EP2526145A1 - Composition de caoutchouc pour bande de roulement de pneumatique hiver - Google Patents
Composition de caoutchouc pour bande de roulement de pneumatique hiverInfo
- Publication number
- EP2526145A1 EP2526145A1 EP11700090A EP11700090A EP2526145A1 EP 2526145 A1 EP2526145 A1 EP 2526145A1 EP 11700090 A EP11700090 A EP 11700090A EP 11700090 A EP11700090 A EP 11700090A EP 2526145 A1 EP2526145 A1 EP 2526145A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- phr
- composition according
- composition
- mixtures
- microparticles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L7/00—Compositions of natural rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
- B60C1/0016—Compositions of the tread
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/30—Sulfur-, selenium- or tellurium-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/22—Expanded, porous or hollow particles
- C08K7/24—Expanded, porous or hollow particles inorganic
- C08K7/26—Silicon- containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
Definitions
- the invention relates to rubber compositions that can be used as tire treads for vehicles, in particular "winter tires” capable of rolling on floors covered with ice or ice without being provided with nails (also called “studless” tires).
- treads of winter tires which are specifically adapted for running under so-called "melting ice” conditions encountered in a temperature range typically between -5 ° C and 0 ° C. It is recalled that, in such a field, the pressure of the tires at the passage of a vehicle causes a superficial melting of the ice which is covered with a thin film of water detrimental to the adhesion of these tires.
- Such powders solubilize more or less in contact with snow or melted ice, which allows on the one hand the creation on the surface of the tread of porosities likely to improve the attachment of the tread on the ground and on the other hand the creation of throats acting as evacuation channels of the liquid film created between the pneumatic and soil.
- water-soluble powders include, for example, the use of cellulose powder, PVA (polyvinyl alcohol) or starch, or powders of guar gum or xanthan gum (see for example, patent application JP 3-159803, JP 2002-211203, EP 940,435, WO 2008/080750, WO 2008/080751).
- the solubility at very low temperature and in a very short time of the powder used is an essential factor for the proper functioning of the tread. If the powder is not soluble in the conditions of use of the tire, the aforementioned functions (creation of microporosities and water discharge channels) are not met and the adhesion is not improved.
- the present invention relates to a rubber composition that can be used in particular as a tread of a winter tire, comprising at least one diene elastomer, more than 40 phr of a liquid plasticizer, and between 50 and 150 phr of a reinforcing filler. , characterized in that it further comprises between 2 and 50 phr of microparticles of water-soluble metal salt and between 2 and 50 phr of hollow microparticles of at least one metal oxide.
- these various microparticles protruding on the surface of the tread, fulfill the claw function previously described without the disadvantage of being highly abrasive vis-à-vis the asphalt used as a road surface.
- a second step after progressive expulsion of the rubbery matrix, on the one hand by at least partial hydrosolubilization of the water-soluble microparticles, on the other hand by breaking the hollow structure of the metal oxide microparticles, all these microparticles release microcavities that act as storage volume and drain channel of the water film on the surface of the ice; under these conditions, the contact between the surface of the tread and the ice is no longer lubricated and the coefficient of friction is thus improved.
- the invention also relates to a tire whose tread, at least for the portion (therefore carved) tread which is intended to enter contact with the road during the rolling of the tire, comprises a composition according to the invention.
- the tires of the invention are particularly intended to equip tourism-type motor vehicles, including 4x4 vehicles (four-wheel drive) and SUV vehicles ("Sport Utility Vehicles"), two-wheel vehicles (including motorcycles) as industrial vehicles chosen in particular from vans and "heavy goods vehicles” (ie, metro, buses, road transport vehicles such as trucks, tractors).
- 4x4 vehicles four-wheel drive
- SUV vehicles Sport Utility Vehicles
- two-wheel vehicles including motorcycles
- industrial vehicles chosen in particular from vans
- "heavy goods vehicles” ie, metro, buses, road transport vehicles such as trucks, tractors.
- any range of values designated by the expression “between a and b” represents the range of values greater than "a” and less than "b” (i.e., terminals a and b excluded). while any range of values designated by the term “from a to b” means the range of values from "a" to "b” (i.e. including the strict limits a and b).
- the rubber composition of the invention is based on at least one diene elastomer, a plasticizer system, a reinforcing filler, water-soluble metal salt microparticles and hollow metal oxide microparticles, which components are described in detail below. after. 4.1 - Diene elastomer
- elastomer or rubber, the two terms being synonymous
- dienes monomers carrying two double bonds carbon - carbon, conjugated or not
- the diene elastomers can be classified in known manner into two categories: those known as “essentially unsaturated” and those known as “essentially saturated”. Butyl rubbers, such as, for example, copolymers of dienes and alpha-olefins of the EPDM type, fall into the category of essentially saturated diene elastomers having a level of origin patterns. diene which is weak or very weak, always less than 15% (mol%).
- essentially unsaturated diene elastomer is understood to mean a diene elastomer derived at least in part from conjugated diene monomers having a proportion of units or units of diene origin (conjugated dienes) which is greater than 15% (mol%). .
- the term “highly unsaturated” diene elastomer is particularly understood to mean a diene elastomer having a content of units of diene origin (conjugated dienes) which is greater than 50%.
- At least one diene elastomer of the highly unsaturated type in particular a diene elastomer chosen from the group consisting of natural rubber (NR), synthetic polyisoprenes (IR), polybutadienes (BR) and butadiene copolymers, copolymers of isoprene and mixtures of these elastomers.
- a diene elastomer chosen from the group consisting of natural rubber (NR), synthetic polyisoprenes (IR), polybutadienes (BR) and butadiene copolymers, copolymers of isoprene and mixtures of these elastomers.
