiometer is designed for right-handed people and vice versa.
- the present invention aims to provide a tensiometer that is easily manipulated for both left-handed and right-handed.
- Another object of the present invention is to provide a solid tensiometer that provides reliable and accurate voltage measurement.
- Another object of the present invention is to provide a tensiometer for which the user can easily and quickly determine the tension of a rope.
- the subject of the invention is an individual tensiometer for measuring the tension of a racket rope, said tensiometer comprising: a body, called a seizure body, capable of being manually grasped,
- said biasing member comprising at least two support elements spaced apart from one another, such as studs or fingers, positionable on either side of an individual rope,
- said gripping body and said biasing member being displaceable in each other substantially in a relative pivotal movement
- the gripping body and the biasing member have relative to each other two possibilities of pivoting with respect to said neutral position, namely a first possibility of pivoting in a first direction and a second possibility pivoting in a second direction opposite to the first direction.
- the relative rotation between the gripping body and the biasing member or the deformation of said return means is a function of the internal or initial tension of the rope, that is to say the tension of the rope in the absence of stressing thereof.
- the biasing means connect the gripping body to the biasing member so that said biasing means limit the relative rotation between the gripping body and the biasing member by acting against this relative rotation.
- the measurement of said relative rotation corresponds to a measurement of the deformation of the return means which itself depends on the tension of the rope. So, the measuring the relative rotation between the gripping body and the biasing member makes it possible to determine the tension of the rope.
- the tensiometer according to the invention Thanks to the possibility offered by the tensiometer according to the invention to rotate, by reference to a neutral position, the seizure body with respect to the biasing member in one direction and the other, said tensiometer is easily manipulated too good for a left-handed person than for a right-handed person. Indeed, the relative rotation between the gripping body and the biasing member, in one direction and in the other, permitted by the deformation of the return means, can be detected in both directions using the measuring means as detailed below.
- said magnitude representative of the relative rotation between the input body and the biasing member may be a characteristic of an electrical signal associated with at least one element or system called resistive and having a variable resistance. function of the relative rotation between the input body and the biasing member.
- resistive an element or system
- said electrical voltage varying as a function of the resistance value of said resistive element or system and therefore as a function of the relative rotation between the input body and the urging member.
- Said calculation means can then convert the measured voltage value into a string voltage value using a mathematical formula and / or charts.
- said measuring means comprise first means for measuring a magnitude representative of the relative rotation between the gripping body and the biasing member according to said first direction with respect to said neutral position, and second means for measuring a magnitude representative of the relative rotation between the gripping body and the biasing member along said second direction relative to said neutral position.
- said first and second measuring means are common.
- said biasing means have a first possibility of efo rm ation in any one corresponding to said first direction of pivoting of the gripping body with respect to the biasing member and a second possibility of deformation in one direction. corresponding to said second direction of pivoting of the gripping body with respect to the biasing member.
- the gripping body and the biasing member have, relative to each other, on each side of the neutral position, an angular displacement stroke of at least 10 °.
- said biasing means and the biasing member are arranged in such a way that that the median plane passing through the support members straddling the rope forms, in the neutral position, a plane of symmetry for said return means and / or a plane in which said return means extend.
- the said return means present, in absolute value, a deformation stroke substantially identical to that they have when the gripping body pivots relative to the biasing member, said given angle relative to the neutral position, in the other direction.
- said measuring means comprise a linear potentiometer having a variable linear resistance and an adjusting member of said resistor, called a slider, said slider being movable along at least a part of said resistor.
- linear variable said variable linear resistance and said slider being coupled one to the input body and the other to the biasing member.
- Said measuring means comprise a linear potentiometer whose ohmic value is modified when the gripping body is rotated in one direction and in the other, which makes it possible to measure the relative rotation between the gripping body and the biasing member in both directions .
- a linear potentiometer makes it possible to benefit from a solid tensiometer of simplified design which offers a reliable and precise measurement of tension.
- Such a design of the tensiometer using a linear potentiometer makes it possible to imitate the thickness of the tensiometer.
- the slider has a reduced dimension that allows for a thin gauge tensiometer. Said thickness corresponds to the dimension of the tensiometer in a direction parallel to the axis of pivoting of the gripping body with respect to the biasing member.
- the use of a linear potentiometer makes it easy to vary the resistance as a function of the pivoting of the gripping body relative to the biasing member by coupling the slider and the linear resistance, one to the gripping body and the other to the biasing member.
- the modification of the ohmic value of the potentiometer as a function of the relative rotation between the input body and the biasing member makes it possible to supply the calculation means with a quantity representative of the relative rotation between the input body and the input. solicitation organ.
- Said magnitude may be an electrical voltage between a terminal corresponding to the ground of the potentiometer and u no terminal corresponding to cu rseu rdu potentiometer.
- Said magnitude can be processed by said calculating means to determine the corresponding voltage of the string. In particular, it is possible to filter and / or amplify the signal, corresponding to said quantity, acquired by the calculation means.
- said tensiometer comprises activation and deactivation means able to control the activation and deactivation of said calculating means as a function of the relative pivot angle between the input body and the solicitation organ.
- said biasing member comprises an arm pivotally mounted relative to the gripping body and said biasing means comprise two helical springs, for example of generally at least partially cylindrical and / or at least partially conical shape. , optionally formed in one piece, which extend on either side of the axis of the arm, preferably at or near the free end of said arm. Realisation of the return means in the form of helicoidal springs distributed on either side of the axis of the arm reliably removes the arm in said neutral position.
- said arm comprises means for coupling to the cursor of the potentiometer, said coupling means being configured so as to move the cursor in the direction of pivoting of the arm while leaving the cursor free to move. move on a given stroke along the axis of said arm.
- said measuring means comprise a rotary potentiometer which comprises a variable resistor and a rotary control shaft making it possible to vary the resistance value, said variable resistor and the control axis. being coupled, one to the biasing member and the other to the gripping body.
- led it control axis carries a gear, such as a meshing gear, adapted to mesh with a toothed wheel integral with the gripping body.
- a gear such as a meshing gear
- said toothed wheel and the gripping body are formed in one piece.
- the meshing mechanism between the rotary potentiometer and the gripping body, or the biasing member, depending on whether the potentiometer is carried by the biasing member or the gripping body makes it easy and reliable to use the relative rotation between the input body and the biasing member for modifying the resistance value of the potentiometer.
- This ohmic value can then be converted into a voltage value of the chord since said relative rotation is representative of the deformation of the deformable element, itself representative of the tension of the chord.
- the modification of the resistance value of the potentiometer as a function of the relative rotation between the gripping body and the biasing member makes it possible to provide the calculation means with a magnitude representative of the relative rotation between the gripping body and the biasing member.
- Said magnitude may be an electrical voltage between a terminal corresponding to the ground of the potentiometer and a terminal corresponding to the control axis of the potentiometer. Said magnitude can be processed by said calculating means to determine the corresponding voltage of the string. In particular, it is possible to filter and / or amplify the signal, corresponding to said quantity, acquired by the calculation means.
- said gripping body in the general form of a toothed wheel is very interesting since, said gripping body being intended to be rotated by the hand of the operator, said gripping body can directly mesh, via its toothed portion, with the pinion carried by the control shaft of the potentiometer without the need to add additional meshing means.
- said biasing means comprise a part connected to the gripping body at two opposite points with respect to the axis of rotation corresponding to the pivoting mobility of the gripping body with respect to the gripping member. biasing, and another portion connected to the biasing member at two opposite points with respect to said axis of rotation.
- said biasing means affect the general shape of a cross whose branch is coupled to or near its ends to the gripping body and whose other branch is coupled to or near its ends to the organ of solicitation.
- the relative rotation between the gripping body and the biasing member is translated by bending one branch of the cross relative to the other branch.
- Such a design of the deformable element makes it possible to simplify its assembly for the manufacture of the tensiometer since said cross deformable element can be mounted in different orientations due to its planes of symmetry and sandwiched between the gripping body and the biasing member being centered on the axis of rotation of the gripping body.
- the connecting means of said biasing means to the gripping body and the connecting means of said biasing means to the biasing member are each formed by at least two sets of tenons and tenon insertion orifices, each set being disposed on either side of the axis of rotation of said tension meter, in the assembled state of the tensiometer.
- said return means are made of elastomer, preferably Styrene Ethylene Butylene Styrene (SEBS).
- SEBS Styrene Ethylene Butylene Styrene
- said biasing means comprise at least one elongate part and the opposite ends of the elongated part of the deformable element are connected to two points of the gripping body, preferably at two diametrically opposite points with respect to the axis of rotation corresponding to the pivotal mobility of the gripping body relative to the biasing member.
- said biasing means comprise at least one elongate part, the longitudinal axis of said elongated part of said deformable element is, in the absence of biasing the gripping body, substantially coplanar with the axis rotation of the gripping body defined by the axis which is included in the median plane passing between said support members intended to overlap the rope and which is perpendicular to the axis of the rope passage delimited between the two support elements .
- said return means are substantially centered on the axis of rotation of the body of its isie of the tensiometer, which allows to have a substantially identical behavior in deformation of said biasing means in one direction and in the other, and therefore to determine reliably and quickly the tension of a rope that is deformed in one direction or the other.
- Such an arrangement of said biasing means with respect to the axis of rotation of the input body also simplifies the design and manufacture of the tensiometer while providing an accurate and reliable measurement of the tension of the rope from the deformation of the rope. deformable element in one direction or the other, corresponding to a rotation of the input body in one direction or the other depending on whether the user is right-handed or left-handed.
- the modification of the resistance value of the potentiometer as a function of the relative rotation between the gripping body and the biasing member makes it possible to provide the calculation means with a quantity representative of the relative rotation between the gripping body and the body. solicitation which can be processed by said calculating means to determine the corresponding tension of the string.
- said biasing means comprise a flexible element, preferably a flexible blade
- said measuring means comprise at least one strain gauge positioned on said flexible element.
- Bending of the flexible element causes a stretch of the resistive son of the or each gauge, which modifies their resistance value and thus allows to deduce the flexion of the flexible element.
- the bending deformation of the flexible element is a function of the internal or initial tension of the rope, that is to say the tension of the rope in the absence of stressing thereof.
- the relative rotation between the gripping body and the biasing member, in one direction and in the other, causes a flexion of the flexible element which can be detected in both directions, for example with one and the same set of Onboard pressure gauge (s) on the blade.
- At least one strain gauge makes it possible to provide a magnitude representative of the flexion of the flexible element that can be processed by calculation means to determine the corresponding tension of the rope. More specifically, the modification of the ohmic value of said at least one strain gauge as a function of the relative rotation between the gripping body and the biasing member makes it possible to provide the calculation means with a magnitude representative of the relative rotation between the grasping body and the biasing member.
- Said magnitude may be an electrical voltage taken at said at least one strain gauge.
- Said magnitude can be processed by said calculating means to determine the corresponding voltage of the string. In particular, it is possible to filter and / or amplify the signal, corresponding to said quantity, acquired by the calculation means.
- the gripping body is an annular body, for example of ellipsoidal shape.
- the flexible element is an elongated element which extends inside the space delimited by said annular gripping body. In the unsolicited state, said flexible element is in the form of a plane blade.
- the opposite ends of the flexible element preferably the flexible blade, are connected to two distinct points of the gripping body, preferably at two diametrically opposite points.
- the biasing member is fixed on the flexible element, preferably the flexible blade, between and spaced from the two ends of the flexible element, preferably in the central zone of the length of said flexible element.
- the flexible element being an elongate element having a longitudinal axis orthogonal to its axis of flexion
- the measuring means are located at least partly between the biasing member and the end or the end. one of the ends of the flexible element connected to said gripping body, preferably in the middle of the length between the biasing member and said end of said flexible member.
- the flexible element being an elongated element
- the longitudinal axis of the flexible element is substantially coplanar with the axis of rotation of the gripping body defined by the axis which is included in the median plane passing between said support members intended to overlap the rope and which is perpendicular to the axis of the rope passage delimited between the two support elements.
- the flexible element formed for example by a flexible beam or blade is substantially centered on the axis of rotation of the gripper body of the tensiometer, which allows to have a substantially identical behavior in flexion of the flexible element in one sense and in the other, and thus to determine reliably and quickly the tension of a rope that is deformed in one direction or the other.
- Such an arrangement of the flexible member with respect to the axis of rotation of the grasping body also simplifies the design and manufacture of the tensiometer while providing an effective measure of the tension of the rope from the bending of the element. flexible in one direction of bending or in the other, corresponding to a rotation of the body of its isie in one direction or the other depending on whether the user is right handed or left handed.
- the tensiometer is equipped with string detection means configured to transmit, when they are located at the right of said chord, a control signal for storing said quantity measured by said measuring means.
- the invention also relates to a method for determining the tension of a racket rope, using a tensiometer as described above, characterized in that said method comprises the following steps:
- FIG. 1 is an exploded perspective view from below of a first embodiment of the tensiometer according to the invention
- FIG. 2 is an exploded perspective view from above of the tensiometer of FIG. figure 1 ;
- FIG. 3 is a view from below of the tensiometer of FIG. 1, for which a portion of the housing is not shown, in the straddling state, in the use configuration for a right-handed person, and before deformation said rope;
- FIG. 3A is a view from below of the tensiometer of FIG. 3, in the state straddling the rope and in the rotated state of the grasping body, until the desired orientation of said body with respect to the rope is obtained. ;
- FIG. 4 is a view from below of the tensiometer of FIG. 1, for which a portion of the housing is not shown, in the straddling state, in the configuration of use for a left-hander, and before deformation. said rope;
- FIG. 4A is a view from below of the tensiometer of FIG. 4, in the state straddling the rope and in the rotated state of the gripping body, until obtaining the desired orientation of said body relative to the rope;
- FIG. 5 is an exploded top view of a tensiometer according to a second embodiment of the invention.
- FIG. 5A is an exploded bottom view of the tensiometer of FIG. 5;
- FIG. 6 is a view from above of the tensiometer of FIG. 5 in the assembled state
- FIG. 6A is an axial sectional view of the tensiometer of FIG. 6 along the line A-A;
- Figure 6B is a side view of the tensiometer of Figure 6;
- FIG. 7 is a top view of the tensiometer of FIG. 6, in the state straddling a rope, before deformation of said rope, being positioned in order to apply a rotational movement to the seizure body in the clockwise, preferably for a right-handed person;
- FIG. 7A is a top view of the tensiometer of FIG. 7, in the state straddling a rope in the configuration of FIG. 7 and in the turned state of the gripping body in the clockwise direction until detection of the rope;
- FIG. 8 is a view from above of the tensiometer of FIG. 6, in the state straddling a rope, before deformation of said rope, being positioned in order to apply a rotational movement to the seizure body in the meaning counterclockwise, preferably for a left-handed person;
- FIG. 8A is a top view of the tensiometer of FIG. 8, in the straddling state and in the rotated state of the gripping body in the counterclockwise direction until the rope is detected;
- FIG. 9 is a perspective view of a tensiometer according to a third embodiment of the invention.
- FIG. 9A is a bottom view of the tensiometer of FIG. 9;
- FIG. 9B is a side view of the tensiometer of FIG. 9;
- FIG. 10 is a view from above of the tensiometer of FIG. 9 in the state straddling a rope, before deformation of said rope;
- FIG. 10A is a side view of the tensiometer of FIG. 10, in the state straddling the rope, before deformation of said rope;
- FIG. 11 is a view from above of the tensiometer of FIG. 9, in the state straddling a rope and in the rotated state of the gripping body, until the desired orientation of said body with respect to the rope ;
- Figure 1 1 A is a side view of the tensiometer of Figure 1 1 in engagement with the rope.
- the invention relates to an individual blood pressure meter 1 for measuring the tension of a racket rope 9.
- Said rope whose voltage is to be measured is recessed at or near its ends on the racket frame (not shown).
- Said sphygmomanometer comprises a body, said input body 10, which can be grasped manually. Led it tensiometer also comprises a biasing member 2 of the rope 9 by elastic deformation of said rope.
- Said biasing member 2 comprises at least two support elements 21, 22 spaced from each other, such as studs or fingers, positioned on either side of an individual rope 9. The two support elements 21, 22 are called pins. Said pins are carried by a plate 20 of the biasing member.
- Said gripping body 10 and said biasing member 2 are movable in relation to each other in a relative rotational movement. Led it pivotal movement substantially corresponds to a pivot about the axis of rotation ROT1 orthogonal to the rope and in the median plane passing between said pins overlapping the rope.
- Said sphygmomanometer also comprises elastically deformable return means 3 connected to the gripping body 10 and to the biasing member 2 of the cord.
- Said return means 3 are configured to recall the input body 1 0 and the biasing member 2 relative to each other in a given angular position, said neutral position.
- Said neutral position corresponds to a configuration in which said gripping body 10 and the biasing member 2 are not solicited by the user, that is to say are not solicited, one with respect to the other, by no rotational force on the part of the user.
- Said resiliently deformable return means 3 can be fixed to the gripping body 10 and to the biasing member 2 or simply inserted between the gripping body 10 and the biasing member 2.
- Said tensiometer also comprises means for measuring a physical quantity representative of the relative rotation between the input body 10 and the biasing member 2 and means for calculating the tension of the string according to said measured quantity. Said measuring means and the corresponding measured quantity are detailed below.
- the blood pressure monitor comprises an electronic system and computer, such as a microprocessor which comprises said calculating means and which is connected to said measuring means for enabling acquisition of the quantity measured by said measuring means and calculation by said calculating means of the tension of the rope in function of said measured quantity.
- a microprocessor which comprises said calculating means and which is connected to said measuring means for enabling acquisition of the quantity measured by said measuring means and calculation by said calculating means of the tension of the rope in function of said measured quantity.
- Said calculation means may be implemented in the form of computer instructions implemented in said electronic and computer system.
- the gripping body 10 and the biasing member 2 have, relative to one another, two possibilities of pivoting with respect to said neutral position of return of the gripping body and the solicitation organ.
- the gripping body 10 and the biasing member 2 have a relative to a first possibility of pivoting in a first direction, adapted to a right-handed person, and a second possibility of pivoting in a second direction, adapted to a left-handed person, opposite in the first sense.
- said tensiometer can be used both by a left-handed person than by a right-handed person.
- the gripping body 10 and the biasing member 2 are able to pivot relative to each other, in one direction and the other with respect to said neutral position.
