EP2520785B1 - Procedé d'estimation de la dilution du carburant dans l'huile d'un moteur à combustion interne - Google Patents

Procedé d'estimation de la dilution du carburant dans l'huile d'un moteur à combustion interne Download PDF

Info

Publication number
EP2520785B1
EP2520785B1 EP12305325.8A EP12305325A EP2520785B1 EP 2520785 B1 EP2520785 B1 EP 2520785B1 EP 12305325 A EP12305325 A EP 12305325A EP 2520785 B1 EP2520785 B1 EP 2520785B1
Authority
EP
European Patent Office
Prior art keywords
fuel
dilution
engine
regeneration
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12305325.8A
Other languages
German (de)
English (en)
Other versions
EP2520785A2 (fr
EP2520785A3 (fr
Inventor
Erwan Radenac
Alexis Brochot
Julien Durand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP2520785A2 publication Critical patent/EP2520785A2/fr
Publication of EP2520785A3 publication Critical patent/EP2520785A3/fr
Application granted granted Critical
Publication of EP2520785B1 publication Critical patent/EP2520785B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/10Indicating devices; Other safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M2250/00Measuring
    • F01M2250/60Operating parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/11Oil dilution, i.e. prevention thereof or special controls according thereto

Definitions

  • the invention relates to a method for estimating the dilution of the fuel in the oil of an internal combustion engine, more particularly to an engine equipped with a device for treating polluting emissions, which is regenerated periodically by post-combustion. fuel injection into the engine cylinders. It accurately determines the engine drain interval when a fuel dilution threshold in oil is reached.
  • the regeneration is generally obtained through a supply of fuel in the device, for example by post-injection into the engine cylinders. Amounts of fuel are injected into each cylinder long enough after the combustion top dead center of the cylinder to not participate in combustion. These quantities of fuel are removed from the engine, during the exhaust time of the cylinder considered, to the gas treatment device to regenerate it, that is to purge accumulated pollutants.
  • the dilution decreases under the effect of the evaporation of a portion of the diluted fuel since the end of the last regeneration that has taken place.
  • the dilution therefore undergoes alternating phases of increase and decrease, and overall, in the long term, it eventually increases to a point where the lubricating properties of the oil are degraded and the reliability of the engine is threatened. It is therefore important to be able to estimate the evolution of the dilution of such engine, in order to replace its oil when a maximum dilution threshold is reached.
  • the publication FR2860830 discloses a control method for regenerating a particulate filter when the dilution estimate is below a predetermined threshold.
  • the variation over time of the dilution ratio is evaluated by a first function representative of the evaporation of the fuel when no regeneration is in progress, and by a second function when a regeneration is in progress, thanks to to maps that are functions of the rotational speed and the load of the engine.
  • the publication FR2860830 discloses a control method for improving the estimation of the decrease in the dilution between two regeneration phases, by which the lower dilution rate is limited to a threshold which is a fraction of the estimated dilution rate at the end of a regeneration phase, for example a fraction of the average of the maximum values of the dilution ratio reached over a predefined number of previous regenerations.
  • the publication FR2866957 discloses a method for estimating the fuel dilution ratio in the oil of an internal combustion engine equipped with a flue gas treatment device requiring regeneration phases by fuel injection, according to which it is estimated the dilution ratio as a function of the operating mode of the engine, in which, apart from the regeneration phases, the variation of the dilution ratio at each instant is calculated according to a value representative of the evaporation temperature of the fuel diluted in the engine oil and the time elapsed since the end of the last regeneration phase. But this estimate of the variation of the dilution ratio does not take into account a set of parameters including the dilution ratio at this instant, a predetermined rate constant, the enthalpy of evaporation of the fuel and the constant of the perfect gases.
  • the invention aims to remedy the defects of known methods, by proposing a method for estimating the variation of the more precise dilution between two regeneration phases. To do this, it proposes to calculate the variation of fuel evaporation between two neighboring instants according to a kinetic law of order 1, taking into account the time elapsed since the end of the last regeneration.
  • the figure 1 represents an internal combustion engine 1, for example a diesel engine, of which only one cylinder has been drawn in section.
  • the engine 1 is supercharged by a turbocharger 2, and its exhaust gas is treated by an exhaust gas treatment device 3.
  • the engine 1 is supplied with air by an air circuit comprising an air intake 4, a compressor 5 of the turbocharger 2, and an intake duct 6, one end of which opens into a combustion chamber 7 of the engine.
  • the chamber 7 receives at least one injector 8, which injects fuel, for example diesel fuel, into the chamber 7 for combustion with air.
  • the exhaust gases produced by the combustion in the chamber 7 are discharged to a turbine 9 of the turbocharger 2 via an exhaust manifold 10.
  • the gases pass through the turbine 9, an exhaust duct 11, and the treatment device 3. They are finally discharged to the outside atmosphere by a muffler 12.
  • the treatment device 3 comprises, for example, inside a same outer casing, a catalyst which continuously oxidizes certain pollutants (unburned hydrocarbons HC and carbon monoxide CO) present in the exhaust gases, and a filter particle trap which stores the soot emitted by the engine 1, and burns when a predetermined mass is reached.
  • Two pressure sensors 13 and 14 are respectively located at the inlet and at the outlet of the treatment device 3. The pressure drop between the inlet and the outlet of the treatment device 3 allows the mass of stored soot to be evaluated indirectly. in the treatment device 3, more precisely in its particle filter.
  • the operation of the engine 1 is controlled by a computer 15 connected to a number of sensors, comprising at least the pressure sensors 13 and 14, and a number of actuators, comprising at least the injector 8 .
  • the computer 15 injects into the combustion chamber 7 a quantity of fuel corresponding to a set torque.
  • This setpoint can be a function of the speed of rotation of the engine and depression of the accelerator pedal (not shown) of the vehicle (not shown) on which is mounted the engine 1.
  • the fuel generally begins to be introduced before the top dead center of combustion of each engine cylinder 1, and it is fully burned.
  • the treatment device 3 stores the soot emitted by the engine 1 but does not eliminate them.
