EP2540405B1 - Device for manufacturing circuit boards of varying thicknesses - Google Patents

Device for manufacturing circuit boards of varying thicknesses Download PDF

Info

Publication number
EP2540405B1
EP2540405B1 EP12173868.6A EP12173868A EP2540405B1 EP 2540405 B1 EP2540405 B1 EP 2540405B1 EP 12173868 A EP12173868 A EP 12173868A EP 2540405 B1 EP2540405 B1 EP 2540405B1
Authority
EP
European Patent Office
Prior art keywords
temperature
rolling
blanks
board
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12173868.6A
Other languages
German (de)
French (fr)
Other versions
EP2540405A2 (en
EP2540405A3 (en
Inventor
Andreas Dr. Hauger
Andreas Elvenkemper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Muhr und Bender KG
Original Assignee
Muhr und Bender KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Muhr und Bender KG filed Critical Muhr und Bender KG
Publication of EP2540405A2 publication Critical patent/EP2540405A2/en
Publication of EP2540405A3 publication Critical patent/EP2540405A3/en
Application granted granted Critical
Publication of EP2540405B1 publication Critical patent/EP2540405B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions

Definitions

  • the invention relates to a method for producing boards, which have different thicknesses over their length.
  • JP 63-040604 A From the JP 63-040604 A is a method for the production of steel blanks with different thicknesses known.
  • a rolling device is provided with preset roll gap, which is preceded by a heater and a temperature measurement.
  • the desired heat output is determined from data such as material temperature, target temperature distribution, thickness, width and specific heat and a reference feed rate.
  • the preamble of claim 1 is based on JP 63-040604 A , From the DE 197 04 300 A1
  • a method and an apparatus for producing a metal strip are known.
  • the different thickness regions of the strip are produced by hot rolling by sectioning the strip prior to hot rolling by cooling or heating to a different temperature.
  • the band experiences a different in the individual sections, due to the different temperature setting Have obtained a yield stress value, with a substantially constant rolling force a different thickness decrease.
  • a hydraulic delivery is provided, which moves the nip during rolling.
  • a disadvantage of the methods used today is the high cost of heating the coils and the complexity of the rolling stands for rolling the partially differently heated coils or boards to partially different thicknesses.
  • the present invention has for its object to propose a simplified method for the production of boards with different thicknesses, which allows a targeted regional heating of boards and a blading of the boards by means of a simple and inexpensive rolling mill on different thicknesses.
  • the solution consists in a method for producing boards with different thicknesses of a metallic steel material with the method steps: manufacture of boards from a strip material; Area-wise changing the temperature of the boards, wherein areas of different temperatures are generated in the boards; Rolling the partially temperature-changed blanks in a rolling tool with a nip position, wherein the nip position is kept constant during rolling, wherein sections of different thickness are produced in the boards due to the different temperature ranges; wherein the boards are heated after rolling and hot worked after heating in a forming tool; wherein the boards with the areas which have the highest temperatures after the regional temperature change, during the subsequent process steps of rolling and heat treatment to insert into the forming tool always have a temperature of about 500 ° C for steel materials.
  • the advantage of the method with the specified sequence of the individual method steps is that different temperature zones are generated by the regional variation of the temperature.
  • Temperature zones have the different areas of the boards different flow resistance. In this case, hotter areas have a lower flow resistance and are therefore more severed than colder areas of the board. Due to the different flow resistances, sections of different thickness are produced on the board by the subsequent rolling. In this case, the areas heated higher before rolling have a smaller thickness after rolling than the lower heated areas.
  • an optimized thickness profile of the blank can be produced after rolling, which is adapted to the later component requirements.
  • a board is understood to be a sheet metal element which is produced from a strip material or from a coil. That is, the process step of the area-wise temperature change of the board is preceded by a production of the board from a strip material. It is understood that between the separation of boards from the strip material and the area-wise temperature change of the board other process steps may be interposed, for example, a heat treatment.
  • the production of the boards from the strip material or the coil can be arbitrary and depends on the final contour of the board to be manufactured.
  • the boards can be made by simply cutting the strip material into individual elements having at least two parallel side edges, or by cutting or punching individual elements with an individual circumferential contour from the strip material. These cut-out elements with individual circumferential contours can also be referred to as shaped cuts or contour cuts.
  • nip is the term for the roll opening including the roll jump at the contact surfaces of the rolling stock with the rolls over the roll bale length.
  • Roll skip is the name given to an enlargement of the roll opening when the rolling stock is punctured by stretching the parts of the roll stand.
  • the rolling force can, in contrast to the nip, change as it passes through the board.
  • the transitions between two board sections with different strip thickness are due to the temperature distribution in the board and can be kept very short with a corresponding partial temperature change before rolling, in contrast to controlled rolling stands.
  • the force-working requirement is greatly reduced by the temperature-dependent flow resistance, so that boards with different thicknesses can be produced in a large width economically.
  • the different temperature ranges are generated according to the later desired thickness profile of the board.
  • the shape and the extent of the temperature ranges in the longitudinal and in the transverse direction of the board can in principle be chosen so that the board has the desired thickness profile after rolling.
  • At least one region, preferably a plurality of regions, of the regions with different temperatures is heated or cooled to a constant temperature transversely to the rolling direction.
  • the juxtaposed in the longitudinal direction of the board areas of the board, each with the adjacent area different temperature lead during rolling to a change in thickness of the board in the longitudinal direction or in the rolling direction of the board.
  • the number and distribution of the areas with different temperature is basically freely selectable depending on the desired thickness profile of the board, the number is in particular between two and six.
  • At least one region if appropriate also several regions, are provided with a variable temperature transversely to the rolling direction. This makes it possible that the board during the subsequent rolling process undergoes a corresponding change in thickness transverse to the rolling direction. Again, that the number and distribution of the areas with different temperature depending on the desired thickness profile of the board to be produced can be adjusted.
  • both temperature ranges can be generated, which extend at uniform temperature transverse to the rolling direction, as well as temperature ranges, which have an additional temperature gradient transverse to the rolling direction.
  • the latter third option achieves the highest degree of flexibility with regard to the subsequent thickness progression of the board after rolling in the longitudinal and in the transverse direction.
  • a three-dimensional thickness structure of the board can be produced herewith.
  • the region-wise changing of the temperature takes place starting from a homogeneous first temperature of the board by heating at least one area of the board to a higher second temperature.
  • homogeneous first temperature is meant that the board uniformly has the same temperature before the area-wise temperature change.
  • at least one region it is meant that one or more regions are heated to an individual temperature. When just one area is heated, two areas of different temperature are created.
  • the height of the temperature to which the board is heated depends essentially on the material or on the strength of the material.
  • the at least one region of the board is preferably heated to a second temperature of 400 ° C to 1250 ° C, in particular from 600 ° C to 800 ° C.
  • the board is preferably heated to a second temperature of 150 ° C to 500 ° C.
  • the partial heating of the circuit board can be effected, for example, by means of a stamp, which is brought into contact with the circuit board in such a way that the circuit board assumes at least approximately the temperature of the stamp.
  • the stamp would be designed as a heating die, which preferably has differently controlled temperature zones.
  • the heating in regions can also be carried out inductively by means of one or more current rollers through which the circuit boards are guided, wherein it is provided in particular that the different temperature zones of the circuit boards are produced by varying the power of the current rollers during passage of the circuit boards.
  • the region-wise changing of the temperature is accomplished from a homogeneous first temperature of the board by cooling.
  • the boards are first heated homogeneously to a higher first temperature before the area-wise changing of the temperature.
  • the temperature is changed in regions by cooling at least one area of the board to a lower second temperature.
  • the homogeneous first temperature to which the board is heated is between 950 ° C and 1250 ° C.
  • the subsequent partial cooling of the regions takes place at lower second temperatures, which are in particular between 400 ° C. and 950 ° C., preferably between 600 ° C. and 800 ° C.
  • the partial cooling of the board is preferably carried out by means of a punch, which is brought into contact with the board in such a way that the board assumes at least about the temperature of the stamp.
  • the stamp would be designed as a cooling stamp.
  • the stamp may preferably have individually controllable cooling zones, so that the temperature zones of the board can be individually adapted to the later to be produced thickness profile.
  • the boards are subjected to a heat treatment after rolling, preferably a normalization annealing.
  • the boards are preferably heated to a temperature of 950 ° C to 1250 ° C and when using aluminum material to a temperature of 150 ° C to 550 ° C when using steel material.
  • the heating preferably takes place in a heating furnace. This heat treatment produces a uniform microstructure in the board over all sections of different thickness.
  • the board is further processed to the final product.
  • the subsequent process step comprises a forming process, such as deep-drawing.
  • the component can be cured, or annealed, that is, hardening followed by tempering.
  • a thermoforming process is particularly advantageous.
  • the board is formed in a thermoforming mold to the intended shape and cured.
  • thermoforming it is also conceivable that only portions of the thermoforming tool are cooled, so that only the sections of the workpiece are cured, which come into contact with the cooled portions of the thermoforming tool. The remaining sections of the workpiece retain a lower hardness.
  • a cooled mold is required which has cooled areas in the sections to be cured of the board or of the end product to be produced therefrom, or is optionally completely cooled.
  • a device for producing boards with different thicknesses of a metallic material according to the method according to the invention comprises in the order given: a tool for separating boards from a strip material; a temperature-changing tool, with which areas of different temperatures can be generated in the boards; and a rolling tool with a constant nip position, with which the temperature-changed circuit boards are rollable, so that in the boards due to the different temperature ranges sections of different thickness can be generated.
  • the constant roll gap setting of the rolling tool preferably in an uncontrolled process, is favorable in terms of simple and efficient production.
  • the change in material thickness occurs solely due to different roller jumps of the rolling tool when passing through the boards, which in turn is due to the different flow resistance in the board material or the partially different temperatures of the material.
  • the fact that the temperature-changing tool is preceded by a tool for separating strip material to boards, is the highest for the geometric design of the board to be produced or the end product to be produced from this Given flexibility.
  • boards or products with variable thickness profiles can be generated transversely to the rolling direction.
  • the temperature-changing tool on at least one stamp which can be heated or cooled.
  • the temperature of the board can be partially increased or decreased in one or more areas compared to other areas.
  • the size and shape of the stamp is preferably based on the shape and size of the temperature zones to be generated or the thickness profile of the board to be produced during the rolling process.
  • the stamp has a plurality of areas in which the temperature is individually adjustable. In this way different temperature zones can be created with a stamp on the board.
  • the punch is designed as a heating punch
  • heating wires are preferably provided in the punch, which can heat the punch at least in some areas.
  • the stamp is formed as a cooling die for partial cooling of the board
  • this preferably has channels through which a cooling medium can flow to cool the stamp.
  • the flow rate of the cooling medium through the channels is controllable.
  • a plurality of cooling circuits are provided by the stamp, which are flowed through by cooling medium.
  • the at least one stamp is made of a metallic material with good thermal conductivity, in particular of copper or of a copper-containing material.
  • the rolling tool is preferably designed so that the gap width is constant during rolling. As a result, the power-work demand can be kept very low, which has a favorable effect on the production costs and time.
  • a tool for flexible rolling can also be used, with which a particularly high degree of flexibility with regard to the thickness profile of the boards to be produced is achieved.
  • the device comprises the heat treatment device, which is connected downstream of the rolling tool.
  • the heat treatment device which is designed in particular as a heating furnace, the boards can be heat-treated, preferably normalized.
  • the heat treatment device is connected downstream of the forming tool, which is designed in the form of a thermoforming tool in which the boards can be reshaped and at least partially cured.
  • the combination of the area-wise temperature change of the blanks, subsequent rolls, heating and hot forming is particularly favorable, since this allows a very efficient production of sheet metal blanks with variable thickness over the length or the width.
  • the heat input into the board during manufacture, that is, while passing through the individual device stations can be kept low, which in turn has a favorable effect on the production speed and costs. It is particularly advantageous if the boards with the areas which have the highest temperatures after the regional temperature change during the subsequent process steps of rolling and heat treatment to insert into the forming always a temperature of about 500 ° C, in particular of about 600 ° C, for steel materials.
  • FIG. 1 shows a method according to the invention for producing a circuit board 10.
  • the sheet metal blank 10 is preferably made of a metallic material, for example of a steel material or aluminum, and may also be referred to as a sheet metal blank.
  • a process procedure A is shown.
  • a sheet metal element which can be made in particular of a strip material or a coil.
  • the board can be made by simply cutting the strip material into individual elements or by cutting or punching of individual elements of the strip material.
  • the circuit board 10 is treated by means of a temperature-changing tool 30.
  • the board 10 receives different areas 11, 12, 21, which have different temperatures.
  • the region 11 has a temperature of 800 ° C
  • the second region 12 has a temperature of 600 ° C.
  • the transition region 21 lying between the first region 11 and the second region 12 has a variable temperature, which decreases from the first region 11 to the second region 12.
  • FIG. 1b shown in solid line shows the temperature profile for the first region 11 over time.
  • the temperature starting from the initial temperature of 0 ° C, initially increases sharply until the target temperature T A1,11 of 800 ° C is reached.
  • the dashed line shows the temperature profile for the second region 12.
  • the circuit board 10 After the area-wise temperature treatment of the board 10, this is subjected to a rolling process in the subsequent process step A2. This is done by means of a rolling tool 40, which comprises a plurality of rollers 41, 42.
  • a rolling tool 40 which comprises a plurality of rollers 41, 42.
  • the circuit board 10 has correspondingly different flow resistances.
  • the hotter first region 11 has a lower flow resistance, which is why it is more heavily rolled off.
  • the cooler second region 12 of the board has a higher flow resistance, so that it is less severed. Due to these different flow resistances, portions 11 2 , 12 2 , 21 2 of different thickness are produced on the blank 10 by the rolling process A2.
  • the board After the rolling process, the board is provided with subscripts centered around the number two. It can be seen that the board 10 2 after passing through the rolling tool 40 has a first portion 11 2 with a smaller sheet thickness and a second portion 12 2 with a larger sheet thickness and an intermediate transition portion 21 2 .
  • the nip position When passing through the blank 10 by the rolling tool 40, the nip position remains constant, d. H. the distance between the rollers is not changed when passing through the sheet metal blank 10.
  • the thickness profile results solely due to the different temperature ranges 11, 12, 21 of the board 10. Overall, this results in a low power work demand. It will be understood, however, that a flexible rolling in which the nip position is varied during the process can also be used. This results in a further increased flexibility and further possibilities of individual design of different thickness profiles on the boards 10.
  • the temperature profile T A2 is shown before, after and during rolling.
  • the solid line again shows the temperature profile for the region 11 or the section 11 2 present after the rolling process.
  • the temperature decreases slightly and then more during rolling, up to a temperature of about 700 ° C.
  • the rolled board 10 2 further cools, so that the temperature decreases accordingly.
  • the temperature profile T A2,12 for the second region 12 runs as far as possible parallel to the temperature range T A2,11 for the first region 11 with a reduced by about 200 ° C temperature.
  • the rolled board 10 2 is subjected to a heat treatment.
  • the board or its sections are provided after the heat treatment with subscript by three digits indices.
  • the heat treatment is preferably carried out in a furnace 50.
  • solidification of the material resulting from rolling is reduced or dissolved and the rolled plate 10 3 again receives a higher ductility and ductility.
  • the board can be 10 3 in the following steps easier to further process, in addition, the material properties of the final product to be produced are positively influenced.
  • the heat treatment in method step A3 is only optional, that is to say that the board 10 2 can in principle also be further processed without subsequent heat treatment.
  • the board 10 3 is heated to about 950 ° C.
  • the thinner first board section 11 3 heats up faster than the thicker board section 12 3 .
  • the board 10 3 can be further processed.
  • a shaping machining in a thermoforming tool 60 is shown here.
  • the board or its sections are provided in connection with the thermoforming process with subscripted by the number four indices.
  • thermoforming according to method step A4 the board 10 4 is subjected to a shaping treatment and at the same time strongly cooled or hardened. This can also be seen in the temperature profile, namely for the thinner first section 11 4 (temperature T A4,11 ) shows a sharp drop in temperature from 950 ° C to below 200 ° C.
  • the thicker second board section 12 4 cooled slightly slower, as the dashed line (temperature T A4,12 ) can be seen.
  • other than hot forming processes can be used as a shaping processing.
  • a further processing by means of pressing or deep drawing may be mentioned here.
  • FIGS. 2a) and 2b ) show a method according to the invention for the production of a sheet metal blank with different thicknesses according to a second process procedure B.
  • the same or modified components are provided with the same reference numerals, as in FIG. 1 , In the following, essentially the differences of the present method will be discussed.
  • the peculiarity of the procedure B according to FIG. 2 consists in that the sheet metal blank is first heated in a step B0.
  • the temperature to which the sheet metal blank 10 is heated depends on the material or the strength of the material; this is preferably between 900 ° C and 950 ° C for a steel material.
  • a partial temperature change of the sheet metal blank 10 is made in the subsequent step B1. This takes place in the present embodiment by areawise cooling of the sheet metal blank 10.
  • the board 10 1 in the present example a first region 11 1 , which is cooled to 800 ° C, and a second region 12 1 , which is cooled to 600 ° C.
  • Between the two regions 11 1 , 12 1 is a transition region 21 1 with a variable temperature profile over the length or the subsequent rolling direction.
  • the solid line shows the temperature profile T B11 for the first area 11, while the dashed line shows the temperature profile T B12 over the time for the second area 12.
  • the first region 11 1 of the board 10 1 is cooled from 950 ° C. to about 800 ° C. (temperature curve T B1,11 ).
  • the second region 12 1 experiences a greater cooling, namely to about 600 ° C (temperature curve T B1,12 ).
  • the present at this time product corresponds to the board 10 1 from the first procedure A according to FIG. 1a ), b), as present after the first process step A1.
  • the process steps B2, B3 and B4 following the second process procedure B correspond to the process steps A2, A3 and A4 according to FIG FIG. 1 , so that reference is made in this regard to the above description.
  • the peculiarity of the present embodiment according to FIG. 2 is that the regionally varying the temperature T B1 starting from the homogeneous first temperature, which takes place after the heating in step B 0, is accomplished by cooling.
  • This process procedure has the advantage that the heat from the previous heating process according to process step B0 can be used, so that the present process is very effective.
  • the partial cooling of the circuit board 10 is preferably carried out by means of a punch 30, which is brought into contact with the circuit board 10 in such a way that the circuit board 10 assumes the temperature of the punch 30.
  • the stamp 30 has in particular a plurality of cooling zones, which are individually adjustable.
  • the plunger 30 may include a plurality of channels through which a cooling medium may flow to cool it.
  • the flow rate of the cooling medium through the channels is controllable.
  • the plunger 30 has a plurality of cooling circuits through which cooling medium flows. It can be generated by individual adjustment of the flow rate of the cooling medium through each channel different temperature zones.
  • the stamp is preferably made of a metallic material with good thermal conductivity, for example of copper or of a copper-containing material.
  • the two embodiments for the different areas of the board 10, which in the FIGS. 1 and 2 are shown, are exemplary only.
  • the number and distribution of the regions 11, 12, 21 with different temperatures T 11 , T 12 , T 21 is basically freely selectable and can be adapted to those with regard to the thickness profile of the workpiece to be manufactured.
  • the number of regions 11, 12, 21 having different temperatures T 11 , T 12 , T 21 is preferably between two and six, wherein more regions are also conceivable.
  • FIG. 3 shows a further example of a board after the partial change of the temperature according to the method step A1 or B1.
  • the circuit board 10 in the present case has six regions 11-16 each having an individual temperature T 11 -T 16 . These are each shown as white areas. Between the six areas 11-16 each having a uniform temperature T 11 -T 16 are respectively Transition regions 21-25, in which the temperatures T 21 -T 25 are variable. These transition regions 21-25 are shown hatched. Here, the temperature continuously changes from one temperature range to the next. The manufacturing or later rolling direction is indicated by an arrow R.
  • FIG. 3b shows the sheet metal blank 10 before rolling in side view, ie in profile, in greatly exaggerated representation.
  • the board 10 before the rolling process has a uniform thickness over the length.
  • Figure 3c shows the board 10 2 after the rolling process according to the method step A2 FIG. 1 or B2 after FIG. 2 ,
  • Figure 3c shows the board 10 2 by rolling a variable thickness profile over the length.
  • the more heated regions 13, 16 are more strongly rolled out than the colder regions 12, 15 due to the different temperature zones 11-16 produced before rolling.
  • the thickness profile of the circuit board 10 shown schematically in FIG Length.
  • FIGS. 4a ) and b show a sheet metal blank 10 in a further possible embodiment after the partial change of the temperature and before the rolling process according to FIG. 4a ) or after rolling according to FIG. 4b ).
  • the distribution of the different temperature ranges largely corresponds to that according to FIG. 3 , so that reference is made to the above description in terms of similarities.
  • a special feature of the present embodiment is that the region 15 has a temperature gradient transverse to the rolling direction R of the board 10. That is, the temperature T 15 'is about 600 ° C on one side 18 and about 800 ° C on the opposite other side 19.
  • the remaining areas 11, 12, 13, 14 and 16 have transversely to the rolling direction R largely uniform temperatures.
  • the board 10 2 Characterized in that the temperature in the region 15 is variable transversely to the rolling direction, the board is unevenly rolled off. It is in FIG. 4b ) recognizable that the board 10 2 has undergone a shape change in the longitudinal direction after rolling. In this case, the board 10 2 on the side 18 of the region 15, which is more strongly cooled to 600 ° C. was less severely rolled than on the opposite side 19, which has been cooled to only 800 ° C. Thus, a total, in plan view of the board 10, a kink in this section 15 first The thickness profile along the length at the side 18, the region 15 has been cooled more, is in Figure 4c ). This corresponds essentially to the profile according to Figure 3c ), wherein in the present case in particular the transition regions 22 are made thinner.
  • the sheet metal blanks 10 to be produced can be individually adapted to the desired thickness profile for the subsequent end product.
  • the benefit of relating to the FIGS. 1 and 2 described method according to the invention and the associated devices is that finished mold cuts can be made within a short process chain with high efficiency.
  • the combination of the process control with partial temperature change according to method step A1 or B1 of the sheet metal blank 10 before rolling, subsequent normalization and final hot forming is particularly favorable, since the temperature level in the metal sheet overall remains relatively high over the entire process chain, in particular over 400 ° C to 500 ° C, and thus the input of energy for manufacturing is low. In this way, the shape cutting boards can be produced with a short process chain and the associated high efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Laminated Bodies (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Herstellen von Platinen, die über ihre Länge unterschiedliche Dicken aufweisen.The invention relates to a method for producing boards, which have different thicknesses over their length.