- the tensiometer comprises a physical pivot connection between said grasping body and said biasing member.
- the pivotal mobility of the gripping body with respect to the biasing member is formed in the positioned state of the pins. the biasing member on either side of the rope resting on the rope.
- the gripping body is pivotable with respect to the biasing member. taken with the rope, around said axis of rotation transverse to the rope and parallel to the median plane passing through said pins overlapping the rope.
- said neutral angular position corresponds to a configuration in which said gripping body 10 and the biasing member 2 are not biased relative to each other, no rotational force external to the tensiometer 'being applied to the biasing member or to the grasping body.
- said neutral position corresponds to an equilibrium configuration of the gripping body and the biasing member relative to each other.
- Said calculation means are configured to calculate the tension of the rope as a function of said quantity measured by said measurement means following pivoting in one direction or the other between the gripping body 10 and the biasing member 2 relative to at the neutral position of the gripping body 10 and the biasing member 2.
- the measurement means comprise a linear potentiometer 5.
- Said measuring means are also formed by the electronic and computer system which is configured to acquire a magnitude or signal, such as a voltage measured at the level of the potentiometer, whose value depends on the resistance of the potentiometer 5.
- Said measured quantity corresponds to the resistance of said linear potentiometer which varies as a function of the position of the cursor 51 along said linear resistance 50, said position of the slider 51 itself being a function of the relative rotation between the input body 10 and the biasing member 2.
- Said potentiometer 5 is connected to the electronic and computer system which acquires said quantity or signal whose value depends of the resistance value of the potentiometer.
- Said calculation means which are part of said electronic and computer system calculate the tension of the string corresponding to the measured quantity or signal whose value depends on the resistance of the linear potentiometer.
- the combination of said linear potentiometer and the electronic and computer system which comprises said calculating means makes it possible to measure the relative rotation between the gripping body and the biasing member and therefore the tension of the string.
- the measurement means comprise a rotary potentiometer 16.
- Said measuring means are also formed by the electronic and computer system which is configured to acquire a magnitude or signal, such as a voltage measured at the potentiometer, the value of which depends on the resistance value of the rotary potentiometer 16.
- Said measured quantity depends on the resistance of said rotary potentiometer which varies as a function of the angular position of the axis 57, said angular position of the control axis being itself a function of the relative rotation between the gripping body and the biasing member.
- Said rotary potentiometer 5 is connected to the electronic system and i nformatiq ue q u i acq u iert l ad ite size value associated with the potentiometer.
- the means of calculation which are part of the electronic and computer system calculate the tension of the string corresponding to the value of said measured quantity which depends on the resistance of the rotary potentiometer.
- the combination of said rotary potentiometer and the electronic and computer system which comprises said calculating means makes it possible to measure the relative rotation between the gripping body and the biasing member and thus the tension of the string.
- said measurement means comprise at least one strain gauge 35.
- Said measuring means are also formed by the electronic and computer system which is configured to acquire a quantity or signal, such as an electrical voltage measured at said at least one strain gauge, the value of which depends on the resistance value of said at least one strain gauge 35.
- Said measured quantity depends on the resistance of the resistive wires that make up the or each strain gauge, said resistance varying as a function of the stretching of said gauge, which is itself a function of the bending of the blade and therefore of the relative rotation between the gripping body and the biasing member.
- Said or each strain gauge is connected to the electronic and computer system which acquires said quantity which depends on said resistance value of the or each strain gauge.
- Said calculation means which are part of said electronic and computer system calculate the tension of the string corresponding to said measured quantity whose value depends on the resistance value of the or each strain gauge.
- the combination of the or each strain gauge and the electronic and computer system which comprises said calculating means makes it possible to measure the relative rotation between the gripping body and the biasing member and thus the tension of the string.
- Said elastically deformable return means 3 are, in the state astride the cord of two elements of a solenoid or urging device, deformable by rotation of said gripping body about an axis transverse to the rope and in the median plane passing through said support members straddling the rope.
- the gripping body 10, the biasing member 2, the return means 3 and said measuring means are configured to allow the gripping body 10 and the biasing member 2 to pivot relative to each other, in one direction and the other with respect to said neutral position.
- Said measuring means are able to measure a magnitude representative of the relative rotation between the gripping body 10 and the biasing member 2 in one direction and the other with respect to said neutral position.
- said measurement means comprise a linear potentiometer 5
- the slider 51 of the linear tensiometer, in the neutral position of the input body 1 0 and of the biasing member 2 is located substantially at the end of neck of the linear resistance.
- the control axis 57 of the rotational tensiometer, in the neutral position of the gripping body 10 and the actuator member. 2 is located substantially in the middle of the angular sector defined between the extreme angular positions that can take said control axis of the potentiometer in one direction and in the other of rotation relative to said neutral position of return.
- the or each strain gauge in the neutral position of the gripping body 10 and the organ 2, is not subject to any strain constraint.
- the or each strain gauge can follow the flexion of the flexible element in one direction and in the other, so as to deform in one direction of flexion of the flexible element and in the other to follow the flexion of said element flexible.
- Said return means 3 have a first possibility of deformation in a direction corresponding to said first pivoting direction of the gripping body 10 with respect to the biasing member 2 and a second possibility of deformation in a direction corresponding to said second direction of pivoting of the grasping body 10 with respect to the biasing member 2.
- said return means 3 are able to be deformed in one direction and in the other with respect to said neutral position of the gripping body 10 and of the biasing member 2.
- the deformation of the return means is representative of the relative rotation between the gripping body and the biasing member.
- the gripping body 10 and the biasing member 2 have relative to each other, on each side of the neutral position, a stroke, or range, of angular displacement at least equal to 10 °.
- Said return means 3 are able to deform on this stroke and the measuring means are also able to measure the rope tension corresponding to a deformation of said return means 3 on such a stroke.
- said return means 3 and the biasing member 2 are arranged such that the median plane passing through said pins 21, 22 straddling the rope, form, in the neutral position, a plane of symmetry for the said return means 3, as in the two embodiments of embodiments illustrated in FIGS. 1 to 8 and / or a plane in which extend said return means 3, as in the embodiment illustrated in Figures 9 to 1 1 for which said biasing means are formed by a flexible blade.
- said return means 3 and the biasing member 2 are arranged, dimensioned and / or oriented so that the median plane passing through said pins 21, 22 straddling the rope, forms, in the neutral position, a plane of symmetry for said return means 3 and / or a plane in which said return means 3 extend.
- the biasing means When the gripping body 10 pivots relative to the biasing member 2, in one direction, by a given angle with respect to the neutral position, said biasing means have, in absolute value, a deformation stroke substantially identical to that they present when the gripping body 10 pivots relative to the biasing member 2, said given angle relative to the neutral position, in the other direction.
- the calculation means can determining the tension of the string, from said quantity measured by the measurement means, with substantially similar calculation functions, possibly to the nearest sign.
- the calculation means make it possible to convert the measured quantity which depends on the resistance value of the resistive system used, for example a linear potentiometer, a rotary potentiometer, or at least one gauge. constraint, according to the embodiment implemented, in rope tension value.
- the calculation means comprise one or more calculation formulas and / or one or more curve (s) or table (s) of correspondence between the measured magnitude values and the voltage values of the string.
- tension means the initial tension or at rest of the rope, that is to say in the unsolicited state of the rope by the biasing member.
- said calculation means only take into account a measured quantity value beyond a certain threshold value to provide a sufficiently reliable measurement of rope tension.
- the calculation means determine from said received magnitude value and using calculation function (s), correspondence table (s), or chart (s) stored in said calculation means, the corresponding voltage of the rope, which can directly mean to the user the determined rope tension, for example by displaying the determined value on a screen fitted to the blood pressure monitor.
- the tensiometer is also equipped with detection means 6 of the rope whose voltage value is to be measured. Said detection means 6 are configured to emit a signal when they are located at the right of said chord, preferably a control signal for storing the ohmic value of the potentiometer 5.
- said detection means 6 are formed by a device comprising two detection cells, for example optical.
- the average detection means 6 are configured to control the storage by the calculation means of the resistance value of the potentiometer when the beams of the cells are cut by the string, that is to say when the means of detection 6 are located at the right of the rope.
- the cells and the calculation means are configured so that when the cells of the detection means detect the presence of the cord, said detection means 6 emit a signal intended for the calculation means so that these they memorize the resistance value of the resistance corresponding to the relative rotation between the input body and the biasing member at the moment of the detection of the string.
- the calculation means can then, from this stored value, accurately and reliably calculate the corresponding rope tension value, without the operator needing to keep the gripping body in equilibrium in this stress configuration. rope. Indeed, the operator does not have to worry about the accuracy of the rotation applied to the input body.
- the gripping body During the rotation of the gripping body and at the time of the passage of the detection means 6 above the string these will detect its presence and send a signal to the calculation means which will memorize, at this moment, the value of the magnitude, such as an electrical voltage, associated with the resistive element or system used, for example a potentiometer or at least one strain gauge, for the purpose of reducing the voltage, regardless of subsequent movement of the sphygmomanometer.
- the value of the magnitude such as an electrical voltage, associated with the resistive element or system used, for example a potentiometer or at least one strain gauge, for the purpose of reducing the voltage, regardless of subsequent movement of the sphygmomanometer.
- Each detection cell may be an optical or sound-wave cell such as ultrasound.
- said signal emitted by the detection means 6 is an optical or visual signal indicating the operator to stop turning the input body to read the rope tension value calculated by the calculation means .
- the method of measuring the tension of a rope using such a blood pressure monitor comprises the following steps:
- Said gripping body 10, or said biasing member 2 (via said gripping body and return means), is intended to be rotated about said axis of rotation ROT1 until the body 2, or said input body 10, has a given predetermined orientation with respect to the rope, said biasing orientation, for which the rope is biased by deformation.
- the relative rotation between the gripping body 10 and the biasing member 2 is measured once the gripping body 10, or the biasing member 2, has the desired orientation by
- Said biasing orientation may correspond to the superposition of the straight line passing through two distinct points of the biasing member 2 or of the gripping body 10, with the straight line passing through the rope 9. Said points of the biasing member 2 serving reference, for alignment with the rope
- Said biasing orientation can also correspond to a given angle of rotation of the gripping body 10 or the biasing member 2 by relation to a configuration in support of support elements 21, 22 against the rope 9.
- said biasing orientation corresponds simply to the orientation of the grasping body 10 or of the biasing member 2 for which the detection means 6 detect the cord. that is to say lie at the right of the rope.
- the tensiometer is positioned astride by its pads 21, 22 so that the grasping body 10 can be turned clockwise until the desired orientation of the biasing member 2 with respect to the rope, in particular until a positioning of the rope detection means 6 to the right of the rope.
- the two bearing elements 21, 22 exert a torque on the rope 9 which more or less deforms the rope as a function of its initial tension, that is to say in the absence of solicitation.
- the axis of rotation ROT1 is orthogonal to the plane of the strings which makes it possible to easily apply a torque via the biasing member 2 to a rope 9 inside the racket frame with great freedom and ease of movement. manipulation of the blood pressure monitor.
- the plate 20 which connects the two studs extends on one side of the frame of the racket, which facilitates the positioning of the two studs 21, 22 on either side of the rope 9 and thus the manipulation of the tensiometer.
- the user can easily turn the input body along the desired axis without being disturbed by the strings.
- the two support elements 21, 22 of the biasing member 2 extend substantially parallel to each other and orthogonally to the mean plane of said gripping body 10 or to the middle plane of the plate 20.
- said measuring means comprise a linear potentiometer 5 having a variable linear resistance 50 and an adjusting member 51 of said resistor, called a slider, said slider being movable along at least a part of said variable linear resistor 50.
- Said variable linear resistor 50 and said slider 51 are coupled one to the input body 10 and the other to the biasing member 2.
- the resistance value of the potentiometer corresponds to the position of the slider along the variable resistor.
- Said sphygmomanometer comprises activation and deactivation means 27, 72 able to control the activation and deactivation of said calculating means by function of the relative pivot angle between the gripping body 10 and the biasing member 2.
- Said activation and deactivation means 27, 72 are configured to deactivate the calculation means, in particular the supply 40 of the calculation means, in unsolicited configuration of the gripping body with respect to the biasing member, and vice versa. . Beyond a given relative pivoting stroke of the input body 1 0 with respect to the biasing member 2, and vice versa, in one direction or the other, said activation and deactivation means are configured to activate the calculation means, in particular the supply of the calculation means.
- said activation and deactivation means are formed by a push-button 72 connected to the power supply of the heat sink means.
- the push-button 72 deactivates the power supply in the opposite of its depressed position in which it activates the power supply means.
- Said pusher 72 is returned to the extended position.
- Said activation and deactivation means are also formed by a portion of the biasing member 2 which presses the pushbutton 72 for a relative pivoting stroke between the gripping body 10 and the biasing member 2 greater than a given value. and which allows the button to return to the extended position for less pivotal travel.
- Said biasing member 2 comprises an arm 24 pivotally mounted relative to the gripping body and said biasing means 3 comprise two helical springs 31, 32, possibly formed in one piece, which extend on either side of the axis of the arm 24, preferably at or near the free end 23 of said arm 24.
- Said springs which form said biasing means are preferably compression springs.
- Said arm 24 is pivotally mounted relative to the gripping body at or near its end 200 opposite said free end 23 in contact with the return means 3.
- Said end 200 has a male part forming in cooperation with a part corresponding female 121 of the seizure body a pivot connection. Alternatively, the male part could be arranged on the gripping body and the female part on the biasing member.
- Said return means 3 extend on either side of the longitudinal axis of the arm 24 to allow said return means to exert a return force on the arm 24 in the neutral position whatever the direction in which the grasping body 10 is pivoted with respect to the biasing member 2.
- one of the springs has an end adapted to be applied on one side of the free end 23 of the arm 24, the other spring having an end adapted to be applied on the opposite side of the end.
- free 23 of the arm 24 relative to the longitudinal axis of said arm.
- the opposite end of each spring is applied or bonded to a part of the gripping body 1 0.
- the free end 23 of the arm 24 has on each side intended to receive an end of a spring, centering means of said spring for allow a good maintenance and good guidance of the spring during the relative rotation between arm 24 and gripping body 10.
- Said return means 3 are arranged in a housing 30 which has at least one guiding wall, preferably two opposite guiding walls, for guiding the deformation of the return means during the pivoting of the gripping body 10 relative to to the biasing member 2, in one direction and the other.
- Said or each guide wall extends along a center circle arc corresponding to the pivot connection between the gripping body 10 and the biasing member 2. Said or each guide wall thus makes it possible to guide the deformation of the return means during their deformation in compression and / or in tension when they are biased by the rotation of the gripping body 10 pivoted relative to the biasing member 2 in one direction and the other.
- Said tensiometer also comprises abutment means 36 for abutting each spring 31, 32 or each spring portion capable of being applied on one side of the free end 23 of the arm 24.
- Said means for setting stop 36 allow to retain one of the spring or one of the spring portions when the other spring or the other spring portion is compressed (e) by the arm 24, which provides a reliable measurement of the magnitude representative of the relative rotation between the gripping member and the basic body.
- said abutment means 36 comprise a lug formed on one or each of the walls for guiding the deformation of the springs or springs.
- Said or each lug is centered on the displacement stroke of the arm, so that in equilibrium position of the arm 24, the or each lug is substantially in alignment with the arm 24 without hindering its pivotal movement in one direction or in the other.
- said abutment means 36, the spring or springs 31, 32 and the arm 24 are arranged in such a way as to limit or even eliminate, in equilibrium position, the clearance between the spring or springs and the end 23 of the arm 24.
- Said abutment means 36 make it possible to preload the springs or spring portions located on either side of the end 23 of the arm 24, in the neutral position of the arm 24, which allows, during the rotation of the gripping body 10, measuring a magnitude corresponding to the relative rotation between the gripping body 10 and the biasing member 2, accurately and reliably from the first degree of relative rotation.
- each spring 31, 32 or spring portion can be prestressed (e) by means of abutment 36 of a value corresponding to a given string tension, for example of the order of 10 kg, since the measured cord tension values are generally greater than 10 kg.
- the deformation of a spring or part of the spring corresponds to a torque applied to the rope due to the rotation of the gripping body.
- each spring 31, 32 or each part of the spring facing the free end 23 of the arm 24 the operator benefits from the length of the arm to compress said spring 31, 32 or said spring portion, this allows it to apply a large torque to the rope and thus easily and reliably measure important rope tension values.
- the linear resistor 50 is integral with the input body 1 0.
- Said arm comprises coupling means 25 to the slider 51 of the potentiometer.
- Said coupling means are configured so as to move the slider 51 in the direction of pivoting of the arm, that is to say in a direction transverse to the arm, while leaving the cursor 51 free to move on a stroke given along the axis of said arm.
- the slider 51 is situated substantially in the center of the possible displacement stroke of said slider on along the linear resistance 50.
- the arm 24 which forms a biasing element is in a neutral position substantially at the center of the angular sector which it is able to traverse relative to the gripping body.
- the axis of the arm 24 is in a neutral position substantially parallel to the longitudinal axis of the gripping body 10 which has a generally rectangular shape.
- Said input body 10 is present in the form of a housing formed of two half-shells intended to be fixed to each other preferably by screwing and inside which is intended to accommodate the arm 24.
- Said housing also houses the other elements tensiometer such as the return means 3, the measuring means and the calculation means.
- One of the half-shells of the housing has a through opening 120 to allow the two support members 21, 22 of the arm 2 to extend projecting from the housing.
- Said coupling means 25 are formed by an orifice, for example an oblong hole, preferably a through hole, formed in the arm and inside which the cursor 51 of the potentiometer 5 is housed.
- Said orifice 25 is configured; that is, dimensioned with respect to the slider 51 so as, on the one hand, to cause the slider 51 to move in a direction transverse to the arm, during the relative pivoting between the gripping body 10 and the biasing member 2, and, secondly, allow said cursor 51 to move a given distance along the longitudinal axis of the arm 2 to allow the cursor 51 to follow the rectilinear race path defined by the linear resistance 50.
- the dimension of the orifice 25 in the direction orthogonal to the axis of the arm is chosen so as to obtain a reduced or even substantially zero clearance with said cursor to enable the cursor 51 to be driven without delay along the resistance.
- Said housing comprises a display screen 42 connected to the calculation means housed inside the housing.
