EP2535978B1 - Orthomode coupler for an antenna system - Google Patents

Orthomode coupler for an antenna system Download PDF

Info

Publication number
EP2535978B1
EP2535978B1 EP12004512.5A EP12004512A EP2535978B1 EP 2535978 B1 EP2535978 B1 EP 2535978B1 EP 12004512 A EP12004512 A EP 12004512A EP 2535978 B1 EP2535978 B1 EP 2535978B1
Authority
EP
European Patent Office
Prior art keywords
polarizer
signal
waveguide
axis
septum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12004512.5A
Other languages
German (de)
French (fr)
Other versions
EP2535978A1 (en
Inventor
Helmut Wolf
Michael Dr. Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus DS GmbH
Original Assignee
Airbus DS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus DS GmbH filed Critical Airbus DS GmbH
Publication of EP2535978A1 publication Critical patent/EP2535978A1/en
Application granted granted Critical
Publication of EP2535978B1 publication Critical patent/EP2535978B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/161Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/06Movable joints, e.g. rotating joints
    • H01P1/062Movable joints, e.g. rotating joints the relative movement being a rotation
    • H01P1/066Movable joints, e.g. rotating joints the relative movement being a rotation with an unlimited angle of rotation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/06Movable joints, e.g. rotating joints
    • H01P1/062Movable joints, e.g. rotating joints the relative movement being a rotation
    • H01P1/066Movable joints, e.g. rotating joints the relative movement being a rotation with an unlimited angle of rotation
    • H01P1/067Movable joints, e.g. rotating joints the relative movement being a rotation with an unlimited angle of rotation the energy being transmitted in only one line located on the axis of rotation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/165Auxiliary devices for rotating the plane of polarisation
    • H01P1/17Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation
    • H01P1/171Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation using a corrugated or ridged waveguide section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/165Auxiliary devices for rotating the plane of polarisation
    • H01P1/17Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation
    • H01P1/173Auxiliary devices for rotating the plane of polarisation for producing a continuously rotating polarisation, e.g. circular polarisation using a conductive element