  • the computer 15 triggers a regeneration phase of the treatment device 3 in order to burn the stock of accumulated soot. For this purpose, in addition to the fuel injected into the chamber 7 according to the requested torque setpoint, the computer 15 triggers a fuel injection post-injection.
  • the figure 2 illustrates the evolution of the fuel dilution in the engine oil 1 over time.
  • the dilution of the fuel that is to say the percentage of fuel contained in the oil, is no.
  • the motor is in a normal operating mode, that is to say outside regeneration of the particulate filter.
  • a regeneration of the filter is triggered.
  • the combustion of soot accumulated in the filter continues until time t 2 .
  • the dilution of the oil increases from 0 to a value C 2 .
  • the regeneration stops, and there is no further fuel injection into the engine.
  • the dilution then decreases under the effect of evaporation of the fuel.
  • the decrease continues until time t 3 when a new regeneration is necessary.
  • the dilution reaches a value C 3 which is lower than the value C 2 but which does not recover the zero value of the instant t 0 .
  • a new regeneration of the filter is triggered. Soot combustion continues until time t4. From time t 3 to time t4, the dilution of the oil increases from C 3 to a value C 4 greater than C2. At time t4, the regeneration stops again. The dilution decreases until time t 5 when the next regeneration is necessary. From time t 4 to time t 5 , the dilution decreases from the value C 4 to a value C 5 which remains greater than the value C 3 .
  • the dilution therefore passes through a succession of alternating phases of increase and decrease, with an overall increase of the level in the long term.
  • the duration of the periods during which the filter is not regenerated, successively between t 0 and t 1 , between t 2 and t 3 , and between t 4 and t 5 on the figure 2 may vary depending on the driving conditions (urban, motorway, etc.) of the vehicle on which the engine is mounted.
  • the dilution values observed at the beginning of each regeneration, respectively C 3 and C 5 on the figure 2 depend on the duration of these periods, that is to say the time elapsed since the end of each regeneration.
  • the figure 3 represents the flowchart of an embodiment of the method according to the invention.
  • the method comprises an initialization step 100, during which the estimation of the dilution ratio C is initialized, either at a zero value if the engine oil 1 is new, or at a value that has been previously stored in the engine. calculator 15.
  • the method comprises a test step 110, during which the calculator determines whether a regeneration of the treatment device 3 is in progress, for example by checking for the presence of a fuel post-injection.
  • the test then directs to a step 120 if no regeneration is in progress, or to a step 130 in the opposite case.
  • the computer also increments and stores in a counter the time t elapsed since the end of the last regeneration when the test determines that no regeneration is in progress.
  • step 120 the variation of the dilution dC during the time interval, or no time, dt is calculated as the product of a Frégé regeneration function and the time step dt.
  • This Frégé regeneration function can, for example, be mapped according to engine parameters such as the rotational speed and the fuel flow.
  • the speed parameter k of such a reaction depends on the evaporation temperature T and the activation energy E a of the reaction, that is to say on the enthalpy of vaporization of the reaction.
  • the representative value of the evaporation temperature of the fuel T is not the temperature of the core oil as measured or conventionally estimated on the engines, but rather the coolant temperature, so-called water temperature circulating in the engine 1.
  • This temperature is indeed closer to the temperature of the evaporation surface of the fuel. It can be measured by a sensor (not shown on the figure 1 ).
  • the evaporation enthalpy E a is a function of the time t since the end of the last regeneration, since it depends on the composition of the fuel, more precisely on the proportion of heavy hydrocarbons contained in the fuel. This proportion increases over time, with the lighter hydrocarbons evaporating first.
  • the evaporation enthalpy E varies over a several hour time interval, but its variation is insensitive over a period, for example several minutes, far exceeding the time step dt of calculation, it may be in the order of 100 milliseconds.
  • the variation dC of the dilution at time t is calculated using equation 6, in which the ratio E at R of the evaporation enthalpy divided by the perfect gas constant is calculated by interpolation at from a table giving different values of this report E at R for different values of the time t elapsed since the end of the last regeneration.
  • the speed constant k 0 and the table of the values of the ratios are determined experimentally.
  • - E at R the evaporation enthalpy E divided by the gas constant R by a series of tests at different evaporating temperatures T and for different times t, in which is measured by gas chromatography the residual dilution C ( t) , starting from an initial dilution C 0 which is measured beforehand.
  • the tests are carried out for water temperatures of 60 ° C., 80 ° C. and 100 ° C., and for periods of 4 hours, 6 hours, 8 hours and 15 hours. Beyond 15 hours, it is not necessary to make additional measurements, because the fuel contains almost only volatile hydrocarbon compounds, so that the evaporation enthalpy E has changed little.
  • Equation 9 indicates that it is a straight line whose speed constant ln (k 0 ) is computed as the ordinate at the origin, and the ratio - E at R e evaporation enthalpy divided by the perfect gas constant R as the slope of this line.
  • the method comprises a step 140 during which the new dilution ratio C (t + dt) is calculated by adding to the dilution ratio C (t) the estimate of the variation of the dC rate during the time step dt carried out at step 120 or 130.
  • the method comprises a step 150 in which the new dilution ratio C is compared with a predetermined threshold S. If it is higher, the method can trigger an alert on the vehicle dashboard during a step 160 of the method, to warn the driver of the vehicle that it is necessary to drain the engine oil. In the opposite case, the flow of a time step dt is expected at step 170, before proceeding to a new calculation step by resuming at step 110.
  • the invention proposes a method for estimating the fuel dilution ratio in the oil of an internal combustion engine equipped with a flue gas treatment device requiring regeneration phases by post-injection of fuel.
  • the dilution ratio C is estimated as a function of the operating mode of the engine.
  • the variation of the dilution ratio dC is calculated from a set of parameters comprising at least one value representative of the evaporation temperature T of the fuel diluted in the engine oil, and of the time t elapsed since the end of the last regeneration phase.
  • This invention has many advantages. By precisely estimating the evaporation of the fuel, it is also precisely estimated the dilution C of the fuel in the engine oil and it is possible to change the engine oil at the right moment, that is to say, not too late, neither too early. This avoids endangering the reliability of the engine or unnecessarily increasing the costs of engine maintenance.

