EP2542561A1 - Polyhedrale oligomere silsesquioxan (poss)-verbundene liganden und deren verwendung - Google Patents

Polyhedrale oligomere silsesquioxan (poss)-verbundene liganden und deren verwendung

Info

Publication number
EP2542561A1
EP2542561A1 EP11705890A EP11705890A EP2542561A1 EP 2542561 A1 EP2542561 A1 EP 2542561A1 EP 11705890 A EP11705890 A EP 11705890A EP 11705890 A EP11705890 A EP 11705890A EP 2542561 A1 EP2542561 A1 EP 2542561A1
Authority
EP
European Patent Office
Prior art keywords
olefin
hydroformylation
catalytically active
group
aryl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11705890A
Other languages
English (en)
French (fr)
Inventor
Andrea Christiansen
Robert Franke
Dieter Hess
Dirk Fridag
Dieter Vogt
Christian Müller
Michèle Janssen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Oxeno GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Oxeno GmbH and Co KG filed Critical Evonik Oxeno GmbH and Co KG
Priority to EP11705890A priority Critical patent/EP2542561A1/de
Publication of EP2542561A1 publication Critical patent/EP2542561A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/123Organometallic polymers, e.g. comprising C-Si bonds in the main chain or in subunits grafted to the main chain
    • B01J31/124Silicones or siloxanes or comprising such units
    • B01J31/125Cyclic siloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/165Polymer immobilised coordination complexes, e.g. organometallic complexes
    • B01J31/1658Polymer immobilised coordination complexes, e.g. organometallic complexes immobilised by covalent linkages, i.e. pendant complexes with optional linking groups, e.g. on Wang or Merrifield resins
    • B01J31/1683Polymer immobilised coordination complexes, e.g. organometallic complexes immobilised by covalent linkages, i.e. pendant complexes with optional linking groups, e.g. on Wang or Merrifield resins the linkage being to a soluble polymer, e.g. PEG or dendrimer, i.e. molecular weight enlarged complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • B01J31/4015Regeneration or reactivation of catalysts containing metals
    • B01J31/4061Regeneration or reactivation of catalysts containing metals involving membrane separation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0073Rhodium compounds
    • C07F15/008Rhodium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5022Aromatic phosphines (P-C aromatic linkage)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/321Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the hydroformylation of olefins and olefin-containing mixtures is a research topic of the chemical industry.
  • a permanent problem in the case of catalytic hydroformylation is the maintenance of the activity and the selectivity of the catalytically active compositions used in each case in comparison with the olefins to be hydroformylated and olefin-containing mixtures under the reaction conditions.
  • transition metal-containing, catalytically active compositions it is an object of research to at least significantly limit the inhibition of the catalytic activity, the formation of transition metal clusters and the failure of the transition metal itself.
  • the present invention provides a contribution to this problem by providing a way in which, while avoiding thermal stress on the reaction mixture, the desired target products can be easily separated from the catalytically active composition while retaining its catalytic activity.
  • An object of the present invention are POSS-modified ligands, wherein POSS are understood as meaning polyhedral oligomers silsesquioxane derivatives.
  • the polyhedral oligomers silsesquioxane derivatives used are reacted with per se known ligand precursors.
  • the resulting POSS-modified ligands have dramatically increased molecular weight compared to unmodified ligands.
  • triphenylphosphine for example, alkylphenyl-substituted, in particular an ethylphenyl-substituted, POSS-substituted triphenylphosphine derivative are prepared: Si 8
  • Another object of the present invention in the hydroformylation of olefins and olefin-containing mixtures catalytically active, transition metal-containing compositions obtainable by reacting the POSS-modified ligands with suitable transition metal precursors.
  • Characteristic of these novel transition-metal complexes prepared in the catalytically active compositions with POSS-modified ligands is that the activity and selectivity for the non-POSS-modified transition metal complexes are maintained.
  • the catalytically active compositions according to the invention are completely separable from the reaction mixture by means of organic nanofiltration and can be recycled to the hydroformylation reaction.
  • the previously described POSS-substituted triphenylphosphine is reacted with a rhodium-containing, suitable transition metal precursor, such as e.g. B. [Rh (acac) (CO) 2], converted to the catalytically active composition.
  • a rhodium-containing, suitable transition metal precursor such as e.g. B. [Rh (acac) (CO) 2]
  • Another object of the present invention is the use of POSS-modified ligands in catalytically active compositions in the hydroformylation of olefins and olefin-containing mixtures.
  • the above-described POSS-substituted triphenylphosphine is reacted with a rhodium-containing, suitable transition metal precursor, such as e.g. [Rh (acac) (CO) 2], converted to the catalytically active composition which in the hydroformylation of olefins, such.
  • a rhodium-containing, suitable transition metal precursor such as e.g. [Rh (acac) (CO) 2]
