EP2532049B1 - Antenne plane à doublet replié - Google Patents
Antenne plane à doublet replié Download PDFInfo
- Publication number
- EP2532049B1 EP2532049B1 EP11708903.7A EP11708903A EP2532049B1 EP 2532049 B1 EP2532049 B1 EP 2532049B1 EP 11708903 A EP11708903 A EP 11708903A EP 2532049 B1 EP2532049 B1 EP 2532049B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- antenna
- radiating plate
- plane
- wing
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004020 conductor Substances 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 12
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229920001342 Bakelite® Polymers 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000004637 bakelite Substances 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/16—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
- H01Q9/28—Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
- H01Q9/285—Planar dipole
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/28—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
- H01Q19/30—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements the primary active element being centre-fed and substantially straight, e.g. Yagi antenna
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/16—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
- H01Q9/26—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
Definitions
- the present invention generally relates to antennas adapted to transmit and receive UHF signals of the TNT (Digital Terrestrial Television) or analog type, in a frequency band more particularly between 471 and 783 MHz.
- TNT Digital Terrestrial Television
- the rake antennas comprise a plurality of rods mounted on a support arm, including a rear rod called reflector, an intermediate rod said radiating and a front rod called director. These different rods are tuned according to the wavelengths of the signals to be received.
- the radiating rod constitutes the active element of this antenna, since it transmits the UHF signals to the television set via a coaxial cable. It forms a loop around the support arm, with two strands respectively connected to the inner and outer electrical conductors of the coaxial cable. This radiating stem is commonly called a paper clip.
- FR 2 841 688 a plane antenna comprising a rectangular radiating plate open by two parallel main slots connected to one another by a slot of small width. Thanks to these slots, this antenna has a broad frequency band for transmitting and receiving signals. This antenna is in particular adapted to receive all the frequencies of UHF signals TNT type.
- the main disadvantage of this antenna is that the slots, which are cut into the radiating plate at a distance from its peripheral edge and which are sized to match the frequencies of the UHF type signals TNT, require the use of a large radiating plate, to the detriment of the size of the antenna.
- Document is also known WO2005 / 041355 an antenna of the "folded doublet" type, which comprises, on the one hand, a flat plate in which are formed three T-shaped slots which delimit two wings, and, on the other hand, a cable of which a conductor is connected to the one of these two wings and another driver is connected to the other of these two wings.
- the connection of the electrical conductors is here carried out on tabs which extend in extension of the wings.
- the present invention proposes an antenna having dimensions reduced by approximately 40% compared to the antenna disclosed in the document.
- FR 2 841 688 for a substantially identical gain over the entire frequency band of UHF signals TNT type, and which has an optimum impedance.
- the radiating plate forms a doublet folded in the manner of a staple, the two ends of which delimit the third slot. Thanks to this folded staple form, the radiating plate of the antenna has a small footprint. It is further adapted to radiate over a sufficiently wide frequency band to capture all the UHF signals of the TNT type.
- the connection of the electrical conduction element to the wings finally allows the antenna to be perfectly tuned impedance, so that it has a significant gain for capturing signals of reduced power.
- the plane antenna 1 is designed to pick up UHF signals. It is also designed to have a significant gain, so as to capture low power signals.
- This flat antenna 1 is thus particularly adapted to the reception of digital terrestrial television (DTT) type digital radio signals whose power is often inferior to that of the radio analogue signals.
- DTT digital terrestrial television
- This flat antenna 1 is directive. It is therefore designed to be placed in an optimal position of receiving signals, facing the main direction of propagation of the signals. In this position, the height and the width of the plane antenna are respectively defined as the two vertical and horizontal dimensions of this plane antenna 1, which are perpendicular to said main direction of propagation of the signals.
- This plane antenna 1 comprises two essential elements, namely a radiating plate 100 and an electric cable 400 connected to this radiating plate 100.
- the radiating plate 100 constitutes the active element of this plane antenna 1, since it transmits the signals to the television set via the electric cable 400.
- the radiating plate 100 is substantially rectangular and flat. It is cut so as to delimit three slots 161, 162, 163 in T, of which only one of the slots 163 opens on the rectangular peripheral edge 101 of this radiating plate 100.
- the two slots 161, 162 which form the base of the T then define, with the lower side of the peripheral edge 101 of the radiating plate 100, a so-called support portion 110.
- the third slot 163 which forms the foot of the T defines, in turn, with the upper side of the peripheral edge 101 of the radiating plate 100 and with the two slots 161, 162, two wings 120, 130.
- the electrical conductors 401, 402 of the electrical cable 400 are respectively connected to these two wings 120, 130.
- this plane antenna 1 also comprises, on either side of the radiating plate 100, a reflector 200 and a director 300. These two elements 200, 300 are tuned in frequency with the radiating plate 100 to allow performance optimization of the radiant plate 100.
- planar antenna 1 is devoid of one and / or the other of these two elements 200, 300, in which case it would however have reduced performance.
- the radiating plate 100 forms a folded and flat doublet, which can be likened to the trombone rod of a rakes antenna.
- This radiating plate 100 here has a vertical axis of symmetry A1.
- the radiating plate 100 has a reduced footprint of the order of 40% compared to a standard flat antenna, and therefore a lower wind resistance.
- the total width L6 of the radiating plate 100 is chosen as a function of the low frequency of the plane antenna 1.
- the radiating plate 100 has a total width L6 equal, within 20%, to 200 millimeters.
- the total height H6 of the radiating plate 100 is in turn chosen according to the high frequency of the plane antenna 1. It is not chosen to be higher, so as not to reduce the gain of the antenna plane 1.
- the radiating plate 100 has a total height H6 equal, within 20%, to 100 millimeters.
- the thickness of the radiating plate 100 is here particularly small, of the order of 0.3 millimeters, so as to reduce the cost of the raw materials necessary for the manufacture of the plane antenna 1.
- the support portion 110 of the radiating plate 100 has an elongate rectangle shape along the width of the antenna. It therefore has a lower edge 111 and an upper edge 112 parallel to each other, and two end edges 113, 114 also parallel to each other.
- Each wing 120, 130 has a rectangular flat plate shape elongated along the width of the antenna, and has a horizontal axis of symmetry A2.
- Each wing 120, 130 therefore has a lower edge 121, 131 and an upper edge 122, 132 parallel to each other, and an outer edge 123, 133 and a free end edge 124, 134 also parallel to each other.
- the free end edges 124, 134 of the two wings are rotated towards each other to define between them the third slot 163.
- Each wing 120, 130 has a height H2, H3 at least twice the height H8 of the support portion 110.
- the two corners of the free end edge 124, 134 of each wing 120, 130 are here and so preferential bevelled at 45 degrees.
- the third slot 163 has a desired length, tuned to the frequency band of TNT type digital radio signals.
- Each wing 120, 130 here has a height H2, H3 equal to 70 millimeters, to 20%.
- the wings 120, 130 also have widths L2, L3 such that the third slot 163 located between their free end edges 124, 134 has a reduced width L8, less than 5 millimeters. Due to this small width, the third slot 163 allows the plane antenna 1 to radiate over the entire frequency band of TNT type digital radio signals.