- Said screen is located on the half-shell opposite to that through which project the two support elements 21, 22 of the arm 24.
- Said screen can display information such as the tension state of a rope.
- the linear resistor is housed in a slotted parallelepipedal body to allow passage of the slider and define the displacement path of said slider along the linear resistance through the slit.
- the gripping body 10, in particular the one 10A of the two half-shells 10A, 10B comprises two stops 13 of end of pivoting stroke of the gripping body 10 with respect to the biasing member 2, in one direction and in the other. Said stops are positioned relative to the linear resistance so that, at the end of the pivoting stroke of the gripping body 10 with respect to the biasing member 2, the slider 51 remains spaced from the ends of the linear resistance in such a way that do not damage the linear potentiometer 5.
- said measuring means comprise a rotary potentiometer 16.
- said biasing member 2 forms a support for return means 3 and the input body. 10 as well as, as detailed below, the potentiometer 16 and the detection means 6 of the rope.
- said return means 3 are formed by a resiliently deformable member 3.
- deformable element 3 is, in the state straddling the rope 9 of the two support elements 21, 22, deformable by rotation of said gripping body 1 0 about an axis ROT1 transverse to the rope and in the plane median passing through said support elements 21, 22 straddling the rope 9.
- said deformable element is deformable by relative rotation of the gripping body by relative to the tension member, in one direction or the other, around the axis of rotation ROT1.
- Said tensiometer 1 comprises actuating means 7, 17 of the potentiometer 16. Said actuating means make it possible to modify the ohmic value of the potentiometer 16 as a function of the relative rotation between the gripping body and the biasing member.
- Said potentiometer 16 and at least a part 17 of said actuating means 7, 17 are integral, one of the biasing member 2 and the other of the gripping body 10.
- Said potentiometer 16 also called variable resistor, is a rotary potentiometer.
- a rotary potentiometer is generally formed of one or more resistive elements whose velocity can be modified progressively, without having to open the circuit, by rotating a control pin connected to a slider in contact with the resistant element or elements.
- said potentiometer 16 is integral with the biasing member 2.
- the control axis 57 of said potentiometer 16 carries a gear 7, such as a meshing pinion, capable of meshing with a toothed wheel 17 integral with the gripping body 10 and forming said at least a part of said actuator means of the potentiometer, so as to modify the ohmic value of said potentiometer during the relative rotation between the gripping body and the organ solicitation.
- Such a design of the tensiometer allows, by applying a rotational force to the gripping body 10, to mesh the toothed wheel 17 formed by said gripping body 1 0 with the pinion 7 of the potentiometer 16 on an angular sector, corresponding to the rotation relative between input body 1 0 and biasing member 2, which is representative of the tension state of the rope.
- the rotation of the pinion 7 by meshing modifies the ohmic value of the potentiometer 16, which makes it possible to deduce the tension value of the string.
- the relative rotation between the gripping body and the biasing member corresponds to the rotational angle of the potentiometer 16 resulting from the meshing between the toothed wheel 17 and the pinion 7 following the rotation movement applied by the operator to the gripping body 10 .
- control axis of the rotary sphygmomanometer is located substantially at the angle of the angular sector defined between the extreme angular positions that the potentiometer can take in one direction and the other of rotation with respect to said neutral position of return.
- said toothed wheel 17 and the gripping body 10 are formed in one piece.
- the gripping body 10 has the general shape of a toothed wheel provided, on its so-called upper face, that is to say opposite to the biasing member 2, of two gripping elements 1 1 opposite to the axis of the toothed wheel, corresponding to the axis of rotation ROT1.
- the input elements 11 allow the operator to apply a rotational force to the input body 10 in one direction and the other.
- the toothed wheel has an axial through hole for the passage of a connecting member 12 for maintaining coupled the gripping body 10 to the biasing member 2, while allowing the rotation of said gripping body 10 relative to the 2.
- Said connecting means are formed by a screw 12 whose thread cooperates with the part tapped 28 formed in the biasing member 2.
- a washer 18 threaded on the screw 12 is interposed between the screw head 1 2 and the gripping body 10 traversed by the screw 12 to allow the screw head 12 to take support on the upper face of said body of Saisiel O.
- a part 3A, 3B of the deformable element 3 is fixed to the gripping body 10 and another part 3C, 3D of the deformable element 3 is fixed to the biasing member 2.
- said deformable element 3 comprises a portion 3A, 3B reliée to the gripping body 1 0 at two points opposite to the axis of rotation ROT1 said gripping body, and another portion 3C, 3D connected to the biasing member 2 in two points opposite to the axis of rotation ROT1 of said input body.
- Said gripping body 10, the biasing member 2 and the deformable element 3 are coaxial, of parallel axis, preferably coinciding with the axis ROT1 about which a rotation is applied to the gripping body 10 of the tensiometer.
- deformable element 3 is in the form of a body with four lugs 3A, 3B, 3C, 3D arranged substantially at 90 ° to each other around the l axis of rotation of the gripping body.
- Said body of the deformable element 3 is hollowed out centrally to allow the passage of the connecting means 12 of the input body 1 0 to the biasing member 2.
- Said ears 3A, 3B, 3C, 3D are drilled to define housing insertion of lugs 14, 15, 33, 34 present, with respect to the lugs 3A, 3B, on the gripping body 10 and, with respect to the lugs 3C, 3D, on the biasing member 2.
- the tenons 14, 1 5 of the gripping body 10 are intended to engage in the openings of the lugs 3A, 3B and the tenons 33, 34 of the biasing member 2 are intended to engage in the openings of the ears 3C, 3D.
- the deformable element 3 has the general shape of a cross whose branch 3A, 3B is attached to or near its ends to the gripping body 10 and whose other branch 3C, 3D is attached to , or in the vicinity of, its ends to the biasing member 2.
- the deformable element is made of elastomer, preferably Styrene Ethylene Butylene Styrene (SEBS).
- SEBS Styrene Ethylene Butylene Styrene
- the branches 3A, 3B and 3C, 3D are centered on the axis of rotation ROT1.
- the potentiometer forms a means for converting electrical signals of the relative rotation between the input body and the biasing member or the deformation undergone by the deformable element.
- the rotational movement of the pinion 7 imposed by the toothed wheel 17 during the rotation of the gripping body with respect to the biasing member is representative of the bending deformation of the branch 3A, 3B of the element 3 deformable, itself representative of the tension of the rope.
- the axis of flexion of the branch 3A, 3B of the deformable element 3 is parallel to the axis of rotation ROT1, that is to say orthogonal to the mean plane of the rope. In the embodiment illustrated in FIGS.
- said return means 3 are formed by a flexible element.
- Said flexible element 3 is a flexible blade.
- the mean plane of the flexible blade 3, in the unsolicited state, is parallel to the axis of rotation ROT1 of the gripping body.
- said measuring means comprise at least one strain gauge 35.
- Said seizure body of said tensiometer is intended to be rotated about said axis of rotation ROT1 until said seizure body has a given predetermined orientation with respect to the rope, of said biasing orientation, for which the rope is urged by deformation.
- the bending of the flexible element is measured once the gripping body 10 is rotated about the axis of rotation ROT1 until the desired orientation of said gripping body 10 is obtained.
- Said biasing orientation may correspond to the superposition of the straight line passing through two distinct points of the gripping body 10, with the straight line passing through the rope 9.
- Said points of the gripping body 10 serving as reference, for the alignment with the rope 9, are the two opposite connection zones of the flexible element 3 to the gripping body 10.
- Said biasing orientation can also correspond to a given angle of rotation of the gripping body with respect to a configuration in support of the support elements 21, 22 against the rope 9.
- the rotation of the gripping body 10 about an axis ROT1 orthogonal to the string 9 and in the median plane passing through the support elements 21, 22 of the biasing member generates, on the one hand, a pair of the biasing member on the rope by bearing in the opposite direction of the two support elements 21, 22 on the rope, and, on the other hand, a bending deformation of the flexible element 3 to follow the rotation of the body of grasping 10 while the biasing member 2 is engaged with the rope.
- the two bearing elements 21, 22 exert a torque on the rope 9 which deforms more or less the rope according to its initial tension, that is to say in the absence of solicitation.
- the flexible element 3, which connects the gripping body 10 to the biasing member 2 in engagement with the rope 9, will all the more flex around its axis of flexion parallel to the axis of rotation ROT1, for follow the rotation movement of the input body 10.
- the axis of rotation ROT1 is orthogonal to the plane of the strings, which makes it possible to easily apply a torque via the biasing member 2 to a rope 9 inside the rimet frame with great freedom and ease of handling of the rope. sphygmomanometer.
- the flexible blade 3 is then arranged so that its bending axis is parallel to the axis of rotation ROT1, that is to say orthogonal to the mean plane of the rope.
- the plate 20 which relays the two studs extends on one side of the frame of the racket, which facilitates the positioning of the two studs 21 , 22 on both sides of the rope 9 and therefore the manipulation of the tensiometer.
- the user can easily turn the input body along the desired axis without being disturbed by the strings.
- the two support elements 21, 22 of the biasing member 2 extend substantially parallel to each other and orthogonally to the mean plane of said gripping body 10 or to the middle plane of the plate 20.
- the ladite at least one strain gauge is positioned on one face of the flexible blade 3. may provide to distribute at least one strain gauge on each of the faces of the flexible blade 3.
- said at least one strain gauge is positioned in the median zone of the portion of the flexible blade 3 located between the biasing member 2 and one of the 3B of the two ends 3A, 3B of the blade 3 connected to the input body 10 as detailed below. Indeed, it is in this area that bending deformation is the most important.
- said measuring means can be distributed over each of the two portions of the flexible blade 3 defined between the biasing member 2 and a flexible blade end connected to the gripping body 10.
- Said at least one strain gauge is also called the strain gauge.
- the or each strain gauge forms a means for converting the bending deformation undergone by the blade, and thus the relative rotation between the gripping body and the biasing member, into electrical signals that can be acquired by the calculation means.
- said calculating means connected to said at least one strain gauge acquires a variable resistance value as a function of the bending deformation of the blade.
- Said calculation means can be positioned in or on the input body.
- the body of its axis is a body, such as an ellipsoidal shape.
- the axis of rotation ROT1 of the input body is orthogonal to the mean plane of said input body.
- the flexible element 3 extends inside the space delimited by said annular gripping body.
- the opposite ends 3A, 3B of the flexible element 3 are connected to two distinct points of the annular gripping body 10, preferably at two diametrically opposite points.
- the biasing member 2 is fixed on the flexible element 3 between and spaced apart from the two ends 3A, 3B of the flexible element 3, preferably in the middle zone of the length of said flexible element 3.
- the flexible element 3 has a longitudinal axis A3 orthogonal to its axis of bending.
- Said measuring means are located, in the example illustrated in FIGS. 9 to 11, between the biasing member 2 and the one 3B of the ends 3A, 3B of the flexible element connected to said gripping body, preferably the middle of the length between the biasing member 2 and said end 3B of said flexible member 3.
- the flexible element 3 carries the biasing member 2 between its two ends 3A, 3B, preferably at half the length of said flexible element 3.
- the opposite ends of the flexible element 3 are connected to the gripping body 1 0 at points or opposite areas of the input body.
- At least one, preferably each, end 3A, 3B of the flexible elongated element, spaced apart from the biasing member 2 is coupled to the gripping body 10 so as to leave said flexible element 3 axial clearance with respect to said gripping body 10 (that is to say along the longitudinal axis of the flexible element in the undeflected state of said element) to absorb the variations in distance between the two ends 3A, 3B of the flexible element 3 during its bending, and, secondly, to prevent the displacement of said at least one end 3A, 3B along a direction transverse to the axis dud it flexible element 3. Said ite transverse direction to the axis is taken in the unsolicited state dud it flexible element 3, to allow said element to flex when the gripping body 10 is rotated by
- one of the ends 3A, 3B or each end 3A, 3B of the flexible element is housed in a slot, formed in the gripping body, whose sides sandwich the side portions of the portion end portion 3A, 3B of the flexible member accommodated in said slot, while said end portion 3A, 3B of the flexible element is able to sink more or less inside the slot according to its bending deformation.
- the longitudinal axis A3 of the flexible blade 3 is substantially coplanar with the axis of rotation ROT1 of the gripping body 10 defined by the axis which is included in the median plane passing through said bearing elements 21, 22 intended to overlap the rope 9 and which is perpendicular to the axis of the rope passage defined between the two bearing elements 21, 22.
- the longitudinal axis A3 of the blade extends substantially orthogonal to the axis of rotation ROT1 of the body of grasping or biasing member 2.
- the average plane of the blade is substantially coincident with the mean plane passing through the longitudinal axes of the two studs 21, 22.
- said tensiometer comprises means for initializing the calculation means.
Landscapes
- Analytical Chemistry (AREA)
- Biophysics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
- Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
L'invention concerne un tensiomètre (1) individuel pour la mesure de tension d'une corde (9) de raquette, ledit tensiomètre comprenant un corps de saisie (10) et un organe de sollicitation (2) de la corde (9) déplaçables l'un par à l'autre rapport par pivotement, des moyens de rappel élastiquement déformables (3) configurés pour rappeler le corps de saisie (10) et l'organe de sollicitation (2) l'un par rapport à l'autre dans une position angulaire neutre, des moyens de mesure d'une grandeur représentative de la rotation relative entre le corps de saisie (10) et l'organe de sollicitation (2), et des moyens de calcul de la tension de la corde en fonction de ladite grandeur mesurée. Le corps de saisie (10) et l'organe de sollicitation (2) présentent l'un par rapport une première possibilité de pivotement suivant un premier sens et une deuxième possibilité de pivotement suivant un deuxième sens opposé au premier sens.
Description
TENSIOMETRE INDIVIDUEL POUR LA MESURE DE TENSION D'UNE CORDE
La présente invention concerne de manière générale les appareils de mesure de tension pour élément longiligne de type corde.
L'invention concerne plus particulièrement un tensiomètre individuel pour la mesure de tension d'une corde de raquette, ledit tensiomètre comprenant :
- un corps, dit corps de saisie, apte à être saisi manuellement,
- un organe de sollicitation de la corde par déformation de ladite corde, ledit organe de sollicitation comprenant au moins deux éléments d'appui écartés l'un de l'autre, tels que plots ou doigts, positionnables de part et d'autre d'une corde individuelle,
ledit corps de saisie et ledit organe de sollicitation étant déplaçables l'un par à l'autre rapport sensiblement selon un mouvement relatif de pivotement,
- des moyens de rappel élastiquement déformables reliés au corps de saisie et à l'organe de sollicitation de la corde, et configurés pour rappeler le corps de saisie et l'organe de sollicitation l'un par rapport à l'autre dans une position angulaire donnée, dite position neutre,
- des moyens de mesure d'une grandeur représentative de la rotation relative entre le corps de saisie et l'organe de sollicitation,
- des moyens de calcul de la tension de la corde en fonction de ladite grandeur mesurée.
On connaît de l'état de la technique et notamment du document US 5, 481 , 926 un dispositif de mesure de tension tel que décrit ci-dessus. Dans ce document, le corps de saisie est relié par un ressort de traction à l'organe de sollicitation de la corde. Pour mesurer la tension de la corde, le corps de saisie est tourné jusqu'à ce qu'une partie de référence de l'organe de sollicitation vienne au droit de la corde. La tension de la corde est alors déterminée à partir de l'angle de rotation relatif obtenu entre l'organe de sollicitation et le corps de saisie suite à la rotation du corps de saisie.
Ledit angle relatif correspond à une élongation du ressort hélicoïdal sollicité en traction. Plus la corde est tendue, plus l'angle relatif entre corps de saisie et
organe de sollicitation sera important et plus le ressort sera sollicité en traction. Inversement, plus la corde sera détendue, moins l'angle relatif sera important et moins le ressort sera sollicité en traction. On observe cependant que le tensiomètre décrit dans le document US 5, 481 , 926 ne fonctionne que dans un seul sens de rotation du corps de saisie correspondant au sens dans lequel le ressort peut être allongé. Une telle solution pose ainsi des problèmes pour les gauchers lorsque le tensiomètre est conçu pour les droitiers et inversement.
En outre, selon ce document US 5, 481 , 926, la détermination de la tension d'une corde s'effectue à partir de la lecture de graduations ménagées sur un cadran et correspondant à différentes valeurs d'angle relatif entre corps de saisie et organe de sollicitation, ce qui se révèle très inconfortable à l'usage.
De même que pour le tensiomètre décrit dans le document US 5, 481 , 926, les tensiomètres décrits dans les documents US-3.831 .442, US-4.309.910, et DE- 35 32 767 ne sont pas conçus pour pouvoir être utilisés aussi bien par des droitiers que par des gauchers.
La présente invention a pour but de proposer un tensiomètre qui soit aisément manipulable aussi bien pour un gaucher que pour un droitier.
Un autre but de la présente invention est de proposer un tensiomètre solide qui offre une mesure de tension fiable et précise.
Un autre but de la présente invention est de proposer un tensiomètre pour lequel l'utilisateur peut déterminer aisément et rapidement la tension d'une corde.
A cet effet, l'invention a pour objet un tensiomètre individuel pour la mesure de tension d'une corde de raquette, ledit tensiomètre comprenant :
- un corps, dit corps de saisie, apte à être saisi manuellement,
- un organe de sollicitation de la corde par déformation de ladite corde, ledit organe de sollicitation comprenant au moins deux éléments d'appui écartés l'un de l'autre, tels que plots ou doigts, positionnables de part et d'autre d'une corde individuelle,
ledit corps de saisie et ledit organe de sollicitation étant déplaçables l'un par à l'autre rapport sensiblement selon un mouvement relatif de pivotement,
- des moyens de rappel élastiquement déformables reliés au corps de saisie et à l'organe de sollicitation de la corde, et configurés pour rappeler le corps de saisie et l'organe de sollicitation l'un par rapport à l'autre dans une position angulaire donnée, dite position neutre,
- des moyens de mesure d'une grandeur représentative de la rotation relative entre le corps de saisie et l'organe de sollicitation,
- des moyens de calcul de la tension de la corde en fonction de ladite grandeur mesurée,
caractérisé en ce que le corps de saisie et l'organe de sollicitation présentent l'un par rapport à l'autre deux possibilités de pivotement par rapport à ladite position neutre, à savoir une première possibilité de pivotement suivant un premier sens et une deuxième possibilité de pivotement suivant un deuxième sens opposé au premier sens.