- Such copolymers are more preferably selected from the group consisting of butadiene-styrene copolymers (SBR), isoprene-butadiene copolymers (BIR), isoprene-styrene copolymers (SIR), isoprene-copolymers of butadiene-styrene (SBIR) and mixtures of such copolymers.
- SBR butadiene-styrene copolymers
- BIR isoprene-butadiene copolymers
- SIR isoprene-styrene copolymers
- SBIR isoprene-copolymers of butadiene-styrene
- the elastomers can be for example block, statistical, sequenced, microsequenced, and be prepared in dispersion or in solution; they may be coupled and / or starred or functionalized with a coupling agent and / or starring or functionalization.
- a coupling agent for example, there may be mentioned for example functional groups comprising a C-Sn bond or amino functional groups such as benzophenone for example;
- a reinforcing inorganic filler such as silica mention may be made, for example, of silanol or polysiloxane functional groups having a silanol end (as described, for example, in US Pat. No.
- alkoxysilane groups as described, for example, in US 5,977,238), carboxylic groups (as described, for example, in US 6,815,473 or US 2006/0089445) or polyether groups (as described for example in US 6,503,973).
- elastomers such as SBR, BR, NR or IR of the epoxidized type.
- Polybutadienes and in particular those having a 1,2-unit content of between 4% and 80%, or those having a cis-1,4 content of greater than 80%, polyisoprenes and copolymers of butadiene- styrene and in particular those having a styrene content of between 5% and 50% by weight and more particularly between 20% and 40%, a 1,2-butadiene content of the butadiene part of between 4% and 65%, a content of trans-1,4 bonds between 20% and 80%, butadiene-isoprene copolymers and in particular those having an isoprene content of between 5% and 90% by weight and a glass transition temperature ("Tg" - measured according to ASTM D3418-82) from -40 ° C.
- Tg glass transition temperature
- the isoprene-styrene copolymers and in particular those having a styrene content of between 5% and 50% by weight and a Tg of between -25 ° C. and -50 ° C.
- butadiene-styrene-isoprene copolymers those having a styrene content of between 5% and 50% by weight and more particularly of between 10% and 40%, and an isoprene content of between 15% and 60%> by weight and more particularly between 20%> and 50%>, a butadiene content of between 5% and 50%> by weight and more particularly between 20%> and 40%>, a content in units -1 , 2 of the butadiene part of between 4% and 85%, a content of trans-1,4 units of the butadiene part of between 6%> and 80%>, a content of -1,2 units plus -3,4 of the isoprenic part of between 5% and 70%> and a trans-1,4 content of the isoprene part of between 10% and 50%, and more generally any butadiene-styrene-isoprene copolymer having a Tg included between -20 ° C and -70 ° C.
- the diene elastomer is chosen from the group consisting of natural rubber, synthetic polyisoprenes and polybutadienes having a cis-1,4 bond ratio greater than 90%, butadiene-styrene copolymers and mixtures of these elastomers.
- the rubber composition comprises 50 to 100 phr of natural rubber or synthetic polyisoprene, said natural rubber or synthetic polyisoprene which can be used in particular in blending (mixing) with at most 50 phr a polybutadiene having a cis-1,4 bond ratio greater than 90%.
- the rubber composition comprises 50 to 100 phr of a polybutadiene having a cis-1,4 bond ratio greater than 90%, said polybutadiene being able to be used especially in a blend with at most 50 phr of natural rubber or synthetic polyisoprene.
- diene elastomers of the treads according to the invention could be associated, in a minor amount, synthetic elastomers other than diene, or even polymers other than elastomers, for example thermoplastic polymers.
- Another essential feature of the rubber composition of the invention is that it comprises more than 40 phr of a liquid plasticizer (at 20 ° C.) whose function is to soften the matrix by diluting the elastomer and the reinforcing filler; its Tg is by definition less than -20 ° C, preferably less than -40 ° C.
- a liquid plasticizer at 20 ° C.
- Tg is by definition less than -20 ° C, preferably less than -40 ° C.
- these plasticizers or these oils are liquids (that is to say, as a reminder, substances having the capacity to eventually take on the shape of their container) , in contrast to, in particular, hydrocarbon plasticizing resins which are inherently solid at room temperature.
- liquid plasticizers selected from the group consisting of naphthenic oils (low or high viscosity, including hydrogenated or not), paraffinic oils, MES oils (Medium Extracted Solvates), Treated Distillate Aromatic Extracts (TDAE) oils, mineral oils, vegetable oils, ethers plasticizers, ester plasticizers, phosphate plasticizers, sulphonate plasticizers and mixtures of these compounds.
- phosphate plasticizers for example, mention may be made of those containing from 12 to 30 carbon atoms, for example trioctyl phosphate.
- ester plasticizers By way of examples of ester plasticizers, mention may be made in particular of compounds selected from the group consisting of trimellitates, pyromellitates, phthalates, 1,2-cyclohexane dicarboxylates, adipates, azelates, sebacates, glycerol and mixtures of these compounds.
- triesters above there may be mentioned include glycerol triesters, preferably consisting predominantly (for more than 50%, more preferably more than 80% by weight) of an unsaturated fatty acid Ci 8 is that is to say selected from the group consisting of oleic acid, linoleic acid, linolenic acid and mixtures of these acids.
- the fatty acid used is more than 50% by weight, more preferably still more than 80% by weight. % by weight of oleic acid.
- oleic acid triesters are well known and have been described, for example, in application WO 02/088238, as plasticizers in tire treads.
- the level of liquid plasticizer in the composition of the invention is preferably in a range of 50 to 100 phr.