Description

  • L'invention concerne un procédé d'estimation de la dilution du carburant dans l'huile d'un moteur à combustion interne, plus particulièrement d'un moteur équipé d'un dispositif de traitement des émissions polluantes, qui est régénéré périodiquement par post-injection de carburant dans les cylindres du moteur. Elle permet de déterminer avec précision l'intervalle de vidange du moteur lorsqu'un seuil de dilution du carburant dans l'huile est atteint.
  • De nombreux moteurs modernes sont équipés de dispositifs de traitement des gaz d'échappement, qui fonctionnent de manière séquentielle. La plupart des moteurs diesel, par exemple, sont équipés d'un filtre à particules. En fonctionnement normal, ces dispositifs piègent les polluants mais ne les traitent pas. Périodiquement, lorsqu'un paramètre représentatif de la quantité de polluants accumulés, par exemple la chute de pression dans le dispositif, atteint une valeur prédéfinie, une phase dite de régénération est déclenchée par un calculateur du moteur, au cours de laquelle les réglages du moteur sont modifiés pour traiter et éliminer les polluants.
  • De manière connue, la régénération est généralement obtenue grâce à un apport de carburant dans le dispositif, par exemple par post-injection dans les cylindres du moteur. Des quantités de carburant sont injectées dans chaque cylindre assez longtemps après le point mort haut de combustion du cylindre pour qu'elles ne participent pas à la combustion. Ces quantités de carburant sont évacuées du moteur, lors du temps d'échappement du cylindre considéré, vers le dispositif de traitement des gaz pour le régénérer, c'est-à-dire pour le purger des polluants accumulés.
  • Toutefois, une fraction du carburant injecté lors des phases de régénération pénètre dans l'huile, notamment à travers les interstices entre le carter-cylindres et les pistons, et elle se dilue dans l'huile. La dilution, c'est-à-dire le taux de carburant contenu dans l'huile, augmente ainsi à chaque fois qu'une phase de régénération est déclenchée.
  • Entre deux phases de régénérations consécutives, la dilution baisse sous l'effet de l'évaporation d'une partie du carburant dilué depuis la fin de la dernière régénération qui a eu lieu. La dilution subit donc des phases alternées d'augmentation et de diminution, et globalement, à long terme, elle finit par augmenter à un point tel que les propriétés lubrifiantes de l'huile sont dégradées et que la fiabilité du moteur est menacée. Il est donc important de pouvoir estimer l'évolution de la dilution d'un tel moteur, afin de remplacer son huile lorsqu'un seuil maximal de dilution est atteint.
  • On connaît plusieurs méthodes qui visent à estimer la dilution du carburant dans l'huile, pendant et entre les phases de régénération.
  • La publication FR2860830 , par exemple, divulgue un procédé de commande autorisant la régénération d'un filtre à particules quand l'estimation de la dilution est inférieure à un seuil prédéterminé. Dans ce procédé, la variation dans le temps du taux de dilution est évaluée par une première fonction représentative de l'évaporation du carburant lorsqu'aucune régénération n'est en cours, et par une deuxième fonction lorsqu'une régénération est en cours, grâce à des cartographies qui sont des fonctions du régime de rotation et de la charge du moteur.
  • La publication FR2860830 divulgue un procédé de commande visant à améliorer l'estimation de la baisse de la dilution entre deux phases de régénérations, par lequel on limite le taux inférieur de dilution à un seuil qui est une fraction du taux de dilution estimé à la fin d'une phase de régénération, par exemple une fraction de la moyenne des valeurs maximales du taux de dilution atteintes sur un nombre prédéfini de régénérations précédentes.
  • Ces méthodes permettent d'estimer correctement l'augmentation de la dilution du carburant dans l'huile pendant les phases de régénération, mais elles manquent de précision en ce qui concerne la baisse de la dilution entre deux phases de régénération, car elles ne tiennent pas compte du temps écoulé depuis la fin de la dernière phase de régénération. Or, la vitesse d'évaporation du carburant évolue dans le temps, à cause du changement progressif de composition du carburant dilué dans l'huile. Les composés hydrocarbures légers du carburant s'évaporent en premier. Progressivement, le pourcentage de composés lourds et peu volatils contenus dans le carburant augmente, et la vitesse d'évaporation diminue. Les modèles existants faussent donc l'estimation de l'évaporation entre deux régénérations. Ils peuvent conduire à sous-estimer la dilution, ce qui entraîne un risque de fiabilité pour le moteur, ou à la surestimer, ce qui conduit à vidanger le moteur plus tôt que nécessaire et donc à augmenter inutilement son coût d'entretien.
  • La publication FR2866957 divulgue un procédé d'estimation du taux de dilution de carburant dans l'huile d'un moteur à combustion interne équipé d'un dispositif de traitement des gaz de combustion nécessitant des phases de régénération par post-injection de carburant, selon lequel on estime le taux de dilution en fonction du mode de fonctionnement du moteur, dans lequel, en dehors des phases de régénération, la variation du taux de dilution à chaque instant est calculée en fonction d'une valeur représentative de la température d'évaporation du carburant dilué dans l'huile du moteur et du temps écoulé depuis la fin de la dernière phase de régénération. Mais cette estimation de la variation du taux de dilution ne prend pas en compte un ensemble de paramètres comprenant le taux de dilution à cet instant, une constante de vitesse prédéterminée, l'enthalpie d'évaporation du carburant et la constante des gaz parfaits.