Pour un angle donné de rotation du corps de saisie à partir d'une position initiale en appl ique des deux éléments d'appui de l'organe de sollicitation contre la corde, la rotation relative entre le corps de saisie et l'organe de sollicitation ou encore la déformation desdits moyens de rappel est fonction de la tension interne ou initiale de la corde, c'est-à-dire de la tension de la corde en l'absence de sollicitation de celle-ci. En effet, les moyens de rappel relient le corps de saisie à l'organe de sollicitation de sorte que lesdits moyens de rappel limitent la rotation relative entre corps de saisie et organe de sollicitation en agissant à rencontre de cette rotation relative. Il en résulte que la mesure de ladite rotation relative correspond à une mesure de la déformation des moyens de rappel qui dépend elle-même de la tension de la corde. Ainsi, la
mesure de la rotation relative entre corps de saisie et organe de sollicitation permet de déterminer la tension de la corde.
Grâce à la possibilité offerte par le tensiomètre selon l'invention de faire pivoter, par référence à une position neutre, le corps de saisie par rapport à l'organe de sollicitation dans un sens et dans l'autre, ledit tensiomètre est aisément manipulable aussi bien pour un gaucher que pour un droitier. En effet, la rotation relative entre corps de saisie et organe de sollicitation, dans un sens et dans l'autre, permise par la déformation des moyens de rappel, peut être détectée dans les deux sens à l'aide des moyens de mesure comme détaillé ci-après.
Comme détaillé ci-après, ladite grandeur représentative de la rotation relative entre le corps de saisie et l'organe de sollicitation peut être une caractéristique d'un signal électrique associé à un au moins un élément ou système dit résistif et présentant une résistance variable en fonction de la rotation relative entre le corps de saisie et l'organe de sollicitation. En particulier, on peut prévoir de mesurer une tension électrique associée aud it élément ou système de résistance variable, ladite tension électrique variant en fonction de la valeur de résistance dudit élément ou système résistif et donc en fonction de la rotation relative entre le corps de saisie et l'organe de sollicitation. Lesdits moyens de calcul peuvent alors convertir la valeur de tension électrique mesurée en une valeu r de tension de corde à l'aide d'une formule mathématique et/ou d'abaques.
Selon une caractéristique avantageuse de l'invention, lesdits moyens de mesure comprennent des premiers moyens de mesure d'une grandeur représentative de la rotation relative entre le corps de saisie et l'organe de sollicitation suivant ledit premier sens par rapport à ladite position neutre, et des deuxièmes moyens de mesure d'une grandeur représentative de la rotation relative entre le corps de saisie et l 'organe de soll icitation suivant ledit deuxième sens par rapport à ladite position neutre.
Préférentiellement, lesdits premiers et deuxièmes moyens de mesure sont communs.
Selon une caractéristique avantageuse de l'invention, lesdits moyens de rappel présentent une prem ière possibil ité d e d éfo rm a t i o n d a n s u n s e n s correspondant audit premier sens de pivotement du corps de saisie par rapport à l'organe de sollicitation et une deuxième possibilité de déformation dans un sens correspondant audit deuxième sens de pivotement du corps de saisie par rapport à l'organe de sollicitation.
Selon une caractéristique avantageuse de l'invention, le corps de saisie et l'organe de sollicitation présentent l'un par rapport à l'autre, de chaque côté de la position neutre, une course de déplacement angulaire au moins égale à 10 °.
Selon une caractéristique avantageuse de l'invention, à l'état positionné des deux éléments d'appui dudit organe de sollicitation de part et d'autre de la corde, lesdits moyens de rappel et l'organe de sollicitation sont agencés de tel l e sorte q ue l e pla n méd ia n passa nt par lesd its éléments d'appui chevauchant la corde, forme, en position neutre, un plan de symétrie pour lesdits moyens de rappel et/ou un plan dans lequel s'étendent lesdits moyens de rappel. Selon une caractéristique avantageuse de l'invention, lorsque le corps de saisie pivote relativement à l'organe de sollicitation, dans un sens, d'un angle donné par rapport à la position neutre, lesdits moyens de rappel présentent, en valeur absolue, une course de déformation sensiblement identique à celle qu'ils présentent lorsque le corps de saisie pivote relativement à l'organe de sollicitation, dudit angle donné par rapport à la position neutre, dans l'autre sens.
Le fait d'avoir des propriétés de déformation sensiblement identiques dans un sens, et dans l'autre, de pivotement du corps de saisie, permet de simplifier la conception et/ou la configuration des moyens de calcul, puisque dans ce cas la formule de calcul de la tension de corde fonction de la grandeur mesurée dans un sens de pivotement donné est similaire, voire identique, à la formule de calcul de la tension de corde fonction de la grandeur mesurée dans le sens de pivotement contraire.
Selon une caractéristique avantageuse de l'invention, lesdits moyens de mesure comprennent un potentiomètre l inéaire présentant une résistance linéaire variable et un organe de réglage de ladite résistance, appelé curseur, ledit curseur étant mobile le long d'au moins une partie de ladite résistance linéaire variable, ladite résistance l inéaire variable et ledit curseur étant couplés l'un au corps de saisie et l'autre à l'organe de sollicitation.
Lesdits moyens de mesure comprennent un potentiomètre linéaire dont la valeur ohmique est modifiée lorsque le corps de saisie est tourné dans un sens et dans l'autre, ce qui permet de mesurer la rotation relative entre corps de saisie et organe de sollicitation dans les deux sens.
L'utilisation d'un potentiomètre linéaire permet de bénéficier d'un tensiomètre solide de conception simplifiée qu i offre une mesure de tension fiable et précise. Une telle conception du tensiomètre utilisant un potentiomètre linéaire permet de l im iter l'épaisseur du tensiomètre. En effet, le curseur présente une dimension réduite qui permet de réaliser un tensiomètre de faible épaisseur. Ladite épaisseur correspond à la dimension du tensiomètre suivant une direction parallèle à l'axe de pivotement du corps de saisie par rapport à l'organe de sollicitation.
L'utilisation d'un potentiomètre linéaire permet de faire varier aisément la
résistance en fonction du pivotement du corps de saisie par rapport à l'organe de sollicitation en couplant le curseur et la résistance linéaire, l'un au corps de saisie et l'autre à l'organe de sollicitation. La mod ification de la valeur ohm ique du potentiomètre en fonction de la rotation relative entre le corps de saisie et l'organe de sollicitation, permet de fournir aux moyens de calcul une grandeur représentative de la rotation relative entre le corps de saisie et l'organe de sollicitation. Ladite grandeur peut être une tension électrique prise entre une borne correspondant à la masse d u potentiomètre et u ne borne correspondant au cu rseu r d u potentiomètre. Ladite grandeur peut être traitée par lesdits moyens de calcul pour déterminer la tension correspondante de la corde. On peut prévoir en particulier de filtrer et/ou d'amplifier le signal, correspondant à ladite grandeur, acquis par les moyens de calcul.
Selon une caractéristique avantageuse de l'invention, ledit tensiomètre comprend des moyens d'activation et de désactivation aptes à commander l'activation et la désactivation desdits moyens de calcul en fonction de l'angle de pivotement relatif entre le corps de saisie et l'organe de sollicitation.
De tels moyens d'activation et de désactivation permettent de couper automatiquement l'alimentation des moyens de calcul lorsque le tensiomètre n'est pas utilisé, ce qui permet d'économiser ladite alimentation. Selon une caractéristique avantageuse de l'invention, ledit organe de sollicitation comprend un bras monté pivotant par rapport au corps de saisie et lesdits moyens de rappel comprennent deux ressorts hélicoïdaux, par exemple de forme générale au moins partiellement cylindrique et/ou au moins partiellement conique, éventuellement formés d'une seule pièce, qui s'étendent de part et d'autre de l'axe du bras, de préférence à, ou au voisinage de, l'extrémité libre dudit bras.
La réal isation des moyens de rappel sous forme de ressorts hél icoïdaux répartis de part et d'autre de l'axe du bras permet de rappeler de manière fiable le bras dans ladite position neutre. Selon une caractéristique avantageuse de l'invention, ledit bras comprend des moyens de couplage au curseur du potentiomètre, lesdits moyens de couplage étant configurés de manière à entraîner en déplacement le curseur dans le sens de pivotement du bras tout en laissant libre le curseur de se déplacer sur une course donnée suivant l'axe dudit bras.
Selon un autre mode de réalisation de l'invention, lesdits moyens de mesure comprennent un potentiomètre rotatif qui comporte une résistance variable et un axe de commande rotatif permettant de faire varier la valeur de lad ite résistance, ladite résistance variable et l'axe de commande étant couplés, l'une, à l'organe de sollicitation et, l'autre, au corps de saisie.
Avantageusement, led it axe de commande porte un engrenage, tel qu'un pignon d'engrènement, apte à engrener avec une roue dentée solidaire du corps de saisie. Préférentiellement, ladite roue dentée et le corps de saisie sont formés d'une seule pièce.
Le mécanisme d'engrènement entre le potentiomètre rotatif et le corps de saisie, ou l'organe de sollicitation, suivant que le potentiomètre est porté par l'organe de sollicitation ou le corps de saisie, permet de manière simple et fiable d'util iser la rotation relative entre corps de saisie et organe de sollicitation pour modifier la valeur ohmique du potentiomètre. Cette valeur ohmique peut alors être convertie en une valeur de tension de la corde puisque ladite rotation relative est représentative de la déformation de l'élément déformable, elle-même représentative de la tension de la corde . Plus précisément, comme expliqué ci-dessus, la modification de la valeur ohmique du potentiomètre en fonction de la rotation relative entre le corps de saisie et l'organe de sollicitation, permet de fournir aux moyens de calcul une grandeur
représentative de la rotation relative entre le corps de saisie et l'organe de sollicitation. Ladite grandeur peut être une tension électrique prise entre une borne correspondant à la masse du potentiomètre et une borne correspondant à l'axe de commande du potentiomètre. Ladite grandeur peut être traitée par lesdits moyens de calcul pour déterminer la tension correspondante de la corde. On peut prévoir en particulier de filtrer et/ou d'amplifier le signal, correspondant à ladite grandeur, acquis par les moyens de calcul.
La réalisation du corps de saisie sous forme générale d'une roue dentée est très intéressante puisque, ledit corps de saisie étant destiné à être tourné par la main de l'opérateur, ledit corps de saisie peut directement engrener, via sa partie dentée, avec le pignon porté par l'axe de commande du potentiomètre sans avoir besoin de rajouter de moyens d'engrènement supplémentaires. Selon une caractéristique avantageuse de l'invention, lesdits moyens de rappel comprennent une partie reliée au corps de saisie en deux points opposés par rapport à l'axe de rotation correspondant à la mobilité de pivotement du corps de saisie par rapport à l'organe de sollicitation, et une autre partie reliée à l'organe de sollicitation en deux points opposés par rapport audit axe de rotation.
La répartition de part et d'autre de l'axe de rotation des points de liaison entre lesdits moyens de rappel, corps de saisie et organe de sollicitation, offre une déformation fiable et équilibrée desdits moyens de rappel lors de la rotation relative entre corps de saisie et organe de sollicitation.
Préférentiellement, lesdits moyens de rappel affectent la forme générale d'une croix dont une branche est couplée à, ou au voisinage de, ses extrémités au corps de saisie et dont l'autre branche est couplée à, ou au voisinage de, ses extrémités à l'organe de sollicitation.
Ainsi, la rotation relative entre corps de saisie et organe de sollicitation se
traduit par la flexion d'une branche de la croix par rapport à l'autre branche. Une telle conception de l'élément déformable permet de simplifier son montage pour la fabrication du tensiomètre puisque ledit élément déformable en croix peut être monté su ivant d ifférentes orientations du fait de ses plans de symétrie et en sandwich entre le corps de saisie et l'organe de sollicitation en étant centré sur l'axe de rotation du corps de saisie.
Les moyens de liaison desdits moyens de rappel au corps de saisie et les moyens de liaison desdits moyens de rappel à l'organe de sollicitation sont formés chacun par au moins deux jeux de tenons et d'orifices d'insertion de tenon, chaque jeu étant disposé de part et d'autre de l'axe de rotation dudit tensiomètre, à l'état assemblé du tensiomètre.
Selon une caractéristique avantageuse de l'invention, lesdits moyens de rappel sont réalisés en élastomère, de préférence en Styrène Ethylène Butylène Styrène (SEBS).
Avantageusement, lesdits moyens de rappel comprennent au moins une partie allongée et les extrém ités opposées de la partie allongée de l'élément déformable sont rel iées à deux points d istincts du corps de saisie, de préférence en deux points diamétralement opposés par rapport à l'axe de rotation correspondant à la mobilité de pivotement du corps de saisie par rapport à l'organe de sollicitation. Selon une caractéristique avantageuse de l'invention, lesdits moyens de rappel comprennent au moins une partie allongée, l'axe longitudinal de ladite partie allongée dudit élément déformable est, en l'absence de sollicitation du corps de saisie, sensiblement coplanaire avec l'axe de rotation du corps de saisie défini par l'axe qui est compris dans le plan médian passant entre lesdits éléments d'appui destinés à chevaucher la corde et qui est perpendiculaire à l'axe du passage de corde délimité entre les deux éléments d'appui.
Autrement dit, lesdits moyens de rappel sont sensiblement centrés sur l'axe de rotation d u corps de sa isie du tensiomètre, ce q u i permet d 'avoir u n comportement sensiblement identique en déformation desdits moyens de rappel dans un sens et dans l'autre, et donc de déterminer de manière fiable et rapide la tension d'une corde que l'on déforme dans un sens ou dans l'autre.
Un tel agencement desdits moyens de rappel par rapport à l'axe de rotation du corps de saisie simpl ifie également la conception et la fabrication d u tensiomètre tout en offrant une mesure précise et fiable de la tension de la corde à partir de la déformation de l'élément déformable dans un sens ou dans l'autre, correspondant à une rotation du corps de saisie dans un sens ou dans l'autre suivant que l'utilisateur est droitier ou gaucher.
La mod ification de la valeur ohmique du potentiomètre en fonction de la rotation relative entre le corps de saisie et l'organe de sollicitation, permet de fournir aux moyens de calcul une grandeur représentative de la rotation relative entre le corps de saisie et l'organe de sollicitation qui peut être traitée par lesdits moyens de calcul pour déterminer la tension correspondante de la corde.
Selon un autre mode de réalisation du tensiomètre selon l'invention, lesdits moyens de rappel comprennent un élément flexible, de préférence une lame flexible, et lesdits moyens de mesure comprennent au moins une jauge de contrainte positionnée sur ledit élément flexible.
La flexion de l'élément flexible entraine un étirement des fils résistifs de la ou de chaque jauge, ce qui modifie leur valeur ohmique et permet ainsi d'en déduire la flexion de l'élément flexible. La déformation par flexion de l'élément flexible est fonction de la tension interne ou initiale de la corde, c'est-à-dire de la tension de la corde en l'absence de sollicitation de celle-ci. Ainsi, la mesure de la flexion de l'élément flexible qui résulte de la rotation du corps de saisie permet de déterminer la tension de la corde.
La rotation relative entre corps de saisie et organe de sollicitation, dans un sens et dans l'autre, provoque une flexion de l'élément flexible qui peut être détectée dans les deux sens, par exemple avec une même, ou un même ensemble de, jauge(s) de contrainte embarquée(s) sur la lame.
L'utilisation d'un élément flexible pour relier le corps de saisie à l'organe de sollicitation, permet également d'améliorer la précision de mesure de la tension de la corde et de faciliter la manipulation du tensiomètre.
En effet, dans le temps, le comportement en flexion d'un élément flexible est stable et le risque de dégradation des propriétés de flexion dudit élément est très rédu it. La flexion de l'élément flexible est également un paramètre mesurable de manière fiable et précise, aussi bien dans un sens de flexion qu'en sens inverse.
On observe en outre que la mesure de tension d'une corde par exercice d'un couple sur la corde, puis mesure de la déformation d'un élément flexible lié à la corde, est précise et fiable.
L'utilisation d'au moins une jauge de contrainte permet de fournir une grandeur représentative de la flexion de l'élément flexible qui peut être traitée par des moyens de calcul pour déterminer la tension correspondante de la corde. Plus précisément, la modification de la valeur ohmique de ladite au moins une jauge de contrainte en fonction de la rotation relative entre le corps de saisie et l'organe de sollicitation, permet de fournir aux moyens de calcul une grandeur représentative de la rotation relative entre le corps de saisie et l'organe de sollicitation. Ladite grandeur peut être une tension électrique prise au niveau de ladite au moins une jauge de contrainte. Ladite grandeur peut être traitée par lesdits moyens de calcul pour déterminer la tension correspondante de la corde. On peut prévoir en particul ier de filtrer et/ou d'ampl ifier le signal , correspondant à ladite grandeur, acquis par les moyens de calcul.
Selon une caractéristique avantageuse de l'invention, le corps de saisie est un corps annulaire, par exemple de forme ellipsoïdale. Selon une caractéristique avantageuse de l'invention, l'élément flexible est un élément allongé qui s'étend à l'intérieur de l'espace délimité par ledit corps de saisie annulaire. A l'état non sollicité ledit élément flexible se présente sous la forme d'une lame plane. Avantageusement, les extrémités opposées de l'élément flexible, de préférence la lame flexible, sont reliées à deux points distincts du corps de saisie, de préférence en deux points diamétralement opposés. Préférentiellement, l'organe de sollicitation est fixé sur l'élément flexible, de préférence la lame flexible, entre et à écartement des deux extrémités de l'élément flexible, de préférence dans la zone médiane de la longueur dudit élément flexible.
Selon une caractéristique avantageuse de l'invention, l'élément flexible étant un élément allongé présentant un axe longitudinal orthogonal à son axe de flexion, les moyens de mesure sont situés au moins en partie entre l'organe de sollicitation et l'extrémité ou l'une des extrémités de l'élément flexible reliée(s) audit corps de saisie, de préférence au milieu de la longueur entre l'organe de sollicitation et ladite extrémité dudit élément flexible.