- compositions of the invention may also comprise, as solid plasticizer (at 20 ° C.), a hydrocarbon resin having a Tg greater than + 20 ° C., preferably greater than + 30 ° C. C, as described for example in applications WO 2005/087859, WO 2006/061064 and WO 2007/017060.
- Hydrocarbon resins are polymers well known to those skilled in the art, essentially based on carbon and hydrogen, which are therefore inherently miscible in the diene (s) elastomer compositions (s) when they are further qualified as “plasticizers". They have been described, for example, in the book “Hydrocarbon Resins” by R. Mildenberg, M. Zander and G. Collin (New York, VCH, 1997, ISBN 3-527-28617-9), chapter 5 of which is devoted their applications, in particular pneumatic rubber (5.5 “Rubber Tires and Mechanical Goods”). They may be aliphatic, aromatic or aliphatic / aromatic type that is to say based on aliphatic and / or aromatic monomers. They may be natural or synthetic, whether or not based on petroleum (if so, also known as petroleum resins). They are preferably exclusively hydrocarbon-based, that is to say they contain only carbon and hydrogen atoms.
- the plasticizing hydrocarbon resin has at least one, more preferably all, of the following characteristics: a Tg greater than 20 ° C (more preferably between 40 and 100 ° C);
- Mn a number-average molecular weight (Mn) of between 400 and 2000 g / mol (more preferentially between 500 and 1500 g / mol);
- the Tg is measured in a known manner by DSC (Differential Scanning Calorimetry), according to the ASTM D3418 (1999) standard.
- the macrostructure (Mw, Mn and Ip) of the hydrocarbon resin is determined by steric exclusion chromatography (SEC): solvent tetrahydrofuran; temperature 35 ° C; concentration 1 g / 1; flow rate 1 ml / min; filtered solution on 0.45 ⁇ porosity filter before injection; Moore calibration with polystyrene standards; set of 3 "WATERS” columns in series (“STYRAGEL” HR4E, HR1 and HR0.5); differential refractometer detection ("WATERS 2410") and its associated operating software (“WATERS EMPOWER”).
- the plasticizing hydrocarbon resin is chosen from the group consisting of cyclopentadiene homopolymer or copolymer resins (abbreviated to CPD), dicyclopentadiene homopolymer or copolymer resins (abbreviated to DCPD), homopolymer or terpene copolymer resins, C5 homopolymer or copolymer resins, C9 homopolymer or copolymer resins, and mixtures of these resins.
- CPD cyclopentadiene homopolymer or copolymer resins
- DCPD dicyclopentadiene homopolymer or copolymer resins
- C5 homopolymer or copolymer resins C9 homopolymer or copolymer resins
- copolymer resins are more preferably used those selected from the group consisting of (D) CPD / vinylaromatic copolymer resins, (D) CPD / terpene copolymer resins, copolymer resins (D) CPD / C5 cut, (D) CPD / C9 cut copolymer resins, terpene / vinylaromatic copolymer resins, terpene / phenol copolymer resins, C5 / vinylaromatic cut copolymer resins, C9 / vinylaromatic cut copolymer resins, and mixtures of these resins.
- pene here combines in a known manner the alpha-pinene, beta-pinene and limonene monomers; preferably, a limonene monomer is used which is present in a known manner in the form of three possible isomers: L-limonene (laevorotatory enantiomer), D-limonene (dextrorotatory enantiomer), or the dipentene, racemic of the dextrorotatory and levorotatory enantiomers. .
- Suitable vinylaromatic monomers are, for example, styrene, alpha-methylstyrene, ortho-, meta-, para-methylstyrene, vinyltoluene, para-tert-butylstyrene, methoxystyrenes, chlorostyrenes, hydroxystyrenes, vinylmesitylene, and the like. , divinylbenzene, vinylnaphthalene, any vinylaromatic monomer from a C 9 cut (or more generally from a C 8 to C 10 cut).
- the vinyl-aromatic compound is styrene or a vinylaromatic monomer derived from a C 9 cut (or more generally from a C 8 to C 10 cut).
- the vinylaromatic compound is the minor monomer, expressed as a mole fraction, in the copolymer under consideration.
- the content of hydrocarbon resin is preferably between 3 and 60 phr, more preferably between 3 and 40 phr, especially between 5 and 30 phr.
- the level of total plasticizer i.e., liquid plasticizer plus, where appropriate, solid hydrocarbon resin
- the level of total plasticizer is preferably between 40 and 100 phr, more preferably in a range of 50 to 80 phr.
- reinforcing filler known for its ability to reinforce a rubber composition that can be used for manufacturing tires, for example an organic filler such as carbon black, or a reinforcing inorganic filler such as silica to which is associated in a known manner a coupling agent.
- Such a reinforcing filler preferably consists of nanoparticles whose average size (in mass) is less than 500 nm, most often between 20 and 200 nm, in particular and preferably between 20 and 150 nm.
- Suitable carbon blacks are all carbon blacks, especially blacks conventionally used in tires or treads of tires (so-called pneumatic grade blacks).
- the reinforcing carbon blacks of the 100, 200 or 300 series for example blacks NI15, N134, N234, N326, N330, N339, N347, N375, will be mentioned more particularly.
- Carbon blacks could for example be already incorporated in the isoprene elastomer in the form of a masterbatch (see for example applications WO 97/36724 or WO 99/16600).
- organic fillers other than carbon blacks mention may be made of functionalized polyvinyl organic fillers as described in applications WO-A-2006/069792 and WO-A-2006/069793, WO-A-2008/003434. and WO-A-2008/003435.