Aus der JP 63-040604 A ist ein Verfahren zur Herstellung von Stahlplatinen mit unterschiedlichen Dicken bekannt. Hierfür ist eine Walzvorrichtung mit voreingestelltem Walzspalt vorgesehen, der eine Heizvorrichtung und eine Temperaturmessung vorgeschaltet ist. Die gewünschte Heizleistung wird aus Daten wie Materialtemperatur, Zieltemperaturverteilung, Dicke, Breite und spezifischer Hitze und einer Referenzvorschubgeschwindigkeit bestimmt. Der Oberbegriff von Anspruch 1 basiert auf der JP 63-040604 A . Aus der DE 197 04 300 A1 ist ein Verfahren zur Herstellung von Platinen mit unterschiedlichen Dicken durch Verformung eines annähernd gleichmäßig dicken Ausgangsmaterials bekannt. Das Ausgangsmaterial wird zunächst in einer Induktionserwärmungsanlage auf eine Temperatur oberhalb der Rekristallisationstemperatur erwärmt. Anschließend erfolgt eine partiell walzende Verformung des Ausgangsmaterials mit in Walzrichtung bereichsweise wechselnden Dicken.From the JP 63-040604 A is a method for the production of steel blanks with different thicknesses known. For this purpose, a rolling device is provided with preset roll gap, which is preceded by a heater and a temperature measurement. The desired heat output is determined from data such as material temperature, target temperature distribution, thickness, width and specific heat and a reference feed rate. The preamble of claim 1 is based on JP 63-040604 A , From the DE 197 04 300 A1 For example, there is known a method for producing boards of different thicknesses by deformation of an approximately uniformly thick starting material. The starting material is first heated in an induction heating system to a temperature above the recrystallization temperature. Subsequently, a partial rolling deformation of the starting material takes place in the rolling direction with regions varying thicknesses.

Aus der DE 198 46 900 A1 ist ein Verfahren und eine Vorrichtung zum Herstellen eines Metallbandes bekannt. Die unterschiedlich dicken Bereiche des Bandes werden durch Warmwalzen hergestellt, indem das Band vor dem Warmwalzen abschnittsweise durch Kühlen oder Erwärmen auf eine unterschiedliche Temperatur eingestellt werden. Auf diese Weise erfährt das Band in den einzelnen Abschnitten, die aufgrund der unterschiedlichen Temperatureinstellung einen unterschiedlichen Fließspannungswert erhalten haben, bei im Wesentlichen konstanter Walzkraft eine unterschiedliche Dickenabnahme. Zum Walzen mit konstanter Walzkraft ist eine hydraulische Zustellung vorgesehen, die den Walzspalt beim Walzen verfährt.From the DE 198 46 900 A1 For example, a method and an apparatus for producing a metal strip are known. The different thickness regions of the strip are produced by hot rolling by sectioning the strip prior to hot rolling by cooling or heating to a different temperature. In this way, the band experiences a different in the individual sections, due to the different temperature setting Have obtained a yield stress value, with a substantially constant rolling force a different thickness decrease. For rolling with constant rolling force a hydraulic delivery is provided, which moves the nip during rolling.

