EP2536495B1 - Procédé et dispositif pour l'obtention de carburants et gaz combustibles à partir de substances organiques - Google Patents

Procédé et dispositif pour l'obtention de carburants et gaz combustibles à partir de substances organiques Download PDF

Info

Publication number
EP2536495B1
EP2536495B1 EP10705328.2A EP10705328A EP2536495B1 EP 2536495 B1 EP2536495 B1 EP 2536495B1 EP 10705328 A EP10705328 A EP 10705328A EP 2536495 B1 EP2536495 B1 EP 2536495B1
Authority
EP
European Patent Office
Prior art keywords
reactor
thermal decomposition
carbon
organic materials
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10705328.2A
Other languages
German (de)
English (en)
Other versions
EP2536495A1 (fr
Inventor
Gernot K. Brueck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plasma Power BV
Original Assignee
Gim Holding Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gim Holding Bv filed Critical Gim Holding Bv
Priority to PT10705328T priority Critical patent/PT2536495T/pt
Publication of EP2536495A1 publication Critical patent/EP2536495A1/fr
Application granted granted Critical
Publication of EP2536495B1 publication Critical patent/EP2536495B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • C10J3/66Processes with decomposition of the distillation products by introducing them into the gasification zone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/007Screw type gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/10Continuous processes using external heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/156Sluices, e.g. mechanical sluices for preventing escape of gas through the feed inlet
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0909Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating

Definitions

  • the invention relates to a process for the recovery of combustible fuels and gases from organic matter, wherein the organic substances are thermally decomposed to form the combustible fuels and gases and to form carbon.
  • the invention relates to an apparatus for carrying out such a method, with a reactor for the thermal decomposition of organic substances to form combustible fuels and gases and to form carbon.
  • Processes and apparatuses for extracting combustible fuels and gases from organic matter are well known, for example, as systems for the conversion of biomaterials into biogas which have been in operation for some years, but at the same time they are also the enormous problems that surround the entire industry.
  • a certain proportion of organic materials is also thermally decomposed, especially in pyrolysis plants, with the formation of combustible fuels and gases and the formation of carbon, but here too the efficiency left much to be desired and this also always requires not inconsiderable investments.
  • the quality of the gases produced in this way is often very inconsistent - on the one hand due to the diversity of the thermally decomposable organic materials, and, on the other hand, depending on the nature of the respectively selected settings in the process control.
  • the method known to be mixed usually with inorganic material such. As with metals or salts, resulting carbon must be disposed of as unusable ashes.
  • Exemplary of this are the methods and devices in the following documents. This is how the document describes US 2008/0149471 A2 a pyrolysis furnace and a one-step process running in it.
  • the document EP 1865 045 A1 describes a steam reformer and also a one-step process.
  • the document US 5,151,159 A describes a pyrolysis process in which coal is produced, which is then burned.
  • the document US 2003/0010266 A1 describes a two-stage pyrolysis process with subsequent oxidation.
  • the document EP 1 160 307 A2 describes a one-step carbonization process.
  • the document EP 1 447 438 A1 describes a four-pass gasification with two pyrolysis steps: pre-gasification and re-gasification.
  • the document EP 1 323 810 A1 describes a double-tube gasifier with recycling of the non-gasified residual material.
  • the document DE 196 14 689 A1 describes a multivalent usable plant for the thermal treatment of starting substances a single reactor.
  • the document US 1,538,796 describes a "multiple unit retort" for separating volatile gases from carbonaceous material with a number of horizontal retort segments.
  • a method of the type mentioned is the WO 01/68789 A1 refer to.
  • This document discloses a pyrolysis unit which is disclosed in there in Fig. 2 illustrated execution in the form of a heated indirectly via a heating jacket screw conveyor and to which a gasification unit connects with an oxidation zone.
  • Moist raw material such as biomass or wood chips
  • a so-called dryer unit in which steam is also supplied, where it is pyrolyzed, ie thermally decomposed to form a gaseous and a solid fraction. Both fractions arrive from the pyrolysis unit in the gasification unit, in particular in a gasification reactor, which is traversed from top to bottom by a gasification agent.
  • This gasification agent is described as preheated air and / or water vapor and is intended to cause a partial oxidation of the volatile constituents in the sense of further thermal decomposition .
  • the so-called gasification unit is essentially another pyrolysis unit.
  • solids from the pyrolysis unit are gasified and the tar content of the introduced volatile components is lowered.
  • the occurring reactions are not described and do not open up from the specified reaction temperatures, especially not because the respective compositions of the gasification agent and the incoming gas-solid mixture are indefinite.
  • the invention has for its object to provide a method and a device of the type mentioned in a technologically less expensive way, with which the degree of utilization of the organic substances used in the production of combustible fuels and gases can be increased.
  • this is achieved in that the carbon generated in the thermal decomposition is converted in a decomposition spatially and temporally downstream synthesis process in water vapor atmosphere to carbon monoxide and hydrogen, wherein the thermal decomposition and the synthesis process in two separate technologically connected in series Reactors, a decomposition reactor for the thermal decomposition of organic substances and a synthesis reactor for the formation of carbon monoxide and hydrogen takes place, and wherein the inventive method has the features of claim 1.
  • the reactor for thermal decomposition is technologically followed by a synthesis reactor for the formation of carbon monoxide and hydrogen from water vapor and carbon formed in the reactor for thermal decomposition, the reactors gas-tight separate furnace sections or ovens are connected to each other via a gas-tight lock for supplying the carbon from the reactor for thermal decomposition in the synthesis reactor, wherein the reactor for thermal decomposition has a gas outlet for decoupling of the gases formed in it with connected gas cooler, and wherein the inventive device having the features of claim 13.
  • the thermal decomposition of organic substances can be carried out as so-called flash pyrolysis in a temperature range of 300 ° C to 600 ° C, based on 100% dry matter of organic substances about 75% to 85% combustible fuels and gases and about 15% to 25% carbon arise.
  • Important for full utilization of the energy of the organic substances used according to the invention is the conversion of the carbon. If you take z.
  • wood as decomposing organic substance or as an energy supplier which has a calorific value of about 18 MJ / kg of dry matter, then make 20% residual carbon with a calorific value of about 34 MJ / kg at least about 38% of the wood immanent energy which can be used more according to the invention in comparison with a process without a synthesis step.
  • Another possibility - if a high hydrogen yield is desired - is to carry out the thermal decomposition of the organic substances as so-called monocarbon thermolysis in a temperature range of 650 ° C to 800 ° C, based on 100% dry matter of the organic substances more than 20 % Carbon - together with CO, H 2 , CH 4 - is formed, which is then available for the synthesis reaction, the composition depending on the nature of the input material and its moisture.
  • the amount of carbon formed during thermal decomposition depends on the temperature; the higher this is, the more carbon is liberated because, as will be shown in detail below, it is formed at the thermolytic interfaces of the polymeric organic molecules.
  • the thermally decomposable organic substances contain components from which arise in the thermal decomposition of inorganic ash products. Also during the thermal decomposition of the organic substances the process especially in water dissolved functional additives, such as salts and salt formers, such as phosphoric acid or potassium hydroxide, are supplied - so to order z.
  • water dissolved functional additives such as salts and salt formers, such as phosphoric acid or potassium hydroxide, are supplied - so to order z.