- Each wing 120, 130 here has a width L2, L3 equal to 98 millimeters, to 20%.
- the wings 120, 130 and the support portion 110 extend edge to edge.
- the lower edge 121, 131 of each wing 120, 130 is attached to the upper edge 112 of the support portion 110 for only a portion of its length.
- the lower edge 121, 131 of each wing 120, 130 is for the remainder remote from the upper edge 112 of the support portion 110 to delimit the first or second slot 161, 162.
- the first and second slots 161, 162 extend in length from the third slot 163 towards the outer edges 123, 133 of the wings 120, 130, to a distance L4, L5 of these edges between 5 and 65 millimeters, and preferably equal to 50 millimeters, to 20%.
- the first and second slots 162, 163 thus have reduced lengths, in favor of the gain of the plane antenna 1.
- each wing 120, 130 is extended on its upper edge 122, 132 by a flap 140, 150 which widens the width of the frequency band at which the plane antenna 1 radiates.
- Each shutter 140, 150 here has a trapezoidal shape, with a lower edge 141, 151 which is attached to the upper edge 122, 132 of the corresponding wing 120, 130, an outer edge 143, 153 which extends the outer edge 123, 133 of the wing 120 130, corresponding, and an inner edge 144, 154 which extends the bevel of the free end edge 124, 134 of the wing 120, 130 corresponding.
- Each shutter 140, 150 here has a height H9, H10 of between 5 and 20 millimeters.
- the radiating plate 100 comes here from forming by cutting a metal strip.
- the material of this metal is chosen to be not only very conductive but also inexpensive.
- the radiating plate 100 is made of a single piece of copper. It could alternatively be cut from a different material, such as for example aluminum or brass.
- the antenna could provide to manufacture the antenna from an integrated circuit comprising a rigid substrate covered on one side by a metal sheet forming said radiating plate.
- This antenna would be less easily recyclable than the antenna described above.
- the electrical cable 400 is designed for transmitting to the demodulator of the television set the signals collected by the radiating plate 100.
- This electrical cable 400 is preferably a coaxial cable comprising a central core 401 surrounded by an insulating dielectric material 403, itself surrounded by a braided conductive sheath, called the shield 402, covered with an insulating envelope (not shown).
- This coaxial cable 400 here has a standard impedance of 75 Ohm, optimized for the transmission of video signals. It is also chosen to present reduced losses.
- the central core 401 of the coaxial cable 400 is connected to the free end edge 124 of the flange 120, while the shield 402 is connected at a distance from the free end edge 134 of the flange 130 so as not to be in direct electrical contact with this free end edge.
- the end of the shield 402 is for this purpose cut away from the end of the central core 401, so that only the insulating dielectric material 403 comes into contact with the free end edge 134 of the flange 130.
- This asymmetry of connection of the coaxial cable 400 on the two wings 120, 130 optimizes the impedance matching of the plane antenna 1, so that it best captures the TNT type digital radio signals.
- the shielding 402 is more precisely here connected to a distance D1 from the free end edge 134 of the wing 130 which is between one fifth and one half of the width L3 of this wing 130.
- the central core 401 is connected to the free end edge 124 of the wing 120 by a single weld point.
- the shield 402 is connected to the flange 130 by four separate welding points 431 - 434 distributed at regular intervals along the cable. It is also connected to the support part 110 by three other soldering points 435 - 437.
- This plurality of soldering points located at a distance from the free end edge 134 of the wing 130, makes it possible to reduce the impedance of the antenna at 75 Ohm without the aid of electronic components (resistors, ...) while this impedance would be about 300 Ohm if the shielding 402 was connected by a single point of contact at the free end edge 134 of the wing 130. It thus improves the impedance matching of the plane antenna 1.
- the shield 402 is connected to the wing 130 by a different number of welding spots, or by a continuous weld line.
- the weld points of the central core 401 and the shield 402 on the wings 120, 130 are located at a distance from the horizontal axis of symmetry A2 of the wings 120, 130.
- this plane antenna 1 it is not possible to indeed not necessary to connect the coaxial cable 400 along the horizontal axis of symmetry A2 of each wing 120, 130, which facilitates the manufacturing operations of the plane antenna 1.
- these points are located below the axis of horizontal symmetry A2 wings 120, 130. Alternatively, they could be located above this axis.
- the plane antenna 1 comprises here, in addition to the two essential elements that are the radiating plate 100 and the coaxial cable 400, a reflector 200.
- This reflector 200 makes it possible, on the one hand, to concentrate the digital radio signals on the radiating plate 100, and, on the other hand, to reduce the echo phenomena. With this reflector 200, the directivity of the plane antenna 1 is substantially increased, so that it has a gain of about 3 dB higher than a planar antenna that would be devoid of this reflector.
- the reflector 200 comprises a rectangular plane base 210, which is positioned parallel and remote from the radiating plate 100. This plane base 210 is thus positioned at the rear of the radiating plate 100 to form a ground plane favoring the ratio before rear of the plane antenna 1.
- the flat base 210 of the reflector 200 is preferably positioned at a distance D2 from the radiating plate 100 which is between 50 and 100 millimeters and which is here equal to 70 millimeters.
- This flat base 210 of the reflector has a height H7 and a width L7 greater than or equal to the total height H6 and total width L6 of the radiating plate 100.
- the dimensions of the base 210 are more precisely from a compromise between the size of the planar antenna 1 and the performance of the reflector 200.
- the widths L7 and height H7 of the plane base 210 are chosen to be 10 mm greater than the total height H6 and total width L6 of the radiating plate 100, so that as seen from the front as shown in FIG. figure 1 , the plane base 210 of the reflector 200 projects one-half centimeter on each side of the radiating plate 100.
- the flat base 210 of the reflector 200 has two rectangular flanges 220, 230 which extend from the two small opposite sides of the flat base 210, perpendicularly thereto, towards the radiating plate 100.
- These two edges 220, 230 thus extend orthogonally to the plane of polarization of the radiating plate 100. They optimize the performance of the reflector without increasing the size of the antenna.
- these two edges 220, 230 extend in length over the entire height H7 of the flat base 210 of the reflector 200. They also extend towards the radiating plate 100 over a distance D3, D4 lower or equal to half the distance D2 separating the radiating plate 100 from the plane base 210 of the reflector 200, so as not to degrade the impedance of the plane antenna 1.
- this distance D3, D4 is equal to 30 millimeters.
- the reflector 200 is derived from a cutting and folding operation of a copper or aluminum metal strip, so that its manufacturing cost is reduced.
- the plane antenna 1 comprises at least one director 300 positioned parallel to the radiating plate 100, in front of the latter.
- Such a director 300 makes it possible to increase the gain of the plane antenna 1 in the high frequencies to which it radiates.
- the plane antenna 1 here comprises a single director 300 positioned at a distance D5 from the radiating plate 100.
- This distance D5 is greater than 20 millimeters for the antenna to remain in a transmission and reception frequency band which covers the TNT type signals.
- the plane antenna 1 comprises a greater number of directors, for example two or three, superimposed parallel and at a distance from each other.