Definitions

  • the invention relates to a Orthomodenkoppler for an antenna system, in particular for a multifeed antenna.
  • the orthomode coupler includes a first signal waveguide for a first RF signal that can propagate in the first signal waveguide along a first axis. It includes a second signal waveguide for a second RF signal which is propagatable in the second signal waveguide along a second axis, the second axis being parallel to the first axis.
  • a Septumpolarisator open the first and the second signal waveguide.
  • a transmit and receive signal can propagate along a third axis of a common signal waveguide of the orthomode coupler, the third axis being parallel to the first and second axes, the common signal waveguide being coupled to the septum polarizer.
  • Orthomode couplers separate or combine two orthogonal, linearly polarized waves.
  • the first and the second signal waveguide which are also referred to as Suitehohlleiter, are usually perpendicular to each other.
  • the orthogonal arrangement of the feed waveguide which are usually formed as a rectangular waveguide, is due to the assignment to mutually orthogonal polarizations at the common gate (the common signal waveguide) justified.
  • Orthomodenkoppler used in a multifeed antenna system a high packing density of Orthormenkopplers is required, whereby a parallel arrangement of its feed hollow conductor is advantageous or even mandatory.
  • the problem with the parallel guidance of the feed waveguide is to ensure the polarization purity over the widest possible bandwidth.
  • Orthomodenkoppler which has parallel arranged rectangular feed hollow conductor. Due to the parallel arrangement of the feed waveguide, this orthomode coupler can be easily integrated into multifeed antenna systems.
  • a disadvantage of the Orthomodenkoppler described in the publication is its low bandwidth. Furthermore, its polarization is tilted by 45 ° with respect to the field strength vectors in the signal waveguides. This tilting by 45 ° makes the direct connection of a distribution network difficult and possibly makes the use of so-called twists necessary.
  • an ortho-mode coupler which comprises a first signal waveguide for a first RF signal and a second signal waveguide for a second RF signal, the axes of which are arranged parallel to one another.
  • the first and the second signal waveguide open into a septum polarizer.
  • the orthomode coupler further comprises a common signal waveguide whose axis is parallel to the axes of the first and second signal waveguides, the common signal waveguide being coupled to the septum polarizer and comprising a further polarizer in the form of a corrugation structure.
  • the DE 20 2009 006 651 U1 further discloses a microwave rotary joint for a rectangular waveguide to pass the waveguide guided microwaves between relatively rotatable high frequency devices.
  • the rotary joint has at its two ports each a septum Orthomodenkoppler.
  • the invention provides a Orthomodenkoppler for an antenna system, in particular for a multifeed antenna.
  • the orthomode coupler includes: a first signal waveguide for a first RF signal that is propagatable in the first signal waveguide along a first axis; a second signal waveguide for a second RF signal which is propagatable in the second signal waveguide along a second axis, the second axis being parallel to the first axis; a Septumpolarisator, in which the first and the second signal waveguide open; and a common signal waveguide having a third axis along which a transmit and receive signal can propagate, the third axis being parallel to the first and second axes, and wherein the common signal waveguide is coupled to the septum polarizer.
  • the common signal waveguide comprises a further polarizer.
  • the septum polarizer and the further polarizer designed as a groove polarizer, a bar polarizer or a post polarizer are connected to one another via a coupling element.
  • the coupling element has a round cross-section, so that the Septumpolarisator and the other polarizer are rotatable about its central axis against each other.
  • the orthomode coupler according to the invention thus combines a septum polarizer with a further polarizer.
  • the cross section of the further polarizer can optionally be round or rectangular.
  • a circularly polarized wave is first generated by the Septumpolarisator. This is converted by the polarizer into a linearly polarized wave.
  • the polarizer In the case of reception, the polarizer generates a circularly polarized wave from a linearly polarized wave.
  • the Septumpolarisator generated from the circularly polarized wave a linearly polarized wave. This makes it possible to arbitrarily set the direction of the polarization vector.
  • the combination achieves high cross-polarization rejection over a high bandwidth.
  • the orthomode coupler according to the invention provides a high degree of polarization purity. By a rotation of the other polarizer around its central axis The direction of the polarization vector can be set arbitrarily in a simple manner.
  • the first RF signal in the first signal waveguide and the second RF signal in the second signal waveguide are polarized orthogonal to one another.
  • the Orthomodenkoppler invention is formed by the combination of the Septumpolarisators with another polarizer such that the frequency response of the Septumpolarisators is partially compensated by the frequency response of the other polarizer. Due to the mutual compensation of the frequency response of Septumpolarisator and the other polarizer are the Bandwidth and the polarization purity compared to the known from the prior art solutions significantly improved.
  • Fig. 1 shows a schematic perspective view of a Orthomodenkopplers invention 100 for an antenna system.
  • the orthomode coupler can be used in a multifeed antenna system.
  • the Orthomodenkoppler two signal waveguides 1, 2 with mutually parallel axes and each having a rectangular cross-section along which respective orthogonal polarized RF signals can propagate.
  • the signal waveguides 1, 2 open into a Septumpolarisator 30 with also rectangular cross-section. From the cut representation in Fig. 2 shows that a septum 31 of the Septumpolarisators 30 is stepped. The septum 31 separates the housing of the Septumpolarisators 30 into two equal chambers.
  • the Septumpolarisator 30 is connected via a coupling element 20 which has a substantially rectangular cross-sectional shape, in accordance with the invention with a further polarizer 10 with a round cross-section, which opens into or forms a common signal waveguide.
  • the further polarizer 10 is round in cross-section and in this embodiment designed as a groove polarizer.
  • the further polarizer 10 could be designed as a bar polarizer or post polarizer or other polarizer having the properties below.
  • the cross section of the coupling element 20 could also be round.
  • the Septumpolarisator and the other polarizer can be easily rotated against each other, wherein a rotation about the center axis of the other polarizer 10 takes place.
  • a polarization vector can be set arbitrarily.
  • the orthomode coupler 100 is thus based on the combination of a septum polarizer 30 and a further polarizer 10.
  • a circularly polarized wave is first generated in the transmission case by the septum polarizer 30. This is converted by the polarizer 10 in a linearly polarized wave.
  • the polarizer 10 In the case of reception, the polarizer 10 generates a circularly polarized wave from a linearly polarized wave, wherein the septum polarizer 30 in turn generates a linearly polarized wave from the circularly polarized wave.
  • Another effect of the orthomode coupler according to the invention is that the frequency response of the septum polarizer is partially compensated by the frequency response of the other polarizer. This will be a high Cross-polarization suppression over a much higher bandwidth achieved, as is the case with Orthomodenkopplind with parallel signal waveguides different type.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Aerials With Secondary Devices (AREA)