  • Example 1 Hydroformylation of 1-octene in a continuously operated membrane reactor
  • the hydroformylation experiments were carried out in a continuously operated pilot plant; s. Plant sketch.
  • This pilot plant consisted of a reaction part and a membrane part.
  • the reaction section comprised a 100 mL autoclave b with a circulation pump c.
  • the autoclave b was equipped with a pressure hold A for the synthesis gas. By this pressure A During the reaction, the synthesis gas pressure was kept constant throughout the system.
  • the synthesis gas uptake of the system was determined by a flow measurement C.
  • the reactor was equipped with a pressure burette a, which could be charged with syngas and thus allowed a dosage of the educt and catalyst solutions under reaction conditions.
  • the autoclave b was also equipped with a level control B.
  • the Eduktpumpe e was controlled, which then pumped from a template h Edukthus comprising the olefin-containing mixture, optionally solvent, in the autoclave b, so as to keep the state constant in the autoclave.
  • This educt template h was covered with argon to avoid contact with air.
  • the necessary turbulence in the autoclave was generated by the circulation pump c, which was specially designed for this application.
  • the pump c built a loop of the reaction solution through a nozzle in the head of the autoclave b and thus provided for a corresponding gas / liquid exchange.
  • the synthesis gas and the educt were also metered into the nozzle.
  • a cross-flow chamber f was also installed.
  • the cross flow chamber f separates the reaction part from the membrane part of the plant.
  • the cross-flow chamber f ensures the mixing of the membrane circulation with the reactor discharge and ensured that the free gas fraction in the outlet of the reactor could not get into the membrane part, but was returned to the reaction cycle.
  • the membrane part consisted of a pressure tube containing a ceramic membrane j of 200mm length with a specific filter area of 0.0217m2 / m and a cut-off of 450D, and a circulation pump g which created a loop across the membrane.
  • the connection to the reaction part was realized via the already described cross flow chamber f.
  • the permeate flow through the membrane j was realized by a pressure maintenance F on the permeate side.
  • a pressure maintenance F on the permeate side.
  • the preparation of the catalyst solution was carried out under an argon atmosphere. Subsequently, a differential pressure TMP of 0.35 MPa was set on the membrane j via the permeate pressure control F in order to remove the generated product i, aldehydes, from the system.
  • Example 2 Hydroformylation of 1-Butene in a Continuously Operated Membrane Reactor The hydroformylation experiments were carried out in a continuously operated pilot plant; s. Plant sketch. This pilot plant consisted of a reaction part and a membrane part.
  • the reaction section comprised a 1 00 mL autoclave b with a circulation pump c.
  • the autoclave b was with a Pressure maintenance A equipped for the synthesis gas. Through this pressure A, the synthesis gas pressure was kept constant during the reaction throughout the system.
  • the synthesis gas uptake of the system was determined by a flow measurement C.
  • the reactor was equipped with a pressure burette a, which could be charged with syngas and thus allowed a dosage of the educt and catalyst solutions under reaction conditions.
  • the autoclave b was also equipped with a level control B.
  • the Eduktpumpe e was controlled, which then pumped from a template h Eduktsignificant comprising the olefin-containing mixture, optionally solvent, in the autoclave b, so as to keep the state constant in the autoclave.
  • This educt template h was covered with argon to avoid contact with air.
  • the necessary turbulence in the autoclave was generated by the circulation pump c, which was specially designed for this application.
  • the pump c built a loop of the reaction solution through a nozzle in the head of the autoclave b and thus provided for a corresponding gas / liquid exchange.
  • the synthesis gas and the educt were also metered into the nozzle.
  • a cross-flow chamber f was also installed.
  • the cross flow chamber f separates the reaction part from the membrane part of the plant.
  • the cross-flow chamber f ensures the mixing of the membrane circulation with the reactor discharge and ensured that the free gas fraction in the outlet of the reactor could not get into the membrane part, but was returned to the reaction cycle.
  • the membrane part consisted of a pressure tube which contained a ceramic membrane j of 200 mm length with a specific filter area of 0.0217 m 2 / m and a cut-off of 450 D, and a circulation pump g which generated a circulation across the membrane.
  • the connection to the reaction part was realized via the already described cross flow chamber f.
  • the permeate flow through the membrane j was realized by a pressure maintenance F on the permeate side.
  • a pressure maintenance F on the permeate side.
  • the preparation of the catalyst solution was carried out under an argon atmosphere. Subsequently, a differential pressure of 0.30 MPa was set on the membrane j via the permeate pressure control F in order to remove the generated product i, aldehydes, from the system.
  • Raffinates such as. As raffinate I, raffinate II, but also mixtures containing olefins having 3 to 20 carbon atoms used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