Selon une caractéristique avantageuse de l'invention, l'élément flexible étant un élément allongé, l'axe longitudinal de l'élément flexible est sensiblement coplanaire avec l'axe de rotation du corps de saisie défini par l'axe qui est compris dans le plan médian passant entre lesdits éléments d'appui destinés à chevaucher la corde et qui est perpendiculaire à l'axe du passage de corde délimité entre les deux éléments d'appui. Autrement dit, l'élément flexible formé par exemple par une poutre ou lame flexible est sensiblement centré sur l'axe de rotation du corps de saisie du tensiomètre, ce qu i permet d'avoir un comportement sensiblement identique en flexion de l'élément flexible dans un
sens et dans l'autre, et donc de déterminer de manière fiable et rapide la tension d'une corde que l'on déforme dans un sens ou dans l'autre.
Un tel agencement de l'élément flexible par rapport à l'axe de rotation du corps de saisie simplifie également la conception et la fabrication du tensiomètre tout en offrant une mesure efficace de la tension de la corde à partir de la flexion de l'élément flexible dans un sens de flexion ou dans l'autre, correspondant à une rotation d u corps de sa isie dans u n sens ou dans l 'autre suivant que l'utilisateur est droitier ou gaucher.
Avantageusement, le tensiomètre est équipé de moyens de détection de la corde configurés pour émettre, lorsqu'ils se situent au droit de ladite corde, un signal de commande de mémorisation de ladite grandeur mesurée par lesdits moyens de mesure.
L'invention concerne également un procédé de détermination de la tension d'une corde de raquette, à l'aide d'un tensiomètre tel que décrit ci-dessus, caractérisé en ce que ledit procédé comprend les étapes suivantes :
- positionner l'organe de sollicitation du tensiomètre à cheval par ses deux éléments d'appui sur une corde individuelle,
- tourner le corps de saisie du tensiomètre jusqu'à obtenir une orientation prédéfinie de l'organe de sollicitation, ou du corps de saisie, par rapport à la corde, dans laquelle les deux éléments d'appui de l'organe de sollicitation exercent un couple sur la corde,
- mesurer la rotation relative entre le corps de saisie et l'organe de sollicitation,
- calculer, à partir de ladite mesure, la tension de la corde.
L'invention sera bien com prise à la lecture de la description su ivante d'exemples de réalisation, en référence aux dessins annexés dans lesquels : - la figure 1 est une vue éclatée en perspective de dessous d'un premier mode de réalisation du tensiomètre selon l'invention ;
- la figure 2 est une vue éclatée en perspective de dessus du tensiomètre de la
figure 1 ;
- la figure 3 est une vue de dessous du tensiomètre de la figure 1 , pour lequel une partie du boîtier n'est pas représentée, à l'état à cheval sur une corde, en configuration d'utilisation pour un droitier, et avant déformation de ladite corde ; - la figure 3A est une vue de dessous du tensiomètre de la figure 3, à l'état à cheval sur la corde et à l'état tourné du corps de saisie jusqu'à obtenir l'orientation souhaitée dudit corps par rapport à la corde ;
- la figure 4 est une vue de dessous du tensiomètre de la figure 1 , pour lequel une partie du boîtier n'est pas représentée, à l'état à cheval sur une corde, en configuration d'utilisation pour un gaucher, et avant déformation de ladite corde ;
- la figure 4A est une vue de dessous du tensiomètre de la figure 4, à l'état à cheval sur la corde et à l'état tourné du corps de saisie jusqu'à obten ir l'orientation souhaitée dudit corps par rapport à la corde ;
- la figure 5 est une vue de dessus éclatée d'un tensiomètre conforme à un deuxième mode de réalisation de l'invention ;
- la figure 5A est une vue de dessous éclatée du tensiomètre de la figure 5 ;
- la figure 6 est une vue de dessus du tensiomètre de la figure 5 à l'état assemblé ;
- la figure 6A est une vue en coupe axiale du tensiomètre de la figure 6 selon la ligne A-A;
- la figure 6B est une vue de côté du tensiomètre de la figure 6 ;
- la figure 7 est une vue de dessus du tensiomètre de la figure 6, à l'état à cheval sur une corde, avant déformation de ladite corde, en étant positionné en vue d'appliquer un mouvement de rotation au corps de saisie dans le sens horaire, de préférence pour un droitier ;
- la figure 7A est une vue de dessus du tensiomètre de la figure 7, à l'état à cheval sur une corde suivant la configuration de la figure 7 et à l'état tourné du corps de saisie dans le sens horaire jusqu'à la détection de la corde ;
- la figure 8 est une vue de dessus du tensiomètre de la figure 6, à l'état à cheval sur une corde, avant déformation de ladite corde, en étant positionné en vue d'appliquer un mouvement de rotation au corps de saisie dans le sens
antihoraire, de préférence pour un gaucher ;
- la figure 8A est une vue de dessus du tensiomètre de la figure 8, à l'état à cheval sur une corde et à l'état tourné du corps de saisie dans le sens antihoraire jusqu'à la détection de la corde ;
- la figure 9 est une vue en perspective d'un tensiomètre conforme à un troisième mode de réalisation de l'invention ;
- la figure 9A est une vue de dessous du tensiomètre de la figure 9 ;
- la figure 9B est une vue de côté du tensiomètre de la figure 9 ;
- la figure 10 est une vue de dessus du tensiomètre de la figure 9 à l'état à cheval sur une corde, avant déformation de ladite corde ;
- la figure 10A est une vue de côté du tensiomètre de la figure 1 0, à l'état à cheval sur la corde, avant déformation de ladite corde ;
- la figure 1 1 est une vue de dessus du tensiomètre de la figure 9, à l'état à cheval sur une corde et à l'état tourné du corps de saisie jusqu'à obten ir l'orientation souhaitée dudit corps par rapport à la corde ;
- la figure 1 1 A est une vue de côté du tensiomètre de la figure 1 1 en prise avec la corde.
Dans la suite de la description, trois modes de réalisation du tensiomètre selon l'invention, sont décrits. Les éléments du tensiomètre que l'on retrouve d'un mode de réalisation à un autre sont désignés par une même référence par souci de simplification.
En référence aux figures et comme rappelé ci-dessus, l'invention concerne un tensiomètre 1 individuel pour la mesure de tension d'une corde 9 de raquette. Ladite corde dont on cherche à mesurer la tension est encastrée à, ou au voisinage de, ses extrémités sur le cadre de raquette (non représenté).
Ledit tensiomètre comprend un corps, dit corps de saisie 10, apte à être saisi man uel lement. Led it tensiomètre comprend également un organe de sollicitation 2 de la corde 9 par déformation élastique de ladite corde. Ledit organe de sollicitation 2 comprend au moins deux éléments d'appui 21 , 22
écartés l'un de l'autre, tels que plots ou doigts, positionnables de part et d'autre d'une corde 9 individuelle. Les deux éléments d'appui 21 , 22 sont appelés picots. Lesdits picots sont portés par une platine 20 de l'organe de sollicitation.
Ledit corps de saisie 10 et ledit organe de sollicitation 2 sont déplaçables l'un par à l 'autre rapport selon un mouvement relatif de pivotement. Led it mouvement de pivotement correspond sensiblement à un pivotement autour de l'axe de rotation ROT1 orthogonal à la corde et dans le plan médian passant entre lesdits picots chevauchant la corde.
Ledit tensiomètre comprend également des moyens de rappel élastiquement déformables 3 reliés au corps de saisie 10 et à l'organe de sollicitation 2 de la corde. Lesdits moyens de rappel 3 sont configurés pour rappeler le corps de saisie 1 0 et l'organe de soll icitation 2 l'un par rapport à l'autre dans une position angulaire donnée, d ite position neutre. Lad ite position neutre correspond à une configuration dans laquelle ledit corps de saisie 10 et l'organe de sollicitation 2 ne sont pas sollicités par l'utilisateur, c'est-à-dire ne sont sollicités, l'un par rapport à l'autre, par aucune force de rotation de la part de l'utilisateur.
Lesdits moyens de rappel élastiquement déformables 3 peuvent être fixés au corps de saisie 10 et à l'organe de sollicitation 2 ou simplement interposés entre le corps de saisie 10 et l'organe de sollicitation 2.
Ledit tensiomètre comprend également des moyens de mesure d'une grandeur physique représentative de la rotation relative entre le corps de saisie 10 et l'organe de sollicitation 2 et des moyens de calcul de la tension de la corde en fonction de ladite grandeur mesurée. Lesdits moyens de mesure et la grandeur mesurée correspondante sont détaillés ci-après.
En particulier, le tensiomètre comprend un système électronique et
informatique, tel qu'un microprocesseur qui comprend lesdits moyens de calcul et qui est connecté auxdits moyens de mesure pour permettre l'acquisition de la grandeur mesurée par lesdits moyens de mesure et le calcul par lesdits moyens de calcul de la tension de la corde en fonction de ladite grandeur mesurée.
Lesdits moyens de calcul peuvent être réalisés sous forme d'instructions informatiques implémentées dans ledit système électronique et informatique. De manière caractéristique à l'invention, le corps de saisie 10 et l'organe de soll icitation 2 présentent l'un par rapport à l'autre deux possibilités de pivotement par rapport à ladite position neutre de rappel du corps de saisie et de l'organe de sollicitation. Le corps de saisie 10 et l'organe de sollicitation 2 présentent l'un par rapport une première possibilité de pivotement suivant un premier sens, adapté à un droitier, et une deuxième possibilité de pivotement suivant un deuxième sens, adapté à un gaucher, opposé au premier sens. Ainsi, ledit tensiomètre peut être utilisé aussi bien par un gaucher que par un droitier. Autrement dit, le corps de saisie 10 et l'organe de sollicitation 2 sont aptes à pivoter l'un par rapport à l'autre, dans un sens et dans l'autre par rapport à ladite position neutre.
Dans l'exemple illustré en particulier aux figures 1 à 4, pour lequel lesdits moyens de rappel sont formés par des ressorts hélicoïdaux, et aux figures 5 à 8, pour lequel lesdits moyens de rappel sont formés par un corps déformable en forme de croix, le tensiomètre comprend une liaison pivot physique entre ledit corps de saisie et ledit organe de sollicitation. Dans l'exemple illustré aux figures 9 à 1 1 , pour lequel lesdits moyens de rappel sont formés par une lame flexible, la mobilité à pivotement du corps de saisie par rapport à l'organe de sollicitation est formée à l'état positionné des picots
de l'organe de sollicitation de part et d'autre de la corde en appui sur la corde. Dans ce cas, on peut prévoir qu'il n'y ait pas de liaison pivot physique entre l'organe de sollicitation et le corps de saisie, mais que le corps de saisie soit apte à pivoter par rapport à l'organe de sollicitation en prise avec la corde, autour dudit axe de rotation transversal à la corde et parallèle au plan médian passant par lesdits picots chevauchant la corde.
Comme rappelé ci-dessus, ladite position angulaire neutre correspond à une configuration dans laquelle ledit corps de saisie 10 et l'organe de sollicitation 2 ne sont pas sollicités l'un par rapport à l'autre, aucune force de rotation extérieure au tensiomètre n'étant appliquée sur l'organe de sollicitation ou sur le corps de saisie. Autrement dit, ladite position neutre correspond à une configuration d'équilibre du corps de saisie et de l'organe de sollicitation l'un par rapport à l'autre.
Lesdits moyens de calcul sont configurés pour calculer la tension de la corde en fonction de ladite grandeur mesurée par lesdits moyens de mesure suite au pivotement dans un sens ou dans l'autre entre le corps de saisie 10 et l'organe de sollicitation 2 par rapport à la position neutre du corps de saisie 10 et de l'organe de sollicitation 2.
Dans l'exem ple il l ustré aux fig u res 1 à 4 , l esd its moyens de mesu re comprennent un potentiomètre linéaire 5. Lesdits moyens de mesure sont également formés par le système électronique et informatique qui est configuré pour acquérir une grandeur ou signal, tel qu'une tension électrique mesurée au n iveau du potentiomètre, dont la valeur dépend de la résistance du potentiomètre 5. Ladite grandeur mesurée correspond à la résistance dudit potentiomètre linéaire qui varie en fonction de la position du curseur 51 le long de ladite résistance 50 linéaire, ladite position du curseur 51 étant elle-même fonction de la rotation relative entre corps de saisie 1 0 et organe de sollicitation 2. Ledit potentiomètre 5 est raccordé au système électronique et informatique qui acquiert ladite grandeur ou signal dont la valeur dépend de la
valeur de résistance du potentiomètre. Lesdits moyens de calcul qui font partie dudit système électronique et informatique calculent la tension de la corde correspondant à la grandeur ou au signal mesuré(e) dont la valeur dépend de la résistance du potentiomètre linéaire. Autrement dit, la combinaison dudit potentiomètre linéaire et du système électronique et informatique qui comprend lesdits moyens de calcul, permet de mesurer la rotation relative entre corps de saisie et organe de sollicitation et donc la tension de la corde.
Dans l'exem ple il l ustré aux fig u res 5 à 8 , l esd its moyens de mesu re comprennent un potentiomètre rotatif 16. Lesdits moyens de mesure sont également formés par le système électronique et informatique qui est configuré pour acquérir une grandeur ou signal, tel qu'une tension électrique mesurée au niveau du potentiomètre, dont la valeur dépend de la valeur de résistance du potentiomètre rotatif 16. Ladite grandeur mesurée dépend de la résistance dudit potentiomètre rotatif qui varie en fonction de la position angulaire de l'axe de commande 57, ladite position angulaire de l'axe de commande étant elle- même fonction de la rotation relative entre corps de saisie et organe de sollicitation. Ledit potentiomètre rotatif 5 est raccordé au système électronique et i nformatiq ue q u i acq u iert l ad ite valeu r de grandeur associée au potentiomètre. Lesd its moyens de calcul qu i font partie dud it système électronique et informatique calculent la tension de la corde correspondant à la valeu r de ladite grandeur mesurée qui dépend de la résistance du potentiomètre rotatif. Autrement dit, la combinaison dudit potentiomètre rotatif et du système électronique et informatique qui comprend lesdits moyens de calcul, permet de mesurer la rotation relative entre corps de saisie et organe de sollicitation et donc la tension de la corde.
Dans l'exemple illustré aux figures 9 à 1 1 , lesdits moyens de mesure comprennent au moins une jauge de contrainte 35. Lesdits moyens de mesure sont également formés par le système électronique et informatique qui est configuré pour acquérir une grandeur ou signal, tel qu'une tension électrique mesurée au niveau de ladite au moins une jauge de contrainte, dont la valeur
dépend de la valeur de résistance de ladite au moins une jauge de contrainte 35. Ladite grandeur mesurée dépend de la résistance des fils résistifs qui composent la ou chaque jauge de contrainte, ladite résistance variant en fonction de l'étirement de ladite jauge, qui est lui-même fonction de la flexion de la lame et donc de la rotation relative entre corps de saisie et organe de sollicitation. Ladite ou chaque jauge de contrainte est raccordée au système électronique et informatique qui acquiert ladite grandeur qui dépend de ladite valeur de résistance de la ou de chaque jauge de contrainte. Lesdits moyens de calcul qui font partie dudit système électronique et informatique calculent la tension de la corde correspondant à ladite grandeur mesurée dont la valeur dépend de la valeur de résistance de la ou de chaque jauge de contrainte. Autrement dit, la combinaison de la ou de chaque jauge de contrainte et du système électronique et informatique qui comprend lesdits moyens de calcul, permet de mesurer la rotation relative entre corps de saisie et organe de sollicitation et donc la tension de la corde.
Lesdits moyens de rappel élastiquement déformables 3 sont, à l'état à cheval su r l a cord e d es deux él éments d 'a ppu i d ud it orga ne de sollicitation, déformables par rotation dudit corps de saisie autour d'un axe transversal à la corde et dans le plan méd ian passant par lesdits éléments d'appui chevauchant la corde.
Comme détaillé ci-après, dans chacun des modes de réalisation de l'invention, le corps de saisie 10, l'organe de sollicitation 2, les moyens de rappel 3 et lesdits moyens de mesure, sont configurés pour permettre au corps de saisie 10 et à l'organe de sollicitation 2 de pivoter l'un par rapport à l'autre, dans un sens et dans l'autre par rapport à ladite position neutre.
Lesdits moyens de mesure sont aptes à mesurer une grandeur représentative de la rotation relative entre le corps de saisie 10 et l'organe de sollicitation 2 dans un sens et dans l'autre par rapport à ladite position neutre.
Dans l'exemple illustré aux figures 1 à 4, pour lequel lesdits moyens de mesure comprennent un potentiomètre linéaire 5, le curseur 51 du tensiomètre linéaire, en position neutre du corps de saisie 1 0 et de l'organe de sollicitation 2, est situé sensiblement à m i-chem in des extrém ités de fin de cou rse de la résistance linéaire. De manière similaire, dans l'exemple illustré aux figures 5 à 8, pour lequel lesdits moyens de mesure comprennent un potentiomètre rotatif, l'axe de commande 57 du tensiomètre rotatif, en position neutre du corps de saisie 10 et de l'organe de sollicitation 2, est situé sensiblement au milieu du secteur angulaire défini entre les positions angulaires extrêmes que peut prendre ledit axe de commande du potentiomètre dans un sens et dans l'autre de rotation par rapport à ladite position neutre de rappel.
De manière similaire, dans l'exemple illustré aux figures 9 à 1 1 , pour lequel lesdits moyens de mesure comprennent au moins une jauge de contrainte, la ou chaque jauge de contrainte, en position neutre du corps de saisie 10 et de l'organe de sollicitation 2, n'est soumise à aucune contrainte de déformation. La ou chaque jauge de contrainte peut suivre la flexion de l'élément flexible dans un sens et dans l'autre, de manière à se déformer dans un sens de flexion de l'élément flexible et dans l'autre pour suivre la flexion dudit élément flexible.
Lesdits moyens de rappel 3 présentent une première possibilité de déformation dans un sens correspondant audit premier sens de pivotement du corps de saisie 10 par rapport à l'organe de sollicitation 2 et une deuxième possibilité de déformation dans un sens correspondant audit deuxième sens de pivotement du corps de saisie 10 par rapport à l'organe de sollicitation 2.
Autrement dit, lesdits moyens de rappel 3 sont aptes à être déformés dans un sens et dans l'autre par rapport à ladite position neutre du corps de saisie 10 et de l'organe de sollicitation 2. Comme rappelé ci-dessus, la déformation des moyens de rappel est représentative de la rotation relative entre le corps de saisie et l'organe de sollicitation.