Description

Die Erfindung betrifft einen Orthomodenkoppler für ein Antennensystem, insbesondere für eine Multifeed-Antenne. Der Orthomodenkoppler umfasst einen ersten Signalhohlleiter für ein erstes RF-Signal, welches sich in dem ersten Signalhohlleiter längs einer ersten Achse ausbreiten kann. Er umfasst einen zweiten Signalhohlleiter für ein zweites RF-Signal, welches sich in dem zweiten Signalhohlleiter längs einer zweiten Achse ausbreiten kann, wobei die zweite Achse parallel zu der ersten Achse angeordnet ist. In einen Septumpolarisator münden der erste und der zweite Signalhohlleiter. Längs einer dritten Achse eines gemeinsamen Signalhohlleiters des Orthomodenkopplers kann sich ein Sende- und Empfangssignal ausbreiten, wobei die dritte Achse parallel zu der ersten und der zweiten Achse verläuft, wobei der gemeinsame Signalhohlleiter mit dem Septumpolarisator gekoppelt ist.The invention relates to a Orthomodenkoppler for an antenna system, in particular for a multifeed antenna. The orthomode coupler includes a first signal waveguide for a first RF signal that can propagate in the first signal waveguide along a first axis. It includes a second signal waveguide for a second RF signal which is propagatable in the second signal waveguide along a second axis, the second axis being parallel to the first axis. In a Septumpolarisator open the first and the second signal waveguide. A transmit and receive signal can propagate along a third axis of a common signal waveguide of the orthomode coupler, the third axis being parallel to the first and second axes, the common signal waveguide being coupled to the septum polarizer.

Orthomodenkoppler trennen bzw. kombinieren zwei orthogonal, linear polarisierte Wellen. Der erste und der zweite Signalhohlleiter, welche auch als Speisehohlleiter bezeichnet werden, stehen dabei üblicherweise senkrecht aufeinander. Die orthogonale Anordnung der Speisehohlleiter, welche üblicherweise als Rechteckhohlleiter ausgebildet sind, ist durch die Zuordnung zu zueinander orthogonalen Polarisationen am gemeinsamen Tor (dem gemeinsamen Signalhohlleiter) begründet.Orthomode couplers separate or combine two orthogonal, linearly polarized waves. The first and the second signal waveguide, which are also referred to as Speisehohlleiter, are usually perpendicular to each other. The orthogonal arrangement of the feed waveguide, which are usually formed as a rectangular waveguide, is due to the assignment to mutually orthogonal polarizations at the common gate (the common signal waveguide) justified.

Wird der Orthomodenkoppler in einem Multifeed-Antennensystem eingesetzt, ist eine hohe Packungsdichte des Orthomodenkopplers erforderlich, wodurch eine parallele Anordnung seiner Speisehohlleiter von Vorteil oder sogar zwingend ist. Problematisch bei der parallelen Führung der Speisehohlleiter ist jedoch, die Polarisationsreinheit über eine möglichst große Bandbreite sicherzustellen.If the Orthomodenkoppler used in a multifeed antenna system, a high packing density of Orthormenkopplers is required, whereby a parallel arrangement of its feed hollow conductor is advantageous or even mandatory. The problem with the parallel guidance of the feed waveguide, however, is to ensure the polarization purity over the widest possible bandwidth.

Aus P. Sarasa, M. Diaz-Martin, J.-C. Angevain, C. Mangenot: "New Compact OMT Based on a Septum Solution for Telecom Applications", 32nd ESA Antenna Workshop, 2010 , ist ein Orthomodenkoppler bekannt, welcher parallel angeordnete rechteckige Speisehohlleiter aufweist. Aufgrund der parallelen Anordnung der Speisehohlleiter lässt sich dieser Orthomodenkoppler problemlos in Multifeed-Antennensysteme integrieren. Nachteilig an dem in der Veröffentlichung beschriebenen Orthomodenkoppler ist seine geringe Bandbreite. Ferner ist seine Polarisation um 45° gegenüber den Feldstärkevektoren in den Signalhohlleitern gekippt. Diese Kippung um 45° erschwert den direkten Anschluss eines Verteilnetzwerks und macht gegebenenfalls den Einsatz sog. Twists erforderlich.Out P. Sarasa, M. Diaz-Martin, J.-C. Angevain, C. Mangenot: "New Compact OMT Based on a Septum Solution for Telecom Applications", 32nd ESA Antenna Workshop, 2010 , a Orthomodenkoppler is known which has parallel arranged rectangular feed hollow conductor. Due to the parallel arrangement of the feed waveguide, this orthomode coupler can be easily integrated into multifeed antenna systems. A disadvantage of the Orthomodenkoppler described in the publication is its low bandwidth. Furthermore, its polarization is tilted by 45 ° with respect to the field strength vectors in the signal waveguides. This tilting by 45 ° makes the direct connection of a distribution network difficult and possibly makes the use of so-called twists necessary.

