EP2532764B1 - Drahtmaterial, stahldraht und verfahren zur herstellung dieser produkte - Google Patents

Drahtmaterial, stahldraht und verfahren zur herstellung dieser produkte Download PDF

Info

Publication number
EP2532764B1
EP2532764B1 EP10838391.0A EP10838391A EP2532764B1 EP 2532764 B1 EP2532764 B1 EP 2532764B1 EP 10838391 A EP10838391 A EP 10838391A EP 2532764 B1 EP2532764 B1 EP 2532764B1
Authority
EP
European Patent Office
Prior art keywords
mass
ppm
wire rod
wire
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10838391.0A
Other languages
English (en)
French (fr)
Other versions
EP2532764A1 (de
EP2532764A4 (de
Inventor
Shingo Yamasaki
Toshiyuki Manabe
Daisuke Hirakami
Nariyasu Muroga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010020185A external-priority patent/JP4970562B2/ja
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of EP2532764A1 publication Critical patent/EP2532764A1/de
Publication of EP2532764A4 publication Critical patent/EP2532764A4/de
Application granted granted Critical
Publication of EP2532764B1 publication Critical patent/EP2532764B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/44Methods of heating in heat-treatment baths
    • C21D1/48Metal baths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods

Definitions

  • the present invention relates to a wire rod, a steel wire, and a manufacturing method thereof, and, more specifically, to a rolled wire rod preferable for use as a steel cord which is used as a reinforcement material in radial tires of automobiles or belts and hoses for a variety of industrial uses, a sawing wire, a PC steel wire, a zinc plated steel strand, a wire rod for springs, a cable for suspension bridges, or the like, a manufacturing method thereof, and a steel wire produced from the rolled wire rod.
  • a steel wire which is used for a sawing wire or a steel cord which is used as a reinforcement material for radial tires of automobiles, a variety of belts and hoses, or the like is manufactured by subjecting a wire rod with a diameter of 5-6 mm, which has been hot-rolled and subjected to controlled-cooling, to a primary wire drawing so as to have a diameter of 3-4 mm, and subjecting the wire rod to a patenting treatment and a secondary wire drawing so as to have a diameter of 1-2 mm, and then subjecting the wire rod to a final patenting treatment, brass plating, and a final wet wire drawing process so as to have a diameter of 0.15-0.40 mm.
  • a steel cord is manufactured by twisting together a plurality of the ultrafine steel wires which obtained in the above manner in a twisting process so as to produce a twisted steel wire.
  • a steel wire used as a PC steel wire, a PC twisted wire, a rope, a PWS wire for bridges, or the like is generally formed into a strand shape by subjecting a wire rod with a diameter of 5-16 mm, which has been subjected to hot rolling and then controlled cooling, to a wire drawing process so as to have a diameter of 2-8 mm, subjecting the rod to molten zinc plating after the wire drawing or in the middle of the wire drawing, according to necessity, and then stranding the rods with or without twisting them together.
  • Patent Document 1 discloses "a wire rod for high strength and high toughness ultrafine steel wires, a high strength and high toughness ultrafine steel wire, a twisted product using the ultrafine steel wire, and a manufacturing method of the ultrafine steel wire” made of a steel material having a specific chemical composition, in which the average area ratio containing pro-eutectoid cementite is defined.
  • the wire rod suggested in the publication includes one or both of Ni and Co, which are high-priced elements, as essential components, the manufacturing costs are increased.
  • Patent Document 2 suggests a technology in which 0.6% or more of Al is added so as to suppress generation of pro-eutectoid cementite in a high carbon steel with a content of C exceeding 1%.
  • Al is a strong deoxidizing element, and the amount of hard inclusions that act as a cause of wire breakage during wire drawing is increased, it is difficult to apply the technology to wire rods for steel wires with a small diameter, such as steel cords.
  • Patent Document 3 suggests a technology in which a high carbon wire rod is heated to an austenite temperature zone, cooled to a temperature range of 823-1023 K, subjected to a deforming process with a degree of 15-80% in the above temperature zone, and then isothermally transformed in a temperature zone of 823-923 K so as to suppress pro-eutectoid cementite.
  • a large facility investment is required to perform a predetermined process in such a temperature zone, there is concern of an increase in manufacturing costs.
  • the present invention has been made in consideration of the above circumstances, and the object of the invention is to provide, with high productivity as well as favorable yield rate at a low price, high strength wire rods that are preferable for use as a steel cord, a sawing wire, or use as a PC steel wire, a zinc plated steel strand, a steel wire for springs, a cable for suspension bridges, or the like, and are excellent in terms of wire drawing properties.
  • the invention adopts the following configurations and methods.
  • the inventors of the present invention carried out repeated investigations and studies on the influence of the chemical compositions and mechanical properties of wire rods on the wire drawing properties and consequently obtained the following findings.
  • the first embodiment of the invention is a wire rod in which 0.5% or less of the area in the central area in cross-section perpendicular to the longitudinal direction of the wire rod and 0.5% or less of the area of the surface layer area (the first surface layer area) in cross-section are occupied by a pro-eutectoid cementite.
  • the surface layer area (the first surface layer area) in the wire rod refers to an area corresponding to a depth of 50 ⁇ m from the surface of the wire rod (the circumferential portion in cross-section) in cross-section perpendicular to the longitudinal direction of the wire rod.
  • the central area in the wire rod refers to an area with a radius of 100 ⁇ m from the central point in cross-section perpendicular to the longitudinal direction of the wire rod.
  • the pro-eutectoid cementite refers to cementite with a small deformability, which is generated at the prior austenite grain boundary and has a thickness of 100 nm or larger.
  • the wire rod according to the present embodiment has 97% or more of the area in cross-section perpendicular to the longitudinal direction of the wire rod occupied by a pearlite.
  • the remainder may be pro-eutectoid cementite, a bainite, a pseudo pearlite, a ferrite, a grain boundary ferrite, a martensite, or the like.
  • the temperature of the wire rod In order to suppress pro-eutectoid cementite in the surface layer area of a rolled wire rod made of a material with a high C content of 0.95-1.3 mass% to the above area ratio, it is necessary to set the temperature of the wire rod to 900°C or higher, and more preferably to 920°C or higher, at the moment of starting cooling for patenting with a salt bath or a Stelmor when hot-rolling steel pieces (billets) to have a diameter of 3-16 mm. For that, it is desirable to perform final rolling at 980°C or higher and to perform coiling at a temperatrue range higher than 925°C, and preferably higher than 950°C.
  • the amount of pro-eutectoid cementitie generated in the central area of a wire rod is dependent on the cooling rate Y while cooling from 900°C to 650°C.
  • the inventors of the invention found that it is effective to quench a wire rod in a method in which the cooling rate Y [°C/s] and the amount of carbon in the wire rod C% [mass%] satisfy Y ⁇ exp C % ⁇ 0.66 / 0.12 and then to finish pearlite transformation at a temperature of 500°C-650°C.
  • the reheating patenting refers to a patenting treatment performed after putting a subject into a state of 200°C or lower once and reheating it.
  • a reheating patenting steel wire made of a material with a high C content of 0.95-1.3 mass% to the above area ratio, it is effective to set the reheating temperature to 950°C-1050°C, and desirably to from the higher temperature of 975°C or higher and C% ⁇ 450 + 450 (°C) to 1050°C, to sufficiently form a solid solution of C and other alloy elements, to set the temperature of the steel wire when starting cooling for patenting to 900°C or higher, and desirably to 920°C or higher, and then to perform a patenting treatment in a lead bath or a fluidized bed at 500°C-600°C.
  • the wire rod according to the embodiment includes C, Si, Mn, Al, Ti, N, and O.
  • the amount of each component will be described.
  • C is an effective element for increasing the strength of a wire rod, and, if the content is less than 0.95%, it is difficult to stabilize and supply high strength to a final product.