Le corps de saisie 10 et l'organe de sollicitation 2 présentent l'un par rapport à l'autre, de chaque côté de la position neutre, une course, ou plage, de déplacement angulaire au moins égale à 10 °.
Lesdits moyens de rappel 3 sont aptes à se déformer sur cette course et les moyens de mesure sont également aptes à mesurer la tension de corde correspondant à une déformation desdits moyens de rappel 3 sur une telle course.
A l'état positionné des deux picots 21 , 22 dudit organe de sollicitation 2 de part et d'autre de la corde, lesdits moyens de rappel 3 et l'organe de sollicitation 2 sont agencés de telle sorte que le plan médian passant par lesdits picots 21 , 22 chevauchant la corde, forme, en position neutre, un plan de symétrie pour lesd its moyens de rappel 3, comme dans les deux modes de réal isation illustrés aux figure 1 à 8 et/ou un plan dans lequel s'étendent lesdits moyens de rappel 3, comme dans le mode de réalisation illustré aux figures 9 à 1 1 pour lequel lesdits moyens de rappel sont formés par une lame flexible. Par "agencés" on entend que lesdits moyens de rappel 3 et l'organe de sollicitation 2 sont disposés, dimensionnés et/ou orientés pour que le plan médian passant par lesdits picots 21 , 22 chevauchant la corde, forme, en position neutre, un plan de symétrie pour lesdits moyens de rappel 3 et/ou un plan dans lequel s'étendent lesdits moyens de rappel 3.
Lorsque le corps de saisie 10 pivote relativement à l'organe de sollicitation 2, dans un sens, d'un angle donné par rapport à la position neutre, lesdits moyens de rappel présentent, en valeur absolue, une course de déformation sensiblement identique à celle qu'ils présentent lorsque le corps de saisie 10 pivote relativement à l'organe de sollicitation 2, dudit angle donné par rapport à la position neutre, dans l'autre sens. Ainsi, dans un sens et dans l'autre de pivotement appliqué au corps de saisie 10, les moyens de calcul peuvent
déterminer la tension de la corde, à partir de ladite grandeur mesurée par lesd its moyens de mesu re, avec des fonctions de calcul sensiblement similaires, éventuellement au signe près. Comme rappelé ci-dessus, les moyens de calcul, tels qu'un microprocesseur, permettent de convertir la grandeur mesurée qui dépend de la valeur ohmique du système résistif util isé, par exemple un potentiomètre linéaire, un potentiomètre rotatif, ou au moins une jauge de contrainte, suivant le mode de réalisation mis en œuvre, en valeur de tension de corde. A cet effet, on peut prévoir que les moyens de calcul comprennent une ou des formules de calcul et/ou une ou plusieurs courbe(s) ou tableau(x) de correspondance entre les valeurs de grandeur mesurée et les valeurs de tension de la corde. On entend par "tension", la tension initiale ou au repos de la corde, c'est-à-dire à l'état non sollicité de la corde par l'organe de sollicitation. Avantageusement, lesdits moyens de calcul ne prennent en compte une valeur de grandeur mesurée qu'au delà d'une certaine valeur seuil pour offrir une mesure de tension de corde suffisamment fiable.
Les moyens de calcul déterminent à partir de ladite valeur de grandeur reçue et à l'aide de fonction(s) de calcul, table(s) de correspondance, ou abaque(s) mémorisés dans lesdits moyens de calcul, la tension correspondante de la corde, ce qui permet de signifier directement à l'utilisateur la tension de corde déterminée, par exemple par affichage de la valeur déterminée sur un écran équipant le tensiomètre.
Le tensiomètre est également équipé de moyens de détection 6 de la corde dont la valeur de tension est à mesurer. Lesdits moyens de détection 6 sont configurés pour émettre un signal lorsqu'ils se situent au droit de ladite corde, de préférence un signal de commande de mémorisation de la valeur ohmique du potentiomètre 5.
Dans l'exemple illustré aux figures, lesdits moyens de détection 6 sont formés
par un dispositif comprenant deux cellules de détection, par exemple optiques. Lesd its moyen s de d étection 6 sont config u rés pour com mander l a mémorisation par les moyens de calcul de la valeur ohmique du potentiomètre lorsque les faisceaux des cellules sont coupés par la corde, c'est-à-dire lorsque les moyens de détection 6 se situent au droit de la corde.
On peut alors prévoir que les cellules et les moyens de calcul soient configurés de telle sorte que lorsque les cellules des moyens de détection détectent la présence de la corde, lesdits moyens de détection 6 émettent un signal à destination des moyens de calcul pour que ceux-ci mémorisent la valeur ohmique de la résistance correspondant à la rotation relative entre corps de saisie et organe de sollicitation au moment de la détection de la corde. Les moyens de calcul peuvent alors, à partir de cette valeur mémorisée, calculer de manière précise et fiable la valeur de tension de corde correspondante, sans que l'opérateur ait besoin de maintenir le corps de saisie en équilibre dans cette configuration de sollicitation de la corde. En effet, l'opérateur n'a pas à se soucier de la précision de la rotation appliquée au corps de saisie. Au cours de la rotation du corps de saisie et au moment du passage des moyens de détection 6 au dessus de la corde ceux-ci vont détecter sa présence et envoyer un signal aux moyens de calcul qui vont mémoriser, à cet instant, la valeur de la grandeur, telle qu'une tension électrique, associée à l'élément ou au système résistif utilisé, par exemple un potentiomètre ou au moins une jauge de contrainte, po u r l a co n ve rt i r e n va l e u r d e te n s i o n d e co rd e , indépendamment du mouvement ultérieur du tensiomètre.
Chaque cellule de détection peut être une cellule optique ou à ondes sonores tels que ultrasons.
En variante, on peut prévoir que ledit signal émis par les moyens de détection 6 soit un signal optique ou visuel indiquant à l'opérateur d'arrêter de tourner le corps de saisie pour lire la valeur de tension de corde calculée par les moyens de calcul.
Le procédé de mesure de la tension d'une corde à l'aide d'un tel tensiomètre comprend les étapes suivantes :
- positionner l'organe de sollicitation 2 du tensiomètre à cheval par ses deux éléments d'appui 21 , 22 sur une corde 9 individuelle,
- tourner le corps de saisie 10 du tensiomètre jusqu'à obtenir une orientation prédéfinie du corps de saisie 1 0 par rapport à la corde 9, dans laquelle les deux éléments d'appui 21 , 22 de l'organe de sollicitation exercent un couple sur la corde 9,
- mesurer la rotation relative entre le corps de saisie et l'organe de sollicitation,
- calculer, à partir de ladite mesure, la tension de la corde.
Ledit corps de saisie 10, ou ledit l'organe de sollicitation 2 (par l'intermédiaire dudit corps de saisie et des moyens de rappel), est destiné à être tourné autour dudit axe de rotation ROT1 jusqu'à ce que l'organe de sollicitation 2, ou ledit corps de saisie 10, présente une orientation donnée prédéfinie par rapport à la corde, dite orientation de sollicitation, pour laquelle la corde est sollicitée par déformation. Ainsi, pour mesurer la tension de la corde de raquette, on mesure la rotation relative entre corps de saisie 10 et organe de sollicitation 2 une fois que le corps de saisie 10, ou l'organe de sollicitation 2, présente l'orientation souhaitée par rapport à la corde 9. En variante, on pourrait prévoir de tourner le corps de saisie 10 d'un angle donné par rapport à sa position neutre.
Ladite orientation de sollicitation peut correspondre à la superposition de la droite passant par deux points distincts de l'organe de sollicitation 2 ou du corps de saisie 10, avec la droite passant par la corde 9. Lesdits points de l'organe de sollicitation 2 servant de référence, pour l'alignement avec la corde
9, peuvent être choisis comme étant deux zones opposées du corps de saisie
10, par exemple l'axe longitudinal dudit corps de saisie 10, ou de l'organe de sollicitation 2. Ladite orientation de sollicitation peut également correspondre à un angle donné de rotation du corps de saisie 10 ou de l'organe de sollicitation 2 par rapport à une configuration en appui des éléments d'appui 21 , 22 contre
la corde 9.
Lorsque le tensiomètre est équipé de moyens de détection de la corde 6, ladite orientation de sollicitation correspond simplement à l'orientation du corps de saisie 10 ou de l'organe de sollicitation 2 pour laquelle les moyens de détection 6 détectent la corde, c'est-à-dire se situent au droit de la corde.
Pour un droitier, le tensiomètre est positionné à cheval par ses plots 21 , 22 de telle sorte que le corps de saisie 10 puisse être tourné dans le sens horaire jusqu'à obtenir l'orientation souhaitée de l'organe de sollicitation 2 par rapport à la corde, en particulier jusqu'à obtenir un positionnement des moyens de détection 6 de corde au droit de la corde.
De manière similaire pour un gaucher, il suffit de positionner l'organe de sollicitation à cheval par ses plots 21 , 22 de telle sorte que le corps de saisie 10 puisse être tourné dans le sens antihoraire.
Au cours de la rotation du corps de saisie 10, les deux éléments d'appui 21 , 22 exercent un couple sur la corde 9 qui déforme plus ou moins la corde en fonction de sa tension initiale, c'est-à-dire en l'absence de sollicitation.
Plus la corde est tendue plus la rotation relative entre le corps de saisie 10 et l'organe de sollicitation 2 sera importante pour amener l'organe de sollicitation 2 ou le corps de saisie 10 dans l'orientation souhaitée par rapport à la corde, tandis que plus la corde sera détendue plus l'organe de sollicitation 2 et les moyens de rappel 3 suivront naturellement le mouvement de rotation du corps de saisie 10 et moins la rotation relative entre corps de saisie 10 et organe de sollicitation 2 sera importante. L'axe de rotation ROT1 est orthogonal au plan des cordes ce qui permet d'appliquer aisément un couple via l'organe de sollicitation 2 à une corde 9 à l'intérieur du cadre de raquette avec une grande liberté et facilité de
manipulation du tensiomètre.
Le choix d'un tel axe de rotation ROT1 du corps de saisie, orthogonal au plan des cordes, pou r déformer la corde, permet de concevoir l 'organe de sollicitation 2 sous la forme de deux plots 21 , 22 , de forme générale cylindrique, écartés l'un de l'autre et reliés par un support ou platine 20, qu'il suffit de positionner directement à cheval sur une corde 9. Les plots 21 , 22 s'étendent en saillie de la platine 20 en étant écartés l'un de l'autre suivant une direction orthogonale à leur direction de saillie de manière à pouvoir être montés à cheval sur une corde. A l'état positionné à cheval de l'organe de sollicitation sur la corde, la platine 20 qui relie les deux plots s'étend d'un seul côté du cadre de la raquette, ce qui facilite le positionnement des deux plots 21 , 22 de part et d'autre de la corde 9 et donc la manipulation du tensiomètre. En particulier, l'utilisateur peut aisément tourner le corps de saisie selon l'axe souhaité sans être gêné par les cordes.
Les deux éléments d'appui 21 , 22 de l'organe de soll icitation 2 s'étendent sensiblement parallèlement l'un à l'autre et orthogonalement au plan moyen dudit corps de saisie 10 ou encore au plan moyen de la platine 20.
Le mode de réalisation du tensiomètre illustré aux figures 1 à 4 est détaillé ci- dessous. Dans ce mode de réalisation et comme rappelé ci-dessus, lesdits moyens de mesure comprennent un potentiomètre linéaire 5 présentant une résistance linéaire variable 50 et un organe de réglage 51 de ladite résistance, appelé curseur, ledit curseur étant mobile le long d'au moins une partie de ladite résistance linéaire variable 50. Ladite résistance linéaire variable 50 et ledit curseur 51 sont couplés l'un au corps de saisie 10 et l'autre à l'organe de sollicitation 2. La valeur ohmique du potentiomètre correspond à la position du curseur le long de la résistance variable.
Ledit tensiomètre comprend des moyens d'activation et de désactivation 27, 72 aptes à commander l'activation et la désactivation desdits moyens de calcul en
fonction de l'angle de pivotement relatif entre le corps de saisie 10 et l'organe de sollicitation 2.
Lesdits moyens d'activation et de désactivation 27, 72 sont configurés pour désactiver les moyens de calcul, en particulier l'alimentation 40 des moyens de calcul, en configuration non sollicitée du corps de saisie par rapport à l'organe de sollicitation, et inversement. Au-delà d'une course donnée de pivotement relatif du corps de saisie 1 0 par rapport à l'organe de soll icitation 2, et inversement, dans un sens ou dans l'autre, lesdits moyens d'activation et de désactivation sont configurés pour activer les moyens de calcul, en particulier l'alimentation des moyens de calcul.
Dans l'exemple illustré aux figures 1 à 4, lesdits moyens d'activation et de désactivation sont formés par un bouton-poussoir 72 relié à l'alimentation des moyens d e cal cu l . En position sortie le bouton-poussoir 72 désactive l'alimentation à l'inverse de sa position enfoncée dans laquelle il active les moyens d'alimentation. Ledit poussoir 72 est rappelé en position sortie. Lesdits moyens d'activation et de désactivation sont également formés par une partie de l'organe de sollicitation 2 qui vient enfoncer le bouton-poussoir 72 pour une course de pivotement relatif entre corps de saisie 10 et organe de sollicitation 2 supérieure à une valeur donnée et qui laisse le bouton revenir en position sortie pour une course de pivotement moindre.
Ledit organe de sollicitation 2 comprend un bras 24 monté pivotant par rapport au corps de saisie et lesdits moyens de rappel 3 comprennent deux ressorts 31 , 32 hélicoïdaux, éventuellement formés d'une seule pièce, qui s'étendent de part et d'autre de l'axe du bras 24, de préférence à, ou au voisinage de, l'extrémité libre 23 dudit bras 24. Lesdits ressorts qui forment lesdits moyens de rappel sont de préférence des ressorts de compression.
Ledit bras 24 est monté pivotant par rapport au corps de saisie à, ou au voisinage de, son extrémité 200 opposée à ladite extrémité libre 23 en contact avec les moyens de rappel 3. Ladite extrémité 200 présente une partie mâle formant en coopération avec une partie correspondante 121 femelle du corps de saisie une liaison pivot. En variante, la partie mâle pourrait être ménagée sur le corps de saisie et la partie femelle sur l'organe de sollicitation.
Lesdits moyens de rappel 3 s'étendent de part et d'autre de l'axe longitudinal du bras 24 pour permettre auxdits moyens de rappel d'exercer un effort de rappel sur le bras 24 en position neutre quel que soit le sens dans lequel le corps de saisie 10 est pivoté par rapport à l'organe de sollicitation 2.
En particulier, l'un des ressorts présente une extrémité apte à venir en applique d'un côté de l'extrémité libre 23 du bras 24, l'autre ressort présentant une extrémité apte à venir en applique sur le côté opposé de l'extrémité libre 23 du bras 24 par rapport à l'axe longitudinal dudit bras. L'extrémité opposée de chaque ressort est appliquée ou liée sur une partie du corps de saisie 1 0. L'extrémité libre 23 du bras 24 présente de chaque côté destiné à recevoir une extrémité d'un ressort, des moyens de centrage dudit ressort pour permettre un bon maintien et un bon guidage du ressort au cours de la rotation relative entre bras 24 et corps de saisie 10.
Lesdits moyens de rappel 3 sont disposés dans un logement 30 qui présente au moins une paroi de gu idage, de préférence deux parois de gu idage opposées, permettant de guider la déformation des moyens de rappel au cours du pivotement du corps de saisie 10 par rapport à l'organe de sollicitation 2, dans un sens et dans l'autre.
Ladite ou chaque paroi de guidage s'étend suivant un arc de cercle de centre correspondant à la liaison de pivotement entre le corps de saisie 10 et l'organe de sollicitation 2.
Ladite ou chaque paroi de guidage permet ainsi de guider la déformation des moyens de rappel lors de leur déformation en compression et/ou en traction lorsqu'ils sont sollicités par la rotation du corps de saisie 10 pivoté par rapport à l'organe de sollicitation 2 dans un sens et dans l'autre.
Ledit tensiomètre comprend également des moyens de mise en butée 36 permettant de mettre en butée chaque ressort 31 , 32 ou chaque partie de ressort apte à venir en applique d'un côté de l'extrémité libre 23 du bras 24. Lesdits moyens de mise en butée 36 permettent de retenir l'un des ressort ou l'une des parties de ressort lorsque l'autre ressort ou l'autre partie de ressort est comprimé(e) par le bras 24, ce qui permet d'obtenir une mesure fiable de la grandeur représentative de la rotation relative entre l'organe de saisie et le corps de base. Avantageusement, comme illustré aux figures 3 et 4, lesdits moyens de mise en butée 36 comprennent un ergot ménagé sur l'une ou sur chacune des parois de guidage de la déformation du ou des ressorts. Ledit ou chaque ergot est centré sur la course de déplacement du bras, de sorte qu'en position d'équilibre d u bras 24, le ou chaque ergot se situe sensiblement dans l'alignement du bras 24 sans gêner son déplacement à pivotement dans un sens ou dans l'autre. Avantageusement, lesdits moyens de mise en butée 36, le ou les ressorts 31 , 32 et le bras 24 sont agencés de manière à limiter, voire supprimer, en position d'équilibre, le jeu entre le ou les ressorts et l'extrémité 23 du bras 24.
Lesdits moyens de mise en butée 36 permettent de précontraindre les ressorts ou parties de ressort situé(e)s de part et d'autre de l'extrémité 23 du bras 24, en position neutre du bras 24, ce qui permet, au cours de la rotation du corps de saisie 10, de mesurer une grandeur correspondant à la rotation relative entre le corps de saisie 10 et l'organe de sollicitation 2, de manière précise et fiable dès le premier degré de rotation relative. En effet chaque ressort 31 , 32 ou partie de ressort peut être précontraint(e) par les moyens de mise en butée
36 d'une valeur correspondant à une tension de corde donnée, par exemple de l'ordre de 1 0kg , pu isque les valeurs de tension de corde mesurée sont généralement supérieures à 10kg. La déformation d'un ressort ou d'une partie du ressort correspond à un couple appliqué à la corde du fait de la rotation du corps de saisie. Grâce à la position de chaque ressort 31 , 32 ou de chaque partie du ressort en regard de l'extrémité libre 23 du bras 24, l'opérateur bénéficie de la longueur du bras pour comprimer ledit ressort 31 , 32 ou ladite partie de ressort, ce qui lui permet d'appliquer un couple important à la corde et ainsi de mesurer aisément et de manière fiable des valeurs de tension de corde importantes.