  • the invention is based on the finding that a combination of thermal decomposition and synthesis in a single reactor space leads to problems. For example, while a thermolysis takes place, expanding gas clouds are formed around the decomposing particles of the organic substances, which would effectively force away the steam required for conversion to hydrogen and carbon monoxide from the reaction site, so that no water molecule reaches the carbon. In addition, remains at a thermolysis - as known from the production of activated carbon - always a stable carbon skeleton in the resulting carbon, so that here the surface, although theoretically large, but the water molecules is accessible only to a limited extent, so that no complete implementation can take place.
  • An important step towards the full utilization of the energy contained in the organic matter to be decomposed is also the division of the hybrid device into the stage of decomposition with the o. G. middle or with the o. g. higher, but compared to the temperature of the synthesis stage, which - is carried out as a high-temperature process in the temperature range of 850 ° C to 1000 ° C - because of the high purity of the coal and also because of the presence of chemically inactive inorganic substances, comparatively lower temperature range.
  • the CO / H 2 production can be followed in a further reactor, a water gas shift reaction, which at temperatures between 250 ° C and 450 ° C on a ferric oxide catalyst, the carbon monoxide in an exothermic process in water vapor. Atmosphere is converted to carbon dioxide, with the amount of hydrogen approximately doubled.
  • the method according to the invention with the decomposition and the synthesis process although anaerobic and in each case as an endothermic reaction - that is not autothermic - led to be realized in the overall balance with high energy efficiency, since on the one hand the energy required for decomposition and synthesis at least more than 80% , Preferably more than 95%, by combustion of the combustible fuels and gases obtained from the organic substances and / or by recuperation of the heat generated in the water gas shift process can be provided, only for a first or possibly after downtime repeated commissioning of the device according to the invention is a one-time energy input, for example, with externally supplied combusting fuel gas, necessary. In the stationary state, the heat can be provided 100% process-immanent.
  • the carbon from the stage of decomposition of the organic substances preferably passes directly into the synthesis reactor, ie without cooling and intermediate storage, ie already at the reaction temperature prevailing in the decomposition stage, so that in the synthesis stage only nor the difference amount of energy to reach the relevant temperature is spent.
  • the reactors of the device according to the invention in particular in the reactor for thermal decomposition, it may preferably be carried out by means of screw conveyors.
  • spatula and / or roller units integrated into the screws can very finely distribute the organic material over the bottom of the oven, so that all particles can be brought directly to an optimum flash temperature, for example about 475 ° C., via contact heat from the reactor wall.
  • Scraper units mounted behind can then free the floor or reactor wall wall of buildup and make it free for subsequent direct contact with the organics.
  • the resulting carbon agglomerates are broken, so that only pulverized coal, usually mixed with inorganic material, the point of discharge is fed from the reactor.
  • an organic moisture-containing substance 1 or else a mixture of substances is set in a heated funnel 2 to a desired dry matter content.
  • Plant substances such as wood or compost, biomass, household waste, plastic waste, sewage sludge, meat waste, old car tires and the like can be used more as organic substances 1.
  • the organic substances used to form the combustible fuels and gases may contain 5% to 50%, preferably 15% to 20%, moisture, which is preferably adjusted by the drying preceding the thermal decomposition.
  • the thermally decomposable organic substances 1 can also contain constituents from which arise during thermal decomposition inorganic ash products.
  • the organic substance 1 used to form the combustible fuels and gases or the organic substances 1 are comminuted before decomposition and drying, in particular comminuted to mean particle sizes in the range from 2 mm to 5 mm, preferably one Dimension in a spatial dimension of the particles (length, width, height) should be smaller than 100 microns.
  • the particles have an optimum surface-to-volume ratio for the decomposition reaction and, for the purpose of heat transfer, the thermal attack.
  • the organic substance 1 falls into a sluice 3, which is shown as an example in the drawing as a rotary valve, and passes through the opening 4 in the interior of the reactor 5 for decomposition.
  • the lock 3 closes the reactor also airtight from the material supply point down.
  • the thermal decomposition of the organic substance 1 is performed as an anaerobic process, wherein the organic material 1 can also be introduced into the reactor 5, in particular under protective gas.
  • an axially extending screw conveyor 6 moves the material continuously up to the discharge opening 8, which in turn opens into a gas-tight lock 9, in particular a rotary valve.
  • the decomposition reactor 5 also has a feed 7, via which water, optionally with functional additives dissolved therein, can be supplied.
  • the screw conveyor 6 always has transverse bars, which extend longitudinally to the housing of the decomposition reactor 5.
  • transverse bars which extend longitudinally to the housing of the decomposition reactor 5.
  • simple scratch and turning seals are enough - like the one in Fig. 5 with the reference numeral 62 designated latch - but also bars can be added with other functions, as well as those described below Fig. 5 to 10 can be seen.
  • the organic material in the reactor 5 is then thermally decomposed, in particular subjected to a thermolysis.
  • the described configuration of the screw conveyor 6 allows not only Hochtemperaturthermolysen and the implementation of the aforementioned flash pyrolysis.
  • the organic material 1 is heated very quickly in the absence of oxygen in a medium-temperature process, preferably at about 475 ° C.
  • small particles are decomposed at very high heating and heat transfer rates, whereby usually about 60% to 70% (then at room temperature) liquid products are produced as combustible fuels, and additionally each still about 10% to 20% combustible gas and about 15% to 25% residual carbon, based on 100% dry substance of the organics (organic substance 1).
  • the carbon mixes with any inorganic material which may be present or formed, such as e.g. As metals or salts.
  • the thermal decomposition of the organic substances 1 can also be carried out as so-called monocarbon thermolysis in a temperature range of 650 ° C to 800 ° C, based on 100% dry matter of organic substances 1 only CO, H2, CH4 and carbon arise.
  • the resulting gas is decoupled from the gas outlet 11 and passes into a gas cooler 12, where it is cooled down in a cooling coil 13, for example to a temperature of 50 ° C. suitable for later use of the gas for power generation.
  • Liquid fractions condense and are collected in the container 14. From this, the liquid fuels and residual water can be withdrawn via an outlet 15.
  • oils in particular vegetable oils, preferably rapeseed oil
  • Rapeseed oil has a particularly good ability to bind tars.