Aus der EP 2 111 937 A1 ist ein Verfahren zur Herstellung von in der Dicke variierenden Blechplatinen bekannt. Als Ausgangswerkstoff wird eine Blechplatine mit variabler Dicke als "Tailor Rolled Blank" oder als "Tailor Welded Blank" vorgefertigt. Anschließend wird die Blechplatine partiell nachbearbeitet, insbesondere geprägt, so dass die Dicke nochmals lokal geändert wird. Es wird beschrieben, dass es sich bei der Herstellung dickenoptimierter Blechplatinen zur Herstellung pressgehärteter Warmformteile anbietet, die für das Presshärten erwärmte Blechplatine zunächst durch einen schnellen Schlag warm zu verprägen. Wegen der kurzen Kontaktzeit mit dem Prägewerkzeug würde dem Werkstück nur so wenig Wärme entzogen, dass das anschließende Presshärten "aus einer Hitze" erfolgen könnte.From the EP 2 111 937 A1 For example, a method of making sheet metal blanks varying in thickness is known. The starting material is prefabricated a sheet metal blank with variable thickness as "Tailor Rolled Blank" or as "Tailor Welded Blank". Subsequently, the sheet metal plate is partially reworked, in particular embossed, so that the thickness is changed again locally. It is described that in the production of thick-optimized sheet metal blanks for the production of press-hardened hot-formed parts it is advisable to emboss the sheet-metal plate heated for press-hardening first by a rapid impact. Due to the short contact time with the embossing tool, only so little heat would be extracted from the workpiece that the subsequent press hardening could be carried out "from a heat".

Nachteilig bei den heute eingesetzten Verfahren ist der hohe Aufwand bei der Erwärmung der Coils sowie die Komplexität der Walzgerüste zum Abwalzen der bereichsweise unterschiedlich erwärmten Coils beziehungsweise Platinen auf bereichsweise unterschiedliche Dicken.A disadvantage of the methods used today is the high cost of heating the coils and the complexity of the rolling stands for rolling the partially differently heated coils or boards to partially different thicknesses.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein vereinfachtes Verfahren zum Herstellen von Platinen mit unterschiedlichen Dicken vorzuschlagen, das eine gezielte bereichsweise Erwärmung von Platinen und eine Abwalzung der Platinen mittels eines einfachen und kostengünstigen Walzgerüsts auf bereichsweise unterschiedliche Dicken ermöglicht.The present invention has for its object to propose a simplified method for the production of boards with different thicknesses, which allows a targeted regional heating of boards and a blading of the boards by means of a simple and inexpensive rolling mill on different thicknesses.

Die Lösung besteht in einem Verfahren zum Herstellen von Platinen mit unterschiedlichen Dicken aus einem metallischen Stahlwerkstoff mit den Verfahrensschritten: Fertigen von Platinen aus einem Bandmaterial;
Bereichsweises Verändern der Temperatur der Platinen, wobei in den Platinen Bereiche mit unterschiedlichen Temperaturen erzeugt werden; Walzen der bereichsweise temperaturveränderten Platinen in einem Walzwerkzeug mit einer Walzspaltanstellung, wobei die Walzspaltanstellung beim Walzen konstant gehalten wird, wobei in den Platinen aufgrund der unterschiedlichen Temperaturbereiche Abschnitte mit unterschiedlicher Dicke erzeugt werden; wobei die Platinen nach dem Walzen erwärmt werden und nach dem Erwärmen in einem Umformwerkzeug warmumgeformt werden; wobei die Platinen mit den Bereichen, welche nach der bereichsweisen Temperaturveränderung die höchsten Temperaturen haben, während der nachfolgenden Verfahrensschritte des Walzens und der Wärmebehandlung bis zum Einlegen in das Umformwerkzeug stets eine Temperatur von über 500°C für Stahlwerkstoffe aufweisen.
The solution consists in a method for producing boards with different thicknesses of a metallic steel material with the method steps: manufacture of boards from a strip material;
Area-wise changing the temperature of the boards, wherein areas of different temperatures are generated in the boards; Rolling the partially temperature-changed blanks in a rolling tool with a nip position, wherein the nip position is kept constant during rolling, wherein sections of different thickness are produced in the boards due to the different temperature ranges; wherein the boards are heated after rolling and hot worked after heating in a forming tool; wherein the boards with the areas which have the highest temperatures after the regional temperature change, during the subsequent process steps of rolling and heat treatment to insert into the forming tool always have a temperature of about 500 ° C for steel materials.

Der Vorteil des Verfahrens mit der angegebenen Reihenfolge der einzelnen Verfahrensschritte besteht darin, dass durch die bereichsweise Änderung der Temperatur unterschiedliche Temperaturzonen erzeugt werden. Durch die unterschiedlichen Temperaturzonen weisen die verschiedenen Bereiche der Platinen unterschiedliche Fließwiderstände auf. Dabei haben heißere Bereiche einen geringeren Fließwiderstand und werden daher stärker abgewalzt, als kältere Bereiche der Platine. Aufgrund der unterschiedlichen Fließwiderstände werden an der Platine durch das anschließende Walzen Abschnitte mit unterschiedlicher Dicke erzeugt. Dabei haben die vor dem Walzen höher erwärmten Bereiche nach dem Walzen eine geringere Dicke, als die niedriger erwärmten Bereiche. Insgesamt lässt sich mit dem erfindungsgemäßen Verfahren durch entsprechendes Einstellen der Temperaturzonen der Platine vor dem Walzen ein optimierter Dickenverlauf der Platine nach dem Walzen erzeugen, welcher auf die späteren Bauteilanforderungen angepasst ist.The advantage of the method with the specified sequence of the individual method steps is that different temperature zones are generated by the regional variation of the temperature. By the different ones Temperature zones have the different areas of the boards different flow resistance. In this case, hotter areas have a lower flow resistance and are therefore more severed than colder areas of the board. Due to the different flow resistances, sections of different thickness are produced on the board by the subsequent rolling. In this case, the areas heated higher before rolling have a smaller thickness after rolling than the lower heated areas. Overall, with the method according to the invention, by appropriately setting the temperature zones of the blank prior to rolling, an optimized thickness profile of the blank can be produced after rolling, which is adapted to the later component requirements.

Unter Platine wird ein Blechelement verstanden, das aus einem Bandmaterial beziehungsweise von einem Coil hergestellt ist. Das heißt dem Verfahrensschritt des bereichsweisen Temperaturveränderns der Platine ist eine Fertigung der Platine aus einem Bandmaterial vorgeschaltet. Dabei versteht es sich, dass zwischen dem Vereinzeln von Platinen aus dem Bandmaterial und der bereichsweisen Temperaturveränderung der Platine noch andere Verfahrensschritte zwischengeschaltet sein können, beispielsweise eine Wärmebehandlung. Das Fertigen der Platinen aus dem Bandmaterial beziehungsweise vom Coil kann beliebig erfolgen und richtet sich nach der zu fertigenden Endkontur der Platine. Beispielsweise können die Platinen durch einfaches Ablängen des Bandmaterials in einzelne Elemente mit zumindest zwei parallelen Seitenkanten erfolgen, oder durch Ausschneiden beziehungsweise Stanzen von einzelnen Elementen mit individueller Umfangskontur aus dem Bandmaterial. Diese ausgeschnittenen Elemente mit individueller Umfangskontur können auch als Formschnitte oder Konturschnitte bezeichnet werden.A board is understood to be a sheet metal element which is produced from a strip material or from a coil. That is, the process step of the area-wise temperature change of the board is preceded by a production of the board from a strip material. It is understood that between the separation of boards from the strip material and the area-wise temperature change of the board other process steps may be interposed, for example, a heat treatment. The production of the boards from the strip material or the coil can be arbitrary and depends on the final contour of the board to be manufactured. For example, the boards can be made by simply cutting the strip material into individual elements having at least two parallel side edges, or by cutting or punching individual elements with an individual circumferential contour from the strip material. These cut-out elements with individual circumferential contours can also be referred to as shaped cuts or contour cuts.

Der Vorteil der Verwendung von Platinen für die bereichsweise Temperaturveränderung liegt darin, dass sich auch Temperaturgradienten quer zur Fertigungs- beziehungsweise zur späteren Walzrichtung erzeugen lassen. Diese führen beim Walzen zu einer in Bezug auf die Walzrichtung unsymmetrischen Verformung der Platine, was bei Bandmaterial nicht möglich wäre. Hiermit ist in vorteilhafter Weise eine höchste Flexibilität hinsichtlich der geometrischen Gestaltung der herzustellenden Platine beziehungsweise des aus der Platine herzustellenden Endprodukts gegeben.The advantage of using blanks for the regional temperature change is that it is also possible to generate temperature gradients transversely to the production direction or to the subsequent rolling direction. During rolling, these lead to an unsymmetrical deformation of the blank in relation to the rolling direction, which would not be possible with strip material. This advantageously provides maximum flexibility with regard to the geometric design of the board to be produced or of the end product to be produced from the board.

Das nach dem Vereinzeln der Platinen stattfindende Walzen wird bei konstantem Walzspalt durchgeführt. Das heißt, dass die Walzspaltanstellung beim Durchlaufen der Platine durch das Walzwerkzeug zumindest weitestgehend konstant bleibt, vorzugsweise in einem ungeregelten Prozess. In diesem Zusammenhang ist Walzspalt die Bezeichnung für die Walzenöffnung einschließlich des Walzensprungs an den Berührungsflächen des Walzguts mit den Walzen über die Walzballenlänge. Walzensprung ist die Bezeichnung für eine Vergrößerung der Walzenöffnung beim Anstich des Walzguts durch eine Dehnung der Teile des Walzgerüsts. Die Walzkraft kann sich, im Gegensatz zum Walzspalt, beim Durchlaufen der Platine ändern. Die Übergänge zwischen zwei Platinenabschnitten mit unterschiedlicher Banddicke ergeben sich durch die Temperaturverteilung in der Platine und können bei entsprechender partieller Temperaturänderung vor dem Walzen, im Gegensatz zu geregelten Walzgerüsten, sehr kurz gehalten werden. Der Kraft-Arbeitsbedarf ist durch den temperaturabhängigen Fließwiderstand stark reduziert, so dass Platinen mit unterschiedlichen Blechdicken in großer Breite wirtschaftlich hergestellt werden können.The rolling takes place after separation of the boards is carried out at a constant nip. This means that the nip position remains at least largely constant when passing through the blank by the rolling tool, preferably in an unregulated process. In this context, nip is the term for the roll opening including the roll jump at the contact surfaces of the rolling stock with the rolls over the roll bale length. Roll skip is the name given to an enlargement of the roll opening when the rolling stock is punctured by stretching the parts of the roll stand. The rolling force can, in contrast to the nip, change as it passes through the board. The transitions between two board sections with different strip thickness are due to the temperature distribution in the board and can be kept very short with a corresponding partial temperature change before rolling, in contrast to controlled rolling stands. The force-working requirement is greatly reduced by the temperature-dependent flow resistance, so that boards with different thicknesses can be produced in a large width economically.

Nach einer bevorzugten Ausgestaltung werden die unterschiedlichen Temperaturbereiche entsprechend dem später gewünschten Dickenverlauf der Platine erzeugt. Dabei kann die Form und die Erstreckung der Temperaturbereiche in Längs- und in Querrichtung der Platine grundsätzlich so gewählt werden, dass die Platine nach dem Walzen das gewünschte Dickenprofil aufweist.According to a preferred embodiment, the different temperature ranges are generated according to the later desired thickness profile of the board. In this case, the shape and the extent of the temperature ranges in the longitudinal and in the transverse direction of the board can in principle be chosen so that the board has the desired thickness profile after rolling.

Insbesondere kann nach einer einfachen ersten Ausgestaltung vorgesehen sein, dass von den Bereichen mit unterschiedlichen Temperaturen zumindest ein Bereich, vorzugsweise mehrere Bereiche, auf eine konstante Temperatur quer zur Walzrichtung erwärmt oder abgekühlt wird. Die so in Längsrichtung der Platine nebeneinanderliegenden Bereiche der Platine mit jeweils zum benachbarten Bereich unterschiedlicher Temperatur führen beim Walzen zu einer Dickenänderung der Platine in Längsrichtung beziehungsweise in Walzrichtung der Platine. Die Anzahl und Verteilung der Bereiche mit unterschiedlicher Temperatur ist in Abhängigkeit vom gewünschten Dickenprofil der Platine grundsätzlich frei wählbar, wobei die Anzahl insbesondere zwischen zwei und sechs liegt.In particular, according to a simple first embodiment, at least one region, preferably a plurality of regions, of the regions with different temperatures is heated or cooled to a constant temperature transversely to the rolling direction. The juxtaposed in the longitudinal direction of the board areas of the board, each with the adjacent area different temperature lead during rolling to a change in thickness of the board in the longitudinal direction or in the rolling direction of the board. The number and distribution of the areas with different temperature is basically freely selectable depending on the desired thickness profile of the board, the number is in particular between two and six.