Aus R. Ihmels, U. Papziner, F. Arndt: "Field theory design of a corrugated septum OMT", Microwave Symposium Digest, 1993, IEEE MTT-S International, S. 909 bis 912, Vol. 2, 1993 ist ein Orthomodenkoppler bekannt, der einen ersten Signalhohlleiter für ein erstes RF-Signal und einen zweiten Signalhohlleiter für ein zweites RF-Signal umfasst, deren Achsen parallel zueinander angeordnet ist. Der erste und der zweite Signalhohlleiter münden in einen Septum-Polarisator. Der Orthomodenkoppler umfasst ferner einen gemeinsamen Signalhohlleiter, dessen Achse parallel zu den Achsen des ersten und zweiten Signalhohlleiters verläuft, wobei der gemeinsame Signalhohlleiter mit dem Septum-Polarisator gekoppelt ist und einen weiteren Polarisator in Form einer Korrugationsstruktur umfasst.Out R. Ihmels, U. Papziner, F. Arndt: "Field theory design of a corrugated septum OMT", Microwave Symposium Digest, 1993, IEEE MTT-S International, pp. 909-912, Vol. 2, 1993 For example, an ortho-mode coupler is known, which comprises a first signal waveguide for a first RF signal and a second signal waveguide for a second RF signal, the axes of which are arranged parallel to one another. The first and the second signal waveguide open into a septum polarizer. The orthomode coupler further comprises a common signal waveguide whose axis is parallel to the axes of the first and second signal waveguides, the common signal waveguide being coupled to the septum polarizer and comprising a further polarizer in the form of a corrugation structure.

Die DE 20 2009 006 651 U1 offenbart ferner eine Mikrowellen-Drehkupplung für einen Rechteckhohlleiter, um die in Hohlleitern geführten Mikrowellen zwischen relativ zueinander drehbaren Hochfrequenz-Geräten weiterzuleiten. Die Drehkupplung weist an ihren beiden Ports jeweils einen Septum-Orthomodenkoppler auf.The DE 20 2009 006 651 U1 further discloses a microwave rotary joint for a rectangular waveguide to pass the waveguide guided microwaves between relatively rotatable high frequency devices. The rotary joint has at its two ports each a septum Orthomodenkoppler.

Es ist daher Aufgabe der vorliegenden Erfindung, einen Orthomodenkoppler anzugeben, bei dem eine hohe Bandbreite und eine hohe Polarisationsreinheit im Vergleich zu den aus dem Stand der Technik bekannten Varianten erzielbar ist. Die Erfindung schafft einen Orthomodenkoppler für ein Antennensystem, insbesondere für eine Multifeed-Antenne. Der Orthomodenkoppler umfasst: einen ersten Signalhohlleiter für ein erstes RF-Signal, welches sich in dem ersten Signalhohlleiter längs einer ersten Achse ausbreiten kann; einen zweiten Signalhohlleiter für ein zweites RF-Signal, welches sich in dem zweiten Signalhohlleiter längs einer zweiten Achse ausbreiten kann, wobei die zweite Achse parallel zu der ersten Achse angeordnet ist; einen Septumpolarisator, in den der erste und der zweite Signalhohlleiter münden; und einen gemeinsamen Signalhohlleiter mit einer dritten Achse längs der sich ein Sende- und Empfangssignal ausbreiten kann, wobei die dritte Achse parallel zu der ersten und der zweiten Achse verläuft, und wobei der gemeinsame Signalhohlleiter mit dem Septumpolarisator gekoppelt ist. Der gemeinsame Signalhohlleiter umfasst einen weiteren Polarisator. Erfindungsgemäß sind der Septumpolarisator und der weitere, als Rillenpolarisator, als Stegpolarisator oder als Pfostenpolarisator ausgebildete, Polarisator über ein Koppelelement miteinander verbunden. Das Koppelelement weist einen runden Querschnitt auf, so dass der Septumpolarisator und der weitere Polarisator um seine Mittelachse gegeneinander verdrehbar sind.It is therefore an object of the present invention to provide a Orthomodenkoppler, in which a high bandwidth and a high polarization purity in comparison to the known from the prior art variants can be achieved. The invention provides a Orthomodenkoppler for an antenna system, in particular for a multifeed antenna. The orthomode coupler includes: a first signal waveguide for a first RF signal that is propagatable in the first signal waveguide along a first axis; a second signal waveguide for a second RF signal which is propagatable in the second signal waveguide along a second axis, the second axis being parallel to the first axis; a Septumpolarisator, in which the first and the second signal waveguide open; and a common signal waveguide having a third axis along which a transmit and receive signal can propagate, the third axis being parallel to the first and second axes, and wherein the common signal waveguide is coupled to the septum polarizer. The common signal waveguide comprises a further polarizer. According to the invention, the septum polarizer and the further polarizer designed as a groove polarizer, a bar polarizer or a post polarizer are connected to one another via a coupling element. The coupling element has a round cross-section, so that the Septumpolarisator and the other polarizer are rotatable about its central axis against each other.