- Reinforcing inorganic filler means any inorganic or mineral filler, irrespective of its color and origin (natural or synthetic), also called “white” filler, “clear” filler or even “non-black” filler. "As opposed to carbon black, capable of reinforcing on its own, with no other means than an intermediate coupling agent, a rubber composition for the manufacture of tires, in other words able to replace, in its function of reinforcement, a conventional carbon black of pneumatic grade; such a filler is generally characterized, in known manner, by the presence of hydroxyl groups (-OH) on its surface.
- -OH hydroxyl groups
- Suitable reinforcing inorganic fillers are in particular siliceous type mineral fillers, in particular silica (SiO 2) , or aluminous type, in particular alumina (Al 2 O 3 ),
- the silica used may be any reinforcing silica known from those skilled in the art, in particular any precipitated or fumed silica having a BET surface and a CTAB specific surface both less than 450 m 2 / g, preferably from 30 to 400 m 2 / g, especially between 60 and 300 m 2 / g
- HDS highly dispersible precipitated silicas
- the total reinforcing filler content is between 60 and 120 phr, in particular between 70 and 100 phr.
- the filler comprises silica, carbon black or a mixture of carbon black and silica.
- the reinforcing filler comprises predominantly carbon black; in such a case, the carbon black is present at a level preferably greater than 60 phr, associated or not with a reinforcing inorganic filler such as silica in a minority amount.
- the reinforcing filler comprises an inorganic filler, in particular silica, as a majority; in such a case, the inorganic filler, in particular silica, is present at a rate preferably greater than 70 phr, associated or not with carbon black in a minor amount; the carbon black, when present, is preferably used at a level of less than 20 phr, more preferably less than 10 phr (for example between 0.1 and 10 phr).
- the majority use of a reinforcing inorganic filler such as silica is also advantageous from the point of view of adhesion. on wet or snowy ground.
- the reinforcing filler comprises a blend of carbon black and reinforcing inorganic filler such as silica in similar amounts; in such a case, the level of inorganic filler, in particular silica, and the level of carbon black are preferably each between 25 and 75 phr, more particularly each between 30 and 50 phr.
- an at least bifunctional coupling agent (or bonding agent) is used in a well-known manner to ensure a sufficient chemical and / or physical connection between the inorganic filler (surface of its particles) and the diene elastomer.
- organosilanes or bifunctional polyorganosiloxanes are used.
- polysulfide silanes, called “symmetrical” or “asymmetrical” silanes according to their particular structure, are used, as described for example in the applications WO03 / 002648 (or US 2005/016651) and WO03 / 002649 (or US 2005/016650).
- x is an integer of 2 to 8 (preferably 2 to 5);
- A is a divalent hydrocarbon radical (preferably alkylene groups
- IC8 or arylene groups C 6 -C 2, especially in Cl- Cio alkylene, in particular C 1 -C 4, particularly propylene);
- the radicals R.1 which may be substituted or unsubstituted, which are identical to or different from one another, represent a Ci-Cs alkyl, C 5 -C 8 cycloalkyl or C 6 -C 18 aryl group (preferably C 1 -C 8 alkyl groups); -C 6 , cyclohexyl or phenyl, especially C 1 -C 4 alkyl groups, more particularly methyl and / or ethyl).
- the R radicals substituted or unsubstituted, identical or different, represent an alkoxyl group Ci-Cig cycloalkoxy or C 5 -C 8 (preferably a group selected from Ci-Cg alkoxyls and C 5 cycloalkoxyls -C 8 , more preferably still a group selected from C 1 -C 4 alkoxyls, in particular methoxyl and ethoxyl).
- polysulfurized silanes mention may be made more particularly of bis (3-trimethoxysilylpropyl) or bis (3-triethoxysilylpropyl) polysulfides.
- bis (3-triethoxysilylpropyl) tetrasulfide, abbreviated as TESPT, or bis (triethoxysilylpropyl) disulfide, abbreviated as TESPD is especially used.
- polysulfides in particular disulphides, trisulphides or tetrasulphides
- bis-monoethoxydimethylsilylpropyl tetrasulfide such as described in patent application WO 02/083782 (or US 2004/132880).
- the content of coupling agent is preferably between 2 and 12 phr, more preferably between 3 and 8 phr.
- the rubber compositions of the invention have the essential characteristic of comprising between 2 and 50 phr of hydrosulfide metal salt microparticles and between 2 and 50 phr of hollow microparticles (or microspheres) of at least one metal oxide, the term oxide including, of course, hydroxides.
- microparticles may be, for example, in the form of powder, microbeads, granules, beads or any other suitable densified form.
- a powder form is preferred for both types of microparticles.
- microparticles is meant by definition and in general size particles (ie, larger dimension in the case of anisometric particles) micrometer, that is to say, whose average size or median size (both expressed in weight) are between 1 ⁇ and 1 mm.
- the median size is between 2 ⁇ and 800 ⁇ , more preferably in a range from 5 to 200 ⁇ .
- the intended technical effect namely the creation of a suitable micro-roughness
- the rubber composition is used as a tread: in addition to a possible loss of aesthetics (particles too visible on the surface of the tread) and a risk of loosening, during rolling, relatively large tread elements it was found that the melting ice adhesion performance could be degraded.
- the microparticles have a median size between 2 ⁇ and 500 ⁇ , more preferably still in a range from 5 to 200 ⁇ . This area of particularly preferred size seems to correspond to an optimized compromise between on the one hand the desired surface roughness and on the other hand a good contact between the rubber composition and the ice.
- the level of each type of microparticles is preferably between 5 and 40.degree. pce, more preferably between 10 and 35 phr.
- the salt of the water-soluble microparticles is selected from the group consisting of chlorides, carbonates (including in particular hydroxycarbonates, bicarbonates), sulphates and mixtures of such salts. Even more preferentially, the salt chosen is a sulphate.