  • the content of C is too high, net-shaped pro-eutectoid cementite is generated in austenite grain boundaries so that the wire is liable to be broken during a wire drawing process and also the toughness and ductility of the ultrafine wire rod after final wire drawing is remarkably degraded.
  • the amount of C is defined as 0.95-1.30 mass%.
  • the amount is set preferably to 1.0 mass% or more, and more preferably to 1.1 mass% or more.
  • Si is an effective element for increasing the strength.
  • Si is a useful element as a deoxidizing element and a necessary element when treating a steel wire rod including no Al. If the amount of Si is less than 0.1 mass%, a deoxidizing action is too low. On the other hand, if the amount of Si is too high, precipitation of pro-eutectoid ferrite is accelerated even in hypereutectoid steel, and the limit processibility in a wire drawing process is degraded. Furthermore, it becomes difficult to perform a wire drawing process by mechanical descaling. Accordingly, the amount of Si is defined as 0.1-1.5 mass%. More preferably, the amount of Si is defined as 1.0 mass% or less, and more preferably as 0.35 mass% or less.
  • Mn is also a useful element as a deoxidizing agent.
  • Mn is effective to improve hardenability and thus increase the strength of a wire rod.
  • Mn is combined with S to form MnS, thereby preventing hot rolling brittleness. If the amount of Mn content is less than 0.1 mass%, it is difficult to obtain the above effects.
  • Mn is an element liable to be segregated so that, if the Mn content exceeds 1.0 mass%, Mn is segregated particularly in the central area of a wire rod, and martensite or bainite is generated in the segregated portions, which leads to degradation of wire drawing processiblity. Accordingly, the amount of Mn is defined as 0.1-1.0 mass%.
  • the amount of Al is defined as a range of 0.1 mass% or less including 0 mass% (or exceeding 0 mass%) in order to prevent generation of hard unmodified alumina-based non-metallic inclusions, which causes degradation in the ductility and wire drawing properties of a steel wire.
  • the amount of Al is preferably 0.05 mass% or less, and more preferably 0.01 mass% or less.
  • the amount of Ti is defined as a range of 0.1 mass% or less including 0 mass% (or exceeding 0 mass) in order to prevent generation of hard unmodified oxides, which causes degradation in the ductility and wire drawing properties of a steel wire.
  • the amount of Ti is preferably 0.05 mass% or less, and more preferably 0.01 mass% or less.
  • N generates nitrides with Al, Ti, and B in a steel and has an action of preventing coarsening of the austenite grain size during heating, and the effect is effectively exhibited by including 10 ppm or more of N.
  • the N content is too high, the amount of nitrides increases excessively, and therefore the amount of solid-solute B in austenite is decreased.
  • the upper limit is set to 50 ppm. More preferably, the amount of N is 30 ppm or less.
  • the lower limit is defined as 10 ppm.
  • the upper limit is defined as 40 ppm.
  • the wire rod according to the embodiment may further optionally include one kind or more of elements from Cr, Ni, Co, V, Cu, Nb, Mo, W, B, REM, Ca, Mg, and Zr for the purpose of improving mechanical properties, such as strength, toughness, ductility, or the like.
  • elements from Cr, Ni, Co, V, Cu, Nb, Mo, W, B, REM, Ca, Mg, and Zr for the purpose of improving mechanical properties, such as strength, toughness, ductility, or the like.
  • the amount of each component will be described.
  • Cr is an element that refines the lamella interval in pearlite and is effective to improve the strength, wire drawing processibility or the like of a wire rod. In order to effectively exhibit such actions, it is preferable to add 0.1 mass% or more of Cr. On the other hand, if the amount of Cr is too high, since transformation completion time becomes long, there is concern that supercooled structures, such as martensite, bainite, or the like, may be generated in a hot-rolled wire rod, and mechanical descaling properties may deteriorate, thus, the upper limit is defined as 0.5 mass%.
  • Ni is an element that contributes little to an increase in the strength of a wire rod, but increases the toughness of a drawn wire rod. In order to effectively exhibit such an action, it is preferable to add 0.1 mass% or more of Ni. On the other hand, if Ni is excessively added, transformation completion time becomes long, thus, the upper limit is defined as 0.5 mass%.
  • Co is an effective element that suppresses segregation of pro-eutectoid cementite in a rolled material. In order to effectively exhibit such an action, it is preferable to add 0.1 mass% or more of Co. On the other hand, even when Co is excessively added, the effect is saturated and thus no economic benefit is produced. Accordingly, the upper limit is defined as 0.5 mass%.
  • V 0-0.5 mass%
  • V forms fine carbonitrides in ferrite so as to prevent coarsening of autenite grains during heating and contributes to an increase in strength after rolling.
  • the upper limit is defined as 0.5 mass%.
  • Cu has an effect of increasing the corrosion resistance of an ultrafine steel wire. In order to effectively exhibit such an action, it is preferable to add 0.1 mass% or more of Cu. However, if Cu is excessively added, Cu reacts with S so as to precipitate CuS, which causes defects in a steel ingot or a wire rod in the manufacturing process of a wire rod. In order to prevent such adverse effects, the upper limit is defined as 0.5 mass%.
  • Nb has an effect of increasing the corrosion resistance of ultrafine steel wires. In order to effectively exhibit such an action, it is preferable to add 0.05 mass% or more of Nb. On the other hand, if Nb is excessivley added, the transformation completion time becomes long. Thus, the upper limit of Nb is defined as 0.1 mass%.
  • Mo is concentrated in pearlite growth interfaces and has an effect of suppressing the growth of pearlite by a so-called solute drag effect.
  • Mo also has an effect of improving hardenability, with which the generation of ferrite is suppressed, and is also effective to reduce non-pearlite structures. If the amount of Mo is excessive, pearlite growth is suppressed across the entire temperature range so that a long time is required for patenting, which results in a decrease in productivity, and coarse Mo 2 C carbides are precipitated, and thus wire drawing properties are degraded. Accordingly, the amount of Mo is defined as 0.2 mass% or less. The preferable amount of Mo is 0.005-0.06 mass%.
  • W is concentrated in pearlite growth interfaces and has an effect of suppressing the growth of pearlite by a so-called solute drag effect.
  • W By adding an appropriate amount, it is possible to suppress the growth of pearlite only in a high temperature area of 600°C or higher, and to suppress the generation of pearlite in a coarse lamella spacing.
  • W also has an effect of improving hardenability, with which the generation of ferrite is suppressed, and is also effective to reduce non-ferrite structures. If the amount of W is excessive, pearlite growth is suppressed across the entire temperature range so that a long time is required for patenting, which results in a decrease in productivity, and coarse W 2 C carbides are precipitated, and thus wire drawing properties are degraded. Accordingly, the amount of W is defined as 0.2 mass% or lower. The preferable amount of W is 0.005-0.06 mass%.
  • B When present in a solid solution state in austenite, B is concentrated in grain boundaries so as to suppress the generation of non-pearlite structure, such as ferrite, pseudo pearlite, bainite, or the like. If the amount of B is 4 ppm or higher, it is possible to obtain this effect. On the other hand, if B is excessively added, precipitation of coarse Fe 23 (CB) 6 carbides in austenite is accelerated, and wire drawing properties are adversely affected. In order to satisfy the above, the upper limit of the amount of B is defined as 30 ppm. The amount of B is preferably 4-15 ppm, and more preferably 8-12 ppm.
  • REM Radar Earth Metal
  • the upper limit of the REM content is defined as 50 ppm.
  • Ca is effective to reduce hard alumina-based inclusions, but an excessive addition generates oxides which becomes a cause of wire breakage, and therefore the upper limit of the Ca content is defined as 50 ppm.
  • Mg forms fine oxides so as to refine the structure of a steel and improve the ductility. If the content of Mg exceeds 50 ppm, breakage of the wire becomes apt to occur due to oxides, and therefore the upper limit of the Mg content is defined as 50 ppm.
  • Zr forms the crystallization nuclei of austenite as ZrO