  • the scrubbing liquid laden with solids, in particular with carbon, is sucked off via an outlet 19 and can be supplied as input material to the process of thermal decomposition of the organic substances 1. This can happen, in particular, if so much pulverized coal has formed in the reactor that the viscosity has increased so much that the gas can only pass through the washing liquid to a limited extent.
  • the purified gas is sucked by means of a pump 17 and pressed into a gas supply system 18, wherein gas sensors and flow meters are located.
  • the mixture of pure carbon and inorganic material passes through the aforementioned gas-tight lock 9 directly into a synthesis reactor 10.
  • the carbon generated in the decomposition in a spatially and temporally decomposition downstream synthesis process in steam atmosphere reacted at temperatures in the range of 850 ° C to 1000 ° C to carbon monoxide and hydrogen.
  • the water vapor necessary for the synthesis is sprayed via a feed line 20.
  • the carbon is continuously conveyed, swirled in the chamber and fed to an outlet 22 in the inorganic material remaining in the synthesis reaction.
  • this is then passed as ash or residual waste via a further rotary valve 23 in an ash pan 24.
  • the resulting CO / H 2 gas mixture is decoupled at the gas outlet 25 and then tempered down in a cooler 26. Any existing residual water from unreacted water vapor is separated and removed via a water outlet 27.
  • the gas flows into a gas scrubber 28 and is freed from residual dust there.
  • a sump 29 of the scrubber 28 is then sucked in an overload with dust on the Sumpfabsaugung 30, wherein the liquid can also be fed back to the reactor 5 for thermal decomposition.
  • the gas mixture is sucked off via a pump 31, controlled in the gas stream by means of sensors 32 and then pressed into a gas line 33.
  • this can then - regardless of the gas composition which has the gas exiting from the decomposition reactor 5 - advantageously always identical gas mixture via a shift reactor 34 for the water gas further treated by in the shift reactor 34 when supplying steam to iron (III) oxide catalysts 35 at temperatures in the range of 250 ° C to 450 ° C, the carbon monoxide is converted into carbon dioxide, wherein additionally hydrogen arises: Complete conversion of CO into CO 2 doubles the production of hydrogen.
  • the carbon dioxide contained in the gas mixture can in a further optional refrigeration unit 38, which z. B. is filled with liquid nitrogen as a coolant, are liquefied by passing it through a cooling coil 39 and thereby cooled to below - 60 ° C.
  • the liquid CO 2 then flows at a pressure of over 6 bar into the collecting vessel 41 and can be removed from there via the outlet 42.
  • the pure hydrogen gas is then available in the gas line 40.
  • Fig. 2 It is shown how water vapor 45 is prevented from a thermally decomposing organic particles 43, since permanent decomposition gas 44 flows out of the particle 43.
  • the figure thus illustrates that, as already stated above, it is technologically unfavorable to carry out thermal decomposition and synthesis in a single reactor because complete conversion of the organic substances 1 can not take place. Instead, with the hybrid system according to the invention, organic material can advantageously be converted 100% into combustible fuels and gases.
  • FIG. 5 to 10 some constructive details of the device according to the invention are illustrated, to which also independent inventive importance is attributed and take into account the fact that the thermal decomposition of the organic substances and the synthesis process run as endothermic processes, the energy required is supplied allothermic process, ie that it is coupled in particular indirectly via walls of the reactors 5, 10 or alternatively or additionally also via a heat transfer medium guided through, for example, heating coils in each case through the reaction space.
  • the reactors 5, 10 of the device according to the invention may preferably be tube furnaces in which conveyor screws 6, 21 are arranged.
  • reactors 5, 10 but also rotary kilns can be used, wherein during the thermal decomposition and the synthesis process, the organic matter 1 and the carbon are continuously conveyed by kiln rotation.
  • an improvement in terms of intensifying the reaction of thermal decomposition by a change in the inside of the decomposition reactor 5 (in Fig. 5 designated by the reference numeral 62) screw conveyor (in Fig. 5 designated by reference numeral 60).
  • this screw conveyor 60 initially has scraping and turning bars 62. These are at least partially longitudinally to a housing of the reactor 5 extending, in particular approximately in cross-section approximately trapezoidal, transverse bar, which are shaped and arranged so that they the organic matter 1, the inorganic substances and / or the carbon in a Turn over movement through the reactor 5, if appropriate, also vortex and / or scrape off from a wall 59 of the reactor 5.
  • Fig. 5 to 8 shows - additionally attached to the worm 60 Aufpressriegel 61, which in their various possible working positions in Fig. 6 to 8 Also designated by the reference numerals 64, 66 and 69 are. It is preferred, as the drawing illustrates, to longitudinally to a housing of the reactor 5 extending, in particular wing-like, in cross-section approximately crescent-shaped, obliquely to radial rays R through the reactor 5 arranged longitudinal bars which are shaped and arranged such that they distribute the organic substances 1, the inorganic substances and / or the carbon in a movement through the reactor 5 in a few millimeters thick layer on the wall of the reactor 5 and press against the wall 59 of the reactor 5.
  • the sequence of figures 6 to 8 shows that the material (in Fig. 6 with the reference numeral 65 and in Fig. 7 denoted by 68) of the organic substance 1, which is located on a lower inner wall 63 of the reactor 5, taken up by the Aufpressriegel 64 and is brought in the rotational movement of the screw conveyor 60 as a thin layer 67 in direct contact with the hot housing surface 63. If the pressure bar then reaches position 69 ( Fig. 8 ), the entire material 71 is pressed in a thin layer on the hot surface 70 and evaporates or decomposes in direct contact with the wall very spontaneously and in a few seconds.
  • FIGS. 9 and 10 can show on the worm (here denoted by reference numeral 73) in addition to scraping and Wenderiegeln (here by the reference numeral 74) and pressure rollers 75 may be attached.
  • These are preferably longitudinal bars extending longitudinally of the housing of the reactor 5, which are designed as rollers which are freely movable in the radial direction and are fastened and designed on the conveyor screw 73 in such a way that they hold the organic, Inorganic substances and / or press the carbon in a few millimeters thick layer to the wall 72 of the reactor 5 and comminute by a Zerwalzen on the wall of the reactor 5.
  • Such pressure rollers 75 can react more easily to strongly cohesively shaped fittings of inorganic material and thus also avoid jamming. Furthermore, these rollers 75 roll the resulting carbon small.
  • the roles in Fig. 10 denoted by the reference numeral 77 have a self-gravity and be mounted in a guide bar 76 on the worm, that the axis 78 of the roller can move freely in a recess (slot 79) of the guide bar 76.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Claims (15)