Gegenstand der vorliegenden Erfindung sind POSS-modifizierte Liganden und deren Verwendung in katalytisch wirksamen Zusammensetzungen in der Hydroformylierung.

Description

Polyhedrale Oligomere Silsesquioxan (POSS)-verbundene Liganden und deren Verwendung
Die Hydroformylierung von Olefinen und olefinhaltigen Gemischen sind ein Forschungsgegenstand der chemischen Industrie. Eine dauerhafte Problemstellung ist bei der katalytischen Hydroformylierung der Erhalt der Aktivität und der Selektivität der jeweils verwendeten katalytisch wirksamen Zusammensetzungen gegenüber den zu hydroformylierenden Olefinen und olefinhaltigen Gemischen unter den Reaktionsbedingungen. Insbesondere bei Übergangsmetallhaltigen, katalytisch wirksamen Zusammensetzungen ist es ein Ziel der Forschung die Inhibie- rung der katalytischen Wirkung, die Bildung von Übergangsmetall-Clustern und den Ausfall des Übergangsmetalls selbst zu verhindern, zumindest deutlich einzuschränken. Die vorliegende Erfindung liefert einen Beitrag zu dieser Problemstellung, indem sie einen Weg aufzeigt, wie unter Vermeidung von thermischer Belastung des Reaktionsgemisches auf einfache Weise die gewünschten Zielpro- dukte abgetrennt werden von der katalytisch wirksamen Zusammensetzung, wobei dessen katalytische Aktivität erhalten bleibt.
Ein Gegenstand der vorliegenden Erfindung sind POSS-modifizierte Liganden, wobei unter POSS Polyhedrale Oligomere Silsesquioxan-Derivate verstanden werden. Die verwendeten Polyhedralen Oligomeren Silsesquioxan-Derivate wer- den mit an sich bekannten Ligandenvorstufen umgesetzt. Die daraus resultierenden POSS-modifizierten Liganden weisen ein drastisch erhöhtes Molekulargewicht im Vergleich zu unmodifizierten Liganden auf. In einer Ausführungsform der Erfindung werden auf Basis von Triorganophosphinen, wie Triphenylphosphin beispielsweise Alkylphenyl-substituierte, insbesondere ein Ethylphenyl-substituiertes, mit POSS substituiertes Triphenylphosphinderivat hergestellt: Si8
Herstellung von POSS-substituierten Triphenylphosphin
4-Bromophenylethyl-POSS (1 1 g, 10.92 mmol) wird gelöst in 100 mL THF und auf -78°C gekühlt. n-BuLi (2.5 M in hexanes, 4.8 mL, 12 mmol) wird tropfenweise zugefügt und die Reaktionsmischung wird bei dieser Temperatur 1 h gerührt. PCI3 (0.5 g, 3.64 mmol) wird tropfenweise hinzugegeben. Man lässt die Reaktionsmischung auf Raumtemperatur erwärmen und rührt über Nacht. Das Lösungsmittel wird im Vakuum entfernt. Das Reaktionsprodukt wird aus dem verbleibenden Feststoff mit Toluol/Hexan (1 :1 , 1 50 mL) extrahiert und mit entgastem Wasser gewaschen. Die organische Phase wird über MgSO4 getrocknet. Die Lösungsmittel werden im Vakuum entfernt. Das Produkt wird erhalten als ein weißer Feststoff in 78% Ausbeute (8 g, 2.84 mmol).
1 H NMR δ (ppm): 7.24 (dd, J = 12.4 Hz, J = 14.4 Hz, 12H), 2.69 (m. 6H), 1 .87 (sept, J = 6.7 Hz, 7H), 0.97 (d, J = 6.6 Hz, 42H), 0.62 (d, J = 7 Hz, 14H)
13C NMR δ (ppm): 145.15, 133.83, 127.94, 125.61 , 28.97, 25.70, 23.88, 22.53, 14.07
31 P NMR δ (ppm): - 7.76 (s)
Maldi-Tof: m/z = 2809.07 (M+Na) Elementaranalyse: berechnet (gefunden): C 46.45 (46.54), H 7.69 (7.77)
Ein weiterer Gegenstand der vorliegenden Erfindung sind in der Hydroformylie- rung von Olefinen und olefinhaltigen Gemischen katalytisch wirksame, Übergangsmetallhaltige Zusammensetzungen, die durch Umsetzung der POSS- modifizierten Liganden mit geeigneten Übergangsmetallvorstufen erhältlich sind. Kennzeichnend für diese neuartigen, mit POSS-modifizierten Liganden hergestellten Übergangsmetallkomplexe in den katalytisch wirksamen Zusammensetzungen ist, dass d ie Aktivität sowie Selektivität gegenü ber den n icht m it POSS- modifizierten Übergangsmetallkomplexen erhalten bleibt. Zugleich sind die erfin- dungsgemäßen, katalytisch wirksamen Zusammensetzungen vollständig aus dem Reaktionsgemisch mittels organischer Nanofiltration abtrennbar und können in die Hydroformylierungsreaktion zurückgeführt werden. In einer Ausführungsform der Erfindung wird das zuvor beschriebene POSS-substituierte Triphenylphoshin mit einer Rhodiumhaitigen, geeigneten Übergangsmetallvorstufe, wie z. B. [Rh(acac)(CO)2] , zu der katalytisch wirksamen Zusammensetzung umgesetzt.