EP2537181A1 - Dispositif comprenant des composants electriques, electroniques, electromecaniques ou electro-optiques, a sensibilite reduite a faible debit de dose - Google Patents

Dispositif comprenant des composants electriques, electroniques, electromecaniques ou electro-optiques, a sensibilite reduite a faible debit de dose

Info

Publication number
EP2537181A1
EP2537181A1 EP11703205A EP11703205A EP2537181A1 EP 2537181 A1 EP2537181 A1 EP 2537181A1 EP 11703205 A EP11703205 A EP 11703205A EP 11703205 A EP11703205 A EP 11703205A EP 2537181 A1 EP2537181 A1 EP 2537181A1
Authority
EP
European Patent Office
Prior art keywords
hydrogen
housing
sorbeur
cover
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11703205A
Other languages
German (de)
English (en)
Inventor
Alain Bensoussan
Roman Marec
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2537181A1 publication Critical patent/EP2537181A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0035Packages or encapsulation for maintaining a controlled atmosphere inside of the chamber containing the MEMS
    • B81B7/0038Packages or encapsulation for maintaining a controlled atmosphere inside of the chamber containing the MEMS using materials for controlling the level of pressure, contaminants or moisture inside of the package, e.g. getters
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0026Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof of one single metal or a rare earth metal; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0084Solid storage mediums characterised by their shape, e.g. pellets, sintered shaped bodies, sheets, porous compacts, spongy metals, hollow particles, solids with cavities, layered solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/508Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by selective and reversible uptake by an appropriate medium, i.e. the uptake being based on physical or chemical sorption phenomena or on reversible chemical reactions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/52Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/26Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device including materials for absorbing or reacting with moisture or other undesired substances, e.g. getters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/564Details not otherwise provided for, e.g. protection against moisture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0118Bonding a wafer on the substrate, i.e. where the cap consists of another wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/166Material
    • H01L2924/167Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/166Material
    • H01L2924/167Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/16738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/1676Iron [Fe] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/166Material
    • H01L2924/16786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/16787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • Device comprising electrical, electronic, electromechanical or electro-optical components with reduced sensitivity at low dose rate
  • the present invention relates to a device, comprising in particular electronic, electromechanical or electro-optical components, the device allowing a reduction in the dose sensitivity of the components, in particular in a low dose rate environment. It applies to integrated circuits and discrete components, such as, for example, transistors and diodes, encapsulated in hermetic packages, especially used in radiative environments, for example in devices evolving in space, such as satellites.
  • CMOS complementary Metal Oxide Semiconductor
  • Bi-CMOS Bipolar - CMOS
  • MOSFET Metal Oxide Semiconductor - Field Effect Transistor
  • a problem related to the components manufactured in these technologies is related to their high sensitivity to ionizing radiation, in particular to the increase in sensitivity to low dose rates, designated by the acronym " ELDRS "corresponding to English terminology” Enhanced Low Dose Rate Sensitivity ".
  • ELDRS Enhanced Low Dose Rate Sensitivity
  • Such components include protective layers such as passivation layers, these layers being permeable to atomic hydrogen.
  • passivation layers these layers being permeable to atomic hydrogen.
  • the major mechanism of degradation of these components is due to the presence of H + atomic hydrogen, or positive or negative ions, migrating through the passivation layers to the active areas of the semiconductor or accumulating on the surface of the passivation layers at the plumb the active area of the semiconductor components, thus modifying the original electrical and technological characteristics.
  • CMOS-type technologies it is known that hydrogen trapped in closed housings can affect the cumulative dose resistance, and the behavior after annealing of transistors and integrated circuits. Thus, components that have been subjected to a 100% hydrogen atmosphere are significantly more sensitive to cumulative dose radiation.
  • the H2-type covalent bonds can dissociate under the effect of several more or less effective factors. These factors can be thermal effects, radiation, the electric field related to the polarization of the component, the presence of metals used in the metal lines deposited on the silicon and in particular to polarize the active structure of the transistors. These metals act as catalysts promoting the breakdown of the molecular bond to H + protons: this is the case of metals such as platinum, tantalum, palladium or else titanium;
  • a second source from the atomic hydrogen present in the passivation layers typically silica SiO 2 , deposited during the process of preparation thereof.
  • they are Van-Der-Waals type bonds which have a lower binding energy than that of covalent H 2 bonding.
  • the H + ions are thus more mobile and migrate in the passivation under the influence of electric polarization fields and accumulate by electrical attraction in the zones influenced by a negative polarization;
  • the main source therefore remains the presence of volatile and mobile ions inside the hermetic housing, and in some cases, particularly the presence of protons H + generated by the decomposition of residual hydrogen gas in the atmosphere of the housing.
  • a second known solution which can be proposed by component manufacturers, is to remove the residual hydrogen that can contaminate the semiconductor component by developing a manufacturing process devoid of trace hydrogen. Manufacturers may also commit to guaranteed cumulative dose performance that must be supported by test reports attached to the components. In the case where for practical reasons the manufacturer carries out the tests with a high dose rate, additional tests with a low dose rate must be carried out. This option again has a negative impact on manufacturing lead times and is associated with significant additional costs. In any case, such a solution also has the disadvantage of a high purchase price of the components, as well as the need for lengthy and expensive tests in order to ensure the quality of the components supplied.
  • An object of the present invention is to overcome at least the aforementioned drawbacks, by providing a device comprising electrical, electronic, electromechanical or electrooptical components, encapsulated in hermetic packages, to reduce the sensitivity of these devices to the cumulative dose.
  • the subject of the invention is a device for spatial application capable of being subjected to ionizing radiation, comprising at least one electronic, electromechanical or microelectromechanical, or electro-optical or microelectronic-optical component encapsulated in a hermetic housing, characterized in that the housing further comprises an absorbent / adsorbent element called "sorbeur", such as a hydrogen sorbeur capable of trapping positive or negative ions, volatile and mobile and maintain them absorbed or adsorbed to guaranteeing immunity of said at least one component to ionizing radiation, said at least one component being essentially of the semiconductor type produced in a silicon-based technology of Bipolar, MOS, C-MOS or Bi-CMOS active type.
  • sorbeur such as a hydrogen sorbeur capable of trapping positive or negative ions, volatile and mobile and maintain them absorbed or adsorbed to guaranteeing immunity of said at least one component to ionizing radiation
  • the sorbator may be a hydrogen scavenger.
  • the device may be characterized in that the housing comprises a housing bottom hermetically sealed by a hood, the sorbeur being attached to the inner surface of the hood.
  • the device capable of being subjected to ionizing radiation may be characterized in that the cover and the housing base each comprise a ceramic and / or metal body.
  • the device capable of being subjected to ionizing radiation may be characterized in that the cover and / or the housing base is covered with a metallic finishing layer.
  • the device capable of being subjected to ionizing radiation may be characterized in that the cap comprises a body attached to a thickness of hydrogen-sorbent material, the hydrogen-sorbent material being disposed substantially on the inner part of the hood.
  • the device capable of being subjected to ionizing radiation may be characterized in that the internal cavity of the hermetic housing comprises a partial vacuum produced before closing the hermetic housing by a degassing process.
  • the device capable of being subjected to ionizing radiation can be characterized in that the migration of the H + protons present in the component and the housing is favored by the application of a polarization on active areas of the component.
  • the device capable of being subjected to ionizing radiation may be characterized in that the metal body is made of an alloy of iron, nickel and cobalt.
  • the device capable of being subjected to ionizing radiation may be characterized in that the topcoat is formed by a thickness of gold produced by electrolytic deposition.
  • the device capable of being subjected to ionizing radiation may be characterized in that the hydrogen sorbeur is made of a material based on titanium, platinum, palladium and / or vanadium.
  • the device capable of being subjected to ionizing radiation can be characterized in that the hydrogen sorbeur is bonded, welded, or joined by any known transfer method, on the lower face of the device. cover.
  • the device capable of being subjected to ionizing radiation may be characterized in that the hydrogen separator is integrated within the structure of the cover and / or the housing base.
  • the device capable of being subjected to ionizing radiation can be characterized in that the hydrogen separator is integrated within the top layer of the cover and / or the housing base.
  • the device capable of being subjected to ionizing radiation may be characterized in that the hydrogen sorbator is formed by the deposition of successive thin layers of titanium, platinum, palladium and / or vanadium directly on the body of the cover and / or the body of the case bottom in a vacuum chamber.
  • An advantage of the present invention lies in the fact that the device according to one of the described embodiments, can guarantee a good behavior, in particular of the active components which it comprises, when these are exposed to ionizing radiations and Particularly at low dose rates responsible for ELDRS-like behavior, including if these active components are not initially designed, developed and tested for constraining space-constrained space applications.
  • it is in particular made possible, thanks to the present invention, to supply, to package according to the device described above object of the present invention and to use, for the manufacture of equipment for space applications , Bipolar Si, MOS, CMOS, Bi-CMOS chips of lower cost, initially designed for terrestrial applications but unusable in such a space radiative environment.
  • FIG. 1 a sectional view of an example of an integrated circuit in FIG. himself known from the state of the art;
  • FIGS. 2a and 2b the sectional views respectively of a metal cap and a metal bottom, forming a housing itself known from the state of the art;
  • Figure 3 a sectional view of the integrated circuit disposed in the sealed housing