  1. Procédé d'obtention de carburants et gaz combustibles à partir de substances organiques (1), les substances organiques (1) étant décomposées thermiquement avec formation des carburants et gaz combustibles et avec formation de carbone,
    le carbone formé dans l'espace intérieur d'un réacteur de décomposition (5) lors de la décomposition thermique étant transformé en monoxyde de carbone et hydrogène par un procédé de synthèse en aval de la décomposition dans un réacteur de synthèse (10) dans une atmosphère de vapeur d'eau, la décomposition thermique étant réalisée sous la forme d'un procédé anaérobie, un mélange de carbone pur et de matière inorganique formé lors de la décomposition thermique des substances organiques (1) passant depuis le réacteur de décomposition directement, sans refroidissement ni stockage intermédiaire, dans le réacteur de synthèse (10), et un gaz formé lors de la décomposition dans le réacteur de décomposition (5) étant découplé du réacteur de décomposition (5) par une sortie de gaz (11) et traité séparément, le carbone formé lors de la décomposition thermique des substances organiques (1) dans le réacteur de décomposition (5) étant mis en réaction de manière anaérobie dans le réacteur de synthèse (10) dans le procédé de synthèse en aval de la décomposition dans l'espace et dans le temps dans l'atmosphère de vapeur d'eau dans une plage de température allant de 850 °C à 1 000 °C, la décomposition thermique des substances organiques et le procédé de synthèse se déroulant sous la forme de procédés endothermiques, et l'énergie nécessaire pour cela étant introduite dans le procédé de manière allothermique, par couplage de celle-ci indirectement par des parois des réacteurs (5, 10) et/ou par un caloporteur mis en circulation dans des serpentins de chauffage dans la chambre de réaction respective, et des sections de four ou des fours séparés l'un de l'autre de manière étanche aux gaz étant utilisés en tant que réacteurs (5, 10).
  2. Procédé selon la revendication 1, caractérisé en ce que des fours tubulaires sont utilisés en tant que réacteurs (5, 10).
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que les substances organiques (1) et le carbone sont transportés en continu, notamment à l'aide de vis de transport (6, 21, 60, 73) et/ou par rotation du four, pendant la décomposition thermique et le procédé de synthèse.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que des résidus végétaux, tels que du bois ou du compost, une biomasse, des ordures ménagères, des déchets de plastique, des boues d'épuration, des déchets de viande, des pneus automobiles usagés et analogues sont utilisés en tant que substances organiques (1) pour la formation des carburants et gaz combustibles, les substances organiques (1) utilisées pour la formation des carburants et gaz combustibles contenant notamment 5 % à 50 %, de préférence 15 % à 20 %, d'humidité, qui est de préférence ajustée par un séchage en amont de la décomposition thermique, et les substances organiques (1) utilisées pour la formation des carburants et gaz combustibles étant notamment broyées en particules avant la décomposition, notamment d'une taille de particule moyenne dans la plage allant de 2 mm à 5 mm, une dimension des particules dans une dimension de l'espace des particules étant de préférence inférieure à 100 µm.
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que des additifs fonctionnels sont introduits dans le procédé pendant la décomposition thermique des substances organiques (1).
  6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la totalité du carbone formé lors de la décomposition thermique est mis en réaction dans le procédé de synthèse, seuls les produits de cendre inorganiques formés lors de la décomposition étant notamment déchargés en tant que matières résiduelles.
  7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que les carburants et gaz combustibles formés par la décomposition thermique et le mélange gazeux de monoxyde de carbone et d'hydrogène formé lors du procédé de synthèse sont traités séparément, par condensation de ceux-ci et/ou soumission de ceux-ci à une épuration des gaz (16, 28), des huiles, notamment des huiles végétales, de préférence de l'huile de colza, étant notamment utilisées lors d'une épuration (16) des gaz formés par la décomposition thermique en tant que liquides de lavage, et, après une épuration (16) des gaz formés par la décomposition thermique et/ou du mélange de monoxyde de carbone et d'hydrogène, un liquide de lavage chargé avec un solide, notamment avec du carbone, étant notamment introduit dans le procédé de décomposition thermique des substances organiques (1) en tant que matériau de départ, notamment pour augmenter sa fluidité.
  8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le monoxyde de carbone formé lors du procédé de synthèse est transformé catalytiquement en dioxyde de carbone et hydrogène supplémentaire par un procédé de conversion du gaz à l'eau dans une plage de température allant de 250 °C à 450 °C avec de la vapeur d'eau supplémentaire, le dioxyde de carbone formé dans le procédé de conversion du gaz à l'eau étant notamment séparé de l'hydrogène, notamment par refroidissement en dessous de -60 °C.
  9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que les substances organiques (1) sont introduites dans le procédé de décomposition thermique sous un gaz protecteur.