  • Zr increases the equiaxial crystal ratio of austenite and thus has an effect of reducing central segregation, but if the Zr content exceeds 100 ppm, breakage of the wire becomes apt to occur due to oxides, and therefore the upper limit of the Zr content is defined as 100 ppm.
  • the second embodiment of the invention is a steel wire which is obtained by drawing the wire rod described in the first embodiment and has a diameter of from 0.1-0.4 mm and a tensile strength of 4200 MPa or higher.
  • the steel wire has 0.5% or less of the area in the surface layer area (the second surface layer area) in cross-section perpendicular to the longitudinal direction of the steel wire occupied by pro-eutectoid cementite.
  • the second surface layer area refers to an area to a depth of 10 ⁇ m from the surface layer of the steel wire.
  • the above steel wires can be obtained by drawing the wire rods described in the first embodiment, heating the rods to 900°C or higher, performing patenting at least once, which starts cooling by introducing the heated wire rods to a lead bath or a fluidized bed at a temperature of 500°C-600°C, and performing cold drawing.
  • the third embodiment of the invention is a steel wire which is obtained by drawing the wire rod described in the first embodiment with a diameter of from 5-16 mm and has a diameter of from 0.8-8 mm and a tensile strength of 1800 MPa or higher.
  • the steel wire has 0.5% or less of the area in the surface layer area (the third surface layer area) in cross-section perpendicular to the longitudinal direction of the steel wire occupied by pro-eutectoid cementite.
  • the third surface layer area refers to an area to a depth of 20 ⁇ m from the surface layer of the steel wire.
  • the above steel wires can be obtained by performing cold drawing on the wire rods described in the first embodiment.
  • the steel wires obtained in the above manner may be used as they are after wire drawing, but treatments, such as (1) performing bluing, heat stretching, molten zinc plating, or molten zinc alloy plating after the wire drawing, (2) performing wire drawing after molten zinc plating or molten zinc alloy plating, or (3) performing another wire drawing after wire drawing and molten zinc plating or molten zinc alloy plating, or the like.
  • a wire rod, a steel wire, or a manufacturing method thereof having characteristics described in the above embodiments can be also expressed as follows: That is, one aspect of the invention is a wire rod for high strength steel wire, including, by mass%, C: 0.95-1.30%; Si: 0.1-1.5%; Mn: 0.1-1.0%; Al: 0.1% or less; Ti: 0.1% or less; N: 10-50 ppm; and O: 10-40 ppm with the balance including Fe and inevitable impurities, the steel wire being composed of 97% or more of a pearlite by the area ratio with the remainder of bainite, pseudo pearlite, ferrite, grain boudary ferrite, and pro-eutectoid cementite, wherein the area ratio of pro-eutectoid cementite in an area with a radius of 100 ⁇ m from the central portion of the wire rod is 0.5% or less, the area ratio of pro-eutectoid cementite in an area to 50 ⁇ m depth of the wire rod from the surface
  • the wire rod may further include, by % by mass, at least one kind or more selected from the group consisting of Cr: 0.5% or less (not including 0%), Ni: 0.5% or less (not including 0%), Co: 0.5% or less (not including 0%), V: 0.5% or less (not including 0%), Cu: 0.5% or less (not including 0%), Nb: 0.1% or less (not including 0%), Mo: 0.2% or less (not including 0%), W: 0.2% or less (not including 0%), B: 30 ppm or less (not including 0%).
  • another aspect of the invention is a high strength steel wire excellent in terms of ducility, obtained by drawing the above mentioned wire rod with a diameter of 3-7 mm, performing a patenting treatment, and again drawing the rod, in which the tensile strength is 4200 MPa or higher, and the area ratio of pro-eutectoid cementite in an area to 10 ⁇ m depth from the surface layer is 0.5% or less.
  • another aspect of the invention is a high strength steel wire excellent in terms of ducility obtained by drawing the above-mentioned wire rod with a diameter of 5.0-16 mm and then performing bluing, heat stretching, molten zinc plating, or molten zinc alloy plating; a steel wire obtained by performing molten zinc plating or molten zinc alloy plating on the above mentioned wire rod with a diameter of 5.0-16 mm as above, and then performing wire drawing; or a steel wire obtained by drawing the above mentioned wire rod with a diameter of 5.0-16 mm, performing molten zinc plating or molten zinc alloy plating, and then again performing wire drawing, in which the tensile strength is 1800 MPa or higher, and the area ratio of pro-eutectoid cementite in an area to 20 ⁇ m depth from the surface layer is 0.5% or less.
  • another aspect of the invention is a manufacturing method of a wire rod for high strength steel wires excellent in terms of ducility, in which when a billet with the above composition is hot-rolled so as to have a wire diameter of 3-16 mm, final rolling and coiling are performed, and then, when immersing into a molten salt, the temperature of the wire rod is set to 900°C or higher, and, subsequently, a patenting treatment is performed by directly immersing into molten salt at a temperature of 500°C-600°C.
  • another aspect of the invention is a manufacturing method of a wire rod for high strength steel wires excellent in terms of ductility, in which, when a billet with the above composition is hot-rolled so as to have a wire diameter of 3-16 mm, final rolling and coiling is performed, and then, when starting cooling of a Stelmor or the like for patenting, the temperature of the wire rod is set to 900°C or higher, and, in the subsequent patenting treatment, quenching is performed in a manner in which the cooling rate Y while cooling from 900°C to 650°C satisfies Formula 1 Y ⁇ exp C % ⁇ 0.66 / 0.12 and then pearlite transformation is finished at a temperature of from 500°C-650°C.
  • another aspect of the invention is a manufacturing method of a high strength steel wire excellent in terms of ductility, in which, when performing reheating patenting on a wire rod having the above-described composition and a wire diameter of 3-16 mm, the heating temperature of the wire rod is set to 950°C-1050°C, the temperature of the wire rod when starting cooling for the patenting is set to 900°C or higher, and a patenting treatment is immediately performed in lead or a fluidizied bed of 500°C-600°C.
  • another aspect of the invention is a manufacturing method of a high strength steel wire excellent in terms of ductility, in which a wire rod with a diameter of 3-7 mm manufactured by the above manufacturing method is drawn, cold wire drawing is furthermore performed after patenting, the heating temperature of the steel wire during the patenting is set to 950°C-1050°C, the temperature of the steel wire when starting cooling for patenting is set to 900°C or higher, that is a steel wire, on which a patenting treatment has been performed in a lead bath or a fluidized bed at a temperature of 500°C-600°C, is drawn.
  • Tables 1 to 4 show the chemical components of A-1 steel, B-1 steel, C-1 steel, D-1 steel, E steel, F steel, G-1 steel, H steel, I steel, J steel, K steel, L-1 steel, M steel, N steel, O steel, P steel, Q-1 steel, Q-2 steel, and Q-3 steel, all of which are used in Examples ⁇ 1 to ⁇ 19 of the invention, and the chemical components of A-2 steel, A-3 steel, B-2 steel, B-3 steel, B-4 steel, C-2 steel, D-2 steel, G-2 steel, G-3 steel, G-4 steel, L-2 steel, R steel, S steel, T steel, U steel, V steel, W steel, and X steel, all of which are used in Comparative Examples a1 to ⁇ 18. Further, in Tables 1 to 8, numeric values, disadvantageous results, and the like, not included in an appropriate scope are underlined.
  • Billets of steels containing the chemical components shown in Tables 1 to 4 were heated and then hot-rolled so as to become wire rods with a diameter of 3-7 mm, and then were subjected to final rolling at a predetermined temperature, coiling, and a patenting treatment.
  • DLP molten salt immersion patenting
  • the cooling rate Y from 900°C to 650°C was obtained from (900-650) / t [°C/s] by measuring the temperatures of overlapped ring portions on the Stelmor conveyor every 0.5 m with a non-contact type thermometer and measuring a necessary time t [s] for cooling from 900°C to 650°C.
  • one ring-shaped wire rod ring with a diameter of 1.0 m to 1.5 m was equally divided into 8 pieces, and two portions with the highest and lowest TSs were identified.
  • 10 mm-long samples were taken out from the portions with the highest and lowest TSs in the continuous ring and implanted in a resin to make it possible to observe the cross-sections (C cross-section) perpendicular to the longitudinal direction. Then, the samples were alumina-polished and corroded with saturated picral, and then were subjected to SEM observation.