  • Figure 4 a sectional view of a device comprising the integrated circuit and the hermetic housing, in an exemplary embodiment of the invention
  • Figure 5 is a sectional view of a device comprising the integrated circuit and the hermetic housing, according to another embodiment of the invention.
  • Figure 1 shows a sectional view of an exemplary integrated circuit itself known from the state of the art.
  • the configuration of the illustrated component 10 The figure is given by way of example only, and other typical configurations of components can be envisaged.
  • the passivation layer 12 is intended to ensure the protection of the component 10 during manufacturing processes subsequent to the manufacture of the component 10 itself.
  • the component 10 has for example a typical thickness of the order of a few hundred micrometers.
  • FIGS. 2a and 2b show the sectional views respectively of a cover and a bottom, forming a housing in itself known from the state of the art.
  • a cover 200 may comprise a body 201 covered by a finishing layer 202.
  • the body 201 may be made, typically, in a material with a low coefficient of thermal expansion, for example such ceramic material or an alloy of Iron, Nickel and Cobalt.
  • the topcoat 202 may for example be formed by electrolytic deposition of a small thickness of gold.
  • the typical thickness of the body 201 may be of the order of one millimeter, for a thickness of the finishing layer 202 of the order of a micrometer.
  • the cover 200 may also for example be made of a ceramic material or a metal or metal alloy.
  • a caseback 210 may in a similar manner comprise a body 211 coated with a thin layer of a finishing layer 212.
  • the caseback 210 may be coated cover 200, and these two elements can be welded to ensure the hermeticity of the housing thus formed, as described in detail below with reference to an example shown in Figure 3.
  • H + protons or hydrogen may be trapped, in particular in the materials constituting the cover 200 and the housing bottom 210.
  • H + protons are represented by triangles with one of the vertices pointing down.
  • H 2 hydrogen molecules are represented by triangles with one of the vertices pointing upwards, surmounted by triangles with one of the vertices pointing downwards. Arrows represent the migration of H + protons and H 2 hydrogen molecules over time.
  • Figure 3 shows a sectional view of the integrated circuit disposed in the sealed housing.
  • the component 10 for example the integrated circuit as described previously with reference to FIG. 1, can be arranged on the bottom of the caseback 210 as described previously with reference to FIG. 2.
  • the component 10 can be welded or else glued to the bottom of the caseback 210.
  • a solder element layer 32 is shown under the component 10.
  • the cover 200 and the caseback 210 may be welded to each other, for example via a solder bead 31, to form a hermetic housing 300.
  • the component mounting operations in the housing can be performed in a controlled atmosphere, for example within a furnace. According to known techniques, it is possible, for example, to carry out these operations in a strongly nitrogenous atmosphere, in order to eliminate the oxygen present in the hermetic housing 300, in order to disadvantage oxidation phenomena of the components encapsulated in the housing. .
  • the solution proposed by the present invention is based on the principle of permanently disposing, in the hermetic housing 300, an element absorbent / adsorbent or "sorbeur", such as for example a hydrogen sorbeur, such an element being commonly referred to as "getter”.
  • an element absorbent / adsorbent or "sorbeur” such as for example a hydrogen sorbeur, such an element being commonly referred to as "getter”.
  • sorbeur such as for example a hydrogen sorbeur, such an element being commonly referred to as "getter”.
  • the sorbor may consist of a metal alloy or a macromolecular compound capable of trapping on its surface or in its volume positive or negative ions, volatile and mobile, such as for example Na + ions, ⁇ +, ⁇ +, NH3 +, OH-, H3O +, CO +, CO2 +, etc., and to maintain them absorbed / adsorbed over time and under relatively stable temperature and pressure conditions within a satellite under conditions normal use, and does not require a regeneration step of the absorbent / adsorbent parts (including: by thermal annealing or vaporization of an alloy) during its use.
  • volatile and mobile such as for example Na + ions, ⁇ +, ⁇ +, NH3 +, OH-, H3O +, CO +, CO2 +, etc.
  • the hydrogen getter is enclosed within the hermetic housing 300, and is optimized in size and composition, so as to ensure a permanent internal residual rate as low as possible at least throughout the expected life of the component.
  • Materials allowing efficient sorption and retention of hydrogen are in themselves known from the state of the art.
  • Sorbeurs, in particular hydrogen, known from the state of the art are intended for terrestrial applications, for which the use of active components made using Bipolar Silicon, MOS, CMOS or Bi-CMOS technologies does not imply contraindications related to the presence of hydrogen.
  • Known hydrogen scavengers are used for GaAs (gallium arsenide) type III-V semiconductor devices which are known to be sensitive to the influence of hydrogen.
  • the documents describing these sorbers exclude the use of Bipolar Silicon realization technologies, MOS, CMOS or Bi-CMOS.
  • FIG. 4 shows a sectional view of a device comprising the integrated circuit and the hermetic housing, in one embodiment of the invention.
  • the hermetic housing 300 formed by the housing bottom 210, covered with the cover 200, comprises the component 10, in a configuration as described above with reference to FIG. 3.
  • a hydrogen separator 40 can also be integrated in the hermetic housing 300.
  • the hydrogen sorbeur 40 is disposed under the hood 200.
  • the hydrogen sorbeur 40 is for example glued, welded, or secured by any transfer method known, on the underside of the cover 200.
  • a solder element layer is shown between the hydrogen sorbeur 40 and the cover 200.
  • the sorbeur (the hydrogen sorbeur 40 in the examples illustrated in the figures) is capable of adsorbing and absorbing any trace of ions present in the closed cavity: both the residual gas H 2 and that generated by the processes. dynamic chemicals or volatile ions present within the hermetic cavity formed by the hermetic housing 300.
  • the advantage of arranging the hydrogen scavenger 40 within the hermetic package 300 makes it possible to promote a dynamic chemical reaction in which the speed of absorption outweighs the natural speed. degassing hydrogen.
  • the hydrogen scavenger 40 must have good absorption characteristics, as well as good characteristics of hydrogen retention.
  • the hydrogen sorber 40 may be in the form of a sheet, based on a combination of metals for example such as titanium, platinum, palladium, vanadium, or a alloy of these metals. In a typical manner, this metal sheet may have a thickness of the order of a few tenths of a millimeter.
  • a specific process may be implemented, in order to promote the extraction of hydrogen, in particular present in the vicinity of the active zones of the passivation layers of the components encapsulated in the hermetic package 300.
  • the method may for example comprise a step prior to the closure of the hermetic housing 300.
  • the method may also include a degassing step prior to the installation of the hydrogen separator 40 and the closure of the hermetic housing 300.
  • the creation of an empty or empty partial closure in the hermetic housing 300 during its closure then promotes the migration of hydrogen to the hydrogen sorbeur 40. It is desirable to reduce the level of hydrogen present in the housing to a quantity as low as possible and will be maintained at this level by the hydrogen sorber 40 throughout the life of the component.
  • a "waffle skin” type structure may be adopted, providing a high hydrogen / hydrogen sorter surface / volume ratio, in order to increase the absorbed hydrogen level.
  • the hydrogen separator in the structure of the hermetic housing 300.
  • a housing cover having a suitable structure containing a material offering the properties required for the sorbeur.
  • the hydrogen sorbeur in the same structure of the topcoat 202, 212 respectively covering the cover 200 and the housing bottom 210, where appropriate.
  • successive thin layers of titanium, platinum, palladium and / or vanadium may be directly deposited on the body of the cover 201 or the body of the housing base 21 1, for example in a vacuum chamber.
  • Figure 5 described below shows a sectional view of a device comprising the integrated circuit and the sealed housing, according to such an embodiment of the invention.
  • the cover 500 in which a material having the properties of the hydrogen separator 50 is used.
  • the cover 500 may consist of a body 501 made of either an alloy of iron, Nickel and Cobalt, or ceramic, the body 501 being attached to a thickness of the material 50b.
  • the cover 500 can then, in a manner similar to the embodiments described above, be welded to the housing bottom. In this way, the protons H + and the hydrogen molecules H 2 present in the body 501 can migrate naturally to the sorbent material 502.
  • the H + protons and the H 2 hydrogen molecules present in the internal cavity of the the housing, in the passivation layers of the components and in the housing base, can migrate to the sorbent material 502, in a manner similar to the configuration described with reference to FIG. 4. Also, it is advantageously possible to promote the migration ions, for example H + protons, and hydrogen molecules to the filtering material 502 by the implementation of a suitable method as described above with reference to FIG. 4, comprising, for example, a degassing stage of hydrogen by a partial evacuation and / or forced migration of H + protons by the application of appropriate electric fields via a reverse bias of certain ac zones. components.
  • the present invention applies mainly to the assembly of semiconductor active electronic components composed of the IV (Si) column of the Mendeleiev classification such as diodes, discrete transistors and integrated circuits, made of technologies Bipolar, MOS, MOSFET, CMOS, etc.
  • An advantage provided by the invention lies in the fact that it allows an improvement in the resistance of the devices to cumulative doses of ionizing radiation. In particular, it makes it possible to annihilate ELDRS effects, and consequently to obtain the following additional advantages:
  • the MIL 1019-7 standard in particular, imposes tests at a dose rate lower than 36 rad (Si) / hour.
  • Performing tests for levels of 100 krad a level commonly encountered by components in space applications, involves irradiation times of at least four months. These durations are added to the component supply times, which also tend to become longer.
  • the present invention makes it possible to avoid having to carry out these long tests at a very low dose rate, by carrying out only tests with a high dose rate, and thus to reduce the lead time of the components and to be able to better manage the times of cycles related to just-in-time supplies.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Micromachines (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Dispositif pour application spatiale, comprenant au moins un composant (10) électronique, électromécanique ou électro-optique encapsulé dans un boitier (300), caractérisé en ce que le boitier comprend en outre un sorbeur (40) garantissant une immunité aux radiations ionisantes et en particulier à faible débit de dose responsables d'un comportement de type ELDRS. Dans un mode de réalisation, le boitier (300) peut comprendre un capot (200) fermant hermétiquement un fond de boitier (210). Le capot (200) peut avantageusement intégrer un matériau sorbeur d'hydrogène. Avantageusement, un procédé peut être mis en œuvre afin de favoriser la migration des molécules d'hydrogène ou des protons H+ vers le sorbeur (40) et de les garder piégées dans le sorbeur (40) tout le long de la vie utile du composant (10).