- This director 300 here has the shape of a rectangular plate of height and width less than the height and width of the support portion 110 of the radiating plate 100. It more particularly has a height H11 of between 2 and 10 millimeters, here equal at 8 millimeters, and a width L11 of between 100 and 200 millimeters, here equal to 150 millimeters.
- This director 300 is, like the radiating plate 100 and the reflector 200, obtained by cutting a metal strip of copper or aluminum, so that the total manufacturing cost of the planar antenna 1 is limited.
- the director has a different shape, for example a tubular shape with a diameter of between 2 and 10 millimeters.
- the radiating plate 100 and the reflector 200 are held in a fixed position and parallel to one another.
- This box thus makes it possible not only to protect the radiating plate 100 and the reflector 200, but also to ensure perfect parallelism between these two elements.
- the box is here made of a composite material based on wood to be less polluting than a plastic box, and therefore more easily recyclable.
- the director is arranged to emerge at the front of the box. It is for this purpose maintained parallel to the radiating plate 100 by a rigid foot 310, conductive or not, which extends between the front face of the support portion 110 of the radiating plate 100 and the rear face of the director 300, through an opening in the box.
- the box only acts as a protective member of the planar antenna 1, in which case the radiating plate 100 and the reflector 200 will be held parallel and at a distance from each other by spacers. in the form of a rod.
- the circular section coaxial cable can be replaced by a flat-section electrical conduction element.
- the antenna comprises a printed circuit formed of an insulating substrate (for example Bakelite) and at least one conductive track (for example made of copper) extending on one of the faces of the substrate. .
- an insulating substrate for example Bakelite
- at least one conductive track for example made of copper
- the radiating plate is then formed by a thin metallic layer, of identical shape to the radiating plate illustrated on the figure 1 , extending on the other side of the substrate of the printed circuit.
- the insulating substrate carries, on one of its two faces, the radiating plate, and on the other of its two faces, the conductive track.
- the electrical conduction element is partly formed by this conductive track.
- This electrical conduction element more precisely comprises, on the one hand, an electrical wire connected to the support part of the radiating plate at a point situated on the vertical axis of symmetry A1 of the antenna, and, on the other hand , said conductive track.
- This track then extends on the substrate in a path substantially identical to that of the coaxial cable shown in FIG. figure 1 , with a first portion extending along the support portion of the radiating plate, on the opposite side of the substrate, and a second portion extending along one of the wings of the radiating plate, on the opposite side of the substrate, along the axis of horizontal symmetry A2 of the wing.
- This track here has a width substantially equal to 3 millimeters, to 20%. It thus presents an optimal impedance adaptation.
- the end of this track extends at a distance D1 from the third slot of the radiating plate, which is between one fifth and one half of the width of the corresponding wing of the radiating plate.
- This end is extended by a wire of reduced diameter, of the order of 0.3 millimeters, which extends beyond the third slot and which is connected to the other wing of the radiating plate, via a hole made in the substrate of the printed circuit.
- the thickness and the material of the substrate are chosen here so that the electrical conductor has a characteristic impedance of 75 Ohm.
- This particularly flat antenna is preferably devoid of reflector and director, to have a particularly low thickness.
- This antenna may further comprise a protective envelope molded on the printed circuit, so as to be easily transportable.
- This radiating plate 100 has a shape close to that of the radiating plate illustrated on the figure 1 . It comes in effect from a flat plate of equal width, to 20%, to 200 millimeters and height equal to 20%, 100 millimeters. It is cut in three slots 161, 162, 163 T, so as to delimit a support portion 110 and two wings 120, 130 which each have an axis of symmetry A2.
- the wings of the radiating plate 100 extending on their edge opposite the support portion 110, by flaps 140 ', 150' which are folded at right angles to the plane of the wings 120, 130.
- the directivity of the antenna is slightly reduced compared with that illustrated in FIG. figure 1 (The gain of this antenna is about 0.3 dB less than that of this antenna), but its size is much lower.
Landscapes
- Aerials With Secondary Devices (AREA)
- Waveguide Aerials (AREA)
- Details Of Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Description
- La présente invention concerne de manière générale les antennes adaptées à émettre et recevoir des signaux UHF de type TNT (Télévision Numérique Terrestre) ou analogiques, dans une bande de fréquences plus particulièrement comprise entre 471 et 783 Mhz.
- Parmi les antennes de réception de signaux UHF, on distingue ici principalement les antennes râteaux et les antennes planes.
- De manière classique, les antennes râteaux comportent une pluralité de tiges montées sur un bras de support, dont une tige arrière appelée réflecteur, une tige intermédiaire dite rayonnante et une tige avant appelée directeur. Ces différentes tiges sont accordées en fonction des longueurs d'onde des signaux à recevoir.
- La tige rayonnante constitue l'élément actif de cette antenne, puisque c'est elle qui transmet les signaux UHF au poste de télévision via un câble coaxial. Elle forme une boucle autour du bras de support, avec deux brins respectivement branchés aux conducteurs électriques intérieur et extérieur du câble coaxial. Cette tige rayonnante est communément appelée trombone.
- Les inconvénients majeurs d'une telle antenne râteau sont son encombrement important et son manque d'esthétisme, qui n'autorisent son installation que sur le toit d'une habitation.
- Les antennes planes pallient ces inconvénients. La plupart d'entre elles présentent en revanche généralement une bande de fréquences d'émission et de réception de signaux réduite, ne permettant pas de couvrir la totalité des fréquences des signaux UHF de type TNT.
- On connaît toutefois du document
FR 2 841 688 - Le principal inconvénient de cette antenne est que les fentes, qui sont découpée dans la plaque rayonnante à distance de son bord périphérique et qui sont dimensionnées pour s'accorder aux fréquences des signaux UHF de type TNT, nécessitent l'utilisation d'une plaque rayonnante de grandes dimensions, au détriment de l'encombrement de l'antenne.
- On connaît également du document
WO2005/041355 une antenne du type "doublet replié", qui comprend, d'une part, une plaque plane dans laquelle sont ménagées trois fentes en T qui délimitent deux ailes, et, d'autre part, un câble dont un conducteur est branché à l'une de ces deux ailes et dont un autre conducteur est branché à l'autre de ces deux ailes. Le branchement des conducteurs électrique est ici réalisé sur des languettes qui s'étendent en prolongement des ailes. - L'inconvénient d'une telle antenne est qu'elle présente une impédance qui, sauf à prévoir des résistances sur les conducteurs électriques, ne permet pas une bonne réception de signaux de type TNT.
On connaît par ailleurs du documentJP 2006 345010 - Afin de remédier aux inconvénients précités de l'état de la technique, la présente invention propose une antenne présentant des dimensions réduites d'environ 40 % par rapport à l'antenne divulguée dans le document
FR 2 841 688 - Plus particulièrement, on propose selon l'invention une antenne telle que définie dans la revendication 1.