Nach einer zweiten Möglichkeit kann vorgesehen sein, dass zumindest ein Bereich, gegebenenfalls auch mehrere Bereiche, mit einer variablen Temperatur quer zur Walzrichtung versehen werden. Hiermit wird ermöglicht, dass die Platine beim nachfolgenden Walzprozess eine entsprechende Dickenänderung quer zur Walzrichtung erfährt. Auch hier gilt, dass die Anzahl und die Verteilung der Bereiche mit unterschiedlicher Temperatur in Abhängigkeit vom gewünschten Dickenprofil der herzustellenden Platine eingestellt werden.According to a second possibility, it can be provided that at least one region, if appropriate also several regions, are provided with a variable temperature transversely to the rolling direction. This makes it possible that the board during the subsequent rolling process undergoes a corresponding change in thickness transverse to the rolling direction. Again, that the number and distribution of the areas with different temperature depending on the desired thickness profile of the board to be produced can be adjusted.

Nach einer dritten Möglichkeit, die eine Kombination der ersten und der zweiten Möglichkeit darstellt, können sowohl Temperaturbereiche erzeugt werden, die sich mit einheitlicher Temperatur quer zur Walzrichtung erstrecken, als auch Temperaturbereiche, die quer zur Walzrichtung einen zusätzlichen Temperaturgradienten aufweisen. Mit der letztgenannten dritten Möglichkeit wird ein höchstes Maß an Flexibilität in Hinblick auf den späteren Dickenverlauf der Platine nach dem Walzen in Längs- und in Querrichtung erreicht. Insbesondere lässt sich hiermit eine dreidimensionale Dickenstruktur der Platine erzeugen.According to a third possibility, which represents a combination of the first and the second possibility, both temperature ranges can be generated, which extend at uniform temperature transverse to the rolling direction, as well as temperature ranges, which have an additional temperature gradient transverse to the rolling direction. The latter third option achieves the highest degree of flexibility with regard to the subsequent thickness progression of the board after rolling in the longitudinal and in the transverse direction. In particular, a three-dimensional thickness structure of the board can be produced herewith.

Nach einer ersten Ausführungsform erfolgt das bereichsweise Verändern der Temperatur ausgehend von einer homogenen ersten Temperatur der Platine durch Erwärmen zumindest eines Bereichs der Platine auf eine höhere zweite Temperatur. Mit homogener erster Temperatur ist dabei gemeint, dass die Platine vor der bereichsweisen Temperaturänderung einheitlich dieselbe Temperatur aufweist. Mit zumindest einem Bereich ist gemeint, dass ein oder mehrere Bereiche auf eine individuelle Temperatur erwärmt werden. Wenn genau ein Bereich erwärmt wird, entstehen zwei Bereiche mit voneinander unterschiedlicher Temperatur. Die Höhe der Temperatur, auf welche die Platine erwärmt wird, hängt im Wesentlichen vom Werkstoff beziehungsweise von der Festigkeit des Werkstoffs ab. Bei Verwendung eines Stahlwerkstoffs wird der zumindest eine Bereich der Platine vorzugsweise auf eine zweite Temperatur von 400°C bis 1250°C, insbesondere von 600°C bis 800°C erwärmt. Bei Verwendung eines Aluminium-Werkstoffs wird die Platine vorzugsweise auf eine zweite Temperatur von 150°C bis 500°C erwärmt.According to a first embodiment, the region-wise changing of the temperature takes place starting from a homogeneous first temperature of the board by heating at least one area of the board to a higher second temperature. By homogeneous first temperature is meant that the board uniformly has the same temperature before the area-wise temperature change. By at least one region, it is meant that one or more regions are heated to an individual temperature. When just one area is heated, two areas of different temperature are created. The height of the temperature to which the board is heated depends essentially on the material or on the strength of the material. When using a steel material, the at least one region of the board is preferably heated to a second temperature of 400 ° C to 1250 ° C, in particular from 600 ° C to 800 ° C. When using an aluminum material, the board is preferably heated to a second temperature of 150 ° C to 500 ° C.

Das bereichsweise Erwärmen der Platine kann beispielsweise mittels eines Stempels erfolgen, der mit der Platine derart in Kontakt gebracht wird, dass die Platine zumindest etwa die Temperatur des Stempels annimmt. In diesem Fall wäre der Stempel als Heizstempel ausgebildet, der vorzugsweise unterschiedlich gesteuerte Temperaturzonen aufweist. Alternativ kann das bereichsweise Erwärmen auch induktiv mittels einer oder mehrerer Stromwalzen erfolgen, durch welche die Platinen geführt werden, wobei insbesondere vorgesehen ist, dass die unterschiedlichen Temperaturzonen der Platinen durch Variieren der Leistung der Stromwalzen beim Hindurchführen der Platinen erzeugt werden.The partial heating of the circuit board can be effected, for example, by means of a stamp, which is brought into contact with the circuit board in such a way that the circuit board assumes at least approximately the temperature of the stamp. In this case, the stamp would be designed as a heating die, which preferably has differently controlled temperature zones. Alternatively, the heating in regions can also be carried out inductively by means of one or more current rollers through which the circuit boards are guided, wherein it is provided in particular that the different temperature zones of the circuit boards are produced by varying the power of the current rollers during passage of the circuit boards.

Nach einer zweiten Ausführungsform wird das bereichsweise Verändern der Temperatur ausgehend von einer homogenen ersten Temperatur der Platine durch Abkühlen bewerkstelligt. Hierfür werden die Platinen vor dem bereichsweisen Verändern der Temperatur zunächst homogen auf eine höhere erste Temperatur erwärmt. Anschließend erfolgt das bereichsweise Verändern der Temperatur durch Abkühlen zumindest eines Bereichs der Platine auf eine niedrigere zweite Temperatur. Dadurch, dass zumindest ein Bereich abgekühlt wird, entstehen zumindest zwei Bereiche mit voneinander unterschiedlicher Temperatur. Selbstverständlich können auch beliebig viele weitere Bereiche jeweils auf eine individuelle Temperatur abgekühlt werden. Bei Verwendung eines Stahlwerkstoffs liegt die homogene erste Temperatur, auf welche die Platine erwärmt wird, zwischen 950°C und 1250°C. Das anschließende bereichsweise Abkühlen der Bereiche erfolgt auf niedrigere zweite Temperaturen, die insbesondere zwischen 400°C und 950°C, vorzugsweise zwischen 600°C und 800°C, liegen.According to a second embodiment, the region-wise changing of the temperature is accomplished from a homogeneous first temperature of the board by cooling. For this purpose, the boards are first heated homogeneously to a higher first temperature before the area-wise changing of the temperature. Subsequently, the temperature is changed in regions by cooling at least one area of the board to a lower second temperature. The fact that at least one area is cooled, at least two areas arise with mutually different temperature. Of course, as many other areas can each be cooled to an individual temperature. When using a steel material, the homogeneous first temperature to which the board is heated is between 950 ° C and 1250 ° C. The subsequent partial cooling of the regions takes place at lower second temperatures, which are in particular between 400 ° C. and 950 ° C., preferably between 600 ° C. and 800 ° C.

Das bereichsweise Abkühlen der Platine wird vorzugsweise mittels eines Stempels durchgeführt, der mit der Platine derart in Kontakt gebracht wird, dass die Platine zumindest etwa die Temperatur des Stempels annimmt. In diesem Fall wäre der Stempel als Kühlstempel ausgebildet. Der Stempel kann vorzugsweise individuell steuerbare Kühlzonen aufweisen, so dass die Temperaturzonen der Platine individuell an das später zu fertigende Dickenprofil angepasst werden kann.The partial cooling of the board is preferably carried out by means of a punch, which is brought into contact with the board in such a way that the board assumes at least about the temperature of the stamp. In this case, the stamp would be designed as a cooling stamp. The stamp may preferably have individually controllable cooling zones, so that the temperature zones of the board can be individually adapted to the later to be produced thickness profile.

Nach einer Ausgestaltung, die für beide Ausführungsformen gilt, das heißt sowohl für das partielle Wärmen als auch das partielle Kühlen, werden die Platinen nach dem Walzen einer Wärmebehandlung unterzogen, vorzugsweise einem Normalisierungsglühen. Hierfür werden die Platinen bei Verwendung von Stahlwerkstoff vorzugsweise auf eine Temperatur von 950°C bis 1250°C und bei Verwendung von AluminiumWerkstoff auf eine Temperatur von 150°C bis 550°C erwärmt. Das Erwärmen findet vorzugsweise in einem Heizofen statt. Durch diese Wärmebehandlung wird eine einheitliche Gefügestruktur in der Platine über alle Abschnitte unterschiedlicher Dicke hergestellt.According to an embodiment that applies to both embodiments, that is, both for the partial heating and the partial cooling, the boards are subjected to a heat treatment after rolling, preferably a normalization annealing. For this purpose, the boards are preferably heated to a temperature of 950 ° C to 1250 ° C and when using aluminum material to a temperature of 150 ° C to 550 ° C when using steel material. The heating preferably takes place in a heating furnace. This heat treatment produces a uniform microstructure in the board over all sections of different thickness.

Nach der Wärmebehandlung wird die Platine zum Endprodukt weiterverarbeitet. Der nachfolgende Verfahrensschritt umfasst einen Umformprozess, wie Tiefziehen. Anschließend kann das Bauteil gehärtet werden, beziehungsweise vergütet, das heißt Härten mit anschließendem Anlassen. Besonders vorteilhaft ist die Verwendung eines Warmformprozesses. Dabei wird die Platine in einem Warmformwerkzeug zur vorgesehen Form umgeformt und gehärtet. Im Rahmen des Warmformens ist es auch denkbar, dass nur Teilbereiche des Warmformwerkzeuges gekühlt werden, so dass auch nur die Teilabschnitte des Werkstücks gehärtet werden, welche mit den gekühlten Teilbereichen des Warmformwerkzeuges in Kontakt kommen. Die übrigen Teilabschnitte des Werkstücks behalten eine geringere Härte. Zum Warmumformen mit gleichzeitigem Härten ist ein gekühltes Formwerkzeug erforderlich, das in den zu härtenden Abschnitten der Platine beziehungsweise des daraus herzustellenden Endprodukts gekühlte Bereiche aufweist, oder gegebenenfalls vollständig gekühlt ist.After the heat treatment, the board is further processed to the final product. The subsequent process step comprises a forming process, such as deep-drawing. Subsequently, the component can be cured, or annealed, that is, hardening followed by tempering. Particularly advantageous is the use of a thermoforming process. In this case, the board is formed in a thermoforming mold to the intended shape and cured. In the context of thermoforming, it is also conceivable that only portions of the thermoforming tool are cooled, so that only the sections of the workpiece are cured, which come into contact with the cooled portions of the thermoforming tool. The remaining sections of the workpiece retain a lower hardness. For thermoforming with simultaneous curing, a cooled mold is required which has cooled areas in the sections to be cured of the board or of the end product to be produced therefrom, or is optionally completely cooled.

Eine Vorrichtung zum Herstellen von Platinen mit unterschiedlichen Dicken aus einem metallischen Werkstoff nach dem erfindungsgemäßen Verfahren, mit einem oder mehreren der oben genannten Verfahrensschritte, umfasst in der angegebenen Reihenfolge folgendes: ein Werkzeug zum Vereinzeln von Platinen aus einem Bandmaterial; ein temperaturveränderndes Werkzeug, mit dem in den Platinen Bereiche mit unterschiedlichen Temperaturen erzeugbar sind; und ein Walzwerkzeug mit konstanter Walzspaltanstellung, mit dem die temperaturveränderten Platinen walzbar sind, so dass in den Platinen aufgrund der unterschiedlichen Temperaturbereiche Abschnitte mit unterschiedlicher Dicke erzeugbar sind.A device for producing boards with different thicknesses of a metallic material according to the method according to the invention, with one or more of the above-mentioned method steps, comprises in the order given: a tool for separating boards from a strip material; a temperature-changing tool, with which areas of different temperatures can be generated in the boards; and a rolling tool with a constant nip position, with which the temperature-changed circuit boards are rollable, so that in the boards due to the different temperature ranges sections of different thickness can be generated.