Der erfindungsgemäße Orthomodenkoppler kombiniert somit einen Septumpolarisator mit einem weiteren Polarisator. Der Querschnitt des weiteren Polarisators kann wahlweise rund oder rechteckig ausgebildet sein. Im Sendefall wird durch den Septumpolarisator zunächst eine zirkular polarisierte Welle erzeugt. Diese wird durch den Polarisator in eine linear polarisierte Welle überführt. Im Empfangsfall erzeugt der Polarisator aus einer linear polarisierten Welle eine zirkular polarisierte Welle. Der Septumpolarisator erzeugt aus der zirkular polarisierten Welle eine linear polarisierte Welle. Hierdurch ist es möglich, die Richtung des Polarisationsvektors beliebig einzustellen. Darüber hinaus wird durch die Kombination eine hohe Kreuzpolarisationsunterdrückung über eine hohe Bandbreite erzielt. Ebenso stellt der erfindungsgemäße Orthomodenkoppler eine hohe Polarisationsreinheit zur Verfügung. Durch eine Drehung des weiteren Polarisators um seine Mittelachse kann die Richtung des Polarisationsvektors auf einfache Weise beliebig eingestellt werden.The orthomode coupler according to the invention thus combines a septum polarizer with a further polarizer. The cross section of the further polarizer can optionally be round or rectangular. In the transmission case, a circularly polarized wave is first generated by the Septumpolarisator. This is converted by the polarizer into a linearly polarized wave. In the case of reception, the polarizer generates a circularly polarized wave from a linearly polarized wave. The Septumpolarisator generated from the circularly polarized wave, a linearly polarized wave. This makes it possible to arbitrarily set the direction of the polarization vector. In addition, the combination achieves high cross-polarization rejection over a high bandwidth. Likewise, the orthomode coupler according to the invention provides a high degree of polarization purity. By a rotation of the other polarizer around its central axis The direction of the polarization vector can be set arbitrarily in a simple manner.

Insbesondere ist vorgesehen, dass das erste RF-Signal in dem ersten Signalhohlleiter und das zweite RF-Signal in dem zweiten Signalhohlleiter orthogonal zueinander polarisiert sind. Mit anderen Worten bedeutet dies, dass den Eingängen des Septumpolarisators zueinander orthogonale Polarisationen zugeordnet sind.In particular, it is provided that the first RF signal in the first signal waveguide and the second RF signal in the second signal waveguide are polarized orthogonal to one another. In other words, this means that the inputs of the Septumpolarisators are associated with each other orthogonal polarizations.

Der erfindungsgemäße Orthomodenkoppler ist durch die Kombination des Septumpolarisators mit einem weiteren Polarisator derart ausgebildet, dass der Frequenzgang des Septumpolarisators durch den Frequenzgang des weiteren Polarisators teilweise kompensiert ist. Durch die gegenseitige Kompensation des Frequenzgangs von Septumpolarisator und dem weiteren Polarisator werden die Bandbreite und die Polarisationsreinheit gegenüber den aus dem Stand der Technik bekannten Lösungen erheblich verbessert.The Orthomodenkoppler invention is formed by the combination of the Septumpolarisators with another polarizer such that the frequency response of the Septumpolarisators is partially compensated by the frequency response of the other polarizer. Due to the mutual compensation of the frequency response of Septumpolarisator and the other polarizer are the Bandwidth and the polarization purity compared to the known from the prior art solutions significantly improved.

Die Erfindung und deren Vorteile werden nachfolgend anhand eines Ausführungsbeispiels in der Zeichnung weiter erläutert. Es zeigen:

Fig. 1
eine schematische, perspektivische Darstellung eines erfindungsgemäßen Orthomodenkopplers,
Fig. 2
eine geschnittene, perspektivische Darstellung des erfindungsgemäßen Orthomodenkopplers aus Fig. 1, und
The invention and its advantages are explained below with reference to an embodiment in the drawing. Show it:
Fig. 1
a schematic perspective view of a Orthomodenkopplers invention,
Fig. 2
a cut, perspective view of the Orthomodenkopplers invention Fig. 1 , and

Fig. 1 zeigt eine schematische, perspektivische Darstellung eines erfindungsgemäßen Orthomodenkopplers 100 für ein Antennensystem. Insbesondere kann aufgrund der kompakten Bauweise des erfindungsgemäßen Orthomodenkopplers 100 der Orthomodenkoppler in einem Multifeed-Antennensystem eingesetzt werden. Fig. 1 shows a schematic perspective view of a Orthomodenkopplers invention 100 for an antenna system. In particular, owing to the compact design of the orthomode coupler 100 according to the invention, the orthomode coupler can be used in a multifeed antenna system.