  • L'invention vise à remédier aux défauts des procédés connus, en proposant un procédé d'estimation de la variation de la dilution plus précis entre deux phases de régénérations. Elle propose pour cela de calculer la variation de l'évaporation du carburant entre deux instants voisins selon une loi cinétique d'ordre 1, en tenant compte du temps écoulé depuis la fin de la dernière régénération.
  • D'autres caractéristiques et avantages de la présente invention apparaîtront clairement à la lecture d'un mode de réalisation non limitatif de celle-ci, en se reportant aux dessins annexés sur lesquels :
    • la figure 1 représente schématiquement un moteur à combustion interne équipé d'un dispositif de traitement des gaz d'échappement, apte à la mise en oeuvre du procédé selon l'invention,
    • la figure 2 représente l'évolution temporelle de la dilution du carburant dans l'huile d'un tel moteur, et
    • la figure 3 représente le logigramme du procédé d'estimation de la dilution du carburant dans l'huile selon l'invention.
  • La figure 1 représente un moteur à combustion interne 1, par exemple un moteur diesel, dont un seul cylindre a été dessiné en coupe. Le moteur 1 est suralimenté par un turbocompresseur 2, et ses gaz d'échappement sont traités par un dispositif de traitement 3 des gaz d'échappement.
  • Le moteur 1 est alimenté en air par un circuit d'air comprenant une prise d'air 4, un compresseur 5 du turbocompresseur 2, et un conduit d'admission 6 dont une extrémité débouche dans une chambre de combustion 7 du moteur. La chambre 7 reçoit au moins un injecteur 8, qui injecte du carburant, par exemple du gazole, dans la chambre 7 pour sa combustion avec l'air.
  • Les gaz d'échappement produits par la combustion dans la chambre 7 sont évacués vers une turbine 9 du turbocompresseur 2 par l'intermédiaire d'un collecteur d'échappement 10. Les gaz traversent la turbine 9, un conduit d'échappement 11, et le dispositif de traitement 3. Ils sont finalement évacués vers l'atmosphère extérieure par un pot d'échappement 12.
  • Le dispositif de traitement 3 comprend par exemple, à l'intérieur d'une même enveloppe extérieure, un catalyseur qui oxyde de manière continue certains polluants (hydrocarbures imbrûlés HC et monoxyde de carbone CO) présents dans les gaz d'échappement, et un filtre à particules qui permet de stocker les suies émises par le moteur 1, et de les brûler quand une masse prédéterminée est atteinte. Deux capteurs de pression 13 et 14 sont implantés respectivement à l'entrée et à la sortie du dispositif de traitement 3. La chute de pression entre l'entrée et la sortie du dispositif de traitement 3 permet d'évaluer indirectement la masse de suies stockées dans le dispositif de traitement 3, plus précisément dans son filtre à particules.
  • De manière connue, le fonctionnement du moteur 1 est piloté par un calculateur 15 relié à un certain nombre de capteurs, comprenant au moins les capteurs de pression 13 et 14, et à un certain nombre d'actionneurs, comprenant au moins l'injecteur 8.
  • En fonctionnement normal, c'est-à-dire en dehors des phases de régénération du filtre à particules, le calculateur 15 injecte dans la chambre de combustion 7 une quantité de carburant correspondant à une consigne de couple. Cette consigne peut être une fonction du régime de rotation du moteur et de l'enfoncement de la pédale d'accélérateur (non-représentée) du véhicule (non-représenté) sur lequel est monté le moteur 1. Le carburant commence généralement à être introduit avant le point mort haut de combustion de chaque cylindre du moteur 1, et il est entièrement brûlé. Dans ce mode de fonctionnement, le dispositif de traitement 3 stocke les suies émises par le moteur 1 mais ne les élimine pas.
  • Lorsque la différence de pression mesurée par les capteurs 13 et 14 atteint un seuil prédéterminé, le calculateur 15 déclenche une phase de régénération du dispositif de traitement 3 afin de brûler le stock de suies accumulées. A cet effet, en complément du carburant injecté dans la chambre 7 suivant la consigne de couple demandée, le calculateur 15 déclenche une post-injection de carburant.
  • Plus précisément, il injecte dans la chambre 7, assez longtemps après le point mort haut de chaque cylindre, une quantité de carburant qui ne participe pas à la combustion, c'est-à-dire qu'elle n'est pas brûlée pour produire un couple moteur. Cette quantité de carburant est évacuée presque en totalité dans le collecteur d'échappement 10, vers le dispositif de traitement 3 où elle brûle les suies qui y sont stockées.
  • Toutefois une petite partie du carburant injecté tardivement dans le cylindre pénètre et se dilue dans l'huile du moteur, notamment dans le film d'huile qui lubrifie les parois des cylindres du moteur 1, et à travers les interstices entre les pistons et les cylindres du moteur 1.
  • La figure 2 illustre l'évolution de la dilution du carburant dans l'huile du moteur 1 au cours du temps. A un instant t0 où l'huile du moteur est neuve et où le dispositif de traitement 3 est soit neuf, soit régénéré, la dilution du carburant, c'est-à-dire le pourcentage de carburant contenu dans l'huile, est nul.