- the metal of the metal salt is an alkaline or alkaline-earth metal.
- group of alkali metals is that of the univalent chemical elements located in the first column of the Periodic Table and not including hydrogen (H); in order of increasing atomic number, the alkali metals are lithium, sodium, potassium, rubidium, cesium and francium.
- group of alkaline earth metals is that of the chemical elements of group 2 (or Ha) of the periodic table; in order of increasing atomic number, the alkaline earth metals are beryllium, magnesium, calcium, strontium, barium and radium.
- the metal of the water-soluble metal salt is selected from the group consisting of Na (sodium), K (potassium), Mg (magnesium), Ca (calcium) and mixtures of such metals. More preferably still, the metal is magnesium.
- the metal of the metal oxide is selected from the group consisting of aluminum, silicon, zirconium, transition metals and mixtures of such metals. By transition metal is meant more particularly the metals of the fourth period ranging from scandium to zinc, preferably titanium and zinc. Aluminum, silicon, titanium, zirconium and zinc are even more preferable.
- the metal oxide is chosen from the group consisting of aluminum oxides and / or hydroxides, oxides and / or hydroxides of silicon, oxides and / or hydroxides of aluminum and silicon, and mixtures of such oxides and / or hydroxides. More preferably still, the metal oxide used is an aluminosilicate.
- the operation consists in sieving a defined quantity of sample (for example 200 g) on a vibrating table for 30 min with different sieve diameters (for example, according to a progression reason equal to 1.26, with meshes of 1000, 800, 630, 500, 400, ... 100, 80, 63 ⁇ ); the refusals collected on each sieve are weighed on a precision scale; we deduce the% of refusal for each mesh diameter with respect to the total weight of product; the median (or median diameter) or mean (or mean diameter) size is finally calculated in a known manner from the histogram of the particle size distribution.
- the rubber compositions of the invention also comprise all or part of the usual additives normally used in elastomer compositions intended for the manufacture of tire treads, in particular for winter tires, such as for example such as anti-ozone waxes, chemical anti-ozonants, anti-oxidants, reinforcing resins, acceptors (eg phenolic novolac resin) or methylene donors (eg HMT or H3M), a crosslinking system based either of sulfur, either of sulfur and / or peroxide and / or bismaleimide donors, vulcanization accelerators, vulcanization activators.
- additives normally used in elastomer compositions intended for the manufacture of tire treads, in particular for winter tires such as for example such as anti-ozone waxes, chemical anti-ozonants, anti-oxidants, reinforcing resins, acceptors (eg phenolic novolac resin) or methylene donors (eg HMT or H3M), a crosslinking system based either of sulfur, either of
- compositions may also contain coupling activators when a coupling agent is used, inorganic filler recovery agents or, more generally, processing aid agents that are capable in a known manner, by means of an improvement of the dispersion of the filler in the rubber matrix and a lowering of the viscosity of the compositions, to improve their ability to implement in the green state;
- these agents are for example hydrolysable silanes such as alkyl-alkoxysilanes, polyols, polyethers, amines, hydroxylated or hydrolysable polyorganosiloxanes.
- the rubber compositions of the invention are manufactured in suitable mixers, using two successive preparation phases according to a general procedure well known to those skilled in the art: a first phase of work or thermomechanical mixing (sometimes referred to as “non-phase” phase). -productive ”) at high temperature, up to a maximum temperature of between 130 ° C and 200 ° C, preferably between 145 ° C and 185 ° C, followed by a second phase of mechanical work (sometimes called phase” Producer ”) at a lower temperature, typically below 120 ° C, for example between 60 ° C and 100 ° C, finishing phase during which is incorporated the crosslinking system or vulcanization.
- a first phase of work or thermomechanical mixing (sometimes referred to as "non-phase” phase).
- -productive ) at high temperature, up to a maximum temperature of between 130 ° C and 200 ° C, preferably between 145 ° C and 185 ° C
- a second phase of mechanical work sometimes called phase” Producer ”
- a method that can be used for the manufacture of such compositions comprises, for example, and preferably the following steps: to incorporate into the diene elastomer, in a mixer, more than 40 phr of a liquid plasticizer, between 50 and 150 phr of a reinforcing filler, between 2 and 50 phr of hydrosulfide metal salt microparticles and between 2 and 50 phr hollow microparticles of at least one metal oxide, by thermomechanically kneading the whole, in one or more times, until a maximum temperature of between 130 ° C and 200 ° C is reached;
- the first (non-productive) phase is carried out in a single thermomechanical step during which all the necessary constituents, the possible coating agents, are introduced into a suitable mixer such as a conventional internal mixer. or other complementary additives and other additives, with the exception of the crosslinking system.
- a suitable mixer such as a conventional internal mixer. or other complementary additives and other additives, with the exception of the crosslinking system.
- the low temperature crosslinking system is then incorporated, generally in an external mixer such as a roll mill; the whole is then mixed (productive phase) for a few minutes, for example between 5 and 15 min.
- the actual crosslinking system is preferably based on sulfur and a primary vulcanization accelerator, in particular a sulfenamide type accelerator.
- a primary vulcanization accelerator in particular a sulfenamide type accelerator.
- various known secondary accelerators or vulcanization activators such as zinc oxide, stearic acid, guanidine derivatives (especially diphenylguanidine), etc.
- the sulfur content is preferably between 0.5 and 3.0 phr, that of the primary accelerator is preferably between 0.5 and 5.0 phr.
- accelerator any compound capable of acting as accelerator for vulcanization of diene elastomers in the presence of sulfur, in particular thiazole-type accelerators and their derivatives, accelerators of the thiuram type, zinc dithiocarbamates.