  10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que la décomposition thermique des substances organiques (1) a lieu sous la forme d'une pyrolyse rapide dans une plage de température allant de 300 °C à 600 °C, notamment à environ 475 °C, environ 75 % à 85 % de carburants et gaz combustibles et environ 15 % à 25 % de carbone se formant par rapport à 100 % de masse sèche des substances organiques.
  11. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que la décomposition thermique des substances organiques (1) a lieu sous la forme d'une thermolyse de monocarbone dans une plage de température allant de 650 °C à 800 °C, essentiellement du CO, de l'H2, du CH4 et du carbone se formant par rapport à 100 % de masse sèche des substances organiques.
  12. Procédé selon l'une quelconque des revendications 1 à 11, caractérisé en ce que l'énergie nécessaire pour la décomposition thermique des substances organiques (1) et pour le procédé de synthèse est mise à disposition au moins à hauteur de plus de 80 %, de préférence de plus de 95 %, par combustion des carburants et gaz combustibles obtenus à partir des substances organiques (1) et/ou par la chaleur formée dans un procédé de conversion du gaz à l'eau.
  13. Dispositif pour la réalisation d'un procédé selon l'une quelconque des revendications 1 à 12, comprenant un réacteur (5) pour la décomposition thermique de substances organiques (1) avec formation de carburants et gaz combustibles et avec formation de carbone, un réacteur de synthèse (10) pour la formation de monoxyde de carbone et d'hydrogène à partir de vapeur d'eau et à partir du carbone formé dans le réacteur (5) pour la décomposition thermique étant raccordé techniquement en aval du réacteur (5) pour la décomposition thermique, les réacteurs (5, 10) étant des sections de four ou des fours séparés l'un de l'autre de manière étanche aux gaz, qui sont reliés l'un avec l'autre par une écluse étanche aux gaz (9) pour l'introduction du carbone issu du réacteur (5) pour la décomposition thermique dans le réacteur de synthèse (10), le réacteur (5) pour la décomposition thermique comprenant une sortie de gaz (11) pour le découplage des gaz formés dans celui-ci, avec un refroidisseur de gaz raccordé (12), les réacteurs (5, 10) pouvant être chauffés indirectement par leurs parois et/ou par un caloporteur mis en circulation dans des serpentins de chauffage dans la chambre de réaction respective.
  14. Dispositif selon la revendication 13, caractérisé en ce que les réacteurs (5, 10) sont agencés l'un sur l'autre, de telle sorte que le carbone puisse s'écouler depuis le réacteur (5) pour la décomposition thermique dans le réacteur de synthèse (10) sous l'effet de son propre poids.
  15. Dispositif selon la revendication 13 ou 14, caractérisé en ce qu'au moins une vis de transport s'étendant axialement (6, 21, 60, 73) est agencée au moins dans un réacteur (5, 10), qui d'une part déplace les substances organiques (1), les substances inorganiques et/ou le carbone dans le réacteur (5, 10) et d'autre part racle et lamine les parois (59) du réacteur (5, 10), ladite au moins une vis de transport (6, 21, 60, 73), de préférence dans le réacteur (5) pour la décomposition thermique, comprenant notamment des traverses (62), notamment de forme approximativement trapézoïdale dans la section transversale, qui s'étendent au moins en zones longitudinalement par rapport à un boîtier du réacteur (5), qui sont dimensionnées et agencées de manière à retourner, faire tourbillonner et/ou racler sur une paroi (59) du réacteur (5) les substances organiques (1), les substances inorganiques et/ou le carbone lors d'un déplacement dans le réacteur (5), et/ou ladite au moins une vis de transport (6, 21, 60, 73), de préférence dans le réacteur (5) pour la décomposition thermique, comprenant des traverses longitudinales (61, 64, 66, 69) agencées en biais par rapport aux rayons dans le réacteur, approximativement sous la forme de faucille dans la section transversale, notamment à la manière d'une ailette, qui s'étendent longitudinalement par rapport à un boîtier du réacteur (5), qui sont dimensionnées et agencées de manière à répartir les substances organiques (1), les substances inorganiques et/ou le carbone lors d'un déplacement dans le réacteur (5) en une couche (67) d'une épaisseur de quelques millimètres sur la paroi du réacteur, et à les presser sur la paroi (59, 63) du réacteur (5), et/ou ladite au moins une vis de transport (6, 21, 60, 73), de préférence dans le réacteur (5) pour la décomposition thermique, comprenant des traverses longitudinales qui s'étendent longitudinalement par rapport à un boîtier du réacteur (5), qui sont configurées sous la forme de rouleaux presseurs (75) librement mobiles dans la direction radiale, et qui sont fixés sur la vis de transport (6, 21, 60, 73) et réalisés de manière à presser les substances organiques (1), les substances inorganiques et/ou le carbone en une couche d'une épaisseur de quelques millimètres sur la paroi (72) du réacteur (5), et à les broyer par laminage sur la paroi (72) du réacteur (5).
EP10705328.2A 2010-02-16 2010-02-16 Procédé et dispositif pour l'obtention de carburants et gaz combustibles à partir de substances organiques Active EP2536495B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PT10705328T PT2536495T (pt) 2010-02-16 2010-02-16 Método e dispositivo para obtenção de carburantes e gases combustíveis a partir de substâncias orgânicas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2010/051938 WO2011101020A1 (fr) 2010-02-16 2010-02-16 Procédé et dispositif pour l'obtention de carburants et gaz combustibles à partir de substances organiques