- Ainsi, la plaque rayonnante forme un doublet replié à la manière d'une agrafe, dont les deux extrémités délimitent la troisième fente. Grâce à cette forme d'agrafe repliée, la plaque rayonnante de l'antenne présente un encombrement réduit. Elle est en outre adaptée à rayonner sur une bande de fréquences suffisamment large pour capter l'ensemble des signaux UHF de type TNT. La connexion de l'élément de conduction électrique aux ailes permet enfin à l'antenne d'être parfaitement accordée en impédance, de sorte qu'elle présente un gain important permettant de capter des signaux de puissances réduites.
- D'autres caractéristiques avantageuses et non limitatives de l'antenne conforme à l'invention sont définies dans les revendications 2 et suivantes.
- La description qui va suivre, en regard des dessins annexés, donnée à titre d'exemple non limitatif, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée.
- Sur les dessins annexés :
- les
figures 1 à 3 sont des vues schématiques en plan de face, de dessous et de côté d'une antenne plane selon l'invention, - la
figure 4 est une vue schématique en plan de face de la plaque rayonnante de l'antenne plane représentée sur lesfigures 1 à 3 , et - la
figure 5 est une vue schématique en perspective d'une variante de réalisation de la plaque rayonnante de l'antenne plane de lafigure 1 . - Telle que représentée sur les
figures 1 à 3 , l'antenne plane 1 est conçue pour capter des signaux UHF. Elle est en outre conçue pour présenter un gain important, de manière à pouvoir capter des signaux de faibles puissances. Cette antenne plane 1 est ainsi particulièrement adaptée à la réception de signaux numériques hertzien de type TNT (Télévision Numérique Terrestre) dont la puissance est souvent inférieure à celles des signaux analogiques hertziens. - Cette antenne plane 1 est directive. Elle est donc conçue pour être placée dans une position optimale de réception des signaux, face à la direction principale de propagation des signaux. Dans cette position, on définit respectivement la hauteur et la largeur de l'antenne plane comme les deux dimensions verticale et horizontale de cette antenne plane 1, qui sont perpendiculaires à ladite direction principale de propagation des signaux.
- Cette antenne plane 1 comporte deux éléments essentiels, à savoir une plaque rayonnante 100 et un câble électrique 400 branché sur cette plaque rayonnante 100.
- La plaque rayonnante 100 constitue l'élément actif de cette antenne plane 1, puisque c'est elle qui transmet les signaux au poste de télévision via le câble électrique 400.
- Selon une caractéristique particulièrement avantageuse de l'antenne plane 1 et comme le montre plus particulièrement la
figure 4 , la plaque rayonnante 100 est sensiblement rectangulaire et plane. Elle est découpée de manière à délimiter trois fentes 161, 162, 163 en T, dont une seule des fentes 163 débouche sur le bord périphérique 101 rectangulaire de cette plaque rayonnante 100. - Les deux fentes 161, 162 qui forment la base du T délimitent alors, avec le côté inférieur du bord périphérique 101 de la plaque rayonnante 100, une partie dite de support 110.
- La troisième fente 163 qui forme le pied du T délimite quant à elle, avec le côté supérieur du bord périphérique 101 de la plaque rayonnante 100 et avec les deux fentes 161, 162, deux ailes 120, 130.
- Les conducteurs électriques 401, 402 du câble électrique 400 sont respectivement branchés à ces deux ailes 120, 130.
- Avantageusement, comme le montrent les
figures 1 à 3 , cette antenne plane 1 comporte également, de part et d'autre de la plaque rayonnante 100, un réflecteur 200 et un directeur 300. Ces deux éléments 200, 300 sont accordés en fréquence avec la plaque rayonnante 100 pour permettre d'optimiser les performances de la plaque rayonnante 100. - En variante, pour réduire son encombrement, on pourrait prévoir que l'antenne plane 1 soit dépourvue de l'un et/ou de l'autre de ces deux éléments 200, 300, auquel cas elle présenterait toutefois des performances réduites.
- Ici, comme le montre la
figure 1 , la plaque rayonnante 100 forme un doublet replié et plat, pouvant s'apparenter à la tige trombone d'une antenne râteaux. Cette plaque rayonnante 100 présente ici un axe de symétrie vertical A1. - Grâce à sa forme repliée et plane, la plaque rayonnante 100 présente un encombrement réduit de l'ordre de 40% par rapport à une antenne plane standard, et donc une prise au vent moindre.
- La largeur totale L6 de la plaque rayonnante 100 est choisie en fonction de la fréquence basse de l'antenne plane 1. Ici, la plaque rayonnante 100 présente une largeur totale L6 égale, à 20% près, à 200 millimètres.
- La hauteur totale H6 de la plaque rayonnante 100 est quant à elle choisie en fonction de la fréquence haute de l'antenne plane 1. Elle n'est pas choisie pour être plus élevée, de manière à ne pas réduire le gain de l'antenne plane 1. Ici, la plaque rayonnante 100 présente une hauteur totale H6 égale, à 20% près, à 100 millimètres.
- L'épaisseur de la plaque rayonnante 100 est ici particulièrement faible, de l'ordre de 0,3 millimètre, de manière à réduire le coût des matières premières nécessaires à la fabrication de l'antenne plane 1.
- Comme le montre plus particulièrement la
figure 1 , la partie de support 110 de la plaque rayonnante 100 présente une forme de rectangle allongé suivant la largeur de l'antenne. Elle comporte donc un bord inférieur 111 et un bord supérieur 112 parallèles entre eux, ainsi que deux bords d'extrémité 113, 114 également parallèles entre eux. - Chaque aile 120, 130 présente une forme de plaque plane rectangulaire allongée suivant la largeur de l'antenne, et comporte un axe de symétrie horizontal A2. Chaque aile 120, 130 comporte donc un bord inférieur 121, 131 et un bord supérieur 122, 132 parallèles entre eux, ainsi qu'un bord extérieur 123, 133 et un bord d'extrémité libre 124, 134 également parallèles entre eux. Tels que représentés sur la
figure 1 , les bords d'extrémité libre 124, 134 des deux ailes sont tournés l'un vers l'autre pour définir entre eux la troisième fente 163. - Chaque aile 120, 130 présente une hauteur H2, H3 au moins deux fois supérieure à la hauteur H8 de la partie de support 110. Les deux coins du bord d'extrémité libre 124, 134 de chaque aile 120, 130 sont ici et de manière préférentielle biseautés à 45 degrés. Ainsi, la troisième fente 163 présente une longueur souhaitée, accordée sur la bande de fréquences des signaux numériques hertziens de type TNT.
- Chaque aile 120, 130 présente ici une hauteur H2, H3 égale à 70 millimètres, à 20% près.
- Les ailes 120, 130 présentent par ailleurs des largeurs L2, L3 telles que la troisième fente 163 située entre leurs bords d'extrémité libre 124, 134 présente une largeur L8 réduite, inférieure à 5 millimètres. Grâce à cette faible largeur, la troisième fente 163 permet à l'antenne plane 1 de rayonner sur l'ensemble de la bande de fréquences des signaux numériques hertziens de type TNT.
- Chaque aile 120, 130 présente ici une largeur L2, L3 égale à 98 millimètres, à 20% près.