Description

Dispositif comprenant des composants électriques, électroniques, électromécaniques ou électro-optiques, à sensibilité réduite à faible débit de dose
La présente invention concerne un dispositif, comprenant notamment des composants électroniques, électromécaniques ou électro-optiques, le dispositif permettant une réduction de la sensibilité en dose des composants, en particulier dans un environnement à faible débit de dose. Elle s'applique aux circuits intégrés et composants discrets, tels que par exemple des transistors et des diodes, encapsulés dans des boîtiers hermétiques, notamment utilisés dans des environnements radiatifs, par exemple dans des dispositifs évoluant dans l'espace, tels que des satellites.
De nombreuses applications, notamment dans le domaine des technologies spatiales, impliquent l'utilisation de composants électriques, électroniques, électromécaniques, ou électro-optiques. Dans ces applications, ces composants sont habituellement encapsulés dans des boîtiers hermétiques. La plupart des composants utilisés, qu'ils soient des composants discrets ou bien des composants de type circuits intégrés, sont réalisés dans des matériaux à base de silicium, dans des technologies connues telles que par exemple la technologie à base de silicium de type actif bipolaire, la technologie connue selon l'acronyme CMOS correspondant à la terminologie anglaise "Complementary Métal Oxide Semiconductor", la technologie Bi-CMOS correspondant à la terminologie anglaise "Bipolar - CMOS", ou encore MOSFET, correspondant à la terminologie anglaise "Métal Oxide Semiconductor - Field Effect Transistor". Un problème lié aux composants fabriqués dans ces technologies, principalement dans les technologies bipolaire et Bi-CMOS, est lié à leur forte sensibilité aux radiations ionisantes, en particulier à l'augmentation de la sensibilité aux faibles débits de dose, désigné par le sigle "ELDRS" correspondant à la terminologie anglaise "Enhanced Low Dose Rate Sensitivity". En effet, de tels composants comprennent notamment des couches de protection telles que des couches de passivation, ces couches étant perméables à l'hydrogène atomique. Ainsi, le mécanisme majeur de dégradation de ces composants est dû à la présence d'hydrogène atomique H+, ou d'ions positifs ou négatifs, migrant au travers des couches de passivation vers les zones actives du semi-conducteur ou s'accumulant à la surface des couches de passivation à l'aplomb de la zone active des composants à semiconducteurs, en modifiant ainsi les caractéristiques électriques et technologiques originales. Avec les technologies de type CMOS, il est connu que l'hydrogène piégé dans les boîtiers fermés peut affecter la tenue en dose cumulée, et le comportement après recuit des transistors et des circuits intégrés. Ainsi, des composants qui ont été soumis à une atmosphère de 100% d'hydrogène sont nettement plus sensibles aux radiations en dose cumulée.
Parallèlement, il est connu que pour des composants réalisés en technologie bipolaire, notamment encapsulés dans des boîtiers plats par exemple de type "Flatpack", la présence d'hydrogène peut entraîner une augmentation de la sensibilité en dose cumulée, mais également une augmentation de la sensibilité à faible débit de dose.
Enfin, il est également connu que les comportements en dose radiative des circuits intégrés réalisés en technologie bipolaire à base de silicium en présence de molécules d'hydrogène, peuvent être différents en fonction des procédés de réalisation des composants.
L'ensemble des résultats connus montre que les composants réalisés en technologie bipolaire peuvent présenter une bonne tenue en dose à fort ou faible débit de dose, lorsque leur processus de fabrication se termine à l'étape de métallisation. Ce sont les étapes intervenant après la métallisation qui peuvent dégrader la tenue du composant : notamment, la nature de la passivation et le procédé de dépôt, les cycles thermiques intervenant lors de l'encapsulation en boîtier ou du préconditionnement, le déverminage ou "burn-in", et bien sûr la présence de molécules d'hydrogène dans l'atmosphère du boîtier.
II n'est pas exclu que la présence de protons H+ initialement piégés dans les couches de passivation des composants puisse être également la cause des dégradations. Il existe plusieurs sources possibles à la présence de ce contaminant ionique H+ :
une première source provenant de l'atmosphère résiduelle à l'intérieur du boîtier ainsi que cela est évoqué précédemment. Dans ce cas, les liaisons covalentes de type H2 peuvent se dissocier sous l'effet de plusieurs facteurs plus ou moins efficaces. Ces facteurs peuvent être des effets thermiques, des radiations, le champ électrique lié à la polarisation du composant, la présence de métaux utilisés dans les lignes métalliques déposées sur le silicium et permettant notamment de polariser la structure active des transistors. Ces métaux jouent un rôle de catalyseurs favorisant la rupture de la liaison moléculaire en protons H+ : c'est le cas de métaux tels que le platine, le tantale, le palladium ou encore le titane ;
une seconde source provenant de l'hydrogène atomique présent dans les couches de passivation, typiquement de silice Si02, déposées lors du procédé d'élaboration de celles- ci. Dans ce cas il s'agit de liaisons de type Van-Der-Waals qui présentent une énergie de liaison plus faible que celle de liaison covalentes H2. Les ions H+ sont ainsi plus mobiles et migrent dans la passivation sous l'influence de champs électriques de polarisation et s'accumulent par attraction électrique dans les zones influencées d'une polarisation négative ;
également, d'autres sources d'ions positifs ou négatifs, tels que par exemple les ions Na+, Κ+, NH3+, OH- etc., sont considérées comme des éléments perturbateurs des composants à semiconducteurs, et capables de perturber les performances de ces dispositifs en utilisation normale sous polarisation directe ou indirecte, à cause du champ de potentiel parasite local généré par la présence de ces charges au-dessus des zones actives. Ainsi, la présence de telles charges parasites au sein de ces composants peut également être pénalisante, si ces derniers sont soumis à un environnement de radiations ionisantes tel qu'un environnement spatial dans lequel un satellite évolue. Les radiations ionisantes favorisent ainsi l'accumulation de telles sources de potentiel, et peuvent amplifier les dérives observées sur des composants sensibles.
La source principale reste donc la présence d'ions volatils et mobiles à l'intérieur du boîtier hermétique, et dans certains cas, particulièrement la présence des protons H+ générés par la décomposition de gaz hydrogène résiduel dans l'atmosphère du boîtier.
Afin de remédier aux phénomènes de dégradation en présence de doses radiatives, notamment de composants réalisés en technologie bipolaire ou CMOS encapsulés dans des boîtiers hermétiques, il existe des solutions connues de l'état de la technique. Une première solution consiste à réaliser des essais de qualification à faible débit de dose sur les circuits intégrés. Cependant il n'est pas possible de simuler les conditions réelles auxquelles les composants sont destinés à être soumis, celles-ci comprenant notamment une exposition à relativement long terme : typiquement plusieurs années pour des applications dans des satellites par exemple, à de très faibles débits de dose. Ainsi, il est nécessaire, pour que les résultats de telles qualifications soient probants, que les essais soient réalisés sur des durées très longues, typiquement de plusieurs mois ; de telles durées ont un impact négatif sur les délais de fabrication des équipements pour les applications spatiales, et constituent un surcoût important.