Dans l'exemple illustré aux figures 1 à 4, la résistance linéaire 50 est solidaire du corps de saisie 1 0. Ledit bras comprend des moyens de couplage 25 au curseur 51 du potentiomètre. Lesdits moyens de couplage sont configurés de manière à entraîner en déplacement le curseur 51 dans le sens de pivotement du bras, c'est-à-dire suivant une direction transversale au bras, tout en laissant libre le curseur 51 de se déplacer sur une course donnée suivant l'axe dudit bras.
En configuration non sollicitée du corps de saisie 10 par rapport à l'organe de sollicitation 2, et inversement, c'est-à-dire en position neutre, le curseur 51 est situé sensiblement au centre de la course de déplacement possible dudit curseur le long de la résistance linéaire 50.
De manière similaire, le bras 24 qu i forme organe de soll icitation est en position neutre sensiblement au centre du secteur angulaire qu'il est apte à parcourir relativement au corps de saisie. En particulier, dans l'exemple illustré aux figures 1 à 4, l'axe du bras 24 est en position neutre sensiblement parallèle à l'axe longitudinal du corps de saisie 10 qui présente une forme générale rectangulaire. Ledit corps de saisie 10 se
présente sous la forme d'un boîtier formé de deux demi-coques destinées à être fixées l'une à l'autre de préférence par vissage et à l'intérieur duquel est destiné à loger le bras 24. Ledit boîtier loge également les autres éléments du tensiomètre tels que les moyens de rappel 3, les moyens de mesure et les moyens de calcul.
L'une des demi-coques du boîtier présente une ouverture traversante 120 pour permettre aux deux éléments d'appui 21 , 22 du bras 2 de s'étendre en saillie du boîtier.
Lesdits moyens de couplage 25 sont formés par un orifice, par exemple un trou oblong, de préférence traversant, ménagé dans le bras et à l'intérieur duquel vient se loger le curseur 51 du potentiomètre 5. Ledit orifice 25 est configuré, c'est-à-dire dimensionné, par rapport au curseur 51 de manière à, d'une part, entraîner en déplacement le curseur 51 suivant une direction transversale au bras, au cours du pivotement relatif entre le corps de saisie 10 et l'organe de sollicitation 2, et, d'autre part, permettre audit curseur 51 de se déplacer sur une distance donnée suivant l'axe longitudinal du bras 2 pour permettre au curseur 51 de suivre le chemin de course rectiligne défini par la résistance linéaire 50.
La dimension de l'orifice 25 suivant la direction orthogonale à l'axe du bras est choisie de manière à obtenir un jeu réduit, voire sensiblement nul, avec ledit curseur pour permettre d'entraîner sans retard le curseur 51 le long de la résistance l inéaire lors du pivotement du corps de saisie 1 0 par rapport à l'organe de sollicitation 2.
Ledit boîtier comprend un écran d'affichage 42 raccordé aux moyens de calcul logés à l'intérieur du boîtier. Ledit écran est situé sur la demi-coque opposée à celle à travers laquelle font saillie les deux éléments d'appui 21 , 22 du bras 24. Ledit écran permet d'afficher des informations telles que l'état de tension d'une corde.
La résistance linéaire est logée dans un corps parallélépipédique fendu pour permettre le passage du curseur et définir la course de déplacement dudit curseur le long de la résistance linéaire à travers la fente.
Le corps de saisie 10, en particulier l'une 10A des deux demi-coques 10A, 10B comprend deux butées 13 de fin de course de pivotement du corps de saisie 10 par rapport à l'organe de sollicitation 2, dans un sens et dans l'autre. Lesdites butées sont positionnées par rapport à la résistance linéaire de telle sorte que, en fin de course de pivotement du corps de saisie 10 par rapport à l'organe de soll icitation 2, le curseur 51 reste écarté des extrémités de la résistance linéaire de manière à ne pas endommager le potentiomètre linéaire 5.
Le mode de réalisation du tensiomètre illustré aux figures 5 à 8 est détaillé ci- dessous. Dans ce mode de réalisation et comme rappelé ci-dessus, lesdits moyens de mesure comprennent un potentiomètre rotatif 16. Dans l'exemple illustré aux figures 5 à 8, ledit organe de sollicitation 2 forme support des moyens de rappel 3 et du corps de saisie 1 0 ainsi que, comme détaillé ci-après, du potentiomètre 16 et des moyens de détection 6 de la corde. Comme détaillé ci-après, lesdits moyens de rappel 3 sont formés par un élément déformable 3 élastiquement.
Led it élément déformable 3 est, à l'état à cheval sur la corde 9 des deux éléments d'appui 21 , 22, déformable par rotation dudit corps de saisie 1 0 autour d'un axe ROT1 transversal à la corde et dans le plan médian passant par lesdits éléments d'appui 21 , 22 chevauchant la corde 9. Autrement dit, ledit élément déformable est déformable par rotation relative du corps de saisie par
rapport à l'organe de tension, dans un sens ou dans l'autre, autour de l'axe de rotation ROT1 .
Ledit tensiomètre 1 comprend des moyens d'actionnement 7, 17 du potentiomètre 16. Lesdits moyens d'actionnement permettent de modifier la valeur ohmique du potentiomètre 16 en fonction de la rotation relative entre le corps de saisie et l'organe de sollicitation.
Ledit potentiomètre 16 et au moins une partie 17 desdits moyens d'actionnement 7, 17 sont solidaires, l'un, de l'organe de sollicitation 2 et, l'autre, du corps de saisie 10.
Ledit potentiomètre 16, encore appelé résistance variable, est un potentiomètre rotatif. Un potentiomètre rotatif est généralement formé d'un ou plusieurs é l é m e n ts ré s i sta n ts d o n t l a va l e u r o h m i q u e p e u t êt re m od if i é e progressivement, sans qu'on doive ouvrir le circuit, en faisant tourner un axe de commande relié à un curseur en contact avec le ou les éléments résistants.
Dans l'exemple illustré aux figures 5 à 8, ledit potentiomètre 16 est solidaire de l'organe de sollicitation 2. L'axe de commande 57 dudit potentiomètre 16 porte un engrenage 7, tel qu'un pignon d'engrènement, apte à engrener avec une roue dentée 17 solidaire du corps de saisie 10 et formant ladite au moins une partie desdits moyens d'actionnement du potentiomètre, de manière à modifier la valeur ohmique dudit potentiomètre au cours de la rotation relative entre le corps de saisie et l'organe de sollicitation.
Une telle conception du tensiomètre permet, en appliquant un effort de rotation au corps de saisie 10, d'engrener la roue dentée 17 formée par ledit corps de saisie 1 0 avec le pignon 7 du potentiomètre 16 sur un secteur angulaire, correspondant à la rotation relative entre corps de saisie 1 0 et organe de sollicitation 2, qui est représentatif de l'état de tension de la corde.
La rotation du pignon 7 par engrènement modifie la valeur ohmique du potentiomètre 16, ce qui permet d'en déduire la valeur de tension de la corde.
La rotation relative entre corps de saisie et organe de sollicitation correspond à l ' a n g l e d e rotat i o n d u p i g n o n 7 d u potentiomètre 16 résultant de l'engrènement entre roue dentée 17 et pignon 7 su ite au mouvement de rotation appliqué par l'opérateur au corps de saisie 10.
En position neutre, l'axe de commande du tensiomètre rotatif est situé sensiblement au m il ieu d u secteur ang ula ire défin i entre les positions angulaires extrêmes que peut prendre le potentiomètre dans un sens et dans l'autre de rotation par rapport à ladite position neutre de rappel.
Préférentiellement, ladite roue dentée 17 et le corps de saisie 10 sont formés d'une seule pièce.
Le corps de saisie 10 présente une forme générale de roue dentée munie, sur sa face dite supérieure, c'est-à-dire opposée à l'organe de sollicitation 2, de deux éléments de saisie 1 1 opposés par rapport à l'axe de la roue dentée, correspondant à l 'axe de rotation ROT1 . Lesd its éléments de saisie 1 1 permettent à l'opérateur d'appliquer un effort de rotation au corps de saisie 10 dans un sens et dans l'autre.
La roue dentée présente un orifice axial traversant pour le passage d'un organe de liaison 12 destiné à maintenir couplé le corps de saisie 10 à l'organe de sollicitation 2, tout en autorisant la rotation dudit corps de saisie 10 par rapport à l'organe de sollicitation 2. Bien entendu, la rotation du corps de saisie 10 par rapport à l'organe de sollicitation 2 est limitée par l'élément déformable 3. Lesdits moyens de liaison sont formés par une vis 12 dont le filet coopère avec la partie taraudée 28 ménagée dans l'organe de sollicitation 2. Une rondelle 18 enfilée sur la vis 12 est interposée entre la tête de vis 1 2 et le corps de saisie 10 traversé par la vis 12 pour permette à la tête de vis 12 de
prendre appui sur la face supérieure dudit corps de saisiel O.
De manière générale une partie 3A, 3B de l'élément déformable 3 est fixée au corps de saisie 10 et une autre partie 3C, 3D de l'élément déformable 3 est fixée à l'organe de sollicitation 2. En particulier, ledit élément déformable 3 comprend une partie 3A, 3B rel iée au corps de saisie 1 0 en deux points opposés par rapport à l'axe de rotation ROT1 dudit corps de saisie, et une autre partie 3C, 3D reliée à l'organe de sollicitation 2 en deux points opposés par rapport à l'axe de rotation ROT1 dudit corps de saisie. Ledit corps de saisie 10, l'organe de sollicitation 2 et l'élément déformable 3 sont coaxiaux, d'axe parallèle, de préférence confondu, avec l'axe ROT1 autour duquel on applique une rotation au corps de saisie 10 du tensiomètre.
Dans l'exemple illustré aux figures 5 à 8, led it élément déformable 3 se présente sous la forme d'un corps à quatre oreilles 3A, 3B, 3C, 3D disposées sensiblement à 90° l'une de l'autre autour de l'axe de rotation du corps de saisie. Ledit corps de l'élément de déformable 3 est évidé centralement pour permettre le passage des moyens de liaison 12 du corps de saisie 1 0 à l'organe de sollicitation 2. Lesdites oreilles 3A, 3B, 3C, 3D sont percées pour définir des logements d'insertion de tenons 14, 15, 33, 34 présents, vis-à-vis des oreilles 3A, 3B, sur le corps de saisie 10 et, vis-à-vis des oreilles 3C, 3D, sur l'organe de sollicitation 2. En particulier, les tenons 14, 1 5 du corps de saisie 10 sont destinés à s'engager dans les orifices des oreilles 3A, 3B et les tenons 33, 34 de l'organe de sollicitation 2 sont destinés à s'engager dans les orifices des oreilles 3C, 3D.
Autrement dit, l'élément déformable 3 affecte la forme générale d'une croix dont une branche 3A, 3B est fixée à, ou au voisinage de, ses extrémités au corps de saisie 10 et dont l'autre branche 3C, 3D est fixée à, ou au voisinage de, ses extrémités à l'organe de sollicitation 2.
L'élément déformable est réalisé en élastomère, de préférence en Styrène
Ethylène Butylène Styrène (SEBS).
Les branches 3A, 3B et 3C, 3D sont centrées sur l'axe de rotation ROT1 . Le potentiomètre forme un moyen de conversion en signaux électriques de la rotation relative entre le corps de saisie et l'organe de sollicitation ou encore de la déformation subie par l'élément déformable. En particulier, le mouvement de rotation du pignon 7 imposé par la roue dentée 17 au cours de la rotation du corps de saisie par rapport à l'organe de sollicitation est représentatif de la déformation par flexion de la branche 3A, 3B de l'élément 3 déformable, elle- même représentative de la tension de la corde. L'axe de flexion de la branche 3A, 3B de l'élément déformable 3 est parallèle à l'axe de rotation ROT1 , c'est- à-dire orthogonal au plan moyen du cordage. Dans le mode de réalisation illustré aux figures 9 à 1 1 , lesdits moyens de rappel 3 sont formés par un élément flexible. Ledit élément flexible 3 est une lame flexible. Le plan moyen de la lame 3 flexible, à l'état non sollicité, est parallèle à l'axe de rotation ROT1 du corps de saisie. Comme détaillé ci-après, lesdits moyens de mesure comprennent au moins une jauge de contrainte 35.
Ledit corps de saisie dudit tensiomètre est destiné à être tourné autour dudit axe de rotation ROT1 jusqu'à ce que ledit corps de saisie présente une orientation donnée prédéfin ie par rapport à la corde, d ite orientation de sollicitation, pour laquelle la corde est sollicitée par déformation . Ainsi, pour mesurer la tension de la corde de raquette, on mesure la flexion de l'élément flexible une fois le corps de saisie 10 tourné autour de l'axe de rotation ROT1 jusqu'à obtenir l'orientation souhaitée dudit corps de saisie 10 par rapport à la corde 9. Ladite orientation de sollicitation peut correspondre à la superposition de la droite passant par deux points distincts du corps de saisie 10, avec la droite passant par la corde 9. Lesdits points du corps de saisie 10 servant de
référence, pour l'alignement avec la corde 9, sont les deux zones de liaison opposées de l'élément flexible 3 au corps de saisie 10. Ladite orientation de sollicitation peut également correspondre à un angle donné de rotation du corps de saisie par rapport à une configuration en appui des éléments d'appui 21 , 22 contre la corde 9.
La rotation du corps de saisie 10 autour d'un axe ROT1 orthogonal à la corde 9 et dans le plan médian passant par les éléments d'appui 21 , 22 de l'organe de sollicitation, génère, d'une part, un couple de l'organe de sollicitation sur la corde par appui en sens contraire des deux éléments d'appui 21 , 22 sur la corde, et, d'autre part, une déformation par flexion de l'élément flexible 3 pour suivre la rotation du corps de saisie 10 alors que l'organe de sollicitation 2 est en prise avec la corde. Au cours de la rotation du corps de saisie 10, les deux éléments d'appui 21 , 22 exercent un couple sur la corde 9 qu i déforme plus ou moins la corde en fonction de sa tension initiale, c'est-à-dire en l'absence de sollicitation. La flexion de l'élément flexible 3 dépendant de la déformation de la corde 9, c'est- à-dire de la capacité de l'organe de sollicitation 2 à suivre le mouvement de rotation du corps de saisie 10, la mesure de la flexion de l'élément flexible 3 permet de déterminer la tension initiale de la corde 9.
En effet, moins la corde 9 est tendue initialement, plus elle aura tendance à se déformer facilement sous l'effet du couple appliqué par l'organe de sollicitation 2 lorsque le corps de saisie 10 est tourné en configuration de sollicitation de la corde 9. L'élément flexible 3 qui rel ie le corps de saisie 1 0 à l'organe de sollicitation 2 en prise avec la corde 9 aura d'autant moins besoin de fléchir pour suivre le mouvement de rotation du corps de saisie 10. A l'inverse, plus la corde 9 est tendue initialement, plus elle résistera au couple appliqué par l'organe de sollicitation 2 lorsque le corps de saisie 10 est tourné pour atteindre l'orientation souhaitée par rapport à la corde 9. Il en résulte que
l'élément flexible 3, qui relie le corps de saisie 10 à l'organe de sollicitation 2 en prise avec la corde 9, devra d'autant plus fléchir, autour de son axe de flexion parallèle à l'axe de rotation ROT1 , pour suivre le mouvement de rotation du corps de saisie 10.
L'axe de rotation ROT1 est orthogonal au plan des cordes ce qui permet d'appliquer aisément un couple via l'organe de sollicitation 2 à une corde 9 à l ' intérieur d u cadre de raq uette avec une grande liberté et facilité de manipulation du tensiomètre. La lame flexible 3 est alors agencée de sorte que son axe de flexion soit paral lèle à l 'axe de rotation ROT1 , c'est-à-dire orthogonal au plan moyen du cordage.
Le choix d'un tel axe de rotation ROT1 du corps de saisie, orthogonal au plan des cordes, pou r déformer la corde, permet de concevoir l 'organe de sollicitation sous la forme de deux plots, de forme générale cylindrique, écartés l'un de l'autre et reliés par un support ou platine 20, qu'il suffit de positionner directement à cheval sur une corde. Les plots 21 , 22 s'étendent en saillie de la platine 20 en étant écartés l'un de l'autre suivant une direction orthogonale à leur direction de saillie de manière à pouvoir être montés à cheval sur une corde. A l'état positionné à cheval de l'organe de sollicitation sur la corde, la platine 20 qu i rel ie les deux plots s'étend d'un seul côté du cadre de la raquette, ce qui facilite le positionnement des deux plots 21 , 22 de part et d'autre de la corde 9 et donc la manipulation du tensiomètre. En particulier, l'utilisateur peut aisément tourner le corps de saisie selon l'axe souhaité sans être gêné par les cordes.
Les deux éléments d'appui 21 , 22 de l'organe de sollicitation 2 s'étendent sensiblement parallèlement l'un à l'autre et orthogonalement au plan moyen dudit corps de saisie 10 ou encore au plan moyen de la platine 20.
Dans l'exemple illustré aux figures 9 à 1 1 , lad ite au moins une jauge de contrainte est positionnée sur une face de la lame flexible 3. En variante, on
peut prévoir de répartir au moins une jauge de contrainte sur chacune des faces de la lame flexible 3.
En particulier, ladite au moins une jauge de contrainte est positionnée dans la zone méd iane de la portion de la lame flexible 3 située entre l'organe de sollicitation 2 et l'une 3B des deux extrémités 3A, 3B de la lame 3 reliée au corps de saisie 10 comme détaillé ci-après. En effet, c'est dans cette zone que la déformation par flexion est la plus importante. En variante, lesdits moyens de mesure peuvent être répartis sur chacune des deux portions de la lame flexible 3 définies entre l'organe de sollicitation 2 et une extrémité de lame flexible reliée au corps de saisie 10.
Ladite au moins une jauge de contrainte est encore appelée jauge d'extensométrie. La ou chaque jauge de contrainte forme un moyen de conversion de la déformation par flexion subie par la lame, et donc de la rotation relative entre corps de saisie et organe de sollicitation, en signaux électriques que peuvent acquérir les moyens de calcul.