  • Entre les instants t0 et t1 , le moteur est dans un mode de fonctionnement normal, c'est-à-dire hors régénération du filtre à particules. A l'instant t1 , une régénération du filtre est déclenchée. La combustion des suies accumulées dans le filtre se poursuit jusqu'à l'instant t2. De l'instant t1 à l'instant t2 , la dilution de l'huile augmente de 0 jusqu'à une valeur C2. A l'instant t2 , la régénération s'arrête, et il n'y a plus de post-injection de carburant dans le moteur. La dilution diminue alors sous l'effet de l'évaporation du carburant. La baisse se poursuit jusqu'à l'instant t3 où une nouvelle régénération est nécessaire. La dilution atteint une valeur C3 qui est plus faible que la valeur C2 mais qui ne retrouve pas la valeur nulle de l'instant t0.
  • A l'instant t3, une nouvelle régénération du filtre est déclenchée. La combustion des suies se poursuit jusqu'à l'instant t4. De l'instant t3 à l'instant t4, la dilution de l'huile augmente de C3 jusqu'à une valeur C4 supérieure à C2. A l'instant t4, la régénération s'arrête à nouveau. La dilution baisse jusqu'à l'instant t5 où la régénération suivante est nécessaire. De l'instant t4 à l'instant t5 , la dilution baisse de la valeur C4 à une valeur C5 qui reste supérieure à la valeur C3 .
  • La dilution passe donc par une succession de phases alternées d'augmentation et de diminution, avec une augmentation globale du niveau à long terme. La durée des périodes pendant lesquelles le filtre n'est pas régénéré, successivement comprise entre t0 et t1 , entre t2 et t3 , et entre t4 et t5 sur la figure 2, peut varier en fonction des conditions de roulage (urbain, autoroutier, etc.) du véhicule sur lequel le moteur est monté. Les valeurs de dilution observées au début de chaque régénération, respectivement C3 et C5 sur la figure 2, dépendent de la durée de ces périodes, c'est-à-dire du temps écoulé depuis la fin de chaque régénération.
  • La figure 3 représente l'organigramme d'un mode de réalisation du procédé selon l'invention. Le procédé comprend une étape d'initialisation 100, lors de laquelle l'estimation du taux de dilution C est initialisée, soit à une valeur nulle si l'huile du moteur 1 est neuve, soit à une valeur qui a été mémorisée précédemment dans le calculateur 15.
  • Le procédé comprend une étape de test 110, au cours de laquelle le calculateur détermine si une régénération du dispositif de traitement 3 est en cours, par exemple en vérifiant la présence d'une post-injection de carburant. Le test oriente alors vers une étape 120 si aucune régénération n'est en cours, ou vers une étape 130 dans le cas contraire. A cette étape 110, le calculateur incrémente et mémorise également dans un compteur le temps t écoulé depuis la fin de la dernière régénération lorsque le test détermine qu'aucune régénération n'est en cours.
  • Au cours de l'étape 120, la variation de la dilution dC pendant l'intervalle de temps, ou pas de temps, dt est calculée comme le produit d'une fonction de régénération Frégé et du pas de temps dt. Cette fonction de régénération Frégé peut, par exemple, être cartographiée en fonction de paramètres de moteur tels que le régime de rotation et le débit de carburant.
  • Au cours de l'étape 130, la variation de la dilution dC pendant le pas de temps dt est calculée comme le produit de l'opposé d'une fonction d'évaporation Fevap et du pas de temps dt, par l'équation 1 suivante : dC = Fevap × dt
    Figure imgb0001
  • Pour effectuer le calcul précédent, la fonction d'évaporation Fevap est déterminée par l'équation 2 suivante : Fevap = C t × k 0 e E a RT
    Figure imgb0002
    ,équation dans laquelle :
    • C(t) désigne la dilution au temps t,
    • k0 désigne une constante de vitesse prédéterminée,
    • Ea désigne l'enthalpie d'évaporation du carburant,
    • R désigne la constante des gaz parfaits, et
    • T désigne une valeur représentative de la température d'évaporation du carburant.
  • Cette dernière équation est basée sur le modèle physique suivant : on modélise l'évaporation du carburant par une loi cinétique d'ordre 1, selon l'équation 3 suivante : dC dt = k × C t
    Figure imgb0003
    , formule dans laquelle
    • k désigne un paramètre de vitesse de la réaction d'évaporation, et
    • dC dt
      Figure imgb0004
      désigne le taux de variation instantané de la dilution C.
  • Cette équation indique que la vitesse d'évaporation du carburant dC dt
    Figure imgb0005
    est proportionnelle à sa concentration C(t), à chaque instant.
  • De manière connue, le paramètre de vitesse k d'une telle réaction dépend de la température d'évaporation T et de l'énergie d'activation Ea de la réaction, c'est-à-dire de l'enthalpie de vaporisation du carburant, selon l'équation 4 : k = k 0 e Ea RT
    Figure imgb0006
    , formule dans laquelle k0 désigne la constante de vitesse de la réaction.
  • A partir de l'équation 3, on obtient l'équation 5 suivante pour un petit pas de temps dt : dC = k × C t × dt
    Figure imgb0007
  • En combinant l'équation 5 avec l'équation 4, on obtient l'équation 6 suivante : dC = C t × k 0 e E a RT × dt
    Figure imgb0008
    , équation équivalente à l'équation 1 dans laquelle la fonction Fevap est calculée selon l'équation 2.