Une seconde solution connue, qui peut être proposée par des fabricants de composants, consiste à éliminer l'hydrogène résiduel pouvant contaminer le composant semi-conducteur en élaborant un procédé de fabrication exempt de trace d'hydrogène. Les fabricants peuvent également s'engager sur une tenue garantie en dose cumulée qui doit être justifiée par des rapports de tests joints aux composants. Dans le cas où pour des raisons pratiques le fabricant réalise les tests à fort débit de dose, des tests complémentaires à faible débit de dose doivent être réalisés. Cette option a de nouveau un impact négatif sur les délais de fabrication et est associée à un surcoût important. En tout état de cause, une telle solution porte également l'inconvénient d'un prix d'achat élevé des composants, ainsi que la nécessité de procéder à des essais longs et coûteux dans le but d'assurer la qualité des composants fournis. Un but de la présente invention est de pallier au moins les inconvénients précités, en proposant un dispositif comprenant des composants électriques, électroniques, électromécaniques ou électrooptiques, encapsulés dans des boîtiers hermétiques, permettant de réduire la sensibilité de ces dispositifs à la dose cumulée.
A cet effet, l'invention a pour objet un dispositif pour application spatiale apte à être soumis à des radiations ionisantes, comprenant au moins un composant électronique, électromécanique ou micro-électromécanique, ou électro-optique ou micro-éléctro-optique encapsulé dans un boîtier hermétique, caractérisé en ce que le boîtier comprend en outre un élément absorbant / adsorbant dit "sorbeur", tel qu'un sorbeur d'hydrogène apte à piéger des ions positifs ou négatifs, volatils et mobiles et à les maintenir absorbés ou adsorbés pour garantir une immunité dudit au moins un composant aux radiations ionisantes, ledit au moins un composant étant essentiellement de type semi-conducteur réalisé dans une technologie à base de silicium de type actif Bipolaire, MOS, C-MOS ou Bi-CMOS.
Dans un mode de réalisation de l'invention, le sorbeur peut être un sorbeur d'hydrogène.
Dans un mode de réalisation de l'invention, le dispositif peut être caractérisé en ce que le boîtier comprend un fond de boîtier fermé hermétiquement par un capot, le sorbeur étant rapporté à la surface intérieure du capot.
Dans un mode de réalisation de l'invention, le dispositif apte à être soumis à des radiations ionisantes peut être caractérisé en ce que le capot et le fond de boîtier comprennent chacun un corps céramique et/ou métallique.
Dans un mode de réalisation de l'invention, le dispositif apte à être soumis à des radiations ionisantes peut être caractérisé en ce que le capot et/ou le fond de boîtier est recouvert d'une couche de finition métallique.
Dans un mode de réalisation de l'invention, le dispositif apte à être soumis à des radiations ionisantes peut être caractérisé en ce que le capot comprend un corps accolé à une épaisseur de matériau sorbeur d'hydrogène, le matériau sorbeur d'hydrogène étant disposé sensiblement sur la partie intérieure du capot. Dans un mode de réalisation de l'invention, le dispositif apte à être soumis à des radiations ionisantes peut être caractérisé en ce que la cavité intérieure du boîtier hermétique comprend un vide partiel réalisé avant la fermeture du boîtier hermétique par un procédé de dégazage.
Dans un mode de réalisation de l'invention, le dispositif apte à être soumis à des radiations ionisantes peut être caractérisé en ce que la migration des protons H+ présents dans le composant et le boîtier est favorisée par l'application d'une polarisation sur des zones actives du composant.
Dans un mode de réalisation de l'invention, le dispositif apte à être soumis à des radiations ionisantes peut être caractérisé en ce que le corps métallique est constitué d'un alliage de Fer, Nickel et de Cobalt.
Dans un mode de réalisation de l'invention, le dispositif apte à être soumis à des radiations ionisantes peut être caractérisé en ce que la couche de finition est formée par une épaisseur d'or réalisée par dépôt électrolytique.
Dans un mode de réalisation de l'invention, le dispositif apte à être soumis à des radiations ionisantes peut être caractérisé en ce que le sorbeur d'hydrogène est réalisé dans un matériau à base de titane, platine, palladium et/ou de vanadium.
Dans un mode de réalisation de l'invention, le dispositif apte à être soumis à des radiations ionisantes peut être caractérisé en ce que le sorbeur d'hydrogène est collé, soudé, ou solidarisé par tout procédé de report connu, sur la face inférieure du capot.
Dans un mode de réalisation de l'invention, le dispositif apte à être soumis à des radiations ionisantes peut être caractérisé en ce que le sorbeur d'hydrogène est intégré au sein de la structure du capot et/ou du fond de boîtier.
Dans un mode de réalisation de l'invention, le dispositif apte à être soumis à des radiations ionisantes peut être caractérisé en ce que le sorbeur d'hydrogène est intégré au sein de la couche de finition du capot et/ou du fond de boîtier.
Dans un mode de réalisation de l'invention, le dispositif apte à être soumis à des radiations ionisantes peut être caractérisé en ce que le sorbeur d'hydrogène est formé par le dépôt de fines couches successives de titane, platine, palladium et/ou de vanadium directement sur le corps du capot et/ou le corps du fond de boîtier dans une enceinte sous vide.
Un avantage de la présente invention réside dans le fait que le dispositif selon l'un des modes de réalisation décrits, peut garantir une bonne tenue, notamment des composants actifs qu'il comprend, lorsque ceux-ci sont exposés à des radiations ionisantes et en particulier à faible débit de dose responsables d'un comportement de type ELDRS, y compris si ces composants actifs ne sont pas initialement conçus, développés et testés pour des applications spatiales contraignantes d'un point de vue tenue en dose cumulée. De la sorte, il est notamment rendu possible, grâce à la présente invention, d'approvisionner, de mettre en boîtier selon le dispositif décrit précédemment objet de la présente invention et d'utiliser, pour la fabrication d'équipements destinés à des applications spatiales, des puces Si Bipolaire, MOS, CMOS, Bi-CMOS de moindre coût, initialement conçues pour des applications terrestres mais inutilisables dans un tel environnement radiatif spatial.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description, donnée à titre d'exemple, faite en regard des dessins annexés qui représentent : la figure 1 , une vue en coupe d'un exemple de circuit intégré en lui-même connu de l'état de la technique ;
les figures 2a et 2b, les vues en coupe de respectivement un capot métallique et un fond métallique, formant un boîtier en lui-même connu de l'état de la technique ;
la figure 3, une vue en coupe du circuit intégré disposé dans le boîtier fermé hermétiquement ;
la figure 4, une vue en coupe d'un dispositif comprenant le circuit intégré et le boîtier hermétique, dans un exemple de réalisation de l'invention ;
la figure 5, une vue en coupe d'un dispositif comprenant le circuit intégré et le boîtier hermétique, selon un autre exemple de réalisation de l'invention. La figure 1 présente une vue en coupe d'un exemple de circuit intégré en lui-même connu de l'état de la technique.
Un composant 10, dans l'exemple illustré par la figure, un circuit intégré à base de silicium réalisé en technologie CMOS ou bipolaire, est schématiquement constitué d'un substrat silicium 1 1 , dans l'exemple de la figure comprenant une couche de métallisation 13 sur sa face inférieure, sur lequel sont diffusés des couches actives reliées entre elles par des lignes métalliques et sont déposées des couches d'oxyde, l'ensemble étant recouvert d'une ou plusieurs couches de passivation 12. La configuration du composant 10 illustrée par la figure n'est donnée qu'à titre d'exemple, et d'autres configurations typiques de composants peuvent être envisagées. La couche de passivation 12 a pour but d'assurer la protection du composant 10 lors de procédés de fabrication ultérieurs à la fabrication du composant 10 lui-même. Le composant 10 présente par exemple une épaisseur typique de l'ordre de quelques centaines de micromètres.