- Les ailes 120, 130 et la partie de support 110 s'étendent bord à bord. Le bord inférieur 121, 131 de chaque aile 120, 130 se rattache au bord supérieur 112 de la partie de support 110 sur une partie seulement de sa longueur. Le bord inférieur 121, 131 de chaque aile 120, 130 est pour le reste éloigné du bord supérieur 112 de la partie de support 110 pour délimiter la première ou seconde fente 161, 162.
- Les première et seconde fentes 161, 162 s'étendent en longueur à partir de la troisième fente 163 en direction des bords extérieurs 123, 133 des ailes 120, 130, jusqu'à une distance L4, L5 de ces bords comprise entre 5 et 65 millimètres, et préférentiellement égale à 50 millimètres, à 20 % près. Les première et seconde fentes 162, 163 présentent donc des longueurs réduites, au bénéfice du gain de l'antenne plane 1.
- Préférentiellement, chaque aile 120, 130 est prolongée sur son bord supérieur 122, 132 par un volet 140, 150 qui permet d'élargir la largeur de la bande de fréquences à laquelle l'antenne plane 1 rayonne. Chaque volet 140, 150 présente ici une forme trapézoïdale, avec un bord inférieur 141, 151 qui se rattache au bord supérieur 122, 132 de l'aile 120, 130 correspondante, un bord extérieur 143, 153 qui prolonge le bord extérieur 123, 133 de l'aile 120, 130 correspondante, et un bord intérieur 144, 154 qui prolonge le biseau du bord d'extrémité libre 124, 134 de l'aile 120, 130 correspondante. Chaque volet 140, 150 présente ici une hauteur H9, H10 comprise entre 5 et 20 millimètres.
- La plaque rayonnante 100 vient ici de formation par découpe d'un feuillard métallique. La matériau de ce métal est choisi pour être non seulement très conducteur mais également peu onéreux. Ici, la plaque rayonnante 100 est réalisée d'une seule pièce en cuivre. Elle pourrait en variante être découpée dans un matériau autre, tel que par exemple l'aluminium ou le laiton.
- Encore en variante, on pourrait prévoir de fabriquer l'antenne à partir d'un circuit intégré comportant un substrat rigide recouvert, sur une face, par une feuille métallique formant ladite plaque rayonnante. Cette antenne serait toutefois moins facilement recyclable que l'antenne décrite ci-dessus.
- Le câble électrique 400 est quant à lui conçu pour transmettre au démodulateur du poste de télévision les signaux recueillis par la plaque rayonnante 100.
- Il présente à cet effet une extrémité équipée d'un bornier 410 à connecter sur le poste de télévision, et une extrémité opposée branchée à la plaque rayonnante 100.
- Ce câble électrique 400 est préférentiellement un câble coaxial comportant une âme centrale 401 entourée d'un matériau diélectrique isolant 403, lui-même entouré d'une gaine conductrice tressée, appelée blindage 402, recouverte d'une enveloppe isolante (non représentée).
- Ce câble coaxial 400 présente ici une impédance standard de 75 Ohm, optimisée pour la transmission de signaux vidéo. Il est par ailleurs choisi pour présenter des pertes réduites.
- Préférentiellement, l'âme centrale 401 du câble coaxial 400 est branchée au bord d'extrémité libre 124 de l'aile 120, tandis que le blindage 402 est branché à distance du bord d'extrémité libre 134 de l'aile 130 pour ne pas être en contact électrique direct avec ce bord d'extrémité libre.
- L'extrémité du blindage 402 est à cet effet coupée à distance de l'extrémité de l'âme centrale 401, de telle sorte que seul le matériau diélectrique isolant 403 vienne au contact du bord d'extrémité libre 134 de l'aile 130.
- Cette dissymétrie de branchement du câble coaxial 400 sur les deux ailes 120, 130 permet d'optimiser l'adaptation d'impédance de l'antenne plane 1, de manière à ce qu'elle capte aux mieux les signaux numériques hertziens de type TNT.
- Le blindage 402 est plus précisément ici branché à une distance D1 du bord d'extrémité libre 134 de l'aile 130 qui est comprise entre le cinquième et la moitié de la largeur L3 de cette aile 130.
- Ici, comme le montre la
figure 1 , l'âme centrale 401 est branchée au bord d'extrémité libre 124 de l'aile 120 par un unique point de soudure. Le blindage 402 est quant à lui branché sur l'aile 130 par quatre points de soudure 431 - 434 distincts répartis à intervalle régulier le long du câble. Il est également branché à la partie de support 110 par trois autres points de soudure 435 - 437. Cette pluralité de points de soudure, situés à distance du bord d'extrémité libre 134 de l'aile 130, permet de diminuer l'impédance de l'antenne à 75 Ohm sans l'aide de composants électroniques (résistances, ...) alors que cette impédance serait d'environ 300 Ohm si le blindage 402 était branché par un unique point de contact au bord d'extrémité libre 134 de l'aile 130. Elle permet ainsi d'améliorer l'adaptation d'impédance de l'antenne plane 1. - En variante, on pourrait bien sûr prévoir que le blindage 402 soit branché à l'aile 130 par un nombre différent de points de soudure, ou par une ligne de soudure continue.
- Ici, les points de soudure de l'âme centrale 401 et du blindage 402 sur les ailes 120, 130 sont situés à distance de l'axe de symétrie horizontal A2 des ailes 120, 130. Sur cette antenne plane 1, il n'est en effet pas nécessaire de brancher le câble coaxial 400 le long de l'axe de symétrie horizontal A2 de chaque aile 120, 130, ce qui facilite les opérations de fabrication de l'antenne plane 1. Tel que représentés sur les figures, ces points de soudure sont situés sous l'axe de symétrie horizontal A2 des ailes 120, 130. En variante, ils pourraient être situés au-dessus de cet axe.
- Comme exposé supra, l'antenne plane 1 comporte ici, outre les deux éléments essentiels que sont la plaque rayonnante 100 et le câble coaxial 400, un réflecteur 200.
- Ce réflecteur 200 permet, d'une part, de concentrer les signaux numérique hertziens sur la plaque rayonnante 100, et, d'autre part, de réduire les phénomènes d'écho. Grâce à ce réflecteur 200, la directivité de l'antenne plane 1 est sensiblement accrue, de sorte qu'elle présente un gain supérieur d'environ 3 dB par rapport à une antenne plane qui serait dépourvue de ce réflecteur.
- Ici, comme cela apparaît sur les
figures 1 à 3 , le réflecteur 200 comprend une base plane 210 rectangulaire, qui est positionnée parallèlement et à distance de la plaque rayonnante 100. Cette base plane 210 est ainsi positionnée à l'arrière de la plaque rayonnante 100 pour former un plan de masse favorisant le rapport avant arrière de l'antenne plane 1. - La base plane 210 du réflecteur 200 est préférentiellement positionnée à une distance D2 de la plaque rayonnante 100 qui est comprise entre 50 et 100 millimètres et qui est ici égale à 70 millimètres.
- Cette base plane 210 du réflecteur présente une hauteur H7 et une largeur L7 supérieures ou égales aux hauteur totale H6 et largeur totale L6 de la plaque rayonnante 100.