  • Avantageusement, on prend pour valeur représentative de la température d'évaporation du carburant T, non pas la température de l'huile à coeur telle qu'elle est mesurée ou estimée classiquement sur les moteurs, mais plutôt la température du liquide de refroidissement, dite température d'eau, circulant dans le moteur 1. Cette température est en effet plus proche de la température de la surface d'évaporation du carburant. Elle peut être mesurée par un capteur (non-représenté sur la figure 1).
  • L'enthalpie d'évaporation Ea est une fonction du temps t écoulé depuis la fin de la dernière régénération, car elle dépend de la composition du carburant, plus précisément de la proportion d'hydrocarbures lourds contenus dans le carburant. Cette proportion augmente dans le temps, les hydrocarbures les plus légers s'évaporant en premier. Par exemple, l'enthalpie d'évaporation Ea varie sur un intervalle de temps de plusieurs heures, mais sa variation est insensible sur une durée, par exemple quelques minutes, dépassant largement le pas de temps dt de calcul, ce dernier pouvant être de l'ordre de 100 millisecondes.
  • Selon l'invention, on procède au calcul de la variation dC de la dilution à l'instant t en utilisant l'équation 6, dans laquelle le rapport E a R
    Figure imgb0009
    de l'enthalpie d'évaporation divisée par la constante des gaz parfaits est calculé par interpolation à partir d'une table donnant différentes valeurs de ce rapport E a R
    Figure imgb0010
    pour différentes valeurs du temps t écoulé depuis la fin de la dernière régénération.
  • Avantageusement, on détermine expérimentalement la constante de vitesse k0 et la table des valeurs des rapports E a R
    Figure imgb0011
    de l'enthalpie d'évaporation Ea divisée par la constante des gaz parfaits R, par une série d'essais à différentes températures d'évaporation T et pour différents temps t ,au cours desquels on mesure par chromatographie gazeuse la dilution résiduelle C(t), partant d'une dilution initiale C0 qui est mesurée au préalable. Par exemple, les essais sont réalisés pour des températures d'eau de 60°C, 80°C et 100°C, et pour des durées de 4 h, 6 h, 8 h et 15 heures. Au-delà de 15 heures, il n'est pas utile de faire des mesures supplémentaires, car le carburant ne contient presque plus que des composés hydrocarbures peu volatils, si bien que l'enthalpie d'évaporation Ea évolue peu.
  • A partir des différentes mesures obtenues C(t) à différentes températures T et pour différents temps t, la constante de vitesse k0 et les valeurs des rapports E a R
    Figure imgb0012
    de l'enthalpie d'évaporation Ea divisée par la constante des gaz parfaits R peuvent se calculer par la méthode mathématique suivante :
    On réécrit l'équation 6 sous la forme de l'équation 7 suivante : dC C = k 0 e E a RT × dt
    Figure imgb0013
  • Par intégration entre le début de l'essai et le temps t de la mesure, on obtient l'équation 8 : ln C ln C 0 = k 0 e Ea RT × t
    Figure imgb0014
    , équation dont on tire finalement l'équation 9 : ln ln C 0 ln C t = ln k 0 E a R × 1 T
    Figure imgb0015
  • On représente sur un graphique à deux dimensions la fonction qui lie en ordonnée ln ln C 0 ln C t
    Figure imgb0016
    à 1 T
    Figure imgb0017
    en abscisse. L'équation 9 indique qu'il s'agit d'une droite dont on calcule, de manière classique, la constante de vitesse ln(k0) comme l'ordonnée à l'origine, et le rapport E a R
    Figure imgb0018
    de l'enthalpie d'évaporation Ea divisée par la constante des gaz parfaits R comme la pente de cette droite.
  • Le procédé comprend une étape 140 au cours de laquelle le nouveau taux de dilution C(t+dt) est calculé en ajoutant au taux de dilution C(t) l'estimation de la variation du taux dC pendant le pas de temps dt réalisée à l'étape 120 ou 130.
  • Le procédé comprend une étape 150 au cours de laquelle le nouveau taux de dilution C est comparé à un seuil S prédéterminé. Si il est supérieur, le procédé peut déclencher une alerte au tableau de bord du véhicule au cours d'une étape 160 du procédé, afin de prévenir le conducteur du véhicule qu'il est nécessaire de vidanger l'huile du moteur. Dans le cas contraire, on attend l'écoulement d'un pas de temps dt à l'étape 170, avant de procéder à un nouveau pas de calcul en reprenant à l'étape 110.
  • En résumé, l'invention propose un procédé d'estimation du taux de dilution de carburant dans l'huile d'un moteur à combustion interne équipé d'un dispositif de traitement des gaz de combustion nécessitant des phases de régénération par post-injection de carburant. Selon ce procédé, on estime le taux de dilution C en fonction du mode de fonctionnement du moteur. En dehors des phases de régénération, la variation du taux de dilution dC est calculée à partir d'un ensemble de paramètres comprenant au moins une valeur représentative de la température d'évaporation T du carburant dilué dans l'huile du moteur, et du temps t écoulé depuis la fin de la dernière phase de régénération.
  • Cette invention présente de nombreux avantages. En estimant précisément l'évaporation du carburant, on estime aussi précisément la dilution C du carburant dans l'huile du moteur et on peut procéder au changement d'huile du moteur au moment opportun, c'est-à-dire ni trop tardif, ni trop précoce. On évite ainsi de mettre en danger la fiabilité du moteur ou d'augmenter inutilement les coûts d'entretien du moteur.