  • the area ratio of the pearlite was obtained from the average value of area ratios measured at four places in a 200 ⁇ m ⁇ 200 ⁇ m square area, which is in 1/4 depth from the surface at the above two portions (the portions with the highest and lowest TSs), every 90 degrees in the circumferential direction at a magnification of 3000 times by image analysis with an assumption that an area ratio excluding pseudo-pearlite portions in which cementite was granularly dispersed, bainite portions in which plate-shaped cementite was dispersed at a lamella spacing three or more times coarser than the surroundings, intergranular ferrite portions precipitated along austenite, and pro-eutectoid cementite portions was considered as the area ratio of pearlite.
  • the selected areas were measured at a magnification of 5000 times, and the area ratio of pro-eutectoid cementite with a thickness of 100 nm or larger was measured by image analysis.
  • a high strength wire rod was obtained in a manner in which, after scales were removed by pickling from a rolled wire rod, a 10 m-long wire rod provided with a zinc phosphate layer by a bonding treatment was prepared, and then subjected to single head-type wire drawing with an area reduction ratio per pass of 16% to 20% with intermediate lead patenting or fluidized bed patenting performed and then subjected to wet continuous wire drawing so as to have a diameter of 0.18 mm to 0.22 mm.
  • the selected place was measured at a magnification of 10000 times, and the area ratio of pro-eutectoid cementite with a thickness of 100 nm or larger was measured by image analysis.
  • Tables 5 to 8 show the manufacturing conditions and the measurement results of the wire rods and the steel wires in Examples ⁇ 1 to ⁇ 19 and Comparative Examples ⁇ 1 to ⁇ 18.
  • the FBP refers to a patenting treatment by a fluidized bed.
  • FIG. 2 shows the relationship between the temperatures of the rolled wire rods when starting the cooling and the area ratios of surface layer cementite. From the drawing, it can be confirmed that, when the temperatures of the wire rods when starting the cooling were set to 900°C or higher, it was possible to suppress pro-eutectoid cementite at the surface layer of the wire rods to 0.5% or lower.
  • FIG. 3 shows the relationship between the amounts of C in the wire rods and the area ratios of pre-eutectoid cementite in the surface layer area of the wire rods in Examples ⁇ 1 to ⁇ 19 and Comparative Examples ⁇ 1, ⁇ 5, ⁇ 6, ⁇ 7, ⁇ 9, ⁇ 17, and ⁇ 18, for which the component ranges were appropriate, but the final temperature or the temperature when starting the cooling for the patenting, which is an important index that suppresses pro-eutectoid cementite in the surface layers, was low.
  • FIG. 4 shows the relationship between the amounts of C in the wire rods and the area ratios of pre-eutectoid cementite in the central area of the wire rods in Examples ⁇ 1 to ⁇ 19 and Comparative Examples ⁇ 4 and ⁇ 11, for which the component ranges were appropriate, but the cooling rate Y from 900°C to 650°C did not satisfy (Formula 1).
  • FIG. 5 shows the influence of the cooling rate Y from 900°C to 650°C and the amounts of C on the amounts of pro-eutectoid cementite precipitated in the central areas of the wire rods in Examples ⁇ 4, ⁇ 8, ⁇ 12, ⁇ 17, ⁇ 18, and ⁇ 19 and Comparative Examples ⁇ 4, ⁇ 11, and ⁇ 15, in which the wire rods were cooled in a Stelmor during the rolling of wire rods. From FIG. 5 , it can be confirmed that, when the cooling rate Y satisfied (Formula 1), it was possible to suppress pro-eutectoid cementite in the central area of the wire rods to 0.5% or lower.
  • Tables 9 to 12 show the chemical components of a-1 steel, b-1 steel, c steel, d steel, e steel, f-2 steel, g-1 steel, h steel, i steel, j-1 steel, k steel, l steel, m steel, n steel, o steel, and p steel, all of which are used in Examples ⁇ 1 to ⁇ 16 of the invention, and the chemical components of j-2 steel, b-2 steel, f-2 steel, a-2 steel, g-2 steel, q steel, and r steel, all of which are used in Comparative Examples ⁇ 1 to ⁇ 7. Further, in Tables 9 to 16, numeric values, disadvantageous results, and the like, not included in an appropriate scope, are underlined.
  • Billets of steels containing the chemical components shown in Tables 9 to 12 were heated and then hot-rolled so as to become wire rods with a diameter of 5.0 mm to 16 mm, and then subjected to final rolling at a predetermined temperature, coiling, and a patenting treatment or reheating patenting.
  • the rolled wire rods were subjected to a patenting treatment by a Stelmor or a direct in-line patenting (DLP).
  • the cooling rate Y from 900°C to 650°C was obtained from (900 - 650) / t [°C/s] by measuring the temperatures of overlapped ring portions on the Stelmor conveyor every 0.5 m with a non-contact type thermometer and measuring a necessary time t [t] for cooling from 900°C to 650°C.
  • one ring-shaped wire rod ring with a diameter of 1.0 m to 1.5 m was equally divided into 8 pieces, and the portions with the highest and lowest TSs were identified.
  • 10 mm-long samples were taken out from two portions with the highest and lowest TSs in the continuous ring and implanted in a resin to make it possible to observe the cross-sections (C cross-sections) perpendicular to the longitudinal direction. Then, the samples were alumina-polished and corroded with saturated picral, and then were subjected to SEM observation.
  • the selected areas were measured at a magnification of 5000 times, and the area ratio of pro-eutectoid cementite with a thickness of 100 nm or larger was measured by image analysis.
  • a target high strength steel wire was obtained in any of the following methods and then evaluated by performing a tensile strength test and a twist test.
  • the selected place was measured at a magnification of 10000 times, and the area ratio of pro-eutectoid cementite with a thickness of 100 nm or larger was measured by image analysis.
  • Tables 13 to 16 show the manufacturing conditions and the measurement results of the wire rods and the steel wires in Examples ⁇ 1 to ⁇ 16 and Comparative Examples ⁇ 1 to ⁇ 7.
  • FIG. 6 shows the relationship between the temperatures of the rolled wire rods when starting the cooling and the area ratios of surface layer cementite. From the drawing, it can be confirmed that, when the temperatures of the wire rods when starting the cooling were set to 900°C or higher, it was possible to suppress pro-eutectoid cementite at the surface layer of the wire rods to 0.5% or lower.
  • FIG. 7 shows the relationship between the amounts of C in the wire rods and the area ratios of pre-eutectoid cementite in the surface layer area of the wire rods in Examples ⁇ 1 to ⁇ 16 and Comparative Examples ⁇ 1, ⁇ 2, and ⁇ 5, for which the component ranges were appropriate, but the final temperature or the temperature when starting the cooling for the patenting, which is an important index that suppresses pro-eutectoid cementite in the surface layers, was low.
  • FIG. 8 shows the relationship between the amounts of C in the wire rods and the area ratios of pre-eutectoid cementite in the central area of the wire rods in Examples ⁇ 1 to ⁇ 16 and Comparative Examples ⁇ 3 and ⁇ 4, for which the component ranges were appropriate, but the cooling rate Y from 900°C to 650°C did not satisfy (Formula 1).
  • FIG. 9 shows the influence of the cooling rate Y from 900°C to 650°C and the amounts of C on the amounts of pro-eutectoid cementite precipitated in the central areas of the wire rods in Examples ⁇ 6 and ⁇ 9 and Comparative Examples ⁇ 3 and ⁇ 4. From the drawing, it can be confirmed that, when the cooling rate Y satisfied (Formula 1), it was possible to suppress pro-eutectoid cementite in the central area of the wire rods to 0.5% or lower.
  • the invention it is possible to provide with high productivity and favorable yield rate at a low price high strength wire rods that are preferable for use as a steel cord, a sewing wire, a PC steel wire, a zinc plated steel strand, a steel wire for springs, a cable for suspension bridges, or the like, and are excellent in terms of wire drawing properties, which makes the invention have broad industrial applicability.
  • Example ⁇ 1 A-1 1.07 0.18 0.3 0.016 0.025 0.000 0.000 20 21
  • Example ⁇ 2 B-1 1.17 0.20 0.32 0.008 0.007 0.003 0.000 26 23
  • Example ⁇ 3 C-1 1.12 0.20 0.48 0.015 0.020 0.001 0.000 25 23
  • Example ⁇ 4 D-1 1.06 0.34 0.3 0.008 0.008 0.000 0.000 26 26
  • Example ⁇ 5 E 1.15 0.20 0.3 0.010 0.008 0.004 0.000 25 38
  • Example ⁇ 6 F 1.21 0.20 0.5 0.008 0.008 0.000 0.001 25 21
  • Example ⁇ 7 G-1 1.22 0.20 0.5 0.008 0.008 0.000 0.001 26 24
  • Example ⁇ 8 H 1.05 0.20 0.3 0.015 0.013 0.000 0.000 22 31
  • Example ⁇ 9 I 1.10 0.20 0.3 0.008 0.008 0.001 0.000 25 21
  • Example ⁇ 8 H 1.05 0.20 0.3 0.015 0.013