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung von POSS-modifizierten Liganden in katalytisch wirksamen Zusammensetzungen in der Hydroformylierung von Olefinen und olefinhaltigen Gemischen. In einer Aus- führungsform der Erfindung wird das zuvor beschriebene POSS-substituierte Triphenylphosphin mit einer Rhodiumhaitigen, geeigneten Übergangsmetallvorstufe, wie z.B. [Rh(acac)(CO)2] , zu der katalytisch wirksamen Zusammensetzung umgesetzt, welche in der Hydroformylierung von Olefinen, wie z. B. 1 -Okten, eingesetzt wird:
Beispiel 1 : Hydroformylierung von 1 -Okten in einem kontinuierlich betriebenen Membranreaktor
Die Hydroformylierungsversuche wurden in einer kontinuierlich betriebenen Versuchsanlage durchgeführt; s. Anlagenskizze. Diese Versuchsanlage bestand aus einem Reaktionsteil und einem Membranteil. Der Reaktionsteil umfasste einen 100 mL Autoklaven b mit einer Kreislaufpumpe c. Der Autoklav b war mit einer Druckhaltung A für das Synthesegas ausgestattet. Durch diese Druckhaltung A wurde der Synthesegasdruck während der Reaktion im gesamten System konstant gehalten. Die Synthesegasaufnahme des Systems wurde mit einer Durchflussmessung C bestimmt. Für die Dosierung von Edukt- und Katalysatorlösungen vor Reaktionsstart war der Reaktor mit einer Druckbürette a ausgestattet, die mit Synthesegas beaufschlagt werden konnte und so eine Dosierung der Edukt- und Katalysatorlösungen unter Reaktionsbedingungen erlaubte. Der Autoklav b war zusätzlich mit einer Standregelung B ausgestattet. Durch diese Standregelung B wurde die Eduktpumpe e angesteuert, die dann aus einer Vorlage h Eduktlösung, umfassend das olefinhaltige Gemisch, optional Lösungsmittel, in den Autoklaven b pumpte, um so den Stand im Autoklaven konstant zu halten. Diese Eduktvorlage h war mit Argon überdeckt, um einen Kontakt mit Luft zu vermeiden. Die nötige Turbulenz in dem Autoklaven wurde durch die Kreislaufpumpe c, die eigens für diesen Anwendungsfall konstruiert wurde, erzeugt. Die Pumpe c baute einen Kreislauf der Reaktionslösung über eine Düse im Kopf des Autoklaven b auf und sorgte somit für einen entsprechenden Gas/Flüssigaustausch. Das Synthesegas und das Edukt wurden ebenfalls in die Düse eindosiert.
In diesem Kreislauf war ebenfalls eine Kreuzstromkammer f eingebaut. Die Kreuzstromkammer f trennt den Reaktionsteil von dem Membranteil der Anlage.
Die Kreuzstromkammer f sorgt für die Vermischung des Membrankreislaufes mit dem Reaktoraustrag und stellte sicher, dass der freie Gasanteil im Ausgang des Reaktors nicht in den Membranteil gelangen konnte, sondern wieder in den Reaktionskreislauf zurückgeführt wurde.
Der Membranteil bestand aus einem Druckrohr, welches eine keramische Membran j von 200mm Länge mit einer spezifischen Filterfläche von 0,0217m2/m und einen Cut-Off von 450D, beinhaltete und einer Kreislaufpumpe g, die einen Kreislauf über die Membran erzeugte. Die Verbindung zum Reaktionsteil wurde über die schon beschriebene Kreuzstromkammer f realisiert.
Der Permeatfluss durch die Membran j wurde durch eine Druckhaltung F auf der Permeatseite realisiert. Durch diese Regeleinrichtung war es möglich eine Druck- differenz über der Membranfläche aufzubauen und somit einen Produktfluss i an Aldehyden zu erzeugen. Vor dem Start wurde das Reaktionssystem fünfmal mit 2,0 MPa Synthesegas CO/H2 (1 :1 ) aufgedrückt und entspannt. Danach wurde die Eduktlosung (1 .9 M 1 - Okten in Toluol) mittels HPLC Pumpe aus der beschriebenen Eduktvorlage h in die Versuchsanlage b, bis auf 90% des angestrebten Füllstandniveaus, überführt. Nach in Betriebnahme des Reaktorkreislaufes, wurde der Reaktionsteil auf 80°C erhitzt und ein Druck von 2,0 MPa CO/H2 (1 :1 ) eingestellt. Das Reaktionssystem wurde über 1 h äquilibriert, bevor die katalytisch wirksame Zusammensetzung, enthaltend 1 5 mg (58 μιτιοΙ) Rh(acac)(CO)2 und 81 5 mg (290 μιτιοΙ) des erfindungsgemäßen POSS-substituierten PPh3, entsprechend einem L:Rh - Verhältnis von 5:1 , in 14 mL