A l'issue de la réalisation du composant 10, des protons H+ peuvent être emprisonnés dans la couche de passivation 12. Les figures 2a et 2b présentent les vues en coupe de respectivement un capot et un fond, formant un boîtier en lui-même connu de l'état de la technique.
Dans l'exemple illustré par la figure 2a, un capot 200 peut comprendre un corps 201 recouvert par une couche de finition 202. Le corps 201 peut être réalisé, de manière typique, dans un matériau à faible coefficient de dilatation thermique, par exemple tel qu'un matériau céramique ou bien un alliage de Fer, Nickel et de Cobalt. La couche de finition 202 peut par exemple être formée par un dépôt électrolytique d'une faible épaisseur d'or. Par exemple, l'épaisseur typique du corps 201 peut être de l'ordre du millimètre, pour une épaisseur de la couche de finition 202 de l'ordre du micromètre. Le capot 200 peut également par exemple être constitué d'un matériau céramique ou bien d'un métal ou alliage métallique.
Dans l'exemple illustré par la figure 2b, un fond de boîtier 210 peut d'une manière similaire comprendre un corps 21 1 revêtu d'une faible épaisseur d'une couche de finition 212. Le fond de boîtier 210 peut être recouvert du capot 200, et ces deux éléments peuvent être soudés afin d'assurer l'herméticité du boîtier ainsi formé, ainsi que cela est décrit en détails ci-après en référence à un exemple illustré par la figure 3.
Des protons H+ ou de l'hydrogène peuvent être emprisonnés, notamment dans les matériaux constitutifs du capot 200 et du fond de boîtier 210. Dans l'exemple illustré par la figure 2 et les figures suivantes, des protons H+ sont représentés par des triangles dont un des sommets pointe vers le bas. Egalement, des molécules d'hydrogène H2 sont représentés par des triangles dont un des sommets pointe vers le haut, surmontés des triangles dont un des sommets pointe vers le bas. Des flèches représentent la migration des protons H+ et molécules d'hydrogène H2, au cours du temps.
Il est bien entendu que les structures illustrées par les figures 2a et 2b ne sont données qu'à titre d'exemples. Notamment, la présence d'une couche de finition 202, 212 sur le capot 200 et le fond de boîtier 210 est facultative.
La figure 3 présente une vue en coupe du circuit intégré disposé dans le boîtier fermé hermétiquement.
Le composant 10, par exemple le circuit intégré tel que décrit précédemment en référence à la figure 1 , peut être disposé sur le fond du fond de boîtier 210 tel que décrit précédemment en référence à la figure 2. Le composant 10 peut être soudé ou bien collé au fond du fond de boîtier 210. Dans l'exemple illustré par la figure, une couche d'élément de soudure 32 est représentée sous le composant 10. Le capot 200 et le fond de boîtier 210 peuvent être soudés mutuellement, par exemple via un cordon de brasure 31 , afin de former un boîtier hermétique 300. D'une manière typique, les opérations de montage du composant 10 dans le boîtier peuvent être réalisées dans une atmosphère contrôlée, par exemple au sein d'un four. Selon des techniques connues, il est par exemple possible de réaliser ces opérations dans une atmosphère fortement azotée, afin d'éliminer l'oxygène présent dans le boîtier hermétique 300, dans le but de défavoriser des phénomènes d'oxydation des composants encapsulés dans le boîtier.
La solution proposée par la présente invention est basée sur le principe de disposer à demeure, dans le boîtier hermétique 300, un élément absorbant / adsorbant ou "sorbeur", tel que par exemple un sorbeur d'hydrogène, un tel élément étant communément désigné par le terme anglais "getter". Pour la suite, à titre d'exemple non limitatif de la présente invention, il sera fait référence à un sorbeur d'hydrogène, étant entendu que le sorbeur peut être conçu pour favoriser l'absorption / adsorption d'autres types d'ions positifs ou négatifs. D'une manière générale, le sorbeur peut être constitué d'un alliage métallique ou d'un composé macromoléculaire capable de piéger à sa surface ou dans son volume des ions positifs ou négatifs, volatils et mobiles, tels que par exemple des ions Na+, Κ+, Η+, NH3+, OH-, H3O+, CO+, CO2+, etc., et de les maintenir absorbés / adsorbés dans le temps et dans des conditions de température et de pression relativement stables au sein d'un satellite dans des conditions normales d'utilisation, et ne nécessitant pas d'étape de régénérescence des parties absorbantes / adsorbantes (notamment : ni par recuit thermique, ni par vaporisation d'un alliage) au cours de son usage. Le getter à hydrogène, est enfermé à l'intérieur du boîtier hermétique 300, et est optimisé en dimensions et en composition, de manière à garantir un taux résiduel interne permanent aussi faible que possible au moins pendant toute la durée de vie prévue du composant. Des matériaux permettant une sorption et une rétention efficaces de l'hydrogène sont en eux-mêmes connus de l'état de la technique.
Les sorbeurs, notamment d'hydrogène, connus de l'état de la technique sont prévus pour des applications terrestres, pour lesquelles l'utilisation de composants actifs réalisés suivant des technologies Silicium Bipolaires, MOS, CMOS ou Bi-CMOS n'implique pas de contre-indications liées à la présence d'hydrogène. Les sorbeurs d'hydrogène connus sont utilisés pour des dispositifs à base de semiconducteurs lll-V de type GaAs (arsénure de gallium) dont il est connu qu'ils sont sensibles à l'influence de l'hydrogène. Ainsi les documents décrivant ces sorbeurs excluent l'usage des technologies de réalisation Silicium Bipolaires, MOS, CMOS ou Bi-CMOS.
Un exemple de configuration est décrit ci-après en référence à la figure 4, qui présente une vue en coupe d'un dispositif comprenant le circuit intégré et le boîtier hermétique, dans un exemple de réalisation de l'invention. Le boîtier hermétique 300, formé par le fond de boîtier 210, couvert du capot 200, comprend le composant 10, dans une configuration telle que décrite précédemment en référence à la figure 3. En outre, un sorbeur d'hydrogène 40 peut être également intégré dans le boîtier hermétique 300. Dans l'exemple de réalisation illustré par la figure, le sorbeur d'hydrogène 40 est disposé sous le capot 200. Le sorbeur d'hydrogène 40 est par exemple collé, soudé, ou solidarisé par tout procédé de report connu, sur la face inférieure du capot 200. Dans l'exemple illustré par la figure, une couche d'élément de soudure est représentée entre le sorbeur d'hydrogène 40 et le capot 200.
Le sorbeur (le sorbeur d'hydrogène 40 dans les exemples illustrés par les figures) est capable d'adsorber et d'absorber toute trace d'ions présents dans la cavité fermée : aussi bien le H2 résiduel gazeux que celui généré par les procédés chimiques dynamiques ou que les ions volatils présents au sein de la cavité hermétique constituée par le boîtier hermétique 300.
En ce qui concerne particulièrement un sorbeur d'hydrogène, l'avantage de disposer le sorbeur d'hydrogène 40 au sein du boîtier hermétique 300 permet de favoriser une réaction chimique dynamique dans laquelle la vitesse de d'absorption l'emporte sur la vitesse naturelle de dégazage de l'hydrogène. Ainsi le sorbeur d'hydrogène 40 doit présenter de bonnes caractéristiques d'absorption, ainsi que de bonnes caractéristiques de rétention de l'hydrogène. D'une manière typique, le sorbeur d'hydrogène 40 peut se présenter sous la forme d'une feuille, à base d'une combinaison de métaux par exemple tel que le titane, le platine, le palladium, le vanadium, ou encore un alliage de ces métaux. D'une manière typique, cette feuille métallique peut avoir une épaisseur de l'ordre de quelques dixièmes de millimètres.