Claims (14)

  1. Ein Walzdraht, mit einer Zusammensetzung umfassend: C: 0,95-1,30 Massen-%; Si: 0,1-1,5 Massen-%; Mn: 0,1-1,0 Massen-%; Al: 0-0,1 Massen-%; Ti: 0-0,1 Massen-%; P: 0-0,02 Massen-%; S: 0-0,02 Massen-%; N: 10-50 ppm; O: 10-40 ppm; Cr: 0-0,5 Massen-%; Ni: 0-0,5 Massen-%; Co: 0-0,5 Massen-%; V: 0-0,5 Massen-%; Cu: 0-0,5 Massen-%; Nb: 0-0,1 Massen-%; Mo: 0-0,2 Massen-%; W: 0-0,2 Massen-%; B: 0-30 ppm; REM: 0-50 ppm; Ca: 0-50 ppm; Mg: 0-50 ppm; Zr: 0-100 ppm; und den Rest, der Fe und unvermeidbare Verunreinigungen beinhaltet, wobei
    97% oder mehr eines Bereichs in einem zu der Längsrichtung orthogonalen Querschnitt des Walzdrahts durch einen Perlit besetzt ist, und
    0,5% oder weniger eines Bereichs in einem zentralen Bereich des Querschnitts und 0,5% oder weniger eines Bereichs in einem ersten Oberflächenschichtbereich im Querschnitt durch einen pro-eutektoiden Zementit besetzt sind.
  2. Der Walzdraht gemäß Anspruch 1, wobei 97% oder mehr des Bereichs in einem zu der Längsrichtung orthogonalen Querschnitt des Walzdrahts durch einen Perlit besetzt ist, und der verbleibende Querschnitt des Walzdrahts der pro-eutektoide Zementit, ein Bainit, ein Pseudoperlit, ein Ferrit, ein Korngrenzenferrit, und/oder ein Martensit ist.
  3. Ein Verfahren zur Herstellung des Walzdrahts gemäß Anspruch 1 or 2, umfassend:
    Warmwalzen eines Knüppels mit einer Zusammensetzung, die beinhaltet: C: 0,95-1,30 Massen-%; Si: 0,1-1,5 Massen-%; Mn: 0,1-1,0 Massen-%; Al: 0-0,1 Massen-%; Ti: 0-0,1 Massen-%; P: 0-0,02 Massen-%; S: 0-0,02 Massen-%; N: 10-50 ppm; O: 10-40 ppm; Cr: 0-0,5 Massen-%; Ni: 0-0,5 Massen-%; Co: 0-0,5 Massen-%; V: 0-0,5 Massen-%; Cu: 0-0,5 Massen-%; Nb: 0-0,1 Massen-%; Mo: 0-0,2 Massen-%; W: 0-0,2 Massen-%; B: 0-30 ppm; REM: 0-50 ppm; Ca: 0-50 ppm; Mg: 0-50 ppm; Zr: 0-100 ppm; und den Rest, der Fe und unvermeidbare Verunreinigungen beinhaltet, um einen gewalzten Walzdraht zu erhalten;
    Wickeln des gewalzten Walzdrahts; und
    Durchführen einer Patentierungsbehandlung durch Tauchen des gewalzten Walzdrahts bei 900°C oder mehr in ein geschmolzenes Salz bei einer Temperatur von 500°C-600°C.
  4. Ein Verfahren zur Herstellung des Walzdrahts gemäß Anspruch 1 or 2, umfassend:
    Warmwalzen eines Knüppels mit einer Zusammensetzung, die beinhaltet: C: 0,95-1,30 Massen-%; Si: 0,1-1,5 Massen-%; Mn: 0,1-1,0 Massen-%; Al: 0-0,1 Massen-%; Ti: 0-0,1 Massen-%; P: 0-0,02 Massen-%; S: 0-0,02 Massen-%; N: 10-50 ppm; O: 10-40 ppm; Cr: 0-0,5 Massen-%; Ni: 0-0,5 Massen-%; Co: 0-0,5 Massen-%; V: 0-0,5 Massen-%; Cu: 0-0,5 Massen-%; Nb: 0-0,1 Massen-%; Mo: 0-0,2 Massen-%; W: 0-0,2 Massen-%; B: 0-30 ppm; REM: 0-50 ppm; Ca: 0-50 ppm; Mg: 0-50 ppm; Zr: 0-100 ppm; und den Rest, der Fe und unvermeidbare Verunreinigungen beinhaltet, um einen gewalzten Walzdraht zu erhalten;
    Wickeln des gewalzten Walzdrahts; und
    Durchführen einer Patentierungsbehandlung durch Beginnen des Kühlens des gewalzten Walzdrahts bei 900°C oder mehr, Kühlen des gewalzten Walzdrahts in einer solchen Weise, dass eine Kühlrate Y zum Kühlen des gewalzten Walzdrahts von 900°C bis 650°C so eingestellt wird, dass sie die Formel 1 erfüllt, und Fertigstellen einer Perlitumwandlung bei einer Temperatur von 650°C-500°C. Y exp C % 0,66 / 0,12
    Figure imgb0011
  5. Ein Verfahren zur Herstellung des Walzdrahts gemäß Anspruch 1 or 2, umfassend:
    Herstellen eines gewalzten Walzdrahts mit einer Zusammensetzung, die beinhaltet: C: 0,95-1,30 Massen-%; Si: 0,1-1,5 Massen-%; Mn: 0,1-1,0 Massen-%; Al: 0-0,1 Massen-%; Ti: 0-0,1 Massen-%; P: 0-0,02 Massen-%; S: 0-0,02 Massen-%; N: 10-50 ppm; O: 10-40 ppm; Cr: 0-0,5 Massen-%; Ni: 0-0,5 Massen-%; Co: 0-0,5 Massen-%; V: 0-0,5 Massen-%; Cu: 0-0,5 Massen-%; Nb: 0-0,1 Massen-%; Mo: 0-0,2 Massen-%; W: 0-0,2 Massen-%; B: 0-30 ppm; REM: 0-50 ppm; Ca: 0-50 ppm; Mg: 0-50 ppm; Zr: 0-100 ppm; und den Rest, der Fe und unvermeidbare Verunreinigungen beinhaltet, und einem Durchmesser von 3-16 mm, und Wiedererwärmen des gewalzten Walzdrahts auf eine Temperatur von 950°C-1050°C; und
    Durchführen einer Patentierungsbehandlung durch Beginnen des Kühlens des gewalzten Walzdrahts bei 900°C oder mehr unter Verwendung eines Bleibads oder einer Wirbelschicht bei einer Temperatur von 500°C-600°C.
  6. Ein Stahldraht, der erhalten ist durch mindestens einmaliges Durchführen eines Drahtziehens und einer Wiedererwärmungs-Patentierungsbehandlung mit einem Walzdraht mit einer Zusammensetzung, die beinhaltet: C: 0,95-1,30 Massen-%; Si: 0,1-1,5 Massen-%; Mn: 0,1-1,0 Massen-%; Al: 0-0,1 Massen-%; Ti: 0-0,1 Massen-%; P: 0-0,02 Massen-%; S: 0-0,02 Massen-%; N: 10-50 ppm; O: 10-40 ppm; Cr: 0-0,5 Massen-%; Ni: 0-0,5 Massen-%; Co: 0-0,5 Massen-%; V: 0-0,5 Massen-%; Cu: 0-0,5 Massen-%; Nb: 0-0,1 Massen-%; Mo: 0-0,2 Massen-%; W: 0-0,2 Massen-%; B: 0-30 ppm; REM: 0-50 ppm; Ca: 0-50 ppm; Mg: 0-50 ppm; Zr: 0-100 ppm; und den Rest, der Fe und unvermeidbare Verunreinigungen beinhaltet, in dem 97% oder mehr eines Bereichs in einem zu der Längsrichtung orthogonalen Querschnitt des Walzdrahts durch einen Perlit besetzt ist, und 0,5% oder weniger eines Bereichs in einem zentralen Bereich des Querschnitts und 0,5% oder weniger eines Bereichs in einem ersten Oberflächenschichtbereich im Querschnitt durch einen pro-eutektoiden Zementit besetzt sind, wobei:
    der Stahldraht einen Durchmesser von 0,1-0,4 mm und eine Zugfestigkeit von 4200 MPa oder mehr aufweist; und
    0,5% oder weniger eines Bereichs in einem zweiten Oberflächenschichtbereich in dem zu der Längsrichtung des Stahldrahts orthogonalen Querschnitt durch einen pro-eutektoiden Zementit besetzt ist.
  7. Ein Stahldraht, der erhalten ist durch Ziehen eines Walzdrahts mit einer Zusammensetzung, die beinhaltet: C: 0,95-1,30 Massen-%; Si: 0,1-1,5 Massen-%; Mn: 0,1-1,0 Massen-%; Al: 0-0,1 Massen-%; Ti: 0-0,1 Massen-%; P: 0-0,02 Massen-%; S: 0-0,02 Massen-%; N: 10-50 ppm; O: 10-40 ppm; Cr: 0-0,5 Massen-%; Ni: 0-0,5 Massen-%; Co: 0-0,5 Massen-%; V: 0-0,5 Massen-%; Cu: 0-0,5 Massen-%; Nb: 0-0,1 Massen-%; Mo: 0-0,2 Massen-%; W: 0-0,2 Massen-%; B: 0-30 ppm; REM: 0-50 ppm; Ca: 0-50 ppm; Mg: 0-50 ppm; Zr: 0-100 ppm; und den Rest, der Fe und unvermeidbare Verunreinigungen beinhaltet, in dem 97% oder mehr eines Bereichs in einem zu der Längsrichtung orthogonalen Querschnitt des Walzdrahts durch einen Perlit besetzt ist, und 0,5% oder weniger eines Bereichs in einem zentralen Bereich des Querschnitts und 0,5% oder weniger eines Bereichs in einem ersten Oberflächenschichtbereich im Querschnitt durch einen pro-eutektoiden Zementit besetzt sind, wobei:
    der Stahldraht einem Durchmesser von 0,8-8 mm und eine Zugfestigkeit von 1800 MPa oder mehr aufweist; und
    0,5% oder weniger eines Bereichs in einem dritten Oberflächenschichtbereich in dem zu der Längsrichtung des Stahldrahts orthogonalen Querschnitt durch einen pro-eutektoiden Zementit besetzt ist.
  8. Der Stahldraht gemäß Anspruch 7, erhalten durch:
    (a) Ziehen des Walzdrahts und Durchführen von Bläuen, Wärmestrecken, Platieren mit gescholzenem Zink, oder Platieren mit geschmolzener Zinklegierung auf dem Walzdraht,
    (b) Ziehen des Walzdrahts nach dem Durchführen des Platierens mit gescholzenem Zink oder des Platierens mit geschmolzener Zinklegierung, oder
    (c) Ziehen des Walzdrahts, Durchführen von Platieren mit gescholzenem Zink oder Platieren mit geschmolzener Zinklegierung, und weiter Ziehen des gezogenen Walzdrahts.
  9. Das Verfahren zur Herstellung eines Stahldrahts gemäß Anspruch 6, umfassend:
    Herstellen eines Walzdrahts mit einem Durchmesser von 3-7 mm durch Warmwalzen eines Knüppels mit einer Zusammensetzung, die beinhaltet: C: 0,95-1,30 Massen-%; Si: 0,1-1,5 Massen-%; Mn: 0,1-1,0 Massen-%; Al: 0-0,1 Massen-%; Ti: 0-0,1 Massen-%; P: 0-0,02 Massen-%; S: 0-0,02 Massen-%; N: 10-50 ppm; O: 10-40 ppm; Cr: 0-0,5 Massen-%; Ni: 0-0,5 Massen-%; Co: 0-0,5 Massen-%; V: 0-0,5 Massen-%; Cu: 0-0,5 Massen-%; Nb: 0-0,1 Massen-%; Mo: 0-0,2 Massen-%; W: 0-0,2 Massen-%; B: 0-30 ppm; REM: 0-50 ppm; Ca: 0-50 ppm; Mg: 0-50 ppm; Zr: 0-100 ppm; und den Rest, der Fe und unvermeidbare Verunreinigungen beinhaltet, Wickeln des gewalzten Walzdrahts, und Durchführen einer Patentierungsbehandlung durch Tauchen des gewalzten Walzdrahts bei 900°C oder mehr in ein geschmolzenes Salz bei einer Temperatur von 500°C-600°C;
    Ziehen des Walzdrahts;
    Durchführen einer zweiten Patentierungsbehandlung durch Beginnen des Kühlens durch Einführen des gezogenen gewalzten Walzdrahts bei 900°C oder mehr in ein Bleibad oder eine Wirbelschicht bei einer Temperatur von 500°C-600°C; und
    Durchführen von Kaltdrahtziehen mit dem Walzdraht, der der zweiten Patentierungsbehandlung unterzogen worden ist.
  10. Das Verfahren zur Herstellung eines Stahldrahts gemäß Anspruch 6, umfassend:
    Herstellen eines Walzdrahts mit einem Durchmesser von 3-7 mm durch Herstellen eines gewalzten Walzdrahts durch Warmwalzen eines Knüppels mit einer Zusammensetzung, die beinhaltet: C: 0,95-1,30 Massen-%; Si: 0,1-1,5 Massen-%; Mn: 0,1-1,0 Massen-%; Al: 0-0,1 Massen-%; Ti: 0-0,1 Massen-%; P: 0-0,02 Massen-%; S: 0-0,02 Massen-%; N: 10-50 ppm; O: 10-40 ppm; Cr: 0-0,5 Massen-%; Ni: 0-0,5 Massen-%; Co: 0-0,5 Massen-%; V: 0-0,5 Massen-%; Cu: 0-0,5 Massen-%; Nb: 0-0,1 Massen-%; Mo: 0-0,2 Massen-%; W: 0-0,2 Massen-%; B: 0-30 ppm; REM: 0-50 ppm; Ca: 0-50 ppm; Mg: 0-50 ppm; Zr: 0-100 ppm; und den Rest, der Fe und unvermeidbare Verunreinigungen beinhaltet, Wickeln des gewalzten Walzdrahts, und Durchführen einer Patentierungsbehandlung durch Beginnen des Kühlens des gewalzten Walzdrahts bei 900°C oder mehr, Abschrecken des gewalzten Walzdrahts in einer solchen Weise, dass eine Kühlrate Y zum Kühlen des gewalzten Walzdrahts von 900°C bis 650°C so eingestellt wird, dass sie die Formel 1 erfüllt, und Fertigstellen einer Perlitumwandlung bei einer Temperatur von 650°C-500°C;
    Ziehen des Walzdrahts;
    Durchführen einer zweiten Patentierungsbehandlung durch Beginnen des Kühlens durch Einführen des gezogenen gewalzten Walzdrahts bei 900°C oder mehr in ein Bleibad oder eine Wirbelschicht bei einer Temperatur von 500°C-600°C; und