Toluol, über die beschriebene Druckbürette a (t =0), unter Reaktionsdruck hinzugegeben wurde. Das Ansetzen der Katalysatorlösung erfolgte unter einer Argonatmosphäre. Anschließend wurde an der Membran j über die Permeatdruckregelung F ein Differenzdruck TMP von 0,35 MPa eingestellt, um das erzeugte Produkt i, Aldehyde, aus dem System zu entfernen. Durch die be- schriebene Standregelung B am Autoklaven, wurde dann die ausgefahrene Menge an Produkt i durch Eduktlosung aus der Vorlage h ersetzt und somit das Füllstandsniveau im Reaktionssystem konstant gehalten. Die Reaktion wurde über einen Zeitraum von 14 Tagen durchgeführt, in dieser Zeit wurden in regelmäßigen Abständen Proben gezogen und analysiert.. Der Umsatz von 1 -Okten und die Regioselektivität (l/b- Verhältnis) wurden mittels GC-Analyse bestimmt. Rh- und P- Rückhalte der Membran wurden über ICP-OES Analytik vom Permeat bestimmt. Sowohl die Rh- als auch die P-Verluste waren sehr gering. Bezogen auf die Gesamtmenge Rhodium und Phosphor lagen diese Verluste bei 0.07%(Rh) bzw. 0.97%(P).
Kontinuierliche Hydroformylierung von 1 -Okten; Spezifikationen
Reaktionsvolumen 220 mL
Reaktionstemperatur 80°C
Reaktionsdruck 2,0 MPa CO/H2 (1 /1 )
[Rh] 0.26 mM
[1 -Okten] 1 .9 M
Lösungsmittel Toluol Kontinuierliche Hydroformylierung von 1 -Okten; Spezifikationen
L:Rh 5:1
Reaktorkreislauf 0,45 l/min
Membrankreislauf 2,27 l/min
Membran Hersteller Inopor
Material= ΤΊΟ2
Länge= 200mm
di=7mm
da=10mm
Porengröße=0.9nm
Filtrationsfläche=0.0217m2/m
cut-off=450D
TMP 0,35 MPa
Permeatfluss 10 g/h
Kontinuierliche Hydroformylierung von 1 -Okten mit POSS-substituierten PPh3 /Rh
Probe Zeit (min) Ausbeute (%) l/b
1 0 0
2 10 0.0
3 20 1 .3
4 30 4.0 2.8
5 40 6.9 2.8
6 50 10.3 2.8
7 60 13.6 2.8
8 70 17.3 2.8
9 80 20.8 2.8
10 90 23.5 2.8
1 1 100 27.4 2.8
12 1 10 30.5 2.8
13 120 34.2 2.8 Probe Zeit (min) Ausbeute (%) l/b
14 140 40.7 2.8
15 160 46.8 2.8
16 180 52.1 2.8
17 240 67.6 2.8
18 300 79.9 2.8
19 360 89.7 2.8
20 420 90.3 2.8
21 1020 95.8 2.5
22 1080 95.7 2.5
23 1 140 95.6 2.5
24 1200 95.7 2.5
25 1260 95.8 2.5
26 1620 96.0 2.5
27 2490 96.3 2.4
28 3030 96.1 2.3
29 3930 96.2 2.3
30 5650 96.4 2.3
31 7050 96.5 2.3
32 8680 96.7 2.3
33 1 1590 96.4 2.4
34 14260 95.2 2.3
35 17450 93.5 2.3
36 19620 90.5 2.3
Beispiel 2: Hydroformylierung von 1 -Buten in einem kontinuierlich betriebenen Membranreaktor Die Hydroformylierungsversuche wurden in einer kontinuierlich betriebenen Versuchsanlage durchgeführt; s. Anlagenskizze. Diese Versuchsanlage bestand aus einem Reaktionsteil und einem Membranteil. Der Reaktionsteil umfasste einen 1 00 mL Autoklaven b mit einer Kreislaufpumpe c. Der Autoklav b war mit einer Druckhaltung A für das Synthesegas ausgestattet. Durch diese Druckhaltung A wurde der Synthesegasdruck während der Reaktion im gesamten System konstant gehalten. Die Synthesegasaufnahme des Systems wurde mit einer Durchflussmessung C bestimmt. Für die Dosierung von Edukt- und Katalysatorlösungen vor Reaktionsstart war der Reaktor mit einer Druckbürette a ausgestattet, die mit Synthesegas beaufschlagt werden konnte und so eine Dosierung der Edukt- und Katalysatorlösungen unter Reaktionsbedingungen erlaubte. Der Autoklav b war zusätzlich mit einer Standregelung B ausgestattet. Durch diese Standregelung B wurde die Eduktpumpe e angesteuert, die dann aus einer Vorlage h Eduktlösung, umfassend das olefinhaltige Gemisch, optional Lösungsmittel, in den Autoklaven b pumpte, um so den Stand im Autoklaven konstant zu halten. Diese Eduktvorlage h war mit Argon überdeckt, um einen Kontakt mit Luft zu vermeiden. Die nötige Turbulenz in dem Autoklaven wurde durch die Kreislaufpumpe c, die eigens für diesen Anwendungsfall konstruiert wurde, erzeugt. Die Pumpe c baute einen Kreislauf der Reaktionslösung über eine Düse im Kopf des Autoklaven b auf und sorgte somit für einen entsprechenden Gas/Flüssigaustausch. Das Synthesegas und das Edukt wurden ebenfalls in die Düse eindosiert.
In diesem Kreislauf war ebenfalls eine Kreuzstromkammer f eingebaut. Die Kreuzstromkammer f trennt den Reaktionsteil von dem Membranteil der Anlage.