Claims (6)

  1. Procédé d'estimation du taux de dilution de carburant dans l'huile d'un moteur (1) à combustion interne équipé d'un dispositif de traitement (3) des gaz de combustion nécessitant des phases de régénération par post-injection de carburant, selon lequel on estime le taux de dilution (C) en fonction du mode de fonctionnement du moteur, dans lequel, en dehors des phases de régénération, la variation du taux de dilution (dC) à chaque instant est calculée à partir d'un ensemble de paramètres comprenant au moins :
    - une valeur représentative de la température d'évaporation (T) du carburant dilué dans l'huile du moteur, et
    - le temps (t) écoulé depuis la fin de la dernière phase de régénération, CARACTERISE EN CE QUE
    en dehors des phases de régénération, cet ensemble de paramètres de calcul de la variation (dC) comprend en outre au moins :
    - le taux de dilution (C(t)) au temps (t),
    - une constante de vitesse (k0) prédéterminée,
    - l'enthalpie d'évaporation du carburant (Ea), et
    - la constante des gaz parfaits (R).
  2. Procédé selon la revendication 1, caractérisé en ce que, en dehors des phases de régénération, la variation du taux de dilution (dC) pendant chaque pas de temps (dt) est calculée selon une loi cinétique d'ordre 1 par l'équation dC = C t × k 0 e E a RT × dt
    Figure imgb0019
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la valeur représentative de la température d'évaporation du carburant (T) est la température d'eau du moteur (1).
  4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la valeur du rapport E a R
    Figure imgb0020
    de l'enthalpie de vaporisation du carburant divisé par la constante des gaz parfaits est une fonction du temps (t) écoulé depuis la dernière régénération.
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que la valeur du rapport E a R
    Figure imgb0021
    de l'enthalpie de vaporisation du carburant divisé par la constante des gaz parfaits est calculée par interpolation à partir d'une table de valeurs de rapports E a R
    Figure imgb0022
    préétablies expérimentalement, à partir de mesures de dilution pour une pluralité de températures (T) et une pluralité de temps (t).
  6. Procédé selon l'une des revendications précédentes, caractérisé en ce que la constante de vitesse k0 est calculée expérimentalement à partir de mesures de dilution pour une pluralité de températures (T) et une pluralité de temps (t).
EP12305325.8A 2011-05-06 2012-03-20 Procedé d'estimation de la dilution du carburant dans l'huile d'un moteur à combustion interne Active EP2520785B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1153898A FR2974853B1 (fr) 2011-05-06 2011-05-06 Procede d'estimation de la dilution du carburant dans l'huile d'un moteur a combustion interne

Publications (3)

Publication Number Publication Date
EP2520785A2 EP2520785A2 (fr) 2012-11-07
EP2520785A3 EP2520785A3 (fr) 2017-02-15
EP2520785B1 true EP2520785B1 (fr) 2018-07-25

Family

ID=45874750

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12305325.8A Active EP2520785B1 (fr) 2011-05-06 2012-03-20 Procedé d'estimation de la dilution du carburant dans l'huile d'un moteur à combustion interne

Country Status (2)