Publications (2)

Publication Number Publication Date
EP2536495A1 EP2536495A1 (fr) 2012-12-26
EP2536495B1 true EP2536495B1 (fr) 2019-04-10

Family

ID=42985194

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10705328.2A Active EP2536495B1 (fr) 2010-02-16 2010-02-16 Procédé et dispositif pour l'obtention de carburants et gaz combustibles à partir de substances organiques

Country Status (5)

Country Link
EP (1) EP2536495B1 (fr)
DK (1) DK2536495T3 (fr)
ES (1) ES2734519T3 (fr)
PT (1) PT2536495T (fr)
WO (1) WO2011101020A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110747012B (zh) * 2019-11-07 2021-03-23 徐同昕 一种利用厌氧加热法分解水的燃水汽化炉及其使用方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1538796A (en) * 1921-11-22 1925-05-19 American By Products Corp Multiple-unit retort
US5151159A (en) * 1990-11-15 1992-09-29 Coal Technology Corporation Method and apparatus for converting coal into liquid fuel and metallurgical coke
DE19614689C2 (de) * 1996-04-13 1999-11-04 Maximilian Bauknecht Multivalent einsetzbare Anlage zur thermischen Behandlung von Ausgangssubstanzen
DK200000417A (da) * 2000-03-15 2001-09-16 Cowi Radgivende Ingeniorer As Fremgangsmåde og anlæg til dekomposition, forgasning og/eller forbrænding af fugtigt brændsel.
DE50112945D1 (de) * 2000-05-26 2007-10-18 Kunststoff Und Umwelttechnik G Verfahren und Vorrichtung zur thermischen Behandlung und chemischen Umsetzung von Natur- und Synthesestoffen unter Zeugen eines Produktgases zur weiteren Verwendung
US6758150B2 (en) * 2001-07-16 2004-07-06 Energy Associates International, Llc System and method for thermally reducing solid and liquid waste and for recovering waste heat
EP1323810A1 (fr) * 2001-12-12 2003-07-02 von Görtz & Finger Techn. Entwicklungs Ges.m.b.H. Installation de gazéification à tubes doubles
EP1447438B1 (fr) * 2003-02-12 2015-07-08 von Görtz & Finger Techn. Entwicklungs Ges.m.b.H. Gazéification avec pré-pyrolyse de biomasse et gazéification additionnelle des gaz
DE202006020655U1 (de) * 2006-06-07 2009-07-02 Finger, Ulrich, Dipl.-Ing. Dampfreformator
EP2118241B1 (fr) * 2006-12-26 2016-03-16 Nucor Corporation Four de pyrolyse

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2536495A1 (fr) 2012-12-26
ES2734519T3 (es) 2019-12-10
PT2536495T (pt) 2019-07-16
DK2536495T3 (da) 2019-07-22
WO2011101020A1 (fr) 2011-08-25

Similar Documents

Publication Publication Date Title
Basso et al. Hydrothermal carbonization of off-specification compost: A byproduct of the organic municipal solid waste treatment
DE19945771C1 (de) Verfahren zur Vergasung von organischen Stoffen und Stoffgemischen
DE102007005799B4 (de) Verfahren zur Erzeugung eines wasserstoffreichen Produktgases
EP0126407B1 (fr) Procédé pour la récupération d'un gaz utile à partir d'ordures par pyrolyse et dispositif pour la mise en oeuvre du procédé
WO2010003968A2 (fr) Procédé et dispositif pour produire du gaz de synthèse à faible teneur en goudrons à partir de biomasse
WO1981000112A1 (fr) Procede et installation pour la gazeification de combustibles en morceaux
DE19930071A1 (de) Verfahren und Vorrichtung zur Pyrolyse und Vergasung von organischen Stoffen und Stoffgemischen
Tian et al. Kinetic study on the CO2 gasification of biochar derived from Miscanthus at different processing conditions
EP3132004A1 (fr) Système et procédé de traitement thermo-catalytique d'une matière et huile de pyrolyse fabriqué au moyen de ceux-ci
DE19925316A1 (de) Verfahren und Anlage zur autothermen Vergasung von festen Brennstoffen
DE10348142B3 (de) Verfahren und Anlage zur Erzeugung von Synthesegas aus Reststoffen
WO2011003731A2 (fr) Réacteur pour produire un gaz-produit par gazéification allothermique de matières de charge carbonées
EP1187891B1 (fr) Procede et dispositif d'elimination de dechets
DE202009010830U1 (de) Vorrichtung in Form eines Thermolysereaktors
EP2536495B1 (fr) Procédé et dispositif pour l'obtention de carburants et gaz combustibles à partir de substances organiques
EP2325288A1 (fr) Procédé et installation de traitement thermochimique et d'évaluation de substances contenant du carbone
EP3745065B1 (fr) Réacteur de production de vapeur d'eau et de substance sèche
EP3305724A1 (fr) Procédé permettant d'obtenir du phosphore
EP2233551B1 (fr) Procédé et dispositif de gazage de matériaux organiques
EP3580312B1 (fr) Preparation de syntheseges a partir de substances carbones au moyen d'une procedure combiné co-courant et contre-courant
DE2149291A1 (de) Verfahren zur Erzeugung und Nutzung von Waerme
DE19937188C1 (de) Verfahren zur Verwertung von Gasen aus dem Absetzbecken
CH644888A5 (de) Verfahren zur kombinierten muellverwertung und abwasseraufbereitung.
DE10010358A1 (de) Verfahren und Vorrichtung zum Vergasen von brennbarem Material
DE202009010833U1 (de) Anordnung zur Aufbereitung und thermischen Behandlung von Abprodukten und Abfällen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120822