In bekannter Weise weist der Orthomodenkoppler zwei Signalhohlleiter 1, 2 mit zueinander parallel ausgerichteten Achsen und mit jeweils rechteckigem Querschnitt auf, längs denen sich jeweilige, orthogonal zueinander polarisierte RF-Signale ausbreiten können. Die Signalhohlleiter 1, 2 münden in einen Septumpolarisator 30 mit ebenfalls rechteckigem Querschnitt. Aus der geschnittenen Darstellung in Fig. 2 geht hervor, dass ein Septum 31 des Septumpolarisators 30 gestuft ausgebildet ist. Das Septum 31 trennt das Gehäuse des Septumpolarisators 30 in zwei gleich große Kammern. Der Septumpolarisator 30 ist über ein Koppelelement 20, das eine im Wesentlichen rechteckige Querschnittsform aufweist, in erfindungsgemäßer Weise mit einem weiteren Polarisator 10 mit rundem Querschnitt, welcher in einen gemeinsamen Signalhohlleiter mündet oder diesen ausbildet, gekoppelt. Der weitere Polarisator 10 ist im Querschnitt rund und in diesem Ausführungsbeispiel als Rillenpolarisator ausgebildet. Ebenso könnte der weitere Polarisator 10 als Stegpolarisator oder Pfostenpolarisator oder sonstiger Polarisator ausgeführt sein, der die unten stehenden Eigenschaften aufweist.In a known manner, the Orthomodenkoppler two signal waveguides 1, 2 with mutually parallel axes and each having a rectangular cross-section along which respective orthogonal polarized RF signals can propagate. The signal waveguides 1, 2 open into a Septumpolarisator 30 with also rectangular cross-section. From the cut representation in Fig. 2 shows that a septum 31 of the Septumpolarisators 30 is stepped. The septum 31 separates the housing of the Septumpolarisators 30 into two equal chambers. The Septumpolarisator 30 is connected via a coupling element 20 which has a substantially rectangular cross-sectional shape, in accordance with the invention with a further polarizer 10 with a round cross-section, which opens into or forms a common signal waveguide. The further polarizer 10 is round in cross-section and in this embodiment designed as a groove polarizer. Likewise, the further polarizer 10 could be designed as a bar polarizer or post polarizer or other polarizer having the properties below.

In einer ebenfalls figürlich nicht dargestellten Ausführungsvariante könnte der Querschnitt des Koppelelements 20 auch rund sein. Hierdurch können der Septumpolarisator und der weitere Polarisator auf einfache Weise gegeneinander verdreht werden, wobei eine Verdrehung um die Mittelachse des weiteren Polarisators 10 erfolgt. Hierdurch kann ein Polarisationsvektor beliebig eingestellt werden.In a likewise embodiment not shown figuratively, the cross section of the coupling element 20 could also be round. As a result, the Septumpolarisator and the other polarizer can be easily rotated against each other, wherein a rotation about the center axis of the other polarizer 10 takes place. As a result, a polarization vector can be set arbitrarily.

Der erfindungsgemäße Orthomodenkoppler 100 basiert somit auf der Kombination eines Septumpolarisators 30 und eines weiteren Polarisators 10. Durch diese Kombination wird im Sendefall durch den Septumpolarisator 30 zunächst eine zirkular polarisierte Welle erzeugt. Diese wird durch den Polarisator 10 in eine linear polarisierte Welle überführt. Im Empfangsfall erzeugt der Polarisator 10 aus einer linear polarisierten Welle eine zirkular polarisierte Welle, wobei der Septumpolarisator 30 aus der zirkular polarisierten Welle wiederum eine linear polarisierte Welle erzeugt.The orthomode coupler 100 according to the invention is thus based on the combination of a septum polarizer 30 and a further polarizer 10. By means of this combination, a circularly polarized wave is first generated in the transmission case by the septum polarizer 30. This is converted by the polarizer 10 in a linearly polarized wave. In the case of reception, the polarizer 10 generates a circularly polarized wave from a linearly polarized wave, wherein the septum polarizer 30 in turn generates a linearly polarized wave from the circularly polarized wave.