Die Kreuzstromkammer f sorgt für die Vermischung des Membrankreislaufes mit dem Reaktoraustrag und stellte sicher, dass der freie Gasanteil im Ausgang des Reaktors nicht in den Membranteil gelangen konnte, sondern wieder in den Reaktionskreislauf zurückgeführt wurde.
Der Membranteil bestand aus einem Druckrohr, welches eine keramische Memb- ran j von 200mm Länge mit einer spezifischen Filterfläche von 0,0217m2/m und einen Cut-Off von 450D, beinhaltete und einer Kreislaufpumpe g, die einen Kreislauf über die Membran erzeugte. Die Verbindung zum Reaktionsteil wurde über die schon beschriebene Kreuzstromkammer f realisiert.
Der Permeatfluss durch die Membran j wurde durch eine Druckhaltung F auf der Permeatseite realisiert. Durch diese Regeleinrichtung war es möglich eine Druckdifferenz über der Membranfläche aufzubauen und somit einen Produktfluss i an Aldehyden zu erzeugen. Vor dem Start wurde das Reaktionssystem fünfmal mit 2,0 MPa Synthesegas CO/H2 (1 :1 ) aufgedrückt und entspannt. Danach wurde die Eduktlösung (1 .9 M 1 - Buten in Toluol) mittels HPLC Pumpe aus der beschriebenen Eduktvorlage h in die Versuchsanlage, bis auf 90% des angestrebten Füllstandniveaus, überführt. Nach in Betriebnahme des Reaktorkreislaufes, wurde der Reaktionsteil auf 80°C erhitzt und ein Druck von 20 bar CO/H2 (1 :1 ) eingestellt. Das Reaktionssystem wurde über 1 h äquilibriert, bevor die katalytisch wirksame Zusammensetzung, enthaltend 1 5 mg (58 μιτιοΙ) Rh(acac)(CO)2 und 81 5 mg (290 μιτιοΙ) des erfin- dungsgemäßen POSS-substituierten PPh3, entsprechend einem L:Rh - Verhältnis von 5:1 , in 14 ml_ Toluol, über die beschriebene Druckbürette a (t =0), unter Reaktionsdruck hinzugegeben wurde. Das Ansetzen der Katalysatorlösung erfolgte unter einer Argonatmosphäre. Anschließend wurde an der Membran j über die Permeatdruckregelung F ein Differenzdruck von 0,30 MPa eingestellt, um das erzeugte Produkt i, Aldehyde, aus dem System zu entfernen. Durch die beschriebene Standregelung B am Autoklaven, wurde dann die ausgefahrene Menge an Produkt i durch Eduktlösung aus der Vorlage h ersetzt und somit das Füllstandsniveau im Reaktionssystem konstant gehalten. Die Reaktion wurde über einen Zeitraum von 14 Tagen durchgeführt, in dieser Zeit wurden in regelmäßigen Abständen Proben gezogen und analysiert. Der Umsatz von 1 -Okten und die Regioselektivität (l/b- Verhältnis) wurden mittels GC-Analyse bestimmt. Rh- und P- Rückhalte der Membran wurden über ICP-OES Analytik vom Permeat bestimmt. Sowohl die Rh- als auch die P-Verluste waren sehr gering . Bezogen auf die Gesamtmenge Rhodium und Phosphor lagen diese Verluste bei 0.08%(Rh) bzw. 0.95%(P).
Kontinuierliche Hydroformylierungsversuche; Reaktor/Reaktionsspezifikationen
Reaktionsvolumen 220 ml_
Reaktionstemperatur 80°C
Reaktionsdruck 2,0 MPa CO/H2 (1 /1 )
[Rh] 0.28 mM Kontinuierliche Hydroformylierungsversuche; Reaktor/Reaktionsspezifikationen
[1 -Buten] 1 .9 M
Lösungsmittel Toluol
L:Rh 5:1
Reaktorlkreislauf 0,45 l/min
Membrankreislauf 2,27 l/min
Membran Hersteller Inopor
Material= TiO2
Länge= 200mm
di=7mm
da=10mm
Porengröße=0.9nm
Filtrationsfläche=0.0217m2/m
cut-off=450D
TMP 0,3 MPa
Permeatfluss 10 g/h
Kontinuierliche Hydroformylierung von 1 -Buten mit POSS-substituierten PPh3 /Rh
Probe Zeit (min) Ausbeute (%) Ϊ75
Ϊ Ö Ö
2 10 0.5
3 20 1 .8
4 30 6.1 2.9
5 40 9.4 3.0
6 50 13.5 3.1
7 60 17.8 3.0
8 90 27.8 3.0
9 120 38.1 2.9
10 180 58.4 3.0
1 1 240 70.7 2.9
12 300 82.4 2.9 Probe Zeit (min) Ausbeute (%) l/b
13 360 85.9 2.9
14 720 92.0 2.8
15 1080 94.3 2.7
16 1200 94.3 2.8
17 1440 94.5 2.7
18 2880 95.6 2.6
19 4320 95.7 2.3
20 5760 95.4 2.4
21 8640 95.3 2.3
22 1 1520 95.8 2.3
23 14400 95.7 2.2
24 17280 95.0 2.4
25 20160 93.7 2.3
26 23040 92.8 2.3
27 25920 91 .8 2.3
28 28800 89.4 2.3
In weiteren Ausführungsformen der Erfindung zu der Verwendung von POSS- modifizierten Liganden in katalytisch wirksamen Zusammensetzungen in der Hydroformylierung werden als olefinhaltige Gemische u. a. Raffinate, wie z. B. Raffinat I, Raffinat II, aber auch Mischungen, die Olefine mit 3 bis 20 Kohlenstoffatomen enthalten, eingesetzt.