Country Link
EP (1) EP2520785B1 (fr)
FR (1) FR2974853B1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3009338A1 (fr) * 2013-07-31 2015-02-06 Peugeot Citroen Automobiles Sa Procede de gestion d'un vehicule automobile comprenant l'estimation d'une masse d'eau introduite dans le carter d'huile
FR3040738B1 (fr) * 2015-09-07 2019-06-21 Psa Automobiles Sa. Procede de controle d’une dilution d’un carburant dans une huile de lubrification d’un moteur thermique de vehicule automobile
FR3077096B1 (fr) 2018-01-25 2019-12-13 Renault S.A.S Procede d'estimation de la dilution du carburant dans l'huile d'un moteur a combustion interne
FR3091312B1 (fr) 2018-12-27 2020-12-04 Renault Sas Procédé d'estimation de la dilution globale de l'huile d'un moteur à combustion interne
CN111396171B (zh) * 2020-03-30 2021-03-02 无锡伟博汽车科技有限公司 一种机油稀释的计算方法
US11454144B1 (en) * 2021-03-24 2022-09-27 Caterpillar Inc. Lubricant dilution detection system
CN115370446B (zh) * 2022-08-24 2023-09-01 东风商用车有限公司 判断车辆机油更换周期的方法、装置、设备及存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6966304B2 (en) * 2002-10-17 2005-11-22 Nissan Motor Co., Ltd. Estimation of oil-diluting fuel quantity of engine
JP4192677B2 (ja) * 2003-05-26 2008-12-10 日産自動車株式会社 内燃機関の制御装置
FR2860830B1 (fr) 2003-10-13 2006-01-13 Renault Sa Procede de commande pour la regeneration d'un filtre a particules
FR2866957B1 (fr) * 2004-02-27 2006-11-24 Peugeot Citroen Automobiles Sa Systeme de determination du taux de dilution d'huile de lubrification d'un moteur thermique de vehicule automobile
EP1614870B1 (fr) * 2004-07-06 2011-12-14 Volvo Car Corporation Méthode et dispositif pour déterminer le niveau de dilution de carburant dans le lubrifiant d' un moteur à combustion
FR2890411B1 (fr) * 2005-09-05 2010-10-29 Peugeot Citroen Automobiles Sa Systeme de determination du taux de dilution de l'huile de lubrification d'un moteur thermique de vehicule automobile par du carburant d'alimentation de celui-ci
JP2007162569A (ja) * 2005-12-14 2007-06-28 Nissan Motor Co Ltd 希釈オイル再生装置及び希釈オイル再生方法
JP2008297969A (ja) * 2007-05-31 2008-12-11 Denso Corp 内燃機関の排気浄化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2520785A2 (fr) 2012-11-07
FR2974853A1 (fr) 2012-11-09
EP2520785A3 (fr) 2017-02-15
FR2974853B1 (fr) 2015-05-01

Similar Documents

Publication Publication Date Title
EP2520785B1 (fr) Procedé d'estimation de la dilution du carburant dans l'huile d'un moteur à combustion interne
FR2882093A1 (fr) Systeme d'epuration de gaz d'echappement de moteur a combustion interne
EP1281843B1 (fr) Procédé de détermination du chargement d'un filtre à particules
EP1963635B1 (fr) Procede et systeme de regeneration du filtre a particules d'un moteur thermique
FR2864146A1 (fr) Procede de determination en temps reel de la masse de particules presente dans un filtre a particules de vehicule automobile
EP2423477B1 (fr) Procédé de détermination de l'état physique d'un filtre à particules
FR2933134A1 (fr) Systeme de regeneration d'un filtre a particules et procede de regeneration associe
EP2472088A1 (fr) Procédé de commande d'un moteur garantissant une dilution de gazole maximum à la révision
FR2958969A1 (fr) Procede de regeneration d'un filtre a particules
EP3743603B1 (fr) Procédé d'estimation de la dilution du carburant dans l'huile d'un moteur à combustion interne
EP3902990B1 (fr) Procédé d'estimation de la dilution globale de l'huile d'un moteur à combustion interne
EP3482052B1 (fr) Procede d'adaptation d'une estimation d'une vitesse de combustion des suies d'un filtre a particules de moteur thermique
EP1413720B1 (fr) Procédé de détermination de la température interne d'un filtre à particules, procédé de commande de la génération du filtre à particules, système de commande et filtre à particules correspondant
FR3028044A1 (fr) Procede de validation d’une huile moteur ou d’un element d’un moteur thermique suralimente
FR2794804A1 (fr) PROCEDE DE COMMANDE DU FONCTIONNEMENT D'UN CATALYSEUR ACCUMULATEUR DE NOx
FR2893979A1 (fr) Procede de mesure de la pression dans un systeme de post-traitement d'un moteur thermique.
FR2953559A1 (fr) Systeme et procede d'estimation de la masse de particules stockees dans un filtre a particules de vehicule automobile
EP3803068B1 (fr) Système et procédé d'estimation de la quantité de particules polluantes dans l'huile moteur d'un moteur à combustion interne de type diesel
FR2916229A1 (fr) Procede de controle des emissions polluantes d'un moteur diesel
FR2943095A1 (fr) Procede de regeneration d'un filtre a particules
EP2014884A1 (fr) Evaluation du chargement d'un filtre a particules
FR3073428B1 (fr) Procede d’adaptation de l’additivation aux emissions pour aide a la regeneration d’un filtre a particules
FR2930968A1 (fr) Procede de regeneration d'un systeme de post traitement par fractionnement de la richesse.
FR2937373A1 (fr) Procede d'estimation du vieillissement d'un lubrifiant.
FR2980521A1 (fr) Systeme et procede d'estimation de la masse d'oxydes de soufre stockee dans un piege a oxydes d'azote

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602012048819

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F02B0077080000

Ipc: F01M0011100000

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F01M 11/10 20060101AFI20170109BHEP

Ipc: F02D 41/02 20060101ALI20170109BHEP

Ipc: F02D 41/04 20060101ALI20170109BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170719

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180312

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DURAND, JULIEN

Inventor name: RADENAC, ERWAN

Inventor name: BROCHOT, ALEXIS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1022001

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012048819

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180725

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1022001

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181125

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181025

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181025

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181026

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012048819

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190320

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190320

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230324

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230321

Year of fee payment: 12

Ref country code: DE

Payment date: 20230321

Year of fee payment: 12

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230608

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20231228 AND 20240103