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160209

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GIM HOLDING BV

INTG Intention to grant announced

Effective date: 20181115

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1117937

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010015925

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BRAUNPAT BRAUN EDER AG, CH

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2536495

Country of ref document: PT

Date of ref document: 20190716

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20190708

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190717

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190711

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2734519

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20191210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190810

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010015925

Country of ref document: DE

Owner name: GIM HOLDING B.V., NL

Free format text: FORMER OWNER: GIM HOLDING BV, HEERLEN, NL

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010015925

Country of ref document: DE

Representative=s name: PATENTANWAELTE DR. SOLF & ZAPF, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010015925

Country of ref document: DE

Owner name: PLASMA POWER B.V., NL

Free format text: FORMER OWNER: GIM HOLDING BV, HEERLEN, NL

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010015925

Country of ref document: DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010015925

Country of ref document: DE

Representative=s name: DR. SOLF & ZAPF PATENT- UND RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010015925

Country of ref document: DE

Representative=s name: DR. SOLF & ZAPF PATENT- UND RECHTSANWALTS PART, DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PLASMA POWER B.V.

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: PLASMA POWER BV, NL

Free format text: FORMER OWNER: GIM HOLDING BV, NL

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: PLASMA POWER B.V.; NL

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: GIM HOLDING BV

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

REG Reference to a national code

Ref country code: LU

Ref legal event code: PD

Owner name: PLASMA POWER HOLDING B.V.; NL

Free format text: FORMER OWNER: PLASMA POWER B.V.

Effective date: 20200117

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

26N No opposition filed

Effective date: 20200113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: PLASMA POWER BV; NL

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CESSION; FORMER OWNER NAME: GIM HOLDING BV

Effective date: 20200110

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 1117937

Country of ref document: AT

Kind code of ref document: T

Owner name: PLASMA POWER BV, NL

Effective date: 20200305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

REG Reference to a national code

Ref country code: NO

Ref legal event code: CHAD

Owner name: PLASMA POWER B.V., NL

Ref country code: NO

Ref legal event code: CREP

Representative=s name: TOM WITTOP KONING, BIOPATENTS IP CONSULTANCY, PARKZOOM

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20200625 AND 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010015925

Country of ref document: DE

Representative=s name: DR. SOLF & ZAPF PATENT- UND RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010015925

Country of ref document: DE

Representative=s name: DR. SOLF & ZAPF PATENT- UND RECHTSANWALTS PART, DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: QB

Free format text: DETAILS LICENCE OR PLEDGE: LICENCE, NEW LICENCE REGISTRATION

Name of requester: FUENIX HOLDING B.V.

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010015925

Country of ref document: DE

Owner name: GIM HOLDING B.V., NL

Free format text: FORMER OWNER: PLASMA POWER B.V., HEERLEN, NL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230214

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230228

Year of fee payment: 14

Ref country code: LU

Payment date: 20230214

Year of fee payment: 14

Ref country code: IE

Payment date: 20230215

Year of fee payment: 14

Ref country code: FR

Payment date: 20230207

Year of fee payment: 14

Ref country code: FI

Payment date: 20230222

Year of fee payment: 14

Ref country code: ES

Payment date: 20230302

Year of fee payment: 14

Ref country code: DK

Payment date: 20230219

Year of fee payment: 14

Ref country code: CH

Payment date: 20230307

Year of fee payment: 14

Ref country code: AT

Payment date: 20230222

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230219

Year of fee payment: 14

Ref country code: PT

Payment date: 20230203

Year of fee payment: 14

Ref country code: IT

Payment date: 20230208

Year of fee payment: 14

Ref country code: GB

Payment date: 20230205

Year of fee payment: 14

Ref country code: DE

Payment date: 20230131

Year of fee payment: 14

Ref country code: BE

Payment date: 20230214

Year of fee payment: 14

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530