Claims

Patentansprüche:
1 . Organische Phosphorhaltige Verbindung, kovalent verbunden mit Polyhedralen Oligomeren Silsesquioxanderivaten gemäß Formel 1
[(R^^SiO^n R2c]m G3 P G1 [ 2a(SiO1 i5)n (R1 a)n-1]k
[(R1bki(Si01.5)n R2 ]i 1 wobei (R1a,b,c)n-i(SiOi,5)nR2a'b'c Polyhedrale Oligomere Silsesquioxanderivate darstellen mit n > 4;
in denen R1a, R1b,R1c jeweils unabhängig ausgewählt sind aus der Gruppe bestehend aus gleichen oder unterschiedlichen, verzweigten oder linearen C1-C20 Alkylketten, Cyclo- alkyl-, C1-C20 Alkoxy-, Aryl-, Aryloxy-, Heteroaryl- und Arylalkylgruppen,
worin k, I, m 0 oder 1 ist, unter der Voraussetzung, dass k+l+m > 1 ,
in denen R2a, R2b, R2c die Verknüpfung zwischen Polyhedralen Oligomeren Silsesquioxanderivaten zu G1 , G2 und/oder G3 darstellen,
wobei R2a, R2b, R2c jeweils unabhängig voneinander ausgewählt sind aus der Grup- pe bestehend aus linearen oder verzweigten C1-C20 Alkylketten, C3-C10 Cycloalkyl-,
Ci-C20 Alkoxy-, C2-C20 Alkenyl-, C2-C20 Alkenyloxy-, Aryloxy-, C C2o Alkylthio-, C C20 Carboxylat-, Aryl or Heteroaryl-, C1-C20 Alkylhalogenid-, anellierten Aryl- oder Heteroaryl-, C3-C10 Cycloalkylgruppen, Ethern, Polyethern, Polythioethern, Aminen, Amiden, Carboxylaten, Aryl-verbrückten Alkylketten, in denen die Arylstruktur weite- re Substituenten aufweisen kann;
wobei G1 , G2 und G3 jeweils gleiche oder verschiedene monovalent mit Phosphor verbundene Einheiten darstellen, ausgewählt aus der Gruppe bestehend aus un- substituierten und/oder substituierten aliphatischen, cycloaliphatischen, heterocyc- loaliphatischen, perfluoralkylierten, aromatischen, heteroaromatischen,
kondensierten aromatischen, kondensierten heteroaromatischen Einheiten.
2. Organische Phosphorhaltige Verbindung nach Anspruch 1 ,
wobei n die Werte von 6 bis 12 annimmt,
in denen R1a, R1b, R1c jeweils gleich und CrC8 Alkylketten, oder Phenylgruppen sind, und worin G1 , G2 und/oder G3 jeweils gleiche oder verschiedene monovalent mit Phosphor verbundene Einheiten darstellen, ausgewählt aus der Gruppe Acyl, Alkyl, Aryl, Heteroaryl, Cycloalkyl.
3. Organische Phosphorhaltige Verbindung nach Anspruch 2, wobei n = 8 ist und R1a, R1b, R1c jeweils gleich und C4 Alkyl ketten sind,
worin R2a, R2b, R2c jeweils gleich und C2-Alkyl ketten sind,
wobei G1 , G2 und G3 gleich und jeweils monovalent mit Phosphor verknüpfte Phe- nylgruppen sind.
4. Katalytisch wirksame Zusammensetzung, enthaltend mindestens eine organische Phosphorhaltige Verbindung gemäß der Ansprüche 1 - 3 und mindestens ein Metall, ausgewählt aus der 8., 9. oder 10. Gruppe des Periodensystems der Elemente.
5. Katalytisch wirksame Zusammensetzung nach Anspruch 4, dadurch gekennzeichnet, dass das Metall ausgewählt ist aus der 9. Gruppe des Periodensystems der Elemente.
6. Katalytisch wirksame Zusammensetzung nach Anspruch 5, dadurch gekennzeichnet, dass das Metall Rhodium ist.
7. Verfahren zur Hydroformylierung von olefinhaltigen Gemischen, enthaltend eine katalytisch wirksame Mischung gemäß der Ansprüche 4 - 6.
8. Verfahren zur Hydroformylierung von olefinhaltigen Gemischen nach Anspruch 7, dadurch gekennzeichnet, dass das olefinhaltige Gemisch Olefine mit 3 bis 20 Kohlenstoffatomen enthält.
9. Verfahren zur Hydroformylierung von olefinhaltigen Gemischen nach Anspruch 8, dadurch gekennzeichnet, dass das olefinhaltige Gemisch ausgewählt ist aus der Gruppe bestehend aus Propen, Raffinat I, Rafffinat II, Raffinat III.
10. Verfahren zur Hydroformylierung von olefinhaltigen Gemischen nach Anspruch 8, dadurch gekennzeichnet, dass das olefinhaltige Gemisch 1 -Buten enthält.
1 1 . Verfahren zur Hydroformylierung von olefinhaltigen Gemischen nach Anspruch 8, dadurch gekennzeichnet, dass das olefinhaltige Gemisch 1 -Okten enthält.
12. Verfahren zur Hydroformylierung von olefinhaltigen Gemischen nach den Ansprüchen 7 - 1 1 , dadurch gekennzeichnet, dass die katalytisch wirksame Zusammensetzung unter Verzicht auf thermische Trennverfahren mittels organischer
Nanofiltration von einem das Produkt enthaltenden Strom abgetrennt wird.
13. Mehrphasiges Reaktionsgemisch, umfassend:
a) ein olefinhaltiges Gemisch nach den Ansprüchen 8 - 1 1 ,
b) ein Gasgemisch enthaltend Kohlenmonoxid, Wasserstoff sowie
c) Aldehyde,
gekennzeichnet durch die Anwesenheit einer katalytisch wirksame Zusammensetzung nach den Ansprüchen 4 -6.
EP11705890A 2010-03-01 2011-03-01 Polyhedrale oligomere silsesquioxan (poss)-verbundene liganden und deren verwendung Withdrawn EP2542561A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11705890A EP2542561A1 (de) 2010-03-01 2011-03-01 Polyhedrale oligomere silsesquioxan (poss)-verbundene liganden und deren verwendung

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10155095A EP2363402A1 (de) 2010-03-01 2010-03-01 Polyhedrale Oligomere Silsesquioxan (POSS)-verbundene Liganden und deren Verwendung
PCT/EP2011/052957 WO2011107441A1 (de) 2010-03-01 2011-03-01 Polyhedrale oligomere silsesquioxan (poss)-verbundene liganden und deren verwendung
EP11705890A EP2542561A1 (de) 2010-03-01 2011-03-01 Polyhedrale oligomere silsesquioxan (poss)-verbundene liganden und deren verwendung

Publications (1)

Publication Number Publication Date
EP2542561A1 true EP2542561A1 (de) 2013-01-09

Family

ID=42269787

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10155095A Withdrawn EP2363402A1 (de) 2010-03-01 2010-03-01 Polyhedrale Oligomere Silsesquioxan (POSS)-verbundene Liganden und deren Verwendung
EP11705890A Withdrawn EP2542561A1 (de) 2010-03-01 2011-03-01 Polyhedrale oligomere silsesquioxan (poss)-verbundene liganden und deren verwendung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10155095A Withdrawn EP2363402A1 (de) 2010-03-01 2010-03-01 Polyhedrale Oligomere Silsesquioxan (POSS)-verbundene Liganden und deren Verwendung

Country Status (7)