Die Vorrichtung hat dieselben Vorteile wie das Verfahren, so dass diesbezüglich auf die obige Beschreibung verwiesen wird. Insbesondere ist die konstante Walzspalteinstellung des Walzwerkzeugs, bevorzugt in einem ungeregelten Prozess, günstig im Hinblick auf eine einfache und effiziente Fertigung. Die Änderung der Materialdicke erfolgt allein aufgrund unterschiedlicher Walzensprünge des Walzwerkzeugs beim Durchlaufen der Platinen, was wiederum auf die unterschiedlichen Fließwiderstände im Platinenmaterial beziehungsweise die bereichsweise unterschiedlichen Temperaturen des Materials zurückzuführen ist. Dadurch, dass dem temperaturverändernden Werkzeug ein Werkzeug zum Vereinzeln von Bandmaterial zu Platinen vorgeschaltet ist, wird für die geometrische Gestaltung der herzustellenden Platine beziehungsweise des hieraus zu fertigenden Endproduktes eine höchste Flexibilität gegeben. So können beispielsweise auch Platinen beziehungsweise Erzeugnisse mit variablem Dickenprofile quer zur Walzrichtung erzeugt werden.The device has the same advantages as the method, so that reference is made in this regard to the above description. In particular, the constant roll gap setting of the rolling tool, preferably in an uncontrolled process, is favorable in terms of simple and efficient production. The change in material thickness occurs solely due to different roller jumps of the rolling tool when passing through the boards, which in turn is due to the different flow resistance in the board material or the partially different temperatures of the material. The fact that the temperature-changing tool is preceded by a tool for separating strip material to boards, is the highest for the geometric design of the board to be produced or the end product to be produced from this Given flexibility. Thus, for example, boards or products with variable thickness profiles can be generated transversely to the rolling direction.

Nach einer bevorzugten Ausgestaltung weist das temperaturverändernde Werkzeug zumindest einen Stempel auf, der erwärmbar oder abkühlbar ist. Mit dem Stempel lässt sich die Temperatur der Platine in einem oder mehreren Teilbereichen gegenüber anderen Bereichen partiell erhöhen beziehungsweise absenken. Die Größe und Form des Stempels orientiert sich vorzugsweise an der Form und Größe der zu erzeugenden Temperaturzonen beziehungsweise dem im Rahmen des Walzprozesses zu erzeugenden Dickenprofil der Platine. Vorzugsweise weist der Stempel mehrere Bereiche aufweist, in denen die Temperatur individuell einstellbar ist. So lassen sich mit einem Stempel auf der Platine unterschiedliche Temperaturzonen erzeugen.According to a preferred embodiment, the temperature-changing tool on at least one stamp, which can be heated or cooled. With the stamp, the temperature of the board can be partially increased or decreased in one or more areas compared to other areas. The size and shape of the stamp is preferably based on the shape and size of the temperature zones to be generated or the thickness profile of the board to be produced during the rolling process. Preferably, the stamp has a plurality of areas in which the temperature is individually adjustable. In this way different temperature zones can be created with a stamp on the board.

Bei der ersten Möglichkeit, gemäß welcher der Stempel als Heizstempel ausgebildet ist, sind vorzugsweise Heizdrähte in dem Stempel vorgesehen, welche den Stempel zumindest in Teilbereichen erwärmen können.In the first possibility, according to which the punch is designed as a heating punch, heating wires are preferably provided in the punch, which can heat the punch at least in some areas.

Bei der zweiten Möglichkeit, bei welcher der Stempel als Kühlstempel zum partiellen Abkühlen der Platine ausgebildet ist, weist dieser vorzugsweise Kanäle auf, durch die ein Kühlmedium hindurchfließen kann, um den Stempel abzukühlen. Zur variablen Einstellung der unterschiedlichen Temperaturzonen in der Platine ist es besonders günstig, wenn die Durchflussgeschwindigkeit des Kühlmediums durch die Kanäle steuerbar ist. Vorzugsweise sind mehrere Kühlkreisläufe durch den Stempel vorgesehen, die von Kühlmedium durchströmt werden. Durch individuelle Einstellung der Durchflussgeschwindigkeit des Kühlmediums durch jeden einzelnen Kanal lassen sich mit einem Kühlstempel unterschiedliche Temperaturzonen erzeugen. So ist es beispielsweise möglich, dass mit einem Kühlstempel ein erster Bereich mit 600°C, ein zweiter Bereich mit 750°C und ein dritter Bereich mit 900°C in der Platine erzeugt werden kann. Dasselbe gilt sinngemäß natürlich auch für einen Heizstempel gemäß der ersten Möglichkeit, welcher entsprechend unterschiedliche Heizzonen aufweisen kann.In the second possibility, in which the stamp is formed as a cooling die for partial cooling of the board, this preferably has channels through which a cooling medium can flow to cool the stamp. For variable adjustment of the different temperature zones in the board, it is particularly advantageous if the flow rate of the cooling medium through the channels is controllable. Preferably, a plurality of cooling circuits are provided by the stamp, which are flowed through by cooling medium. By individually adjusting the flow rate of the cooling medium through each individual channel, different temperature zones can be generated with a cooling stamp. Thus, it is possible, for example, that a first area with 600 ° C, a second area with 750 ° C and a third area with 900 ° C can be generated in the board with a cooling stamp. The same naturally applies mutatis mutandis to a Heizstempel according to the first possibility, which may have correspondingly different heating zones.

Nach einer bevorzugten Ausgestaltung, die für beide Möglichkeiten gilt, ist der zumindest eine Stempel aus einem metallischen Werkstoff mit guter Wärmeleitfähigkeit hergestellt, insbesondere aus Kupfer oder aus einem Kupfer enthaltenden Werkstoff.According to a preferred embodiment, which applies to both possibilities, the at least one stamp is made of a metallic material with good thermal conductivity, in particular of copper or of a copper-containing material.

Das Walzwerkzeug ist vorzugsweise so gestaltet sein, dass die Spaltbreite während des Walzens konstant ist. Hierdurch kann der Kraft-Arbeits-Bedarf sehr gering gehalten werden, was sich günstig auf die Herstellungskosten und -zeit auswirkt. Es versteht sich jedoch, dass auch ein Werkzeug zum flexiblen Walzen zum Einsatz kommen kann, womit eine besonders hohe Flexibilität im Hinblick auf das Dickenprofil der herzustellenden Platinen erreicht wird.The rolling tool is preferably designed so that the gap width is constant during rolling. As a result, the power-work demand can be kept very low, which has a favorable effect on the production costs and time. However, it goes without saying that a tool for flexible rolling can also be used, with which a particularly high degree of flexibility with regard to the thickness profile of the boards to be produced is achieved.

Erfindungsgemäß umfasst die Vorrichtung die Wärmebehandlungseinrichtung, die dem Walzwerkzeug nachgeschaltet ist. In der Wärmebehandlungseinrichtung, welche insbesondere als Heizofen gestaltet ist, können die Platinen wärmebehandelt werden, vorzugsweise normalgeglüht.According to the invention, the device comprises the heat treatment device, which is connected downstream of the rolling tool. In the heat treatment device, which is designed in particular as a heating furnace, the boards can be heat-treated, preferably normalized.

Der Wärmebehandlungseinrichtung ist das Umformwerkzeug nachgeschaltet, das in Form eines Warmformwerkzeugs gestaltet ist, in dem die Platinen umgeformt und zumindest partiell gehärtet werden können. Die Kombination der bereichsweisen Temperaturveränderung der Platinen, anschließenden Walzen, Erwärmen und Warmumformen ist besonders günstig, da hiermit eine sehr effiziente Herstellung von Blechplatinen mit variabler Dicke über der Länge beziehungsweise der Breite ermöglicht wird. Der Wärmeeintrag in die Platine während der Fertigung, das heißt während des Durchlaufens der einzelnen Vorrichtungsstationen kann gering gehalten werden, was sich wiederum günstig auf die Herstellungsgeschwindigkeit und -kosten auswirkt. Besonders günstig ist, wenn die Platinen mit den Bereichen, welche nach der bereichsweisen Temperaturveränderung die höchsten Temperaturen haben, während der nachfolgenden Verfahrensschritte des Walzens und der Wärmebehandlung bis zum Einlegen in das Umformwerkzeug stets eine Temperatur von über 500°C, insbesondere von über 600°C, für Stahlwerkstoffe aufweisen.The heat treatment device is connected downstream of the forming tool, which is designed in the form of a thermoforming tool in which the boards can be reshaped and at least partially cured. The combination of the area-wise temperature change of the blanks, subsequent rolls, heating and hot forming is particularly favorable, since this allows a very efficient production of sheet metal blanks with variable thickness over the length or the width. The heat input into the board during manufacture, that is, while passing through the individual device stations can be kept low, which in turn has a favorable effect on the production speed and costs. It is particularly advantageous if the boards with the areas which have the highest temperatures after the regional temperature change during the subsequent process steps of rolling and heat treatment to insert into the forming always a temperature of about 500 ° C, in particular of about 600 ° C, for steel materials.

Bevorzugte Ausführungsbeispiele werden nachstehend anhand der Zeichnungsfiguren erläutert. Hierin zeigt:

Figur 1
ein erfindungsgemäßes Verfahren zur Herstellung einer Platine mit unterschiedlichen Dicken in einer ersten Ausführungsform
  1. a) mit den einzelnen Verfahrensschritten;
  2. b) der Temperaturverlauf für zwei Bereiche über der Zeit;
Figur 2
ein erfindungsgemäßes Verfahren zur Herstellung einer Platine mit unterschiedlichen Dicken einer zweiten Ausführungsform
  1. a) mit den einzelnen Verfahrensschritten;
  2. b) der Temperaturverlauf für zwei Bereiche über der Zeit;
Figur 3
beispielhaft eine Platine hergestellt nach einem Verfahren bzw. mit einer Vorrichtung gemäß Figur 1 oder Figur 2 in einer weiteren Ausführungsform
  1. a) in Draufsicht nach der partiellen Temperaturbehandlung und vor dem Walzprozess,
  2. b) schematisch in Seitenansicht vor dem Walzprozess,
  3. c) schematisch in Seitenansicht nach dem Walzprozess;
Figur 4
beispielhaft eine Platine hergestellt nach einem Verfahren bzw. einer Vorrichtung gemäß Figur 1 oder Figur 2 in einer weiteren Ausführungsform
  1. a) in Draufsicht nach der partiellen Temperaturbehandlung und vor dem Walzprozess;
  2. b) in Draufsicht nach dem Walzprozess;
  3. c) schematisch in Seitenansicht nach dem Walzprozess;
  4. d) im Querschnitt nach dem Walzprozess durch einen Abschnitt gemäß Schnittlinie D-D aus Figur 4b).
Preferred embodiments will be explained below with reference to the drawing figures. Hereby shows:
FIG. 1
an inventive method for producing a board with different thicknesses in a first embodiment
  1. a) with the individual process steps;
  2. b) the temperature profile for two areas over time;
FIG. 2
an inventive method for producing a board with different thicknesses of a second embodiment
  1. a) with the individual process steps;
  2. b) the temperature profile for two areas over time;
FIG. 3
By way of example, a circuit board produced by a method or with a device according to FIG. 1 or FIG. 2 in a further embodiment
  1. a) in plan view after the partial temperature treatment and before the rolling process,
  2. b) schematically in side view before the rolling process,
  3. c) schematically in side view after the rolling process;
FIG. 4
By way of example, a circuit board produced by a method or a device according to FIG. 1 or FIG. 2 in a further embodiment
  1. a) in plan view after the partial temperature treatment and before the rolling process;
  2. b) in plan view after the rolling process;
  3. c) schematically in side view after the rolling process;
  4. d) in cross section after the rolling process through a section according to section line DD FIG. 4b ).

Figur 1 zeigt ein erfindungsgemäßes Verfahren zur Herstellung einer Platine 10. Die Blechplatine 10 wird vorzugsweise aus einem metallischen Werkstoff hergestellt, beispielsweise aus einem Stahlwerkstoff oder Aluminium, und kann insofern auch als Blechplatine bezeichnet werden. Es ist eine Verfahrensführung A gezeigt. FIG. 1 shows a method according to the invention for producing a circuit board 10. The sheet metal blank 10 is preferably made of a metallic material, for example of a steel material or aluminum, and may also be referred to as a sheet metal blank. A process procedure A is shown.

Unter Platine 10 wird in diesem Zusammenhang ein Blechelement verstanden, das insbesondere von einem Bandmaterial beziehungsweise von einem Coil hergestellt werden kann. Dabei kann die Platine durch einfaches Ablängen des Bandmaterials in einzelne Elemente oder durch Ausschneiden bzw. Stanzen von einzelnen Elementen aus dem Bandmaterial hergestellt werden.Under board 10 is understood in this context, a sheet metal element, which can be made in particular of a strip material or a coil. In this case, the board can be made by simply cutting the strip material into individual elements or by cutting or punching of individual elements of the strip material.