- Les dimensions de la base plane 210 sont plus précisément issues d'un compromis entre l'encombrement de l'antenne plane 1 et les performances qu'apporte le réflecteur 200.
- Ici, les largeur L7 et hauteur H7 de la base plane 210 sont choisies pour être supérieures de 10 millimètres aux hauteur totale H6 et largeur totale L6 de la plaque rayonnante 100, si bien que vue de face comme le montre la
figure 1 , la base plane 210 du réflecteur 200 déborde d'un-demi centimètre de chaque côté de la plaque rayonnante 100. - De manière avantageuse, la base plane 210 du réflecteur 200 comporte deux rebords 220, 230 rectangulaires, qui s'étendent à partir des deux petits côtés opposés de la base plane 210, perpendiculairement à celle-ci, en direction de la plaque rayonnante 100.
- Ces deux rebords 220, 230 s'étendent ainsi orthogonalement au plan de polarisation de la plaque rayonnante 100. Ils permettent d'optimiser les performances du réflecteur sans pour autant augmenter l'encombrement de l'antenne.
- Tels que représentés sur les figures, ces deux rebords 220, 230 s'étendent en longueur sur toute la hauteur H7 de la base plane 210 du réflecteur 200. Ils s'étendent par ailleurs vers la plaque rayonnante 100 sur une distance D3, D4 inférieure ou égale à la moitié de la distance D2 séparant la plaque rayonnante 100 de la base plane 210 du réflecteur 200, de manière à ne pas dégrader l'impédance de l'antenne plane 1. Ici, cette distance D3, D4 est égale à 30 millimètres.
- Avantageusement, le réflecteur 200 est issu d'une opération de découpe et de pliage d'un feuillard métallique en cuivre ou en aluminium, de sorte que son coût de fabrication est réduit.
- Comme cela a été exposé précédemment, l'antenne plane 1 comporte au moins un directeur 300 positionné parallèlement à la plaque rayonnante 100, à l'avant de celle-ci.
- Un tel directeur 300 permet d'augmenter le gain de l'antenne plane 1 dans les fréquences hautes auxquelles elle rayonne.
- Tel que représentée sur les figures, l'antenne plane 1 comporte ici un unique directeur 300 positionné à une distance D5 de la plaque rayonnante 100.
- Cette distance D5 est supérieure à 20 millimètres pour que l'antenne reste dans une bande de fréquences d'émission et de réception qui couvre les signaux de type TNT.
- Elle est par ailleurs inférieure à 40 millimètres pour que l'encombrement de l'antenne reste réduite et pour diminuer les dissipations d'énergie.
- On pourrait bien sûr prévoir en variante que l'antenne plane 1 comporte un nombre supérieur de directeurs, par exemple deux ou trois, superposés parallèlement et à distance les uns des autres.
- Ce directeur 300 présente ici la forme d'une plaque rectangulaire de hauteur et de largeur inférieures aux hauteur et largeur de la partie de support 110 de la plaque rayonnante 100. Il présente plus particulièrement une hauteur H11 comprise entre 2 et 10 millimètres, ici égale à 8 millimètres, et une largeur L11 comprise entre 100 et 200 millimètres, ici égale à 150 millimètres.
- Ce directeur 300 est, à l'instar de la plaque rayonnante 100 et du réflecteur 200, obtenu par découpe d'un feuillard métallique en cuivre ou en aluminium, de sorte que le coût de fabrication total de l'antenne plane 1 est restreint.
- En variante, on pourrait également prévoir que ce directeur présente une forme autre, par exemple une forme tubulaire de diamètre compris entre 2 et 10 millimètres.
- Pour que l'antenne plane 1 puisse rayonner au mieux, la plaque rayonnante 100 et le réflecteur 200 sont maintenus en position fixe et parallèle l'un par rapport à l'autre.
- Ils sont à cet effet fixés de manière rigide à l'intérieur d'une boîte de protection (non représentée) réalisée dans un matériau non conducteur.
- Cette boîte permet ainsi non seulement de protéger la plaque rayonnante 100 et le réflecteur 200, mais en outre d'assurer un parfait parallélisme entre ces deux éléments.
- La boîte est ici réalisée dans un matériau composite à base de bois afin d'être moins polluante qu'une boîte en matière plastique, et, par conséquent, plus facilement recyclable.
- Le directeur est quant à lui agencé pour émerger à l'avant de la boîte. Il est à cet effet maintenu parallèlement à la plaque rayonnante 100 par un pied rigide 310, conducteur ou non, qui s'étend entre la face avant de la partie de support 110 de la plaque rayonnante 100 et la face arrière de ce directeur 300, au travers d'une ouverture prévue dans la boîte.
- La présente invention n'est nullement limitée aux modes de réalisation décrits et représentés.
- En particulier, on pourrait prévoir que la boîte fasse seulement office d'organe de protection de l'antenne plane 1, auquel cas la plaque rayonnante 100 et le réflecteur 200 seront maintenus parallèlement et à distance l'un de l'autre par des entretoises en forme de tige.
- Selon un autre mode de réalisation de l'invention non représenté sur les figures, pour réduire encore l'encombrement de l'antenne, on peut remplacer le câble coaxial à section circulaire par un élément de conduction électrique à section plane.
- Dans ce mode de réalisation, l'antenne comporte un circuit imprimé formé d'un substrat isolant (par exemple en bakélite) et d'au moins une piste conductrice (par exemple en cuivre) s'étendant sur l'une des faces du substrat.
- La plaque rayonnante est alors formée par une fine couche métallique, de forme identique à la plaque rayonnante illustrée sur la
figure 1 , s'étendant sur l'autre des faces du substrat du circuit imprimé. - Autrement formulé, le substrat isolant porte, sur l'une de ses deux faces, la plaque rayonnante, et, sur l'autre de ses deux faces, la piste conductrice.
- Dans cette variante, l'élément de conduction électrique est en partie formé par cette piste conductrice. Cet élément de conduction électrique comporte plus précisément, d'une part, un fil électrique branché à la partie de support de la plaque rayonnante en un point situé sur l'axe de symétrie vertical A1 de l'antenne, et, d'autre part, ladite piste conductrice.
- Cette piste s'étend alors sur le substrat selon une trajectoire sensiblement identique à celle du câble coaxial représenté sur la
figure 1 , avec une première partie s'étendant le long de la partie de support de la plaque rayonnante, du côté opposé du substrat, et une second partie s'étendant le long de l'une des ailes de la plaque rayonnante, du côté opposé du substrat, suivant l'axe de symétrie horizontal A2 de l'aile. - Cette piste présente ici une largeur sensiblement égale à 3 millimètres, à 20 % près. Elle présente ainsi une adaptation d'impédance optimale.
- L'extrémité de cette piste s'étend à une distance D1 de la troisième fente de la plaque rayonnante, qui est comprise entre le cinquième et la moitié de la largeur de l'aile correspondante de la plaque rayonnante.