Country Link
US (1) US20130158282A1 (de)
EP (2) EP2363402A1 (de)
JP (1) JP2013521246A (de)
KR (1) KR20130010074A (de)
CN (1) CN102858789A (de)
SG (1) SG183842A1 (de)
WO (1) WO2011107441A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5864447B2 (ja) * 2010-03-01 2016-02-17 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 多面体オリゴマーシルセスキオキサン(poss)結合リガンド
DE102010041821A1 (de) 2010-09-30 2012-04-05 Evonik Oxeno Gmbh Einsatz von Supported Ionic Liquid Phase (SILP) Katalysatorsystemen in der Hydroformylierung von olefinhaltigen Gemischen zu Aldehydgemischen mit hohem Anteil von in 2-Stellung unverzweigten Aldehyden
DE102010043558A1 (de) 2010-11-08 2012-05-10 Evonik Oxeno Gmbh Verfahren zur Hydroformylierung von ungesättigten Verbindungen
DE102011085883A1 (de) 2011-11-08 2013-05-08 Evonik Oxeno Gmbh Neue Organophosphorverbindungen auf Basis von Anthracentriol
DE102014206520B4 (de) 2013-05-03 2017-09-14 Evonik Degussa Gmbh Neue vierzähnige Phosphor-Liganden mit Hostanox O3 Leitstruktur
DE102013217174A1 (de) 2013-08-28 2015-03-05 Evonik Industries Ag Zusammensetzung und deren Verwendung in Verfahren zur Hydroformylierung von ungesättigten Verbindungen
PL411196A1 (pl) * 2015-02-11 2015-11-09 Uniwersytet Im. Adama Mickiewicza W Poznaniu Nowe funkcjonalizowane nienasycone pochodne (dimetylowinylogermoksy) heptapodstawionych silseskwioksanów oraz sposób ich otrzymywania
KR102450815B1 (ko) 2017-06-16 2022-10-05 에스케이이노베이션 주식회사 헤테로원자 리간드, 이를 포함하는 올리고머화 촉매 및 올리고머 제조방법
CN108940367A (zh) * 2018-06-28 2018-12-07 南京荣欣化工有限公司 一种用于烯烃氢甲酰化反应的催化剂的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5395979A (en) * 1993-02-25 1995-03-07 Exxon Chemical Patents Inc. Method for separating catalyst from a hydroformylation reaction product using alkylated ligands
CN1249105C (zh) * 1998-10-05 2006-04-05 普罗米鲁斯有限责任公司 环烯烃聚合催化剂及聚合方法
MX250079B (es) * 1999-06-11 2007-10-08 Gas Separation Technology Inc Material poroso permeable al gas para separacion de gases..
AU2003263308A1 (en) * 2002-09-04 2004-03-29 Johnson Matthey Plc Catalysts
DE102005046250B4 (de) * 2005-09-27 2020-10-08 Evonik Operations Gmbh Anlage zur Abtrennung von organischen Übergangsmetallkomplexkatalysatoren
JP5864447B2 (ja) * 2010-03-01 2016-02-17 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 多面体オリゴマーシルセスキオキサン(poss)結合リガンド

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011107441A1 *

Also Published As

Publication number Publication date
WO2011107441A1 (de) 2011-09-09
US20130158282A1 (en) 2013-06-20
KR20130010074A (ko) 2013-01-25
CN102858789A (zh) 2013-01-02
EP2363402A1 (de) 2011-09-07
SG183842A1 (en) 2012-10-30
JP2013521246A (ja) 2013-06-10

Similar Documents

Publication Publication Date Title
EP2542561A1 (de) Polyhedrale oligomere silsesquioxan (poss)-verbundene liganden und deren verwendung
EP0372313B1 (de) Sulfonierte Phenylphosphane enthaltende Komplexverbindungen
EP3070093B1 (de) Neue organophosphorverbindungen auf basis von anthracentriol
WO2014056735A1 (de) Gemische konstitutionsisomerer bisphosphite
EP3038752B1 (de) Katalysator und verfahren zur hydroformylierung von ungesättigten verbindungen durch silp-katalyse
DE60304449T2 (de) Stabilisierung von fluorphosphit enthaltenden katalysatoren
EP3112373B1 (de) Neuer vierzähniger phosphor-ligand mit hostanox o3 leitstruktur
DE2834691C2 (de) Monomere, polymere und traegerfixierte rhodiumkomplexverbindungen, verfahren zu ihrer herstellung und verwendung als katalysatoren
EP3763723B1 (de) Bisphosphite mit einem geschlossenen und einem offenen flügelbaustein
DE3702631C2 (de) Verfahren zur Herstellung primärer Aminosiloxane
EP3816171B1 (de) Phosphazyklische phosphite aus dem enol des benzoins
EP3438111B1 (de) Phosphonite mit einer direkt am phosphor gebundenen tert.-butyl-gruppe
EP3438110B1 (de) Phosphinite mit zwei direkt am phosphor gebundenen tert.-butyl-gruppen
EP3038751B1 (de) Geträgerte zusammensetzung und deren verwendung in verfahren zur hydroformylierung von ungesättigten verbindungen
EP4059939B1 (de) Bisphosphitliganden auf basis von benzpinakol
DE4121959A1 (de) Traegerkatalysator zur herstellung von essigsaeure
EP3816172B1 (de) Phosphazyklische phosphite aus dem enol des 1-hydroxy-2-acetonaphthons
EP3438112B1 (de) Liganden mit einer o-p-o-brücke zwischen zwei anthracentriolbausteinen
EP3459960A1 (de) Bisphosphitliganden mit dioxaphosphepin-flügelbausteinen
EP3459959A1 (de) Bisphosphitliganden mit butanoat-zentralbaustein
EP3178829A1 (de) Organodiarylselenoxide sowie verfahren zu deren herstellung
EP3296304A1 (de) Monophosphite mit methylenverbrücktem diphenol und anthracenylrest
EP1719752A1 (de) Verfahren zur Hydroformylierung von substituierten Allylbenzolen
DE102013219510A1 (de) Gemisch von Bisphosphiten und dessen Verwendung als Katalysatorgemisch in der Hydroformylierung
DE2443058B2 (de) Koordinationskomplexverbindungen von uebergangsmetallen der gruppe viii, ihre herstellung und verwendung als katalysator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120822

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK DEGUSSA GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151001