Avantageusement, un procédé spécifique peut être mis en œuvre, afin de favoriser l'extraction de l'hydrogène, notamment présent à proximité des zones actives des couches de passivation des composants encapsulés dans le boîtier hermétique 300. Le procédé peut par exemple comprendre une étape de chauffage préalable, pouvant être mise en œuvre avant la fermeture du boîtier hermétique 300. Le procédé peut également inclure une étape de dégazage avant la pose du sorbeur d'hydrogène 40 et la fermeture du boîtier hermétique 300. Par exemple, la création d'un vide ou d'un vide partiel au sein du boîtier hermétique 300 lors de sa fermeture, favorise par la suite la migration de l'hydrogène vers le sorbeur d'hydrogène 40. Il est souhaitable de ramener le taux d'hydrogène présent dans le boîtier à une quantité aussi faible que possible et qui sera maintenue à ce niveau grâce au sorbeur d'hydrogène 40 pendant toute la durée de vie du composant.
Avantageusement, il est également possible, par exemple, de polariser en température le composant de façon à favoriser la migration des protons à travers la passivation et ainsi extraire plus efficacement ces protons vers le sorbeur d'hydrogène 40. Ce procédé peut également être combiné avec les étapes décrites précédemment.
Avantageusement encore, il est possible d'améliorer l'efficacité du sorbeur d'hydrogène 40 en lui procurant une géométrie adéquate. Par exemple, une structure de type "peau de gaufre" peut être adoptée, permettant d'offrir un rapport Surface / Volume du sorbeur d'hydrogène 40 élevé, dans le but d'augmenter le taux d'hydrogène absorbé.
Dans un mode de réalisation de l'invention, il est également possible d'intégrer le sorbeur d'hydrogène dans la structure même du boîtier hermétique 300. Par exemple, il est possible de réaliser un capot de boîtier présentant une structure adéquate contenant un matériau offrant les propriétés requises pour le sorbeur.
Dans un mode alternatif de réalisation de l'invention, il est également possible d'intégrer le sorbeur d'hydrogène dans la structure même de la couche de finition 202, 212 recouvrant respectivement le capot 200 et le fond de boîtier 210, le cas échéant. Par exemple, de fines couches successives de titane, platine, palladium et/ou de vanadium peuvent être directement déposées sur le corps du capot 201 ou le corps du fond de boîtier 21 1 , par exemple dans une enceinte sous vide.
La figure 5 décrite ci-après présente une vue en coupe d'un dispositif comprenant le circuit intégré et le boîtier hermétique, selon un tel exemple de réalisation de l'invention.
Dans l'exemple de réalisation illustré par la figure 5, dans une configuration par ailleurs équivalente à la configuration décrite précédemment en référence à la figure 4, il peut être en effet possible de ne pas recourir à un élément discret de type du sorbeur d'hydrogène 40. Cela est rendu possible par l'utilisation d'un capot 500 dans lequel est utilisé un matériau offrant les propriétés du sorbeur d'hydrogène 50. Par exemple, le capot 500 peut être constitué d'un corps 501 réalisé soit dans un alliage de Fer, Nickel et de Cobalt, soit en céramique, le corps 501 étant accolé à une épaisseur de matériau sorbeur 502. Le capot 500 peut alors, d'une manière similaire aux modes de réalisation décrits ci-dessus, être soudé au fond de boîtier. De la sorte, les protons H+ et les molécules d'hydrogène H2 présentes dans le corps 501 peuvent migrer naturellement vers le matériau sorbeur 502. Egalement, les protons H+ et les molécules d'hydrogène H2 présentes dans la cavité intérieure du boîtier, dans les couches de passivation des composants et dans le fond de boîtier, peuvent migrer vers le matériau sorbeur 502, d'une manière similaire à la configuration décrite en référence à la figure 4. Egalement, il est avantageusement possible de favoriser la migration des ions, par exemple des protons H+, et des molécules d'hydrogène vers le matériau sorbeur 502 par la mise en œuvre d'un procédé adéquat tel que décrit précédemment en référence à la figure 4, comprenant par exemple une étape de dégazage de l'hydrogène par une mise sous vide partiel et/ou encore une migration forcée des protons H+ par l'application de champs électriques appropriés via une polarisation inverse de certaines zones actives des composants.
Il est à noter que la présente invention s'applique principalement à l'assemblage de composants électroniques actifs à semi-conducteurs composés de la colonne IV (Si) de la classification de Mendeleiev tels que diodes, transistors discrets et circuits intégrés, réalisés en technologies bipolaire, MOS, MOSFET, CMOS, etc..
Un avantage procuré par l'invention réside dans le fait qu'elle permet une amélioration de la tenue des dispositifs aux doses cumulées en radiations ionisantes. Elle permet en particulier d'annihiler les effets ELDRS, et en conséquence de procurer les avantages additionnels suivants :
• la possibilité d'utiliser une fonction électronique équivalente en version non durcie à la place des composants durcis habituellement utilisés. Les composants sont dits "durcis" lorsqu'ils ont été développés spécifiquement par leur fabricant de façon à ce qu'ils puissent résister à un certain niveau de dose cumulée sans se dégrader. Cela permet de réaliser des économies substantielles sur le coût des composants utilisés ; la possibilité de diminuer la masse des équipements. En effet, la tenue en dose étant améliorée, la protection par blindage peut être fortement réduite.
la possibilité de se dispenser de tests complémentaires à faible débit dose sur des composants durcis avec une garantie du fabricant basée sur des tests à fort débit de dose. Cet avantage concerne notamment des circuits intégrés linéaires réalisés en technologie bipolaire ou Bi-CMOS. Ceci permet de réaliser des économies d'essais de lots sur ces composants, communément désignés "Radiation Lot Acceptance Tests". La possibilité de réduire la durée des tests ; ceux-ci pouvant être extrêmement longs et pénalisants devant les temps de cycle de fabrication des équipements. Par exemple, les essais sous radiations qui doivent être menés sur des lots de composants approvisionnés pour des applications spatiales sont définis dans la norme ESCC 22900 de l'Agence Spatiale Européenne ESA, et la norme étasunienne MIL 1019-7. Pour les technologies bipolaires et Bi-CMOS, il est requis par ces normes que les tests doivent être réalisés à faible débit de dose. Or, la norme MIL 1019-7 notamment, impose des tests à un débit de dose inférieur à 36 rad(Si)/heure. La réalisation des tests pour des niveaux de 100 krads, niveau communément rencontré par les composants dans des applications spatiales, implique des durées d'irradiation de quatre mois au minimum. Ces durées viennent se rajouter aux temps d'approvisionnement des composants qui tendent eux aussi à se rallonger. La présente invention permet d'éviter de devoir réaliser ces longs tests à très faible débit de dose, en ne réalisant que des tests à fort débit de dose, et partant de diminuer le délai d'approvisionnement des composants et pouvoir mieux gérer les temps de cycles liés aux approvisionnements en flux tendu. Il est également possible d'envisager l'extension des dispositifs et procédés décrits précédemment, à d'autres technologies telles que les composants à base de semi-conducteurs ll-VI et lll-V disposant d'une couche de passivation en silice Si02 ou bien à base de nitrure de silicium Si3N4, tels que les circuits intégrés, mis en œuvre dans des applications hyperfréquence ou bien en optoélectronique. Il apparaît en effet possible que le même mécanisme puisse être produit dans d'autres dispositifs à semiconducteurs utilisant une passivation à base de nitrure de silicium Si3N4 dont l'élaboration peut aussi favoriser la présence de complexes ioniques.