- Cette extrémité est prolongée par un fil électrique de diamètre réduit, de l'ordre de 0,3 millimètre, qui s'étend jusqu'au-delà de la troisième fente et qui est branchée à l'autre aile de la plaque rayonnante, via un perçage pratiqué dans le substrat du circuit imprimé.
- L'épaisseur et le matériau du substrat sont ici choisis de manière que le conducteur électrique présente une impédance caractéristique de 75 Ohm.
- Cette antenne particulièrement plane est préférentiellement dépourvue de réflecteur et de directeur, pour présenter une épaisseur particulièrement faible. Cette antenne peut par ailleurs comporter une enveloppe protectrice moulée sur le circuit imprimé, de manière à être facilement transportable.
- On a représenté sur la
figure 5 une autre variante de réalisation de la plaque rayonnante 100. - Cette plaque rayonnante 100 présente une forme proche de celle de la plaque rayonnante illustrée sur la
figure 1 . Elle vient en effet de formation à partir d'une plaque plane de largeur égale, à 20% près, à 200 millimètres et de hauteur égale, à 20% près, à 100 millimètres. Elle est découpée selon trois fentes 161, 162, 163 en T, de manière à délimiter une partie de support 110 et deux ailes 120, 130 qui présentent chacune un axe de symétrie A2. - Dans cette variante, les ailes de la plaque rayonnante 100 se prolongeant, sur leur bord opposé à la partie de support 110, par des volets 140', 150' qui sont repliés à angle droit par rapport au plan des ailes 120, 130.
- Dans cette variante, la directivité de l'antenne est légèrement réduite par rapport à celle illustrée sur la
figure 1 (le gain de cette antenne est inférieure d'environ 0,3 dB à celui de cette antenne), mais son encombrement est très inférieur. - Afin de réduire encore l'encombrement de l'antenne, on pourrait également prévoir de replier sa partie de support 110, parallèlement aux volets 140', 150'.
Claims (15)
- Antenne (1) comportant :- une plaque rayonnante (100) plane ou repliée, dans laquelle sont ménagées trois fentes (161, 162, 163) en T, dont une première fente (161) et une seconde fente (162) forment la base du T et dont une troisième fente (163) forme le pied du T, ladite troisième fente (163) étant la seule qui débouche sur le bord périphérique (101) de la plaque rayonnante (100), lesdites trois fentes (161, 162, 163) délimitant deux ailes (120, 130) qui sont situées de part et d'autre de la troisième fente (163) et qui présentent deux bords d'extrémité (124, 134) en vis-à-vis délimitant ladite troisième fente (163), et- un élément de conduction électrique (400) comportant un premier conducteur électrique (401) branché au bord d'extrémité (124) d'une première desdites ailes (120) et un second conducteur électrique (402) qui est branché à distance du bord d'extrémité (134) d'une seconde desdites ailes (130) par au moins deux points de contact (431 - 437) distincts ou par une ligne de contact continue.
- Antenne (1) selon la revendication 1, comportant au moins un directeur (300) positionné parallèlement au plan de la plaque rayonnante (100).
- Antenne (1) selon l'une des revendications 1 et 2, dans laquelle, ladite seconde aile (130) présentant une hauteur (H3) et une largeur (L3) définies dans le plan de la plaque rayonnante (100), le second conducteur électrique (402) est branché à une distance (D1) dudit bord d'extrémité (134) de la seconde aile (130) qui est comprise entre le cinquième et la moitié de la largeur (L3) de la seconde aile (130).
- Antenne (1) selon l'une des revendications 1 à 3, dans laquelle la plaque rayonnante (100) présente, sous forme dépliée, une largeur égale, à 20% près, à 200 millimètres.
- Antenne (1) selon l'une des revendications 1 à 4, dans laquelle la plaque rayonnante (100) présente, sous forme dépliée, une hauteur (H6) égale, à 20% près, à 100 millimètres.
- Antenne (1) selon l'une des revendications 1 à 5, dans laquelle ledit élément de conduction électrique (400) est un câble coaxial présentant une impédance de 75 Ohm.
- Antenne (1) selon l'une des revendications 1 à 6, dans laquelle chaque aile (120, 130) s'étend suivant un axe de symétrie (A2).
- Antenne (1) selon la revendication 7, dans laquelle lesdits premier et second conducteurs électriques (401, 402) sont respectivement branchés aux première et seconde ailes (120, 130), à distance dudit axe de symétrie (A2).
- Antenne (1) selon l'une des revendications 7 et 8, dans laquelle chaque aile (120, 130) présente un bord (122, 132) opposé auxdites première et seconde fentes (161, 162) qui est équipé d'un volet (140, 150 ; 140', 150').
- Antenne (1) selon la revendication 9, dans laquelle chaque volet (140, 150) est situé dans le plan de la plaque rayonnante (100).
- Antenne (1) selon la revendication 9, dans laquelle chaque volet (140', 150') est replié dans un plan incliné par rapport au plan de la plaque rayonnante (100).
- Antenne (1) selon l'une des revendications 1 à 11, dans laquelle lesdites première et seconde fentes (162, 163) s'étendent en longueur jusqu'à une distance (L4, L5) du bord périphérique (101) de la plaque rayonnante (100) qui est comprise entre 5 et 65 millimètres.
- Antenne (1) selon l'une des revendications 1 à 12, comportant un réflecteur (200) qui comprend une base plane (210) positionnée parallèlement au plan de la plaque rayonnante (100), dont les hauteur (H7) et largeur (L7) sont supérieures ou égales aux hauteur (H6) et largeur (L6) de la plaque rayonnante (100).
- Antenne (1) selon la revendication 13, dans laquelle la base plane (210) du réflecteur (200) est flanquée de deux rebords (220, 230) s'étendant en direction la plaque rayonnante (100), sur une distance (D3, D4) inférieure ou égale à la moitié de la distance (D2) séparant la plaque rayonnante (100) de la base plane (210) du réflecteur (200).