Ein Vorteil dieser Vorgehensweise besteht darin, dass zum einen die Richtung des Polarisationsvektors beliebig eingestellt werden kann. Darüber hinaus wird durch die gegenseitige Kompensation des Frequenzgangs des Septumpolarisators 30 und des weiteren Polarisators 10 die Bandbreite und die Polarisationsreinheit erheblich gegenüber aus dem Stand der Technik bekannten Orthomodenkopplern erhöht.An advantage of this approach is that on the one hand, the direction of the polarization vector can be set arbitrarily. In addition, the mutual compensation of the frequency response of the Septumpolarisators 30 and the other polarizer 10, the bandwidth and polarization purity significantly increased over known from the prior art Orthomodenkopplern.

Ein weiterer Effekt des erfindungsgemäßen Orthomodenkopplers besteht darin, dass der Frequenzgang des Septumpolarisators durch den Frequenzgang des weiteren Polarisators teilweise kompensiert wird. Hierdurch wird eine hohe Kreuzpolarisationsunterdrückung über einer deutlich höheren Bandbreite erreicht, als dies bei Orthomodenkopplern mit parallelen Signalhohlleitern anderer Bauart der Fall ist.Another effect of the orthomode coupler according to the invention is that the frequency response of the septum polarizer is partially compensated by the frequency response of the other polarizer. This will be a high Cross-polarization suppression over a much higher bandwidth achieved, as is the case with Orthomodenkopplern with parallel signal waveguides different type.

Die gegenüber bekannten Lösungen verbesserten Eigenschaften des Orthomodenkopplers bei gleichzeitig geringem Bauraum resultieren daraus, dass der Frequenzgang des Septumpolarisators durch den Frequenzgang des weiteren Polarisators teilweise kompensiert wird. Hierdurch wird eine hohe Kreuzpolarisationsunterdrückung über einer höheren Bandbreite im Vergleich zu dem Orthomodenkoppler nach Sarasa et al. erzielt.The improved compared to known solutions properties of the Orthomodenkopplers with low space results from the fact that the frequency response of the Septumpolarisators is partially compensated by the frequency response of the other polarizer. As a result, a high cross-polarization suppression over a higher bandwidth compared to the Orthomonenkoppler according to Sarasa et al. achieved.

Claims (4)

  1. An orthomode coupler for an antenna system, particularly for a multi-feed antenna, comprising
    - a first signal waveguide (1) for a first RF signal that can propagate in the first signal waveguide, along a first axis;
    - a second signal waveguide (2) for a second RF signal that can propagate in the second signal waveguide, along a second axis, where the second axis is disposed parallel to the first axis;
    - a septum polarizer (30) in which the first and the second waveguides (1, 2) end;
    - a common signal waveguide (3) having a third axis, along which a transmission and reception signal can propagate, where the third axis runs parallel to the first and the second axes, where the common signal waveguide (3) is coupled with the septum polarizer (30), and where the common waveguide (3) comprises a further polarizer (10),
    characterized in that the septum polarizer (30) and the further polarizer (10) structured as a groove polarizer, a crosspiece polarizer, or a post polarizer are connected with one another by way of a coupling element (20) that has a round cross-section so that the septum polarizer (30) and the further polarizer (10) are rotatable relative to one another about its central axis.
  2. The orthomode coupler according to claim 1, characterized in that the first RF signal in the first signal waveguide (1) and the second RF signal in the second waveguide (2) are polarized orthogonally to one another.
  3. The orthomode coupler according to any one of the preceding claims, characterized in that the cross-section of the further polarizer (10) is round or rectangular.
  4. The orthomode coupler according to any one of the preceding claims, characterized in that the orthomode coupler is configured in such a manner that the frequency response of the septum polarizer (30) is partially compensated by the frequency response of the further polarizer (10).
EP12004512.5A 2011-06-16 2012-06-15 Orthomode coupler for an antenna system Active EP2535978B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011106590.7A DE102011106590B4 (en) 2011-06-16 2011-06-16 Orthomodine coupler for an antenna system

Publications (2)

Publication Number Publication Date
EP2535978A1 EP2535978A1 (en) 2012-12-19
EP2535978B1 true EP2535978B1 (en) 2016-09-07

Family

ID=46514054

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12004512.5A Active EP2535978B1 (en) 2011-06-16 2012-06-15 Orthomode coupler for an antenna system

Country Status (4)