    Durchführen von Kaltdrahtziehen mit dem Walzdraht, der der zweiten Patentierungsbehandlung unterzogen worden ist. Y exp C % 0,66 / 0,12
    Figure imgb0012
  11. Das Verfahren zur Herstellung eines Stahldrahts gemäß Anspruch 6, umfassend:
    Herstellen eines Walzdrahts mit einem Durchmesser von 3-7 mm durch Wiedererwärmen eines Walzdrahts mit einer Zusammensetzung, die beinhaltet: C: 0,95-1,30 Massen-%; Si: 0,1-1,5 Massen-%; Mn: 0,1-1,0 Massen-%; Al: 0-0,1 Massen-%; Ti: 0-0,1 Massen-%; P: 0-0,02 Massen-%; S: 0-0,02 Massen-%; N: 10-50 ppm; O: 10-40 ppm; Cr: 0-0,5 Massen-%; Ni: 0-0,5 Massen-%; Co: 0-0,5 Massen-%; V: 0-0,5 Massen-%; Cu: 0-0,5 Massen-%; Nb: 0-0,1 Massen-%; Mo: 0-0,2 Massen-%; W: 0-0,2 Massen-%; B: 0-30 ppm; REM: 0-50 ppm; Ca: 0-50 ppm; Mg: 0-50 ppm; Zr: 0-100 ppm; und den Rest, der Fe und unvermeidbare Verunreinigungen beinhaltet, und einem Durchmesser von 3 mm bis 7 mm auf eine Temperatur von 950°C-1050°C, Beginnen des Kühlens des wiedererwärmten Walzdrahts bei 900°C oder mehr, und Durchführen einer Patentierungsbehandlung unter Verwendung eines Bleibads oder einer Wirbelschicht bei einer Temperatur von 500°C-600°C;
    Ziehen des Walzdrahts;
    Durchführen einer zweiten Patentierungsbehandlung durch Beginnen des Kühlens durch Einführen des gezogenen Walzdrahts bei 900°C oder mehr in ein Bleibad oder eine Wirbelschicht bei einer Temperatur von 500°C-600°C; und
    Durchführen von Kaltdrahtziehen mit dem Walzdraht, der der zweiten Patentierungsbehandlung unterzogen worden ist.
  12. Das Verfahren zur Herstellung eines Stahldrahts gemäß Anspruch 7, umfassend:
    Herstellen eines Walzdrahts mit einem Durchmesser von 5-16 mm durch Warmwalzen eines Knüppels mit einer Zusammensetzung, die beinhaltet: C: 0,95-1,30 Massen-%; Si: 0,1-1,5 Massen-%; Mn: 0,1-1,0 Massen-%; Al: 0-0,1 Massen-%; Ti: 0-0,1 Massen-%; P: 0-0,02 Massen-%; S: 0-0,02 Massen-%; N: 10-50 ppm; O: 10-40 ppm; Cr: 0-0,5 Massen-%; Ni: 0-0,5 Massen-%; Co: 0-0,5 Massen-%; V: 0-0,5 Massen-%; Cu: 0-0,5 Massen-%; Nb: 0-0,1 Massen-%; Mo: 0-0,2 Massen-%; W: 0-0,2 Massen-%; B: 0-30 ppm; REM: 0-50 ppm; Ca: 0-50 ppm; Mg: 0-50 ppm; Zr: 0-100 ppm; und den Rest, der Fe und unvermeidbare Verunreinigungen beinhaltet, um einen gewalzten Walzdraht herzustellen, Wickeln des gewalzten Walzdrahts, und Durchführen einer Patentierungsbehandlung durch Tauchen des gewalzten Walzdrahts bei 900°C oder mehr in ein geschmolzenes Salz bei einer Temperatur von 500°C-600°C; und
    Ziehen des Walzdrahts.
  13. Das Verfahren zur Herstellung eines Stahldrahts gemäß Anspruch 7, umfassend:
    Herstellen eines Walzdrahts mit einem Durchmesser von 5-16 mm durch Warmwalzen eines Knüppels mit einer Zusammensetzung, die beinhaltet: C: 0,95-1,30 Massen-%; Si: 0,1-1,5 Massen-%; Mn: 0,1-1,0 Massen-%; Al: 0-0,1 Massen-%; Ti: 0-0,1 Massen-%; P: 0-0,02 Massen-%; S: 0-0,02 Massen-%; N: 10-50 ppm; O: 10-40 ppm; Cr: 0-0,5 Massen-%; Ni: 0-0,5 Massen-%; Co: 0-0,5 Massen-%; V: 0-0,5 Massen-%; Cu: 0-0,5 Massen-%; Nb: 0-0,1 Massen-%; Mo: 0-0,2 Massen-%; W: 0-0,2 Massen-%; B: 0-30 ppm; REM: 0-50 ppm; Ca: 0-50 ppm; Mg: 0-50 ppm; Zr: 0-100 ppm; und den Rest, der Fe und unvermeidbare Verunreinigungen beinhaltet, um einen gewalzten Walzdraht herzustellen, Wickeln des gewalzten Walzdrahts, und Durchführen einer Patentierungsbehandlung durch Beginnen des Kühlens des gewalzten Walzdrahts bei 900°C oder mehr, Abschrecken des gewalzten Walzdrahts in einer solchen Weise, dass eine Kühlrate Y zum Kühlen des gewalzten Walzdrahts von 900°C bis 650°C so eingestellt wird, dass sie die Formel 1 erfüllt, und Fertigstellen einer Perlitumwandlung bei einer Temperatur von 650°C-500°C; und
    Ziehen des Walzdrahts. Y exp C % 0,66 / 0,12
    Figure imgb0013
  14. Das Verfahren zur Herstellung eines Stahldrahts gemäß Anspruch 7, umfassend:
    Herstellen eines Walzdrahts mit einem Durchmesser von 5-16 mm durch Herstellen eines gewalzten Walzdrahts mit einer Zusammensetzung, die beinhaltet: C: 0,95-1,30 Massen-%; Si: 0,1-1,5 Massen-%; Mn: 0,1-1,0 Massen-%; Al: 0-0,1 Massen-%; Ti: 0-0,1 Massen-%; P: 0-0,02 Massen-%; S: 0-0,02 Massen-%; N: 10-50 ppm; O: 10-40 ppm; Cr: 0-0,5 Massen-%; Ni: 0-0,5 Massen-%; Co: 0-0,5 Massen-%; V: 0-0,5 Massen-%; Cu: 0-0,5 Massen-%; Nb: 0-0,1 Massen-%; Mo: 0-0,2 Massen-%; W: 0-0,2 Massen-%; B: 0-30 ppm; REM: 0-50 ppm; Ca: 0-50 ppm; Mg: 0-50 ppm; Zr: 0-100 ppm; und den Rest, der Fe und unvermeidbare Verunreinigungen beinhaltet und einem Durchmesser von 5-16 mm, Wiedererwärmen des gewalzten Walzdrahts auf eine Temperatur von 950°C-1050°C, und Durchführen einer Patentierungsbehandlung durch Beginnen des Kühlens des gewalzten Walzdrahts bei 900°C oder mehr unter Verwendung eines Bleibads oder einer Wirbelschicht bei einer Temperatur von 500°C-600°C; und
    Ziehen des Walzdrahts.
EP10838391.0A 2010-02-01 2010-10-19 Drahtmaterial, stahldraht und verfahren zur herstellung dieser produkte Active EP2532764B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010020185A JP4970562B2 (ja) 2009-04-21 2010-02-01 延性に優れた高強度鋼線用線材及び鋼線の製造方法
PCT/JP2010/068363 WO2011092905A1 (ja) 2010-02-01 2010-10-19 線材、鋼線及びそれらの製造方法