- Antenne (1) selon l'une des revendications 1 à 14, dans lequel la plaque rayonnante s'étend sur l'une des faces d'un substrat d'un circuit imprimé et dans lequel l'un au moins des conducteurs électriques est formé par une piste de ce circuit imprimé, s'étendant sur l'autre des faces de ce substrat.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1000472A FR2956251B1 (fr) | 2010-02-05 | 2010-02-05 | Antenne plane a doublet replie |
PCT/FR2011/000071 WO2011095712A1 (fr) | 2010-02-05 | 2011-02-04 | Antenne plane à doublet replié |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2532049A1 EP2532049A1 (fr) | 2012-12-12 |
EP2532049B1 true EP2532049B1 (fr) | 2014-08-06 |
Family
ID=42735251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11708903.7A Active EP2532049B1 (fr) | 2010-02-05 | 2011-02-04 | Antenne plane à doublet replié |
Country Status (7)
Country | Link |
---|---|
US (1) | US20120299790A1 (fr) |
EP (1) | EP2532049B1 (fr) |
BR (1) | BR112012018455A2 (fr) |
ES (1) | ES2523224T3 (fr) |
FR (1) | FR2956251B1 (fr) |
PT (1) | PT2532049E (fr) |
WO (1) | WO2011095712A1 (fr) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150263427A1 (en) * | 2014-03-12 | 2015-09-17 | Cambridge Silicon Radio Limited | Antenna |
WO2016062356A1 (fr) | 2014-10-24 | 2016-04-28 | Huawei Technologies Co.,Ltd. | Dispositif d'antenne pour système d'antenne de station de base |
CN105161830B (zh) * | 2015-10-14 | 2017-11-03 | 苏州大学 | 一种宽带领结形对称折合振子天线 |
CN109075452B (zh) | 2016-04-05 | 2023-06-02 | 上海诺基亚贝尔股份有限公司 | 宽带背腔式开槽天线 |
FR3050077B1 (fr) * | 2016-04-08 | 2019-07-26 | Khamprasith Bounpraseuth | Antenne plane |
WO2017174900A1 (fr) | 2016-04-08 | 2017-10-12 | Khamprasith Bounpraseuth | Boite pour terminal de communication mobile |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3074064A (en) * | 1960-02-24 | 1963-01-15 | Pickles Sidney | Self-supporting dipole antenna with balanced-to-unbalanced transformer |
FR2298200A1 (fr) * | 1975-01-17 | 1976-08-13 | France Etat | Doublet replie epais accordable dans une bande de frequence de deux octaves |
US5539414A (en) * | 1993-09-02 | 1996-07-23 | Inmarsat | Folded dipole microstrip antenna |
US6317099B1 (en) * | 2000-01-10 | 2001-11-13 | Andrew Corporation | Folded dipole antenna |
NZ504042A (en) * | 2000-04-14 | 2002-12-20 | Gregory Daniel Hall | A wide-band high-gain plate dipole antenna using a pair of plate elements arranged in the same plane |
FR2841688B1 (fr) | 2002-06-28 | 2006-06-30 | Antennes Ft | Antenne plane du type patch, notamment pour l'emission et/ou la reception de signaux de television terrestre numerique et/ou analogique |
WO2005041355A1 (fr) * | 2003-10-27 | 2005-05-06 | Murata Manufacturing.Co., Ltd. | Antenne pliee, et dispositif de communication pourvu de cette antenne |
JP5016790B2 (ja) * | 2005-05-12 | 2012-09-05 | 株式会社フジクラ | アンテナ |
JP4712550B2 (ja) * | 2005-06-21 | 2011-06-29 | Dxアンテナ株式会社 | アンテナ装置 |
JP2010016460A (ja) * | 2008-07-01 | 2010-01-21 | Dx Antenna Co Ltd | 八木形アンテナ |
JP4431632B2 (ja) * | 2009-02-20 | 2010-03-17 | 八木アンテナ株式会社 | Uhf帯アンテナ |
-
2010
- 2010-02-05 FR FR1000472A patent/FR2956251B1/fr not_active Expired - Fee Related
-
2011
- 2011-02-04 EP EP11708903.7A patent/EP2532049B1/fr active Active
- 2011-02-04 WO PCT/FR2011/000071 patent/WO2011095712A1/fr active Application Filing
- 2011-02-04 US US13/576,244 patent/US20120299790A1/en not_active Abandoned
- 2011-02-04 BR BR112012018455A patent/BR112012018455A2/pt not_active IP Right Cessation
- 2011-02-04 PT PT117089037T patent/PT2532049E/pt unknown
- 2011-02-04 ES ES11708903.7T patent/ES2523224T3/es active Active
Also Published As
Publication number | Publication date |
---|---|
FR2956251B1 (fr) | 2012-12-28 |
PT2532049E (pt) | 2014-11-11 |
BR112012018455A2 (pt) | 2016-04-19 |
ES2523224T3 (es) | 2014-11-24 |
FR2956251A1 (fr) | 2011-08-12 |
WO2011095712A1 (fr) | 2011-08-11 |
US20120299790A1 (en) | 2012-11-29 |
EP2532049A1 (fr) | 2012-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2532049B1 (fr) | Antenne plane à doublet replié | |
EP2058901B1 (fr) | Antenne à piège réfléchissant | |
EP0205212B1 (fr) | Modules unitaires d'antenne hyperfréquences et antenne hyperfréquences comprenant de tels modules | |
EP0899814B1 (fr) | Structure rayonnante | |
FR2752646A1 (fr) | Antenne imprimee plane a elements superposes court-circuites | |
WO2005036697A1 (fr) | Antenne interne de faible volume | |
WO2012156424A1 (fr) | Element rayonnant pour antenne reseau active constituee de tuiles elementaires | |
EP2416449A1 (fr) | Antenne à réflecteur parabolique | |
WO2000014825A9 (fr) | Antenne | |
EP3235058B1 (fr) | Antenne fil-plaque ayant un toit capacitif incorporant une fente entre la sonde d'alimentation et le fil de court-circuit | |
FR2886468A1 (fr) | Antenne monopole | |
FR3043498A1 (fr) | ||
EP1516393B1 (fr) | Dispositif rayonnant bi-bande a double polarisation | |
EP1518296B1 (fr) | Antenne plane multibande | |
EP1181744A1 (fr) | Antenne a polarisation verticale | |
FR3013906A1 (fr) | Antenne radio integree a meandres | |
EP2432072B1 (fr) | Symétriseur large bande sur circuit multicouche pour antenne réseau | |
EP3547449B1 (fr) | Dispositif de communication sans fil integrant une pluralite d'antennes-cornets sur un circuit imprime (pcb), procede de realisation et utilisation associes | |
FR3050077B1 (fr) | Antenne plane | |
EP2409361A1 (fr) | Antenne a double ailettes | |
WO2012104433A1 (fr) | Système d'antenne à polarisation circulaire et lecteur d'étiquette radiofréquence comportant un tel système | |
FR3007213A1 (fr) | Procede pour radioelectrifier un objet installe dans un espace public et objet ainsi radioelectrifie. | |
FR2968848A1 (fr) | Antenne a reflecteur parabolique | |
WO2016139403A1 (fr) | Structure antennaire omnidirectionnelle large bande | |
EP1788660A1 (fr) | Antenne en F inversé à élément rayonnant enroulé et téléphone portable la comportant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120830 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140417 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 681404 Country of ref document: AT Kind code of ref document: T Effective date: 20140815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011008888 Country of ref document: DE Effective date: 20140918 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20141103 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: KIRKER AND CIE S.A., CH |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2523224 Country of ref document: ES Kind code of ref document: T3 Effective date: 20141124 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 681404 Country of ref document: AT Kind code of ref document: T Effective date: 20140806 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20140806 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141107 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141106 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141106 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141206 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011008888 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150228 |
|
26N | No opposition filed |
Effective date: 20150507 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150204 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20160224 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20160127 Year of fee payment: 6 Ref country code: DE Payment date: 20160119 Year of fee payment: 6 Ref country code: TR Payment date: 20160106 Year of fee payment: 6 Ref country code: CH Payment date: 20160229 Year of fee payment: 6 Ref country code: ES Payment date: 20160129 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20160115 Year of fee payment: 6 Ref country code: PT Payment date: 20160104 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110204 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602011008888 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170901 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170204 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20180705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140806 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230228 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170204 |