Im Verfahrensschritt A1 wird die Platine 10 mittels eines temperaturverändernden Werkzeugs 30 behandelt. Dabei erhält die Platine 10 verschiedene Bereiche 11, 12, 21, welche unterschiedliche Temperaturen aufweisen. Im vorliegenden Beispiel hat der Bereich 11 eine Temperatur von 800°C, der zweite Bereich 12 eine Temperatur von 600°C. Der zwischen dem ersten Bereich 11 und dem zweiten Bereich 12 liegende Übergangsbereich 21 hat eine variable Temperatur, die vom ersten Bereich 11 zum zweiten Bereich 12 sinkt.In method step A1, the circuit board 10 is treated by means of a temperature-changing tool 30. The board 10 receives different areas 11, 12, 21, which have different temperatures. In the present example, the region 11 has a temperature of 800 ° C, the second region 12 has a temperature of 600 ° C. The transition region 21 lying between the first region 11 and the second region 12 has a variable temperature, which decreases from the first region 11 to the second region 12.

Die in Figur 1b) gezeigte Temperaturkurve mit durchgezogener Linie zeigt den Temperaturverlauf für den ersten Bereich 11 über der Zeit. Hier ist erkennbar, wie die Temperatur ausgehend von der Ausgangstemperatur von 0°C sich zunächst stark erhöht, bis die Zieltemperatur TA1,11 von 800°C erreicht ist. Entsprechend zeigt die gestrichelte Linie den Temperaturverlauf für den zweiten Bereich 12. Hier ist ebenfalls erkennbar, wie sich die Temperatur mit der Zeit erhöht, bis der Zielwert von TA1,12 = 600°C erreicht ist.In the FIG. 1b ) shown in solid line shows the temperature profile for the first region 11 over time. Here it can be seen how the temperature, starting from the initial temperature of 0 ° C, initially increases sharply until the target temperature T A1,11 of 800 ° C is reached. Accordingly, the dashed line shows the temperature profile for the second region 12. Here is also seen how the temperature increases with time until the target value of T A1,12 = 600 ° C is reached.

Nach der bereichsweisen Temperaturbehandlung der Platine 10 wird diese im darauffolgenden Verfahrensschritt A2 einem Walzprozess unterzogen. Dies geschieht mittels eines Walzwerkzeuges 40, das mehrere Walzen 41, 42 umfasst. Durch die im Verfahrensschritt A1 erzeugten unterschiedlichen Temperaturbereiche 11, 12, 21 weist die Platine 10 hier entsprechend unterschiedliche Fließwiderstände auf. Dabei hat der heißere erste Bereich 11 einen geringeren Fließwiderstand, weswegen dieser stärker abgewalzt wird. Demgegenüber hat der kühlere zweite Bereich 12 der Platine einen höheren Fließwiderstand, so dass er weniger stark abgewalzt wird. Aufgrund dieser unterschiedlichen Fließwiderstände werden an der Platine 10 durch den Walzprozess A2 Abschnitte 112, 122, 212 mit unterschiedlicher Dicke erzeugt. Die Platine ist nach dem Walzprozess mit um die Ziffer zwei tiefergestellten Indizes versehen. Es ist erkennbar, dass die Platine 102 nach dem Durchlaufen des Walzwerkzeuges 40 einen ersten Abschnitt 112 mit geringerer Blechdicke und einen zweiten Abschnitt 122 mit einer größeren Blechdicke sowie einen dazwischen liegenden Übergangsabschnitt 212 aufweist.After the area-wise temperature treatment of the board 10, this is subjected to a rolling process in the subsequent process step A2. This is done by means of a rolling tool 40, which comprises a plurality of rollers 41, 42. As a result of the different temperature ranges 11, 12, 21 generated in method step A1, the circuit board 10 has correspondingly different flow resistances. In this case, the hotter first region 11 has a lower flow resistance, which is why it is more heavily rolled off. In contrast, the cooler second region 12 of the board has a higher flow resistance, so that it is less severed. Due to these different flow resistances, portions 11 2 , 12 2 , 21 2 of different thickness are produced on the blank 10 by the rolling process A2. The After the rolling process, the board is provided with subscripts centered around the number two. It can be seen that the board 10 2 after passing through the rolling tool 40 has a first portion 11 2 with a smaller sheet thickness and a second portion 12 2 with a larger sheet thickness and an intermediate transition portion 21 2 .

Beim Durchlaufen der Platine 10 durch das Walzwerkzeug 40 bleibt die Walzspaltanstellung konstant, d. h. der Abstand zwischen den Walzen wird beim Durchlaufen der Blechplatine 10 nicht verändert. Das Dickenprofil ergibt sich allein aufgrund der unterschiedlichen Temperaturbereiche 11, 12, 21 der Platine 10. Insgesamt ergibt sich damit ein geringer Kraft-Arbeits-Bedarf. Es versteht sich jedoch, dass auch ein flexibles Walzen, bei welchem die Walzspaltanstellung während des Prozesses variiert wird, verwendet werden kann. Hiermit ergibt sich eine nochmals erhöhte Flexibilität und weitere Möglichkeiten der individuellen Gestaltung unterschiedlicher Dickenprofile an den Platinen 10.When passing through the blank 10 by the rolling tool 40, the nip position remains constant, d. H. the distance between the rollers is not changed when passing through the sheet metal blank 10. The thickness profile results solely due to the different temperature ranges 11, 12, 21 of the board 10. Overall, this results in a low power work demand. It will be understood, however, that a flexible rolling in which the nip position is varied during the process can also be used. This results in a further increased flexibility and further possibilities of individual design of different thickness profiles on the boards 10.

In Figur 1b) ist der Temperaturverlauf TA2 vor, nach und während des Walzens gezeigt. Hier zeigt die durchgezogene Linie wieder den Temperaturverlauf für den Bereich 11 bzw. den nach dem Walzprozess vorliegenden Abschnitt 112. Vor dem Walzen nimmt die Temperatur leicht und während des Walzens dann stärker ab, bis auf eine Temperatur von ca. 700°C. Nach dem Walzprozess kühlt die gewalzte Platine 102 weiter ab, so dass die Temperatur entsprechend abnimmt. Der Temperaturverlauf TA2,12 für den zweiten Bereich 12 verläuft weitestgehend parallel zum Temperaturbereich TA2,11 für den ersten Bereich 11 mit einer um etwa 200°C reduzierten Temperatur.In FIG. 1b ), the temperature profile T A2 is shown before, after and during rolling. Here, the solid line again shows the temperature profile for the region 11 or the section 11 2 present after the rolling process. Before rolling, the temperature decreases slightly and then more during rolling, up to a temperature of about 700 ° C. After the rolling process, the rolled board 10 2 further cools, so that the temperature decreases accordingly. The temperature profile T A2,12 for the second region 12 runs as far as possible parallel to the temperature range T A2,11 for the first region 11 with a reduced by about 200 ° C temperature.

Im nachfolgenden Verfahrensschritt A3 wird die gewalzte Platine 102 einer Wärmebehandlung unterzogen. Die Platine beziehungsweise deren Abschnitte sind nach der Wärmebehandlung mit um die Ziffer drei tiefergestellten Indizes versehen. Die Wärmebehandlung erfolgt vorzugsweise in einem Ofen 50. Durch die Wärmebehandlung werden beim Walzen entstandene Verfestigungen des Materials vermindert bzw. aufgelöst und die gewalzte Platine 103 erhält wieder eine höhere Duktilität und Dehnbarkeit. Auf diese Weise lässt sich die Platine 103 in den folgenden Verfahrensschritten leichter weiterverarbeiten, wobei außerdem die Materialeigenschaften des herzustellenden Endproduktes positiv beeinflusst werden. Es versteht sich, dass die Wärmebehandlung im Verfahrensschritt A3 nur optional ist, das heißt, dass die Platine 102 auch prinzipiell ohne nachfolgende Wärmebehandlung weiterverarbeitet werden kann.In the subsequent method step A3, the rolled board 10 2 is subjected to a heat treatment. The board or its sections are provided after the heat treatment with subscript by three digits indices. The heat treatment is preferably carried out in a furnace 50. By the heat treatment solidification of the material resulting from rolling is reduced or dissolved and the rolled plate 10 3 again receives a higher ductility and ductility. In this way, the board can be 10 3 in the following steps easier to further process, in addition, the material properties of the final product to be produced are positively influenced. It is understood that the heat treatment in method step A3 is only optional, that is to say that the board 10 2 can in principle also be further processed without subsequent heat treatment.

Wie aus Figur 1b) hervorgeht, wird die Platine 103 auf etwa 950°C erwärmt. Dabei erwärmt sich der dünnere erste Platinenabschnitt 113 schneller als der dickere Platinenabschnitt 123.How out FIG. 1b ), the board 10 3 is heated to about 950 ° C. In this case, the thinner first board section 11 3 heats up faster than the thicker board section 12 3 .

Nach der Wärmebehandlung gemäß Verfahrensschritt A3 kann die Platine 103 weiterverarbeitet werden. Beispielhaft ist hier eine formgebende Bearbeitung in einem Warmformwerkzeug 60 gezeigt. Die Platine beziehungsweise deren Abschnitte sind im Zusammenhang mit dem Warmformprozess mit um die Ziffer vier tiefergestellten Indizes versehen. Beim Warmformen gemäß Verfahrensschritt A4 wird die Platine 104 einer formgebenden Bearbeitung unterzogen und gleichzeitig stark abgekühlt bzw. gehärtet. Dies ist auch am Temperaturverlauf erkennbar, der nämlich für den dünneren ersten Abschnitt 114 (Temperatur TA4,11) einen starken Temperaturabfall von 950°C auf unter 200°C zeigt. Der dickere zweite Platinenabschnitt 124 kühlt etwas langsamer ab, wie der gestrichelten Linie (Temperatur TA4,12) zu entnehmen ist. Es versteht sich, dass als formgebende Bearbeitung auch andere Verfahren als Warmumformung verwendet werden können. Beispielhaft sei hier eine Weiterverarbeitung mittels Pressen oder Tiefziehen genannt.After the heat treatment according to method step A3, the board 10 3 can be further processed. By way of example, a shaping machining in a thermoforming tool 60 is shown here. The board or its sections are provided in connection with the thermoforming process with subscripted by the number four indices. When thermoforming according to method step A4, the board 10 4 is subjected to a shaping treatment and at the same time strongly cooled or hardened. This can also be seen in the temperature profile, namely for the thinner first section 11 4 (temperature T A4,11 ) shows a sharp drop in temperature from 950 ° C to below 200 ° C. The thicker second board section 12 4 cooled slightly slower, as the dashed line (temperature T A4,12 ) can be seen. It is understood that other than hot forming processes can be used as a shaping processing. By way of example, a further processing by means of pressing or deep drawing may be mentioned here.

Die Figuren 2a) und 2b) zeigen ein erfindungsgemäßes Verfahren zur Herstellung einer Blechplatine mit unterschiedlichen Dicken nach einer zweiten Verfahrensführung B. Diese entspricht in weiteren Teilen dem Verfahren gemäß den Figuren 1a) bzw. 1b), so dass hinsichtlich der Gemeinsamkeiten auf obige Beschreibung Bezug genommen werden kann. Dabei sind gleiche bzw. abgewandelte Bauteile mit gleichen Bezugszeichen versehen, wie in Figur 1. Im folgenden wird im wesentlichen auf die Unterschiede des vorliegenden Verfahrens eingegangen.The FIGS. 2a) and 2b ) show a method according to the invention for the production of a sheet metal blank with different thicknesses according to a second process procedure B. This corresponds in further parts to the process according to FIGS FIGS. 1a ) or 1b), so that reference can be made to the above description with regard to the similarities. The same or modified components are provided with the same reference numerals, as in FIG. 1 , In the following, essentially the differences of the present method will be discussed.

Die Besonderheit der Verfahrensführung B gemäß Figur 2 besteht darin, dass die Blechplatine in einem Verfahrensschritt B0 zunächst erwärmt wird. Die Temperatur, auf welche die Blechplatine 10 erwärmt wird, hängt vom Material bzw. der Festigkeit des Materials ab; diese beträgt für einen Stahlwerkstoff vorzugsweise zwischen 900°C und 950°C. Nach dem Erwärmen im Verfahrensschritt B0 wird im anschließenden Verfahrensschritt B1 eine partielle Temperaturveränderung der Blechplatine 10 vorgenommen. Dies erfolgt bei der vorliegenden Ausführungsform durch bereichsweises Abkühlen der Blechplatine 10. Dabei hat die Platine 101 im vorliegenden Beispiel einen ersten Bereich 111, welcher auf 800°C abgekühlt wird, und einen zweiten Bereich 121, welcher auf 600°C abgekühlt wird. Zwischen den beiden Bereichen 111, 121 liegt ein Übergangsbereich 211 mit variablem Temperaturverlauf über der Länge beziehungsweise der späteren Walzrichtung.The peculiarity of the procedure B according to FIG. 2 consists in that the sheet metal blank is first heated in a step B0. The temperature to which the sheet metal blank 10 is heated depends on the material or the strength of the material; this is preferably between 900 ° C and 950 ° C for a steel material. After heating in step B0, a partial temperature change of the sheet metal blank 10 is made in the subsequent step B1. This takes place in the present embodiment by areawise cooling of the sheet metal blank 10. The board 10 1 in the present example, a first region 11 1 , which is cooled to 800 ° C, and a second region 12 1 , which is cooled to 600 ° C. , Between the two regions 11 1 , 12 1 is a transition region 21 1 with a variable temperature profile over the length or the subsequent rolling direction.