- These accelerators are more preferably selected from the group consisting of 2-mercaptobenzothiazyl disulfide (abbreviated "MBTS”), N-cyclohexyl-2-benzothiazyl sulfenamide (abbreviated “CBS”), N, N-dicyclohexyl-2-benzothiazyl sulfenamide (“DCBS”), N-tert-butyl-2-benzothiazylsulfenamide (“TBBS”), N-tert-butyl-2-benzothiazylsulfenimide (“TBSI”), zinc dibenzyldithiocarbamate (“ZBEC”) and mixtures thereof. these compounds.
- MBTS 2-mercaptobenzothiazyl disulfide
- CBS N-cyclohexyl-2-benzothiazyl sulfenamide
- DCBS N-dicyclohexyl-2-benzothiazyl sulfenamide
- the final composition thus obtained is then calendered, for example in the form of a sheet or a plate, in particular for a characterization in the laboratory, or else extruded in the form of a rubber profile that can be used directly as a tread of a tire. winter.
- the vulcanization (or cooking) is conducted in a known manner at a temperature generally between 130 ° C and 200 ° C, for a sufficient time which may vary for example between 5 and 90 min depending in particular on the cooking temperature, the system of vulcanization adopted and the kinetics of vulcanization of the composition under consideration.
- the rubber compositions according to the invention described above may constitute only part of the tread of the tire according to the invention, at least for the portion (therefore carved) of the tread intended to come into contact with the road during the rolling of the tire.
- the invention relates to the rubber and tire compositions described above both in the green (i.e., before firing) and the fired (i.e., after crosslinking or vulcanization) state.
- the reinforcing filler carbon black, silica and its agent
- the initial batch temperature of which was approximately 60 ° C. associated coupling the liquid plasticizer
- the magnesium sulfate microparticles the hollow aluminosilicate microparticles
- the diene elastomer or diene elastomer cutting
- the various other ingredients with the exception of the vulcanization system; the mixer is thus filled to about 70% (% by volume).
- the mixture thus obtained is recovered, cooled and then sulfur and a sulfenamide type accelerator are incorporated on an external mixer (homo-finisher) at 30 ° C., mixing the whole (productive phase) for a suitable time (for example between 5 and 12 minutes).
- compositions are then subjected to a laboratory test consisting in measuring their coefficient of friction on ice.
- the principle is based on a rubber composition slider sliding at a given speed (for example 5 km / h) on an ice track with an imposed load (for example equal to 3 kg / cm 2 ).
- a given speed for example 5 km / h
- an imposed load for example equal to 3 kg / cm 2 .
- the surface of the test pad Prior to the test, the surface of the test pad is lapped by planing to a thickness of 0.5 mm, followed by a series of repeated sliding friction on real dry soil (asphalt) under the said imposed load (for example 3 kg / cm 2 ).
- the forces generated in the direction of advance (Fx) of the pad and perpendicular to the advance (Fz) are measured.
- the ratio Fx / Fz determines the coefficient of friction of the specimen on the ice.
- the temperature during the measurement is set at -2 ° C.
- composition C-1 a value greater than that of the control (composition C-1), arbitrarily set at 100, indicates an improved result, that is to say an aptitude at a shorter braking distance. It is found that the composition of the invention C-2 shows a significant improvement (gain of 10%) in the coefficient of friction on ice, compared to the control composition C-1.
- compositions according to the invention offer the tires and their treads an adhesion on melting ice which is improved.
- Table 1
- aluminosilicate powder (Fillite 200/7" from Japan Fillite Company) (median particle size: about 90 ⁇ );
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Tires In General (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1050284A FR2955328B1 (fr) | 2010-01-18 | 2010-01-18 | Composition de caoutchouc pour bande de roulement de pneumatique hiver |
PCT/EP2011/050268 WO2011086061A1 (fr) | 2010-01-18 | 2011-01-11 | Composition de caoutchouc pour bande de roulement de pneumatique hiver |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2526145A1 true EP2526145A1 (fr) | 2012-11-28 |
Family
ID=42310662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11700090A Withdrawn EP2526145A1 (fr) | 2010-01-18 | 2011-01-11 | Composition de caoutchouc pour bande de roulement de pneumatique hiver |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP2526145A1 (ja) |
JP (1) | JP5778176B2 (ja) |
CA (1) | CA2786223A1 (ja) |
EA (1) | EA201290670A1 (ja) |
FR (1) | FR2955328B1 (ja) |