Publications (3)

Publication Number Publication Date
EP2532764A1 EP2532764A1 (de) 2012-12-12
EP2532764A4 EP2532764A4 (de) 2016-01-20
EP2532764B1 true EP2532764B1 (de) 2019-04-24

Family

ID=44320386

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10838391.0A Active EP2532764B1 (de) 2010-02-01 2010-10-19 Drahtmaterial, stahldraht und verfahren zur herstellung dieser produkte

Country Status (5)

Country Link
EP (1) EP2532764B1 (de)
KR (1) KR101318009B1 (de)
CN (1) CN102301024B (de)
MX (1) MX2011008034A (de)
WO (1) WO2011092905A1 (de)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103966417B (zh) * 2013-01-31 2016-04-20 张家港市骏马钢帘线有限公司 一种提高超细高碳钢丝表面质量和拉拔性能的工艺方法
KR101789949B1 (ko) * 2013-10-08 2017-10-25 신닛테츠스미킨 카부시키카이샤 선재, 과공석 베이나이트 강선 및 그것들의 제조 방법
CN103627979A (zh) * 2013-11-12 2014-03-12 铜陵市肆得科技有限责任公司 一种大型泵轴承钢材料及其制备方法
WO2015163407A1 (ja) * 2014-04-24 2015-10-29 新日鐵住金株式会社 高強度スチールコード用線材
DE102015102255A1 (de) * 2015-02-17 2016-08-18 Sandvik Materials Technology Deutschland Gmbh Verfahren zum Herstellen eines Strangs aus Edelstahl sowie Strang aus Edelstahl
CN107406950B (zh) * 2015-03-30 2020-04-14 株式会社神户制钢所 拉丝性优异的高碳钢线材和钢线
CN104878318B (zh) * 2015-05-07 2017-05-03 芜湖品度电子科技有限公司 二维码编织机用高韧性抗拉伸弹簧材料组合物和弹簧的制备方法
CN108350537B (zh) * 2015-09-04 2021-01-08 日本制铁株式会社 弹簧用钢线及弹簧
BR112018007711A2 (pt) * 2015-10-23 2018-10-23 Nippon Steel & Sumitomo Metal Corporation fio-máquina de aço para trefilação
CN105568134A (zh) * 2016-01-05 2016-05-11 江阴兴澄特种钢铁有限公司 一种微合金化轿车碳素轮毂轴承用钢及其制造方法
KR101767838B1 (ko) * 2016-06-16 2017-08-14 주식회사 포스코 내수소취성이 우수한 스프링용 선재, 강선 및 그들의 제조방법
CN106151333A (zh) * 2016-07-07 2016-11-23 无锡戴尔普机电设备有限公司 一种新型风量调节阀复位弹簧材料
KR101917461B1 (ko) * 2016-12-22 2018-11-09 주식회사 포스코 신선가공성이 우수한 고강도 선재, 열처리 선재 및 이들의 제조방법
WO2018212327A1 (ja) * 2017-05-18 2018-11-22 新日鐵住金株式会社 線材、鋼線、及び鋼線の製造方法
CN109112260B (zh) * 2017-06-23 2023-04-11 江苏翔鹰五金弹簧有限公司 一种蓝化直丝钢线的热处理方法
KR20200016289A (ko) * 2017-06-30 2020-02-14 닛폰세이테츠 가부시키가이샤 고강도 강선
KR102031440B1 (ko) * 2017-12-20 2019-10-11 주식회사 포스코 신선가공성이 우수한 고강도 선재 및 그 제조방법
KR102030157B1 (ko) * 2017-12-20 2019-10-08 주식회사 포스코 피로 특성이 우수한 스프링용 강선, 강선용 고탄소 선재 및 이들의 제조방법
CN108950409A (zh) * 2018-06-26 2018-12-07 宁波鸿丰泰高新材料有限公司 一种高性能金刚石母线及其制备方法
KR102098534B1 (ko) * 2019-07-23 2020-04-07 주식회사 포스코 신선가공성이 우수한 고강도 선재 및 그 제조방법
CN110588096A (zh) * 2019-09-25 2019-12-20 哈尔滨工程大学 一种连续金属Mo丝增强Ti/Al3Ti层状复合材料及制备方法
KR102326268B1 (ko) * 2019-12-20 2021-11-15 주식회사 포스코 고강도 도금 강선 및 그 제조방법
KR102312331B1 (ko) * 2019-12-20 2021-10-14 주식회사 포스코 고강도 도금 강선 및 이들의 제조방법
CN112223569A (zh) * 2020-09-28 2021-01-15 王佩 一种耐磨线切割复合线材及其制备方法
CN112176258B (zh) * 2020-09-30 2022-06-21 江苏省沙钢钢铁研究院有限公司 2500MPa级钢绞线用盘条及其制造方法
CN117858973A (zh) * 2021-08-11 2024-04-09 浦项股份有限公司 高强度高韧性钢板及其制造方法
CN113583541A (zh) * 2021-08-17 2021-11-02 常州市方正型钢有限公司 一种防锈耐热异型钢及其加工工艺
WO2023162615A1 (ja) * 2022-02-22 2023-08-31 住友電気工業株式会社 鋼線
CN114932338A (zh) * 2022-05-07 2022-08-23 本钢板材股份有限公司 一种高钛气体保护焊丝用盘条及其生产工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295448A (ja) * 1992-04-21 1993-11-09 Nippon Steel Corp 過共析鋼線材の製造方法
JP2735647B2 (ja) * 1988-12-28 1998-04-02 新日本製鐵株式会社 高強度高延性鋼線材および高強度高延性極細鋼線の製造方法
JP2939770B2 (ja) * 1991-02-25 1999-08-25 新日本製鐵株式会社 高強度ビードワイヤの製造方法
JP2008208450A (ja) * 2007-01-30 2008-09-11 Nippon Steel Corp 強度延性バランスに優れた高強度極細鋼線の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2609387B2 (ja) 1990-12-28 1997-05-14 株式会社 神戸製鋼所 高強度高靭性極細鋼線用線材、高強度高靭性極細鋼線、および該極細鋼線を用いた撚り製品、並びに該極細鋼線の製造方法
JPH08283867A (ja) 1995-04-15 1996-10-29 Sumitomo Metal Ind Ltd 伸線用過共析鋼線材の製造方法
JP2003193129A (ja) 2001-12-27 2003-07-09 Jfe Steel Kk 伸線加工性に優れる高強度鋼線材の製造方法
EP1555598A1 (de) * 2004-01-14 2005-07-20 Deutsche Thomson-Brandt Gmbh Verfahren zum Erzeugen von einem auf einem Bildschirm angezeigten Menü
JP2007327084A (ja) * 2006-06-06 2007-12-20 Kobe Steel Ltd 伸線加工性に優れた線材およびその製造方法
JP2010020185A (ja) 2008-07-11 2010-01-28 Ricoh Co Ltd 現像剤担持体、現像装置及び画像形成装置
WO2011089782A1 (ja) * 2010-01-25 2011-07-28 新日本製鐵株式会社 線材、鋼線、及び線材の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2735647B2 (ja) * 1988-12-28 1998-04-02 新日本製鐵株式会社 高強度高延性鋼線材および高強度高延性極細鋼線の製造方法
JP2939770B2 (ja) * 1991-02-25 1999-08-25 新日本製鐵株式会社 高強度ビードワイヤの製造方法
JPH05295448A (ja) * 1992-04-21 1993-11-09 Nippon Steel Corp 過共析鋼線材の製造方法
JP2008208450A (ja) * 2007-01-30 2008-09-11 Nippon Steel Corp 強度延性バランスに優れた高強度極細鋼線の製造方法

Also Published As

Publication number Publication date
KR20110101231A (ko) 2011-09-15
CN102301024B (zh) 2014-03-05
MX2011008034A (es) 2011-10-05
CN102301024A (zh) 2011-12-28
WO2011092905A1 (ja) 2011-08-04
EP2532764A1 (de) 2012-12-12
EP2532764A4 (de) 2016-01-20
KR101318009B1 (ko) 2013-10-14

Similar Documents

Publication Publication Date Title
EP2532764B1 (de) Drahtmaterial, stahldraht und verfahren zur herstellung dieser produkte
US9212405B2 (en) Wire rod, steel wire, and manufacturing method thereof
KR101382659B1 (ko) 선재, 강선 및 선재의 제조 방법
US9689053B2 (en) Steel rod and high strength steel wire having superior ductility and methods of production of same
KR101728272B1 (ko) 고탄소강 선재 및 그 제조 방법
US8168011B2 (en) High-strength steel wire excellent in ductility and method of manufacturing the same
US8470099B2 (en) Wire rod, steel wire, and manufacturing method thereof
EP2090671B1 (de) Walzdraht mit hervorragender tiefziehfähigkeit und hoher festigkeit sowie herstellungsverfahren
JP6180351B2 (ja) 生引き性に優れた高強度鋼線用線材および高強度鋼線
EP3165626B1 (de) Kohlenstoffreicher stahldraht mit hervorragender ziehbarkeit
KR20110082042A (ko) 가공성이 우수한 고탄소강 선재
EP3366802A1 (de) Stahldraht zum drahtziehen
EP3527681A1 (de) Stahldrahtmaterial und herstellungsverfahren für stahldrahtmaterial
EP3486345A1 (de) Stahldraht
EP3988678B1 (de) Walzdraht

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110727

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NIPPON STEEL & SUMITOMO METAL CORPORATION

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20151222

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 9/52 20060101ALI20151216BHEP

Ipc: C21D 8/06 20060101ALI20151216BHEP

Ipc: C22C 38/54 20060101ALI20151216BHEP

Ipc: C22C 38/00 20060101AFI20151216BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1124238

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010058479

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190516

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: NIPPON STEEL CORPORATION

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20190424

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190424

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190725

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1124238

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010058479

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20191014

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20191007

Year of fee payment: 10

Ref country code: DK

Payment date: 20191015

Year of fee payment: 10

Ref country code: BE

Payment date: 20191007

Year of fee payment: 10

Ref country code: FR

Payment date: 20191010

Year of fee payment: 10

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191029

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010058479

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191019

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191019

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201019

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201019

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201019

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231017

Year of fee payment: 14

Ref country code: NO

Payment date: 20231010

Year of fee payment: 14