Claims

REVENDICATIONS
1 - Dispositif pour application spatiale apte à être soumis à des radiations ionisantes, comprenant au moins un composant (10) électronique, électromécanique ou micro-électromécanique, ou électrooptique ou micro-éléctro-optique encapsulé dans un boîtier hermétique (300), caractérisé en ce que le boîtier comprend en outre un sorbeur (40) apte à piéger des ions positifs ou négatifs, volatils et mobiles et à les maintenir absorbés ou adsorbés, ledit au moins un composant (10) étant essentiellement de type semi-conducteur réalisé dans une technologie à base de silicium de type actif Bipolaire, MOS, C-MOS ou Bi-CMOS.
2- Dispositif selon la revendication 1 , dans lequel ledit sorbeur est un sorbeur d'hydrogène (40).
3- Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le boîtier comprend un fond de boîtier (210) fermé hermétiquement par un capot (200), le sorbeur (40) étant rapporté à la surface intérieure du capot (200).
4- Dispositif selon la revendication 3, caractérisé en ce que le capot (200) et le fond de boîtier (210) comprennent chacun un corps (201 , 21 1 ) céramique et/ou métallique.
5- Dispositif selon la revendication 4, caractérisé en ce que le corps métallique (201 , 21 1 ) est constitué d'un alliage de Fer, Nickel et de Cobalt. 6- Dispositif selon l'une quelconque des revendications 3 à 5, caractérisé en ce que le capot (200) et/ou le fond de boîtier (210) est recouvert d'une couche de finition (202, 212) métallique. 7- Dispositif selon l'une quelconque des revendications 3à 6, caractérisé en ce que la couche de finition (202, 212) est formée par une épaisseur d'or réalisée par dépôt électrolytique.
8- Dispositif selon l'une quelconque des revendications 3à 7, caractérisé en ce que le capot (500) comprend un corps (501 ) accolé à une épaisseur de matériau sorbeur (502), le matériau sorbeur étant disposé sensiblement sur la partie intérieure du capot (502).
9- Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la cavité intérieure du boîtier hermétique (300) est configurée pour permettre la réalisation d'un vide partiel avant la fermeture du boîtier hermétique (300), par dégazage.
10- Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est configuré pour permettre l'application d'une polarisation sur des zones actives du composant (10) de manière à favoriser la migration de protons H+ présents dans le composant (10) et le boîtier (300).
1 1 - Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le sorbeur d'hydrogène (40, 502) est réalisé dans un matériau à base de titane, platine, palladium et/ou de vanadium.
12- Dispositif selon l'une quelconque des revendications 4 à 1 1 , caractérisé en ce que le sorbeur d'hydrogène (40, 502) est collé, soudé, ou solidarisé par tout procédé de report connu, sur la face inférieure du capot (200).
13- Dispositif selon l'une quelconque des revendications 4 à 12, caractérisé en ce que le sorbeur d'hydrogène est intégré au sein de la structure du capot (200) et/ou du fond de boîtier (210). 14- Dispositif selon l'une quelconque des revendications 5 à 13, caractérisé en ce que le sorbeur d'hydrogène est intégré au sein de la couche de finition (202, 212) du capot (200) et/ou du fond de boitier (210).
15- Dispositif selon l'une quelconque des revendications 4 à 13, caractérisé en ce que le sorbeur d'hydrogène (40, 502) est formé par le dépôt de fines couches successives de titane, platine, palladium et/ou de vanadium directement sur le corps du capot (201 ) et/ou le corps du fond de boitier (21 1 ) dans une enceinte sous vide.
EP11703205A 2010-02-16 2011-02-08 Dispositif comprenant des composants electriques, electroniques, electromecaniques ou electro-optiques, a sensibilite reduite a faible debit de dose Withdrawn EP2537181A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1000647A FR2956521B1 (fr) 2010-02-16 2010-02-16 Dispositif comprenant des composants electriques, electroniques, electromecaniques ou electro-optiques, a sensibilite reduite a faible debit de dose
PCT/EP2011/051774 WO2011101272A1 (fr) 2010-02-16 2011-02-08 Dispositif comprenant des composants electriques, electroniques, electromecaniques ou electro-optiques, a sensibilite reduite a faible debit de dose

Publications (1)

Publication Number Publication Date
EP2537181A1 true EP2537181A1 (fr) 2012-12-26

Family

ID=42371396

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11703205A Withdrawn EP2537181A1 (fr) 2010-02-16 2011-02-08 Dispositif comprenant des composants electriques, electroniques, electromecaniques ou electro-optiques, a sensibilite reduite a faible debit de dose

Country Status (6)