En particulier, lesdits moyens de calcul connectés à ladite au moins une jauge de contrainte acquièrent une valeur de résistance variable en fonction de la déformation par flexion de la lame. Lesdits moyens de calcul peuvent être positionnés dans ou sur le corps de saisie.
Le corps de sa is ie 1 0 est u n corps an n u la ire, par exem ple de forme ellipsoïdale. L'axe de rotation ROT1 du corps de saisie est orthogonal au plan moyen dudit corps de saisie.
L'élément flexible 3 s'étend à l'intérieur de l'espace délimité par ledit corps de saisie 10 annulaire. Les extrémités opposées 3A, 3B de l'élément flexible 3 sont rel iées à deux points distincts du corps de saisie 1 0 annulaire, de préférence en deux points diamétralement opposés. L'organe de sollicitation 2 est fixé sur l'élément flexible 3 entre et à écartement des deux extrémités 3A,
3B de l'élément flexible 3, de préférence dans la zone médiane de la longueur dudit élément flexible 3.
L'élément flexible 3 présente un axe longitudinal A3 orthogonal à son axe de flexion. Lesdits moyens de mesure sont situés, dans l'exemple illustré aux figures 9 à 1 1 , entre l'organe de sollicitation 2 et l'une 3B des extrémités 3A, 3B de l'élément flexible reliée audit corps de saisie, de préférence au milieu de la longueur entre l'organe de sollicitation 2 et ladite extrémité 3B dudit élément flexible 3.
L'élément flexible 3 porte l'organe de sollicitation 2 entre ses deux extrémités 3A, 3B, de préférence au niveau de la moitié de la longueur dudit élément flexible 3. Les extrémités opposées de l'élément flexible 3 sont reliées au corps de saisie 1 0 en des points ou zones opposées du corps de saisie. Au moins une, de préférence chaque, extrémité 3A, 3B de l'élément allongé flexible, écartée de l'organe de sollicitation 2, est couplée au corps de saisie 10 de manière à, d'une part, laisser audit élément flexible 3 un jeu axial par rapport audit corps de saisie 10 (c'est-à-dire suivant l'axe longitudinal de l'élément flexible à l'état non fléchi dudit élément) pour absorber les variations de distance entre les deux extrémités 3A, 3B de l'élément flexible 3 au cours de sa flexion, et, d'autre part, à empêcher le déplacement de ladite au moins une extrémité 3A, 3B selon une d irection transversale à l'axe dud it élément flexible 3. Lad ite direction transversale à l'axe est prise à l'état non soll icité dud it élément flexible 3, pour permettre audit élément de fléchir lorsque le corps de saisie 10 est tourné par l'opérateur autour dudit axe de rotation ROT1 .
Ainsi, on peut prévoir que l'une des extrémités 3A, 3B ou chaque extrémité 3A, 3B de l'élément flexible soit logée dans une fente, ménagée dans le corps de saisie, dont les flancs prennent en sandwich les parties latérales de la portion d'extrémité 3A, 3B de l'élément flexible logée dans ladite fente, tandis que
ladite portion d'extrémité 3A, 3B de l'élément flexible est apte à s'enfoncer plus ou moins à l'intérieur de la fente en fonction de sa déformation par flexion.
L'axe longitudinal A3 de la lame flexible 3 est sensiblement coplanaire avec l'axe de rotation ROT1 du corps de saisie 10 défini par l'axe qui est compris dans le plan médian passant par lesdits éléments d'appui 21 , 22 destinés à chevaucher la corde 9 et qui est perpendiculaire à l'axe du passage de corde délimité entre les deux éléments d'appui 21 , 22. L'axe longitudinal A3 de la lame s'étend sensiblement orthogonalement à l'axe de rotation ROT1 du corps de saisie ou de l'organe de sollicitation 2. Dans l'exemple illustré aux figures 9 à 1 1 , le plan moyen de la lame est sensiblement confondu avec le plan moyen qui passe par les axes longitudinaux des deux plots 21 , 22.
En position neutre, la ou chaque jauge de contrainte n'est soumise à aucune contrainte de déformation. La ou chaque jauge de contrainte peut suivre la flexion de l'élément flexible dans un sens et dans l'autre, de manière à se déformer dans un sens de flexion de l'élément flexible et dans l'autre pour suivre la flexion dudit élément flexible. Avantageusement, ledit tensiomètre comprend des moyens d'initialisation des moyens de calcul.
La présente invention n'est nullement limitée aux modes de réalisation décrits et représentés, mais l'homme du métier saura y apporter toute variante conforme à son esprit.
Claims
1 . Tensiomètre (1 ) individuel pour la mesure de tension d'une corde (9) de raquette, ledit tensiomètre comprenant :
- un corps, dit corps de saisie (10), apte à être saisi manuellement,
- un organe de sollicitation (2) de la corde (9) par déformation de ladite corde, ledit organe de sollicitation (2) comprenant au moins deux éléments d'appui (21 , 22) écartés l'un de l'autre, tels que plots ou doigts, positionnables de part et d'autre d'une corde (9) individuelle,
ledit corps de saisie (1 0) et ledit organe de sollicitation (2) étant déplaçables l 'u n par à l'autre rapport sensiblement selon u n mouvement relatif de pivotement,
- des moyens de rappel élastiquement déformables (3) reliés au corps de saisie (1 0) et à l'organe de sollicitation (2) de la corde, et configurés pour rappeler le corps de saisie (10) et l'organe de sollicitation (2) l'un par rapport à l'autre dans une position angulaire donnée, dite position neutre,
- des moyens de mesure d'une grandeur représentative de la rotation relative entre le corps de saisie (10) et l'organe de sollicitation (2),
- des moyens de calcul de la tension de la corde en fonction de ladite grandeur mesurée,
caractérisé en ce que le corps de saisie (1 0) et l'organe de sollicitation (2) présentent l'un par rapport à l'autre deux possibilités de pivotement par rapport à ladite position neutre, à savoir une première possibilité de pivotement suivant un prem ier sens et une deuxième possibil ité de pivotement su ivant un deuxième sens opposé au premier sens.
2. Tensiomètre (1 ) selon la revendication 1 , caractérisé en ce que lesdits moyens de mesure comprennent des premiers moyens de mesure d'une grandeur représentative de la rotation relative entre le corps de saisie (10) et l'organe de sollicitation (2) suivant ledit premier sens par rapport à ladite position neutre, et des deuxièmes moyens de mesure d'une grandeur représentative de la rotation relative entre le corps de saisie (10) et l'organe de sollicitation (2) suivant ledit deuxième sens par rapport à ladite position neutre.
3. Tensiomètre (1 ) selon l'une des revendications précédentes, caractérisé en ce que lesdits moyens de rappel (3) présentent une première possibilité de déformation dans un sens correspondant audit premier sens de pivotement du corps de saisie (10) par rapport à l'organe de sollicitation (2) et une deuxième possibilité de déformation dans un sens correspondant audit deuxième sens de pivotement du corps de saisie (10) par rapport à l'organe de sollicitation (2).
4. Tensiomètre (1 ) selon l'une des revendications précédentes, caractérisé en ce que le corps de saisie (10) et l'organe de sollicitation (2) présentent l'un par rapport à l'autre, de chaque côté de la position neutre, u ne cou rse de déplacement angulaire au moins égale à 10 °.
5. Tensiomètre (1 ) selon l'une des revendications précédentes, caractérisé en ce que, à l'état positionné des deux éléments d'appui (21 , 22) dudit organe de sollicitation (2) de part et d'autre de la corde, lesdits moyens de rappel (3) et l'organe de sollicitation (2) sont agencés de telle sorte que le plan médian passant par lesdits éléments d'appui (21 , 22) chevauchant la corde, forme, en position neutre, un plan de symétrie pour lesdits moyens de rappel (3) et/ou un plan dans lequel s'étendent lesdits moyens de rappel (3).
6. Tensiomètre (1 ) selon l'une des revendications précédentes, caractérisé en ce que, lorsque le corps de saisie (1 0) pivote relativement à l'organe de sollicitation (2), dans un sens, d'un angle donné par rapport à la position neutre, lesdits moyens de rappel présentent, en valeur absolue, une course de déformation sensiblement identique à celle qu'ils présentent lorsque le corps de saisie (10) pivote relativement à l'organe de sollicitation (2), dudit angle donné par rapport à la position neutre, dans l'autre sens.
7. Tensiomètre (1 ) selon l'une des revendications précédentes, caractérisé en ce que lesdits moyens de mesure comprennent un potentiomètre linéaire présentant une résistance linéaire variable (50) et un organe de réglage (51 ) de ladite résistance, appelé curseur, ledit curseur étant mobile le long d'au moins une partie de ladite résistance linéaire variable (50), ladite résistance linéaire variable (50) et ledit curseur (51 ) étant couplés l'un au corps de saisie (10) et l'autre à l'organe de sollicitation (2).
8. Tensiomètre (1 ) selon l'une des revendications précédentes, caractérisé en ce que ledit tensiomètre comprend des moyens d'activation et de désactivation (27, 72) aptes à commander l'activation et la désactivation desdits moyens de calcul en fonction de l'angle de pivotement relatif entre le corps de saisie (10) et l'organe de sollicitation (2).
9. Tensiomètre (1 ) selon l'une des revendications précédentes, caractérisé en ce que ledit organe de sollicitation (2) comprend un bras (24) monté pivotant par rapport au corps de saisie et en ce que lesdits moyens de rappel (3) comprennent deux ressorts (31 , 32) hélicoïdaux, éventuellement formés d'une seule pièce, qui s'étendent de part et d'autre de l'axe du bras, de préférence à, ou au voisinage de, l'extrémité libre (23) dudit bras.
1 0. Tensiomètre (1 ) selon la revend ication 9 prise en combinaison de la revendication 7, caractérisé en ce que ledit bras (24) comprend des moyens de couplage au curseur (51 ) du potentiomètre, lesdits moyens de couplage étant configurés de manière à entraîner en déplacement le curseur (51 ) dans le sens de pivotement du bras tout en laissant libre le curseur (51 ) de se déplacer sur une course donnée suivant l'axe dudit bras.
1 1 . Tensiomètre (1 ) selon l'une des revendications 1 à 6, caractérisé en ce que lesd its moyens de mesure comprennent un potentiomètre rotatif (1 6) q u i comporte une résistance variable et un axe de commande (57) rotatif permettant de faire varier la valeur de ladite résistance, ladite résistance variable et l'axe de com mande (57) étant couplés l'une à l 'organe de sollicitation (2) et l'autre au corps de saisie (10).
12. Tensiomètre (1 ) selon la revendication 1 1 , caractérisé en ce que lesdits moyens de rappel (3) comprennent une partie reliée au corps de saisie (10) en deux points opposés par rapport à l'axe de rotation (ROT1 ) correspondant à la mobil ité de pivotement du corps de saisie (1 0) par rapport à l'organe de sollicitation (2), et une autre partie reliée à l'organe de sollicitation (2) en deux points opposés par rapport audit axe de rotation.
13. Tensiomètre (1 ) selon l'une des revendications 1 à 6, caractérisé en ce que lesdits moyens de rappel (3) comprennent un élément flexible, de préférence une lame flexible, et lesdits moyens de mesure comprennent au moins une jauge de contrainte (35) positionnée sur ledit élément flexible.
14. Tensiomètre (1 ) selon la revendication 13, caractérisé en ce que, ledit élément flexible étant une lame flexible, les extrémités opposées de ladite lame sont reliées à deux points distincts du corps de saisie (10), de préférence en deux points diamétralement opposés par rapport à l'axe de rotation (ROT1 ) correspondant à la mobilité de pivotement du corps de saisie par rapport à l'organe de sollicitation.
15. Tensiomètre (1 ) selon l'une des revendications précédentes, caractérisé en ce que le tensiomètre est équipé de moyens de détection (6) de la corde configurés pour émettre, lorsqu'ils se situent au droit de ladite corde, un signal de commande de mémorisation de ladite grandeur mesurée par lesdits moyens de mesure.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1000919A FR2956981B1 (fr) | 2010-03-08 | 2010-03-08 | Tensiometre individuel pour la mesure de tension d'une corde |
FR1052994A FR2956982B1 (fr) | 2010-04-20 | 2010-04-20 | Tensiometre individuel pour la mesure de tension d'une corde |
PCT/FR2011/050449 WO2011110777A2 (fr) | 2010-03-08 | 2011-03-03 | Tensiomètre individuel pour la mesure de tension d'une corde |
FR1151730A FR2956983B1 (fr) | 2010-03-08 | 2011-03-03 | Tensiometre individuel pour la mesure de tension d'une corde |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2544779A2 true EP2544779A2 (fr) | 2013-01-16 |
Family
ID=44501525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11713847A Withdrawn EP2544779A2 (fr) | 2010-03-08 | 2011-03-03 | Tensiomètre individuel pour la mesure de tension d'une corde |
Country Status (4)
Country | Link |
---|---|
US (1) | US8955398B2 (fr) |
EP (1) | EP2544779A2 (fr) |
FR (1) | FR2956983B1 (fr) |
WO (1) | WO2011110777A2 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012017318B3 (de) * | 2012-09-03 | 2013-11-07 | Thyssenkrupp Presta Aktiengesellschaft | Verfahren zur Messung einer Riemenspannung |
DE102012017317B3 (de) * | 2012-09-03 | 2013-11-28 | Thyssenkrupp Presta Aktiengesellschaft | Verfahren zur Einstellung der Riemenspannung in einem Lenkgetriebe |
US11607589B1 (en) * | 2020-10-01 | 2023-03-21 | Mark E. Van Denend | Device for accurately measuring string bed stiffness in a racket |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2249839A (en) * | 1938-09-08 | 1941-07-22 | Westinghouse Electric & Mfg Co | Tensiometer control system |
US3831442A (en) | 1973-01-03 | 1974-08-27 | Thurman Mfg Co | String tension measuring device |
US3879999A (en) * | 1973-05-02 | 1975-04-29 | Erwin J Saxl | Tension meters |
US4309910A (en) * | 1979-12-31 | 1982-01-12 | Walker Jr Frank A | String tension tester |
DE3532767A1 (de) * | 1985-09-13 | 1987-03-19 | Hermann Dipl Ing Hinrichsmeyer | Verfahren und vorrichtung zur ermittlung der spannkraft der einzelnen saiten von bespannten ballschlaegern, insbesondere tennisschlaegern |
US5461929A (en) * | 1994-09-07 | 1995-10-31 | Jordan; Donald J. | Tensiometer |
US5481926A (en) | 1994-12-09 | 1996-01-09 | Manson; Darryl D. | Tension tester of tennis racquet string |
DE19521517C1 (de) | 1995-06-13 | 1996-10-24 | Julius Moench | Verfahren und Vorrichtung zum Bespannen eines Schlägers mit Saiten |
TW494782U (en) * | 2001-08-03 | 2002-07-11 | Elding Ind Co Ltd | Control device for racket threading machine |
US7531731B2 (en) * | 2006-06-09 | 2009-05-12 | Donald Longo | Tremolo-limiter |
US7938747B2 (en) * | 2008-02-21 | 2011-05-10 | Brett Bothwell | Game racket including a pivot element |
-
2011
- 2011-03-03 FR FR1151730A patent/FR2956983B1/fr active Active
- 2011-03-03 WO PCT/FR2011/050449 patent/WO2011110777A2/fr active Application Filing
- 2011-03-03 US US13/578,692 patent/US8955398B2/en not_active Expired - Fee Related
- 2011-03-03 EP EP11713847A patent/EP2544779A2/fr not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO2011110777A3 * |
Also Published As
Publication number | Publication date |
---|---|
US20120312101A1 (en) | 2012-12-13 |
US8955398B2 (en) | 2015-02-17 |
FR2956983B1 (fr) | 2013-11-01 |
WO2011110777A4 (fr) | 2012-05-03 |
FR2956983A1 (fr) | 2011-09-09 |
WO2011110777A2 (fr) | 2011-09-15 |
WO2011110777A3 (fr) | 2012-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR3017814A3 (fr) | Cle dynamometrique a couple rapidement ajustable | |
CA2734418A1 (fr) | Outil electroportatif muni d'un dispositif permettant de determiner la position relative entre deux organes dudit outil dont l'un au moins est mobile | |
CA2796330C (fr) | Appareil de mesure comportant un bras a verrouillage indexe | |
EP1666833B1 (fr) | Tête de mesure orientable motorisée | |
EP2544779A2 (fr) | Tensiomètre individuel pour la mesure de tension d'une corde | |
FR2865442A1 (fr) | Dispositif de detection de force d'enfoncement de pedale | |
EP1591206A2 (fr) | Outil, notamment clé, dynamométrique et procédé de détection de rupture d'équilibre lors d'un serrage au couple | |
EP1617171B1 (fr) | Palpeur pour mesures tridimensionnelles | |
EP2858896A1 (fr) | Minimanche de pilotage d'un aeronef | |
EP0236371B1 (fr) | Micrometre a affichage numerique | |
EP0229801A1 (fr) | Nouvelle cle de serrage dynamometrique du type a elements deformants de flexion. | |
EP0208820A1 (fr) | Manomètre à capsule fermée par une membrane élastique | |
EP2659835A1 (fr) | Dispositif pour quantifier l'indépendance des doigts | |
FR2879018A1 (fr) | Actionneur multidirectionnel a effort de rappel variable | |
EP2068211B1 (fr) | Dispositif de commande de chronographe | |
EP1672309A1 (fr) | Tête de mesure orientable motorisée | |
EP2339410A1 (fr) | Dispositif dynamométrique indicateur de réserve de couple de barillet de pièce d'horlogerie | |
FR2956982A1 (fr) | Tensiometre individuel pour la mesure de tension d'une corde | |
FR2956981A1 (fr) | Tensiometre individuel pour la mesure de tension d'une corde | |
FR2985310A3 (fr) | Jauge de pression | |
CH638305A5 (fr) | Comparateur a touche pivotante. | |
EP0928409B1 (fr) | Dispositif de controle de la position de points sur une piece, notamment de la position de centres de trous realises dans une piece, en particulier une tole | |
EP0802404B1 (fr) | Capteur de force ajustable | |
EP1517118B1 (fr) | Organe de manoeuvre | |
FR2776376A1 (fr) | Appareil pour mesurer de maniere precise et directe l'inclinaison d'un plan par rapport a un autre plan |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120827 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20161001 |