Es ist in Figur 2b) der Temperaturverlauf TB der Blechplatine 10 bzw. des ersten Bereichs 11 und des zweiten Bereichs 12 über der Zeit, beziehungsweise entlang der verschiedenen Verfahrensschritte B0 bis B4, dargestellt. Dabei zeigt die durchgezogene Linie den Temperaturverlauf TB11 für den ersten Bereich 11, während die gestrichelte Linie den Temperaturverlauf TB12 über der Zeit für den zweiten Bereich 12 zeigt. Es ist im Rahmen des zweiten Verfahrensschritts B1 erkennbar, dass der erste Bereich 111 der Platine 101 von 950°C auf etwa 800°C abgekühlt wird (Temperaturkurve TB1,11). Der zweite Bereich 121 erfährt eine größere Abkühlung, und zwar auf etwa 600°C (Temperaturkurve TB1,12).It is in FIG. 2b ) the temperature profile T B of the sheet metal blank 10 and the first region 11 and the second region 12 over time, or along the various process steps B0 to B4, shown. In this case, the solid line shows the temperature profile T B11 for the first area 11, while the dashed line shows the temperature profile T B12 over the time for the second area 12. It can be seen in the context of the second method step B1 that the first region 11 1 of the board 10 1 is cooled from 950 ° C. to about 800 ° C. (temperature curve T B1,11 ). The second region 12 1 experiences a greater cooling, namely to about 600 ° C (temperature curve T B1,12 ).

Das zu diesem Zeitpunkt vorliegende Erzeugnis entspricht der Platine 101 aus der ersten Verfahrensführung A gemäß Figur 1a), b), wie sie nach dem ersten Verfahrensschritt A1 vorliegt. Die gemäß der zweiten Verfahrensführung B nachfolgenden Verfahrensschritte B2, B3 und B4 entsprechen den Verfahrensschritten A2, A3 und A4 gemäß Figur 1, so dass diesbezüglich auf die obige Beschreibung verwiesen wird.The present at this time product corresponds to the board 10 1 from the first procedure A according to FIG. 1a ), b), as present after the first process step A1. The process steps B2, B3 and B4 following the second process procedure B correspond to the process steps A2, A3 and A4 according to FIG FIG. 1 , so that reference is made in this regard to the above description.

Die Besonderheit der vorliegenden Ausführungsform gemäß Figur 2 liegt darin, dass das bereichsweise Verändern der Temperatur TB1 ausgehend von der homogenen ersten Temperatur, welche nach dem Erwärmen im Verfahrensschritt B0 stattfindet, durch Abkühlen bewerkstelligt wird. Diese Verfahrensführung hat den Vorteil, dass die Wärme aus dem vorhergehenden Erwärmungsvorgang gemäß Verfahrensschritt B0 verwendet werden kann, so dass der vorliegende Prozess sehr effektiv ist. Das bereichsweise Abkühlen der Platine 10 wird vorzugsweise mittels eines Stempels 30 durchgeführt, der mit der Platine 10 derart in Kontakt gebracht wird, dass die Platine 10 die Temperatur des Stempels 30 annimmt. Der Stempel 30 hat insbesondere mehrere Kühlzonen, die individuell einstellbar sind. Beispielsweise kann der Stempel 30 eine Mehrzahl von Kanälen aufweisen, durch die ein Kühlmedium hindurchfließen kann, um diese abzukühlen. Zum variablen Einstellen unterschiedlicher Temperaturzonen in der Platine 10 ist vorgesehen, dass die Durchflussgeschwindigkeit des Kühlmediums durch die Kanäle steuerbar ist. Zur Erzeugung verschiedener Temperaturbereiche 11, 12, 21 in der Platine 10 hat der Stempel 30 mehrere Kühlkreisläufe, die von Kühlmedium durchströmt werden. Dabei kann durch individuelle Einstellung der Durchflussgeschwindigkeit des Kühlmediums durch jeden einzelnen Kanal unterschiedliche Temperaturzonen erzeugt werden.The peculiarity of the present embodiment according to FIG. 2 is that the regionally varying the temperature T B1 starting from the homogeneous first temperature, which takes place after the heating in step B 0, is accomplished by cooling. This process procedure has the advantage that the heat from the previous heating process according to process step B0 can be used, so that the present process is very effective. The partial cooling of the circuit board 10 is preferably carried out by means of a punch 30, which is brought into contact with the circuit board 10 in such a way that the circuit board 10 assumes the temperature of the punch 30. The stamp 30 has in particular a plurality of cooling zones, which are individually adjustable. For example, the plunger 30 may include a plurality of channels through which a cooling medium may flow to cool it. For variable setting of different temperature zones in the circuit board 10, it is provided that the flow rate of the cooling medium through the channels is controllable. To produce different temperature ranges 11, 12, 21 in the circuit board 10, the plunger 30 has a plurality of cooling circuits through which cooling medium flows. It can be generated by individual adjustment of the flow rate of the cooling medium through each channel different temperature zones.

Der Stempel ist vorzugsweise aus einem metallischen Werkstoff mit guter Wärmeleitfähigkeit hergestellt, beispielsweise aus Kupfer oder aus einem Kupfer enthaltendem Werkstoff.The stamp is preferably made of a metallic material with good thermal conductivity, for example of copper or of a copper-containing material.

Es versteht sich, dass die beiden Ausführungsformen für die unterschiedlichen Bereiche der Platine 10, welche in den Figuren 1 und 2 gezeigt sind, nur beispielhaft sind. Die Anzahl und Verteilung der Bereiche 11, 12, 21 mit unterschiedlichen Temperaturen T11, T12, T21 ist grundsätzlich frei wählbar und kann an die im Hinblick auf das Dickenprofil des zu fertigenden Werkstücks angepasst werden. Die Anzahl der Bereiche 11, 12, 21 mit unterschiedlichen Temperaturen T11, T12, T21 liegt vorzugsweise zwischen zwei und sechs, wobei auch mehr Bereiche denkbar sind.It is understood that the two embodiments for the different areas of the board 10, which in the FIGS. 1 and 2 are shown, are exemplary only. The number and distribution of the regions 11, 12, 21 with different temperatures T 11 , T 12 , T 21 is basically freely selectable and can be adapted to those with regard to the thickness profile of the workpiece to be manufactured. The number of regions 11, 12, 21 having different temperatures T 11 , T 12 , T 21 is preferably between two and six, wherein more regions are also conceivable.

Figur 3 zeigt ein weiteres Beispiel für eine Platine nach dem partiellen Verändern der Temperatur gemäß dem Verfahrensschritt A1 beziehungsweise B1. Es ist erkennbar, dass die Platine 10 vorliegend sechs Bereiche 11-16 mit jeweils individueller Temperatur T11-T16 aufweist. Diese sind jeweils als weiße Bereiche dargestellt. Zwischen den sechs Bereichen 11-16 mit jeweils einheitlicher Temperatur T11-T16 liegen jeweils Übergangsbereiche 21-25, in denen die Temperaturen T21-T25 variabel sind. Diese Übergangsbereiche 21-25 sind schraffiert dargestellt. Hier geht die Temperatur vom einen Temperaturbereich zum nächsten kontinuierlich über. Die Fertigungs- beziehungsweise spätere Walzrichtung ist mit einem Pfeil R eingezeichnet. FIG. 3 shows a further example of a board after the partial change of the temperature according to the method step A1 or B1. It can be seen that the circuit board 10 in the present case has six regions 11-16 each having an individual temperature T 11 -T 16 . These are each shown as white areas. Between the six areas 11-16 each having a uniform temperature T 11 -T 16 are respectively Transition regions 21-25, in which the temperatures T 21 -T 25 are variable. These transition regions 21-25 are shown hatched. Here, the temperature continuously changes from one temperature range to the next. The manufacturing or later rolling direction is indicated by an arrow R.

Figur 3b) zeigt die Blechplatine 10 vor dem Walzen in Seitenansicht, d. h. im Profil, in stark übertriebener Darstellung. Hier ist erkennbar, dass die Platine 10 vor dem Walzprozess eine einheitliche Dicke über der Länge aufweist. FIG. 3b ) shows the sheet metal blank 10 before rolling in side view, ie in profile, in greatly exaggerated representation. Here it can be seen that the board 10 before the rolling process has a uniform thickness over the length.

Figur 3c) zeigt die Platine 102 nach dem Walzprozess gemäß dem Verfahrensschritt A2 nach Figur 1 beziehungsweise B2 nach Figur 2. In Figur 3c) ist erkennbar, dass die Platine 102 durch das Walzen ein variables Dickenprofil über der Länge erhalten hat. Durch die vor dem Walzen erzeugten unterschiedlichen Temperaturzonen 11-16 wurden die stärker erwärmten Bereiche 13, 16 aufgrund der geringeren Fließwiderstände stärker ausgewalzt, als die kälteren Bereiche 12, 15. Es ergibt sich das in Figur 3c) schematisch gezeigte Dickenprofil der Platine 10 über der Länge. Figure 3c ) shows the board 10 2 after the rolling process according to the method step A2 FIG. 1 or B2 after FIG. 2 , In Figure 3c ) it can be seen that the board has received 10 2 by rolling a variable thickness profile over the length. As a result of the lower flow resistances, the more heated regions 13, 16 are more strongly rolled out than the colder regions 12, 15 due to the different temperature zones 11-16 produced before rolling. The thickness profile of the circuit board 10 shown schematically in FIG Length.

Die Figuren 4a) und b), welche nachfolgend gemeinsam beschrieben werden, zeigen eine Blechplatine 10 in einer weiteren möglichen Ausführungsform nach dem partiellen Verändern der Temperatur und vor dem Walzprozess gemäß Figur 4a) bzw. nach dem Walzen gemäß Figur 4b). Die Verteilung der unterschiedlichen Temperaturbereiche entspricht weitestgehend derjenigen gemäß Figur 3, so dass hinsichtlich der Gemeinsamkeiten auf die obige Beschreibung Bezug genommen wird. Eine Besonderheit der vorliegenden Ausführungsform besteht darin, dass der Bereich 15 einen Temperaturgradienten quer zur Walzrichtung R der Platine 10 aufweist. Das heißt, die Temperatur T15' beträgt an der einen Seite 18 etwa 600°C und an der gegenüberliegenden anderen Seite 19 etwa 800°C. Die übrigen Bereiche 11, 12, 13, 14 und 16 haben jeweils quer zur Walzrichtung R weitestgehend einheitliche Temperaturen.The FIGS. 4a ) and b), which will be described together below, show a sheet metal blank 10 in a further possible embodiment after the partial change of the temperature and before the rolling process according to FIG FIG. 4a ) or after rolling according to FIG. 4b ). The distribution of the different temperature ranges largely corresponds to that according to FIG. 3 , so that reference is made to the above description in terms of similarities. A special feature of the present embodiment is that the region 15 has a temperature gradient transverse to the rolling direction R of the board 10. That is, the temperature T 15 'is about 600 ° C on one side 18 and about 800 ° C on the opposite other side 19. The remaining areas 11, 12, 13, 14 and 16 have transversely to the rolling direction R largely uniform temperatures.

Dadurch, dass die Temperatur in dem Bereich 15 quer zur Walzrichtung variabel ist, wird die Platine uneinheitlich abgewalzt. Es ist in Figur 4b) erkennbar, dass die Platine 102 nach dem Walzen eine Formänderung in Längsrichtung erfahren hat. Dabei ist die Platine 102 an der Seite 18 des Bereichs 15, welcher auf 600°C stärker abgekühlt war, weniger stark abgewalzt, als an der entgegengesetzten Seite 19, welche nur auf 800°C abgekühlt worden ist. Somit ergibt sich insgesamt, in Draufsicht auf die Platine 10, ein Knick in diesem Abschnitt 151. Das Dickenprofil über der Länge an der Seite 18, dessen Bereich 15 stärker abgekühlt worden ist, ist in Figur 4c) dargestellt. Dieses entspricht im Wesentlichen dem Profil gemäß Figur 3c), wobei vorliegend insbesondere die Übergangsbereiche 22 dünner gestaltet sind.Characterized in that the temperature in the region 15 is variable transversely to the rolling direction, the board is unevenly rolled off. It is in FIG. 4b ) recognizable that the board 10 2 has undergone a shape change in the longitudinal direction after rolling. In this case, the board 10 2 on the side 18 of the region 15, which is more strongly cooled to 600 ° C. was less severely rolled than on the opposite side 19, which has been cooled to only 800 ° C. Thus, a total, in plan view of the board 10, a kink in this section 15 first The thickness profile along the length at the side 18, the region 15 has been cooled more, is in Figure 4c ). This corresponds essentially to the profile according to Figure 3c ), wherein in the present case in particular the transition regions 22 are made thinner.