Country Link
US (1) US20130207248A1 (fr)
EP (1) EP2537181A1 (fr)
JP (1) JP2013520022A (fr)
KR (1) KR20130005275A (fr)
FR (1) FR2956521B1 (fr)
WO (1) WO2011101272A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10002846B2 (en) 2011-10-27 2018-06-19 Global Circuit Innovations Incorporated Method for remapping a packaged extracted die with 3D printed bond connections
US9935028B2 (en) 2013-03-05 2018-04-03 Global Circuit Innovations Incorporated Method and apparatus for printing integrated circuit bond connections
US9870968B2 (en) 2011-10-27 2018-01-16 Global Circuit Innovations Incorporated Repackaged integrated circuit and assembly method
US10147660B2 (en) 2011-10-27 2018-12-04 Global Circuits Innovations, Inc. Remapped packaged extracted die with 3D printed bond connections
US10128161B2 (en) 2011-10-27 2018-11-13 Global Circuit Innovations, Inc. 3D printed hermetic package assembly and method
US9966319B1 (en) 2011-10-27 2018-05-08 Global Circuit Innovations Incorporated Environmental hardening integrated circuit method and apparatus
US10109606B2 (en) 2011-10-27 2018-10-23 Global Circuit Innovations, Inc. Remapped packaged extracted die
US10177054B2 (en) 2011-10-27 2019-01-08 Global Circuit Innovations, Inc. Method for remapping a packaged extracted die
CN103884945B (zh) * 2014-04-04 2016-04-20 哈尔滨工业大学 基于改变温度及剂量率的低剂量率增强效应加速实验方法
FR3023974B1 (fr) * 2014-07-18 2016-07-22 Ulis Procede de fabrication d'un dispositif comprenant un boitier hermetique sous vide et un getter
US10115645B1 (en) 2018-01-09 2018-10-30 Global Circuit Innovations, Inc. Repackaged reconditioned die method and assembly
CN108362988B (zh) * 2018-02-09 2020-12-29 哈尔滨工业大学 一种抑制双极晶体管低剂量率增强效应的方法
US11508680B2 (en) 2020-11-13 2022-11-22 Global Circuit Innovations Inc. Solder ball application for singular die
CN112928072B (zh) * 2021-01-29 2023-09-19 重庆两江卫星移动通信有限公司 一种氮化镓场效应晶体管抗辐照加固的封装器件
EP4318927A1 (fr) * 2021-05-31 2024-02-07 Saginomiya Seisakusho, Inc. Dispositif à électret

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4630095A (en) * 1980-03-31 1986-12-16 Vlsi Technology Research Association Packaged semiconductor device structure including getter material for decreasing gas from a protective organic covering
US6423575B1 (en) * 2001-07-27 2002-07-23 Dean Tran Hydrogen gettering structure including silver-doped palladium layer to increase hydrogen gettering of module component and semiconductor device module having such structure, and methods of fabrication

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261508B1 (en) * 1994-04-01 2001-07-17 Maxwell Electronic Components Group, Inc. Method for making a shielding composition
US5861665A (en) * 1997-05-13 1999-01-19 Lucent Technologies Inc. Structure for absorption of hydrogen in a package
US6110808A (en) * 1998-12-04 2000-08-29 Trw Inc. Hydrogen getter for integrated microelectronic assembly
DE10049556A1 (de) * 1999-10-08 2001-06-13 Trw Inc Integriertes Mikroelektronikmodul mit Getter-Volumenelement
US20030062610A1 (en) * 2001-09-28 2003-04-03 Kovacs Alan L. Multilayer thin film hydrogen getter
US6923625B2 (en) * 2002-01-07 2005-08-02 Integrated Sensing Systems, Inc. Method of forming a reactive material and article formed thereby
US7160368B1 (en) * 2002-07-12 2007-01-09 Em4, Inc. System and method for gettering gas-phase contaminants within a sealed enclosure
US6929974B2 (en) * 2002-10-18 2005-08-16 Motorola, Inc. Feedthrough design and method for a hermetically sealed microdevice
ITMI20030069A1 (it) * 2003-01-17 2004-07-18 Getters Spa Dispositivi micromeccanici o microoptoelettronici con deposito di materiale getter e riscaldatore integrato.
US6867543B2 (en) * 2003-03-31 2005-03-15 Motorola, Inc. Microdevice assembly having a fine grain getter layer for maintaining vacuum
US6919623B2 (en) * 2003-12-12 2005-07-19 The Boeing Company Hydrogen diffusion hybrid port and method of forming
US20090001537A1 (en) * 2007-06-27 2009-01-01 Innovative Micro Technology Gettering material for encapsulated microdevices and method of manufacture
JP5123079B2 (ja) * 2008-06-30 2013-01-16 京セラクリスタルデバイス株式会社 電子部品用の蓋体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4630095A (en) * 1980-03-31 1986-12-16 Vlsi Technology Research Association Packaged semiconductor device structure including getter material for decreasing gas from a protective organic covering
US6423575B1 (en) * 2001-07-27 2002-07-23 Dean Tran Hydrogen gettering structure including silver-doped palladium layer to increase hydrogen gettering of module component and semiconductor device module having such structure, and methods of fabrication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2011101272A1 *

Also Published As

Publication number Publication date
FR2956521B1 (fr) 2012-08-17
KR20130005275A (ko) 2013-01-15
WO2011101272A1 (fr) 2011-08-25
FR2956521A1 (fr) 2011-08-19
JP2013520022A (ja) 2013-05-30
US20130207248A1 (en) 2013-08-15

Similar Documents

Publication Publication Date Title
WO2011101272A1 (fr) Dispositif comprenant des composants electriques, electroniques, electromecaniques ou electro-optiques, a sensibilite reduite a faible debit de dose
EP0497948B1 (fr) Procede et dispositif d'encapsulation hermetique de composants electroniques
JP5036308B2 (ja) 半導体レーザ装置およびその製造方法
EP3169625B1 (fr) Procédé de fabrication d'un dispositif comprenant un boîtier hermétique sous vide et un getter
Castro‐Hermosa et al. Quantifying performance of permeation barrier—encapsulation systems for flexible and glass‐based electronics and their application to perovskite solar cells
US7692292B2 (en) Packaged electronic element and method of producing electronic element package
FR2950877A1 (fr) Structure a cavite comportant une interface de collage a base de materiau getter
EP2586741B1 (fr) Structure d'encapsulation hermétique d'un dispositif et d'un composant électronique
WO2001093310A9 (fr) Dispositif semiconducteur a injection electronique verticale et son procede de fabrication
EP2507825B1 (fr) Procede d'assemblage hermetique d'un boîtier electronique hermetique
FR3005648A1 (fr) Procede d'encapsulation d'un dispositif microelectronique comprenant une injection de gaz noble a travers un materiau permeable a ce gaz noble
EP3167497A1 (fr) Encapsulation d'un composant optoelectronique organique
EP4016588A1 (fr) Structure améliorée de substrat rf et procédé de réalisation
EP1518279A2 (fr) Dispositif de maintien d un objet sous vide et procedes de f abrication de ce dispositif, application aux detecteurs infrarouges non refroidis
EP2801117A2 (fr) Structure semiconductrice, dispositif comportant une telle structure et procede de fabrication d'une structure semiconductrice
WO2013167553A1 (fr) Procédé de réalisation de détecteurs infrarouges
TWI245432B (en) Method for assembling light-emitting device
Lowry et al. Harsh environments and volatiles in sealed enclosures
Schubert et al. Desorption of oxygen and its influence on the electrical properties of CdS single crystal platelets
FR3029352A1 (fr) Procede d'assemblage de deux substrats
FR2565030A1 (fr) Structure de metallisations de reprise de contacts d'un dispositif semi-conducteur et dispositif dote d'une telle structure
EP3165502B1 (fr) Dispositif microélectronique
EP4088309B1 (fr) Procede d'assemblage de deux substrats semi-conducteurs
WO2000024054A1 (fr) Structure comportant une couche semiconductrice et/ou des elements electroniques sur un support isolant et son procede de fabrication
TWI707822B (zh) 具有懸置於封閉空腔中的金屬電阻的電子組件

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120820

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170626

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180109