WO (1) | WO2011086061A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10179479B2 (en) | 2015-05-19 | 2019-01-15 | Bridgestone Americas Tire Operations, Llc | Plant oil-containing rubber compositions, tread thereof and race tires containing the tread |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2993889B1 (fr) * | 2012-07-27 | 2014-08-22 | Michelin & Cie | Composition de caoutchouc thermo-expansible pour pneumatique |
KR101377338B1 (ko) | 2012-09-19 | 2014-03-25 | 금호타이어 주식회사 | 타이어트레드용 고무조성물 및 그의 타이어 |
FR2997409B1 (fr) * | 2012-10-30 | 2015-01-23 | Michelin & Cie | Pneumatique a adherence sur glace amelioree |
FR2997408B1 (fr) * | 2012-10-30 | 2015-01-23 | Michelin & Cie | Pneumatique a adherence sur glace amelioree |
FR2997407B1 (fr) | 2012-10-30 | 2015-01-23 | Michelin & Cie | Bandage pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible |
FR2998509A1 (fr) * | 2012-11-29 | 2014-05-30 | Michelin & Cie | Bandage pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible |
WO2014084403A1 (ja) * | 2012-11-30 | 2014-06-05 | コンパニー ゼネラール デ エタブリッスマン ミシュラン | 空気入りタイヤ用トレッド及びこのトレッドを有する空気入りタイヤ |
JP5995751B2 (ja) * | 2013-02-27 | 2016-09-21 | 住友ゴム工業株式会社 | 空気入りタイヤの使用方法 |
EP3027431B1 (en) * | 2013-07-31 | 2020-05-27 | Compagnie Générale des Etablissements Michelin | A pneumatic tire having a tread comprising milliparticles |
WO2015016390A1 (en) * | 2013-07-31 | 2015-02-05 | Compagnie Generale Des Etablissements Michelin | A pneumatic tire having a tread comprising milliparticles |
FR3015502B1 (fr) | 2013-12-19 | 2016-02-05 | Michelin & Cie | Pneu dont la bande de roulement comporte des elements de sculpture avec des parois laterales rigides contenant des microparticules hydrosolubles. |
FR3015501B1 (fr) | 2013-12-19 | 2017-05-26 | Michelin & Cie | Pneu dont la bande de roulement comporte des elements de sculpture avec des parois laterales rigides comportant un caoutchouc thermo-expansible a l'etat cru, ou caoutchouc mousse a l'etat cuit. |
FR3015503B1 (fr) | 2013-12-19 | 2016-02-05 | Michelin & Cie | Pneu dont la bande de roulement comporte des elements de sculpture avec des parois laterales rigides comportant des microparticules d'oxyde ou carbure metallique. |
JPWO2019131390A1 (ja) * | 2017-12-26 | 2020-01-16 | 住友ゴム工業株式会社 | スタッドレスタイヤ用トレッドゴム組成物 |
JP7275526B2 (ja) * | 2018-10-18 | 2023-05-18 | 住友ゴム工業株式会社 | タイヤ |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3878147A (en) | 1973-12-27 | 1975-04-15 | Du Pont | Composition for increasing the friction of surfaces on ice |
JPH02170840A (ja) * | 1988-12-23 | 1990-07-02 | Bridgestone Corp | タイヤトレッド用ゴム組成物 |
JP2894748B2 (ja) | 1989-11-17 | 1999-05-24 | 住友ゴム工業株式会社 | スタッドレスタイヤ |
JPH03265636A (ja) * | 1990-03-15 | 1991-11-26 | Yokohama Rubber Co Ltd:The | ゴム組成物 |
FR2740778A1 (fr) | 1995-11-07 | 1997-05-09 | Michelin & Cie | Composition de caoutchouc a base de silice et de polymere dienique fonctionalise ayant une fonction silanol terminale |
JP4234200B2 (ja) | 1996-04-01 | 2009-03-04 | キャボット コーポレイション | 新規なエラストマー複合体及びその製造方法 |
FR2765882B1 (fr) | 1997-07-11 | 1999-09-03 | Michelin & Cie | Composition de caoutchouc a base de noir de carbone ayant de la silice fixee a sa surface et de polymere dienique fonctionnalise alcoxysilane |
US5967211A (en) * | 1997-09-24 | 1999-10-19 | The Goodyear Tire & Rubber Company | Tire tread for ice traction |
CN1285454C (zh) | 1997-09-30 | 2006-11-22 | 卡伯特公司 | 弹性体复合共混料及其制备方法 |
EP0940435A1 (en) | 1998-03-03 | 1999-09-08 | Bridgestone Corporation | Rubber compositions for tire tread |
JP3055622B2 (ja) | 1998-11-27 | 2000-06-26 | 横浜ゴム株式会社 | 氷上性能を高めたタイヤトレッド用ゴム組成物及びそれを用いた空気入りタイヤ |
EP1127909B1 (fr) | 2000-02-24 | 2005-03-09 | Société de Technologie Michelin | Composition de caoutchouc vulcanisable, utilisable pour fabriquer un pneumatique, et pneumatique comprenant cette composition |
JP2001302848A (ja) * | 2000-04-25 | 2001-10-31 | Toyo Tire & Rubber Co Ltd | スタッドレスタイヤ用ゴム組成物 |
WO2001092402A1 (fr) | 2000-05-26 | 2001-12-06 | Societe De Technologie Michelin | Composition de caoutchouc utilisable comme bande de roulement de pneumatique |
JP2002060548A (ja) * | 2000-08-11 | 2002-02-26 | Yokohama Rubber Co Ltd:The | タイヤ用ゴム組成物 |
ATE330993T1 (de) | 2000-10-13 | 2006-07-15 | Michelin Soc Tech | Kautschukzusammensetzung mit einem polyfunktionellen organosilan als haftvermittler |
ES2256317T3 (es) | 2000-10-13 | 2006-07-16 | Societe De Technologie Michelin | Organosilano polifuncional utilizable como agente de acoplamiento y su procedimiento de obtencion. |
JP2002211203A (ja) | 2001-01-19 | 2002-07-31 | Sumitomo Rubber Ind Ltd | スタッドレスタイヤ |
DE60218446T2 (de) | 2001-03-12 | 2007-11-29 | Société de Technologie Michelin | Kautschukzusammensetzung für reifenlauffläche |
FR2823215B1 (fr) | 2001-04-10 | 2005-04-08 | Michelin Soc Tech | Pneumatique et bande de roulement de pneumatique comportant a titre d'agent de couplage un tetrasulfure de bis-alkoxysilane |
EP1404755A1 (fr) | 2001-06-28 | 2004-04-07 | Société de Technologie Michelin | Bande de roulement pour pneumatique renforcee d'une silice a tres basse surface specifique |