Durch die Erzeugung unterschiedlicher Temperaturbereiche T15 auch quer zur Walzrichtung R wird hinsichtlich des Dickenprofils ein höchstes Maß an Flexibilität erreicht. In vorteilhafter Weise können die zu erzeugenden Blechplatinen 10 individuell an das für das spätere Endprodukt gewünschte Dickenprofil angepasst werden. Der Vorteil der im Zusammenhang mit den Figuren 1 und 2 beschriebenen erfindungsgemäßen Verfahren sowie den zugehörigen Vorrichtungen besteht darin, dass fertige Formschnitte im Rahmen einer kurzen Prozesskette mit hoher Effizienz hergestellt werden können. Dabei ist insbesondere die Kombination der Verfahrensführung mit partieller Temperaturveränderung gemäß Verfahrensschritt A1 oder B1 der Blechplatine 10 vor dem Walzen, anschließendem Normalisieren und abschließendem Warmumformen besonders günstig, da hier das Temperaturniveau in der Blechplatine insgesamt über die komplette Prozesskette relativ hoch bleibt, insbesondere über 400°C bis 500°C, und damit der Energieeintrag für die Fertigung gering ist. Auf diese Weise lassen sich die Formschnittplatinen mit einer kurzen Prozesskette und damit verbundener hohen Effizienz herstellen.By generating different temperature ranges T 15 also transversely to the rolling direction R a maximum degree of flexibility is achieved with respect to the thickness profile. Advantageously, the sheet metal blanks 10 to be produced can be individually adapted to the desired thickness profile for the subsequent end product. The benefit of relating to the FIGS. 1 and 2 described method according to the invention and the associated devices is that finished mold cuts can be made within a short process chain with high efficiency. In particular, the combination of the process control with partial temperature change according to method step A1 or B1 of the sheet metal blank 10 before rolling, subsequent normalization and final hot forming is particularly favorable, since the temperature level in the metal sheet overall remains relatively high over the entire process chain, in particular over 400 ° C to 500 ° C, and thus the input of energy for manufacturing is low. In this way, the shape cutting boards can be produced with a short process chain and the associated high efficiency.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
Platinecircuit board
11-1611-16
Bereich / AbschnittArea / section
21-2521-25
Übergangsbereich / ÜbergangsabschnittTransition area / transition section
3030
temperaturänderndes WerkzeugTemperature changing tool
4040
Walzwerkzeugrolling tool
4141
Walzenroll
4242
Walzenroll
5050
Heizofenheater
6060
Umformwerkzeugforming tool
AA
Verfahrensfolgeprocess sequence
BB
Verfahrensfolgeprocess sequence
DD
Dickethickness
RR
Walzrichtungrolling direction
TT
Temperaturtemperature

Claims (6)

  1. Process of producing metal blanks with different thicknesses from a metallic material, comprising the process stages:
    producing blanks (10) from a strip material;
    regionally changing the temperature (T) of the blanks (10), wherein a plurality of regions (11-16) with different temperatures (T11-T16) are generated in the metal blanks (10);
    rolling the regionally temperature changed blanks (10) in a rolling tool (40) with a roll gap setting, wherein the roll gap setting is kept constant during rolling of the blanks (10), wherein, due to the regions with different temperatures (T11-T16), portions (11 - 16) are produced in the blanks (10) with different thicknesses (D11 - D16),
    characterised in that the blanks (10) are heated after having been rolled, and, after having been heated, are hot-formed in a forming tool,
    wherein the blanks (10), with the regions (11, 16) having the highest temperatures (T11; T16) after the regional temperature change, always have a temperature of more than 500°C for steel during the subsequent steps of rolling and heat treating up to being inserted into the forming tool.
  2. Process according to claim 1,
    characterised in
    that of the regions (11 - 16) with different temperatures (T11-T16), at least one region (11 - 16) with a constant temperature (T11-T16) and/or at least one region (15') with a variable temperature (T15') is produced transversely to the rolling direction (R).
  3. Process according to claim 1 or 2,
    characterised in
    that regionally changing the temperature is effected by heating or cooling of at least one region (11 - 16) of the blank (10), in particular by means of at least one punch (30) which is brought into contact with the blank (10), so that the blank (10) at least substantially assumes the temperature of the punch (30).
  4. Process according to claim 1 or 2,
    characterised in
    that regionally changing the temperature is effected by induction-heating of at least one region (11 - 16) of the blank (10), wherein the blanks (10) are passed through current-conducting rolls, wherein the regions (11-16) with different temperatures (T11-T16) are produced by varying the power of the current-conducting rolls while the blanks (10) are passed through.
  5. Process according to claims 1 to 3,
    characterised in
    that regionally changing the temperature is effected by cooling at least one region (11-16) of the blank (10), wherein the blanks (10) are heated homogenously to a first temperature prior to being regionally cooled.
  6. Process according to any one of claims 1 to 5,
    characterised in
    that the metal blanks (10), with the regions (11,16) having the highest temperatures (T11; T16) after the regional temperature change, always comprise a temperature (T11; T16) of more than 600°C during the subsequent process stages of rolling and heat treatment up to the stage of being inserted into the forming tool.
EP12173868.6A 2011-06-27 2012-06-27 Device for manufacturing circuit boards of varying thicknesses Active EP2540405B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011051345A DE102011051345A1 (en) 2011-06-27 2011-06-27 Method and device for producing boards with different thicknesses

Publications (3)

Publication Number Publication Date
EP2540405A2 EP2540405A2 (en) 2013-01-02
EP2540405A3 EP2540405A3 (en) 2013-09-11
EP2540405B1 true EP2540405B1 (en) 2018-04-25

Family

ID=46395522

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12173868.6A Active EP2540405B1 (en) 2011-06-27 2012-06-27 Device for manufacturing circuit boards of varying thicknesses

Country Status (3)

Country Link
US (1) US20130283881A1 (en)
EP (1) EP2540405B1 (en)
DE (1) DE102011051345A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103551397B (en) * 2013-10-21 2015-11-04 中冶赛迪上海工程技术有限公司 A kind of rolling line temperature regulating device process equipment
DE102013225409A1 (en) * 2013-12-10 2015-06-11 Muhr Und Bender Kg Method and device for the after-treatment of a hardened metallic molded part by means of electrical resistance heating
DE102015103721B3 (en) 2015-03-13 2015-12-17 Benteler Automobiltechnik Gmbh Method for producing a Blechumformbauteils with partially different wall thicknesses and Achshilfsrahmen
US10865561B2 (en) * 2016-10-17 2020-12-15 Burkhart Schurig Drywall construction combination profiled section for walls and ceilings of a house

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2111937A1 (en) * 2008-04-23 2009-10-28 Benteler Automobiltechnik GmbH Method for manufacturing sheet metal circuit boards varying in thickness

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4502313A (en) * 1982-05-12 1985-03-05 American Can Company Tooling adjustment
JPS6340604A (en) * 1986-08-04 1988-02-22 Sumitomo Metal Ind Ltd Production of differential thickness steel plate
JP2814437B2 (en) * 1987-07-21 1998-10-22 川崎製鉄 株式会社 Method for manufacturing oriented silicon steel sheet with excellent surface properties
DE19704300B4 (en) 1997-02-06 2008-07-10 Benteler Ag Method for producing boards with different thicknesses
DE19846900C2 (en) 1998-10-12 2000-08-10 Thyssenkrupp Stahl Ag Method and device for producing a metal strip for tailored blanks
DE10041280C2 (en) * 2000-08-22 2003-03-06 Muhr & Bender Kg Method and device for flexible rolling of a metal strip
JP2002210510A (en) * 2001-01-15 2002-07-30 Mitsubishi Heavy Ind Ltd Apparatus and method for induction heating rolling roll
CN100333846C (en) * 2002-06-07 2007-08-29 新日本制铁株式会社 Hot rolling method and apparatus for hot steel sheet
KR101504467B1 (en) * 2006-07-17 2015-03-19 마그나 인터내셔널 인코포레이티드 Hot forming die and method for its manufacture and method for hot forming a workpiece
DE102007009937A1 (en) * 2007-03-01 2008-09-04 Schuler Smg Gmbh & Co. Kg Metal plate shaping heats the plate to a given temperature, which is then clamped between two cooling elements before pressing
JP5155646B2 (en) * 2007-12-13 2013-03-06 アイシン高丘株式会社 Hot press molding apparatus and hot press molding method
FR2927828B1 (en) * 2008-02-26 2011-02-18 Thyssenkrupp Sofedit METHOD OF FORMING FROM FLAN IN SOFT MATERIAL WITH DIFFERENTIAL COOLING
DE102009007926A1 (en) * 2009-02-06 2010-08-19 Benteler Automobiltechnik Gmbh Process for the production of circumferentially contoured elongated shaping blanks from a metal strip
DE102009050533A1 (en) * 2009-10-23 2011-04-28 Thyssenkrupp Sofedit S.A.S Method and hot forming plant for producing a hardened, hot formed workpiece

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2111937A1 (en) * 2008-04-23 2009-10-28 Benteler Automobiltechnik GmbH Method for manufacturing sheet metal circuit boards varying in thickness

Also Published As

Publication number Publication date
EP2540405A2 (en) 2013-01-02
US20130283881A1 (en) 2013-10-31
DE102011051345A1 (en) 2012-12-27
EP2540405A3 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
EP3072980B1 (en) Method and device for producing a partially cured moulded part
EP2233593B1 (en) Method and device for thermal recasting of pressure-hardened casting components made of sheet metal
EP2185735B1 (en) Method and device for hardening profiles
EP2044234B1 (en) Method for flexibly rolling coated steel strips
EP2993241A1 (en) Method and press for manufacturing cured sheet metal components, in sections at least
EP2324938A1 (en) Method and thermal recasting assembly for producing a hardened, thermally recast workpiece
DE102009012940B4 (en) Method for producing a component, in particular a sheet-metal component, and production line for producing the component
EP2955239B1 (en) Method and heating plant for the heating of sheet metal circuit boards with the formation of different temperature zones in series
DE102014111501B4 (en) Hot-forming device and method for producing press-hardened molded parts from sheet steel
DE102009060388A1 (en) Method for sheet deformation, involves heating zone of work piece at high temperature, and inserting heated work piece into heat insulated or heated deformation device
EP2540405B1 (en) Device for manufacturing circuit boards of varying thicknesses
EP2883967B1 (en) Method and device for post-treatment of a hardened metallic moulded part by means of electrical resistance heating
EP2169084B1 (en) Method for manufacturing a moulding with areas of different strength made of cold strip
EP2308625A1 (en) Method and device for cutting a metallic material without introducing brittleness
EP1812609A1 (en) Method and device for shaping wire-shaped and rod-shaped starting materials close to the gauge block, and correspondingly produced flat profiled element
DE10150021B4 (en) Method and device for the production of profiles or sheet metal parts from magnesium or magnesium alloys
DE102011007590B4 (en) Method and device for sliding bending
DE10317080B4 (en) Process for the production of shaped sheet metal parts and device for carrying out the process
DE102016114934B3 (en) Method and device for producing a round hollow profile
EP3184655A1 (en) Heat treatment furnace and method for the heat treatment of a precoated steel sheet board and method for manufacturing a motor vehicle part
DE102009039759A1 (en) Method for manufacturing e.g. pipe by heat extrusion in automobile industry, involves deforming hollow profiles by magnetic field strength of deformation device, where deformation of extruded hollow profiles takes place at temperature
DE102014215676B4 (en) Process for manufacturing a component, in particular a profile rail
DE10156034B4 (en) Device for the production of profiles or sheet metal parts from magnesium or magnesium alloys
DE102016201237A1 (en) Method and arrangement for producing a sheet-metal forming part
DE102008005116B4 (en) Method and device for producing a metal strip with different material properties over length and width

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: B21B 37/74 20060101AFI20130802BHEP

17P Request for examination filed

Effective date: 20140122

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20150226

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20171116

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 992325

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012012577

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MUHR UND BENDER KG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180425

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180726

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012012577

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180627

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

26N No opposition filed

Effective date: 20190128

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180627

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 992325

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180825

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240604

Year of fee payment: 13