Country Link
US (1) US9478838B2 (en)
EP (1) EP2535978B1 (en)
CA (1) CA2777196C (en)
DE (1) DE102011106590B4 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015108154B4 (en) * 2015-05-22 2020-03-26 Lisa Dräxlmaier GmbH Two-channel polarization correction
US9947978B1 (en) * 2016-06-13 2018-04-17 Space Systems/Loral, Llc Orthomode transducer
EP3312933B1 (en) * 2016-10-19 2019-05-22 TTI Norte, S.L. Microwave phase shifter
WO2019203903A2 (en) * 2017-12-20 2019-10-24 Optisys, LLC Integrated tracking antenna array combiner network
CN113794049B (en) * 2021-08-09 2023-05-30 北京交通大学 Three-dimensional substrate integrated antenna based on multilayer laminated dielectric integrated waveguide
US11881607B1 (en) 2021-10-05 2024-01-23 Lockheed Martin Corporation Longitudinally ridged septum orthomode transducer polarizer
FR3128321A1 (en) * 2021-10-18 2023-04-21 Swissto12 Sa Dual polarized antenna
CN114759335B (en) * 2022-04-25 2023-03-31 成都天锐星通科技有限公司 Orthogonal mode coupler and dual linear polarization feed source
FR3146549A1 (en) 2023-03-10 2024-09-13 Swissto12 Sa Compact dual-band orthomode transducer with linear polarization

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2188493A (en) * 1986-03-27 1987-09-30 Era Patents Ltd Orthogonal mode transducer
IT1319925B1 (en) * 2000-02-29 2003-11-12 Cselt Centro Studi Lab Telecom WAVE GUIDE POLARIZATION.
DE202009006651U1 (en) * 2008-12-30 2009-07-23 Dr. Nathrath, Trümper, Partnerschaft Ingenieure Mirowellen swivel coupling for rectangular waveguide

Also Published As

Publication number Publication date
CA2777196A1 (en) 2012-12-16
DE102011106590B4 (en) 2019-11-28
EP2535978A1 (en) 2012-12-19
US9478838B2 (en) 2016-10-25
DE102011106590A1 (en) 2012-12-20
US20120319799A1 (en) 2012-12-20
CA2777196C (en) 2018-09-25

Similar Documents

Publication Publication Date Title
EP2535978B1 (en) Orthomode coupler for an antenna system
DE2726799C2 (en) Crossover
DE2517383B2 (en) System crossover for dual use of frequencies
EP2897213B1 (en) Broadband signal splitting with sum signal absorption
DE2748956A1 (en) SEMICONDUCTOR WIST
DE102015108154B4 (en) Two-channel polarization correction
DE202009018591U1 (en) Microwave rotary joint for rectangular waveguide
DE60319512T2 (en) SWIVEL
EP0154692A1 (en) Polarisation-selective circuit for two frequency bands
DE2719283C2 (en) Antenna feed system for double polarization
WO2016082920A1 (en) Angle connector for differential transmission of data signals
DE10037554A1 (en) Arrangement for connecting two identical electromagnetic waveguides
EP0351514A2 (en) Waveguide twist
EP0147693B1 (en) Broadband polarisation filter
DE4207503A1 (en) Orthogonal polarisation component combining or separating device - has orthogonally placed coupling probes having defined width to length ratio either side of thickness discontinuity in dielectric plate
DE2737125C2 (en) Transmission system
DE2747632C2 (en) Antenna feed system for double polarization
DE4305906A1 (en) Waveguide arrangement
DE2708271A1 (en) Polarisation division filter for satellite communication - has double branches with transverse electric and transverse magnetic mixing sections
EP4293834B1 (en) Electrical connector and electrical connection
EP0419892B1 (en) Microwave polarisation filter
EP3331089B1 (en) Ortho mode transducer for reducing coupling of fundamental modes
EP0280151B1 (en) Microwave polarisation filter
EP1405369B1 (en) Broad-scale lightening protection device
DE10328880B4 (en) Mobile antenna of a base station

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130613

17Q First examination report despatched

Effective date: 20150527

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WOLF, HELMUT

Inventor name: SCHNEIDER, MICHAEL, DR.

INTG Intention to grant announced

Effective date: 20151109

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIRBUS DS GMBH

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160502

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012008157

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 827577

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161208

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170109

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170107

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012008157

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

26N No opposition filed

Effective date: 20170608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012008157

Country of ref document: DE

Representative=s name: WUESTHOFF & WUESTHOFF, PATENTANWAELTE PARTG MB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012008157

Country of ref document: DE

Owner name: AIRBUS DEFENCE AND SPACE GMBH, DE

Free format text: FORMER OWNER: AIRBUS DS GMBH, 82024 TAUFKIRCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170615

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFUS

Owner name: AIRBUS DEFENCE AND SPACE GMBH, DE

Free format text: FORMER OWNER: AIRBUS DS GMBH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170615

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170615

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170615

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180621

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20180621

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 827577

Country of ref document: AT

Kind code of ref document: T

Owner name: AIRBUS DEFENCE AND SPACE GMBH, DE

Effective date: 20180814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20180620

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190616

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 827577

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220627

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220628

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240619

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230615