CN1547601B (zh) | 2001-06-28 | 2012-09-05 | 米其林技术公司 | 采用具有低比表面积的二氧化硅增强的轮胎胎面 |
FR2854404B1 (fr) | 2003-04-29 | 2005-07-01 | Michelin Soc Tech | Procede d'obtention d'un elastomere greffe a groupes fonctionnels le long de la chaine et compositions de caoutchouc |
EP1505112B1 (en) | 2003-08-06 | 2011-08-24 | Sumitomo Rubber Industries Limited | Rubber composition for tire and pneumatic tire using the same |
FR2866028B1 (fr) | 2004-02-11 | 2006-03-24 | Michelin Soc Tech | Systeme plastifiant pour composition de caoutchouc |
FR2877348B1 (fr) | 2004-10-28 | 2007-01-12 | Michelin Soc Tech | Systeme plastifiant pour composition de caoutchouc |
JP5253706B2 (ja) * | 2004-12-21 | 2013-07-31 | 株式会社ブリヂストン | ゴム組成物およびそれを用いた空気入りタイヤ |
FR2880354B1 (fr) | 2004-12-31 | 2007-03-02 | Michelin Soc Tech | Composition elastomerique renforcee d'une charge de polyvinylaromatique fonctionnalise |
FR2880349B1 (fr) | 2004-12-31 | 2009-03-06 | Michelin Soc Tech | Nanoparticules de polyvinylaromatique fonctionnalise |
FR2886304B1 (fr) | 2005-05-26 | 2007-08-10 | Michelin Soc Tech | Composition de caoutchouc pour pneumatique comportant un systeme de couplage organosilicique |
FR2886306B1 (fr) | 2005-05-26 | 2007-07-06 | Michelin Soc Tech | Composition de caoutchouc pour pneumatique comportant un agent de couplage organosiloxane |
FR2886305B1 (fr) | 2005-05-26 | 2007-08-10 | Michelin Soc Tech | Composition de caoutchouc pour pneumatique comportant un agent de couplage organosilicique et un agent de recouvrement de charge inorganique |
FR2889538B1 (fr) | 2005-08-08 | 2007-09-14 | Michelin Soc Tech | Systeme plastifiant pour compsition de caoutchouc. |
FR2903416B1 (fr) | 2006-07-06 | 2008-09-05 | Michelin Soc Tech | Composition elastomerique renforcee d'une charge de polymere vinylique non aromatique fonctionnalise |
FR2903411B1 (fr) | 2006-07-06 | 2012-11-02 | Soc Tech Michelin | Nanoparticules de polymere vinylique fonctionnalise |
FR2910903B1 (fr) | 2006-12-27 | 2009-03-06 | Michelin Soc Tech | Bande de roulement dont la composition comporte une poudre de gomme de guar |
FR2910904B1 (fr) | 2006-12-27 | 2009-03-06 | Michelin Soc Tech | Bande de roulement dont la composition comporte une poudre de gomme de xanthane |
FR2925913B1 (fr) * | 2007-12-27 | 2010-10-22 | Michelin Soc Tech | Composition de caoutchouc pour bande de roulement de pneumatique hiver |
FR2928647B1 (fr) * | 2008-03-13 | 2011-11-25 | Michelin Soc Tech | Composition de caoutchouc pour bande de roulement de pneumatique hiver |
-
2010
- 2010-01-18 FR FR1050284A patent/FR2955328B1/fr not_active Expired - Fee Related
-
2011
- 2011-01-11 WO PCT/EP2011/050268 patent/WO2011086061A1/fr active Application Filing
- 2011-01-11 EA EA201290670A patent/EA201290670A1/ru unknown
- 2011-01-11 CA CA2786223A patent/CA2786223A1/fr not_active Abandoned
- 2011-01-11 JP JP2012549302A patent/JP5778176B2/ja not_active Expired - Fee Related
- 2011-01-11 EP EP11700090A patent/EP2526145A1/fr not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO2011086061A1 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10179479B2 (en) | 2015-05-19 | 2019-01-15 | Bridgestone Americas Tire Operations, Llc | Plant oil-containing rubber compositions, tread thereof and race tires containing the tread |
Also Published As
Publication number | Publication date |
---|---|
CA2786223A1 (fr) | 2011-07-21 |
FR2955328B1 (fr) | 2013-03-08 |
EA201290670A1 (ru) | 2012-12-28 |
WO2011086061A1 (fr) | 2011-07-21 |
FR2955328A1 (fr) | 2011-07-22 |
JP5778176B2 (ja) | 2015-09-16 |
JP2013517356A (ja) | 2013-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2512826B1 (fr) | Pneumatique hiver a adherence sur glace amelioree | |
EP2655089B1 (fr) | Composition de caoutchouc pour bande de roulement de pneumatique | |
EP2307491B1 (fr) | Composition de caoutchouc pour bande de roulement de pneumatique hiver | |
CA2813516C (fr) | Composition de caoutchouc pour bande de roulement de pneumatique | |
WO2011086061A1 (fr) | Composition de caoutchouc pour bande de roulement de pneumatique hiver | |
EP2714425B1 (fr) | Pneumatique pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible | |
WO2011113731A1 (fr) | Composition de caoutchouc pour bande de roulement de pneumatique hiver | |
EP2512825A1 (fr) | Pneumatique hiver a adherence sur glace amelioree | |
EP2864134B1 (fr) | Composition de caoutchouc thermo-expansible et pneumatique pour vehicule dont la bande de roulement comporte une telle composition | |
EP2836544B1 (fr) | Composition de caoutchouc pour bande de roulement de pneumatique comportant des microparticules de sulfate de potassium | |
EP2914443B1 (fr) | Pneumatique à adhérence sur glace améliorée | |
WO2014082962A1 (fr) | Bandage pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120820 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MICHELIN RECHERCHE ET TECHNIQUE S.A. Owner name: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20190201 |