EP2516973A2 - Procédé de détermination et de surveillance du niveau de remplissage d'un contenant, renfermant un fluide, selon un procédé de mesure du temps de propagation - Google Patents

Procédé de détermination et de surveillance du niveau de remplissage d'un contenant, renfermant un fluide, selon un procédé de mesure du temps de propagation

Info

Publication number
EP2516973A2
EP2516973A2 EP10776682A EP10776682A EP2516973A2 EP 2516973 A2 EP2516973 A2 EP 2516973A2 EP 10776682 A EP10776682 A EP 10776682A EP 10776682 A EP10776682 A EP 10776682A EP 2516973 A2 EP2516973 A2 EP 2516973A2
Authority
EP
European Patent Office
Prior art keywords
signals
echo
comparison
response
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP10776682A
Other languages
German (de)
English (en)
Inventor
Peter KLÖFER
Winfried Mayer
Dietmar Spanke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser SE and Co KG
Original Assignee
Endress and Hauser SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser SE and Co KG filed Critical Endress and Hauser SE and Co KG
Publication of EP2516973A2 publication Critical patent/EP2516973A2/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/80Arrangements for signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2962Measuring transit time of reflected waves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Definitions

  • the present invention relates to a method for determining and monitoring the level of a medium in a container according to a transit time measuring method according to claim 1.
  • Level gauges under the names Prosonic, Levelflex and Micropilot, which operate according to the transit time measurement method and serve to determine and / or monitor a level of a medium in a container.
  • These level gauges transmit a periodic transmission signal in the microwave or ultrasound range by means of a transmitting / receiving element in the direction of the surface of a medium and receive the reflected echo signals after a distance-dependent transit time.
  • Commercially available fill level gauges working with microwaves can basically be divided into two classes. A first class, in which the microwaves are sent by means of an antenna in the direction of the medium, reflected on the product surface and then after a
  • an echo function representing the echo amplitudes as a function of the transit time is formed from the received echo signals, each value of this echo function corresponding to the amplitude of an echo reflected by the transmitting element at a specific distance.
  • a useful echo is determined which corresponds to the reflection of the transmission signal at the product surface. From the duration of the useful echo results in a known propagation speed of the transmission signals directly the distance between the
  • the received raw signal of the pulse sequences are not used, but the envelope, the so-called envelope, is determined.
  • the envelope is obtained, for example, by the raw signal of the pulse trains
  • Test signal received analog response signal (intermediate frequency signal) is depending on the sensor principle in filtered analog or after previous A / D conversion in digital stages, possibly transformed from time to frequency domain, rectified and logarithmized. The result of this
  • Processing chain is the so-called envelope, in soft then by means of various
  • Algorithms for the level echo is sought.
  • the algorithm is selected according to more or less complex rules; in the simplest case, the algorithm only looks for the global maximum of the envelope.
  • the information content of the response signal before the step of the level echo search is greatly reduced and essentially limited to the amplitude information.
  • the useful echo which has a greater amplitude than the remaining echoes, is selected by a static echo search algorithm.
  • the echo in the envelope with the largest amplitude is determined as the true echo.
  • the wanted echo is the first incoming echo in the envelope after the transmit pulse.
  • the first echo in the envelope is selected as the true echo.
  • the first echo factor is a given factor by which an echo must exceed a certain amplitude in order to be recognized as useful echo.
  • a delay-dependent echo threshold may be defined which must exceed an echo in order to be recognized as a true echo.
  • the level measuring device is notified once the current level.
  • the level gauge can identify the associated echo as a true echo based on the predetermined level and, for. through a suitable dynamic
  • Track echo search algorithm Such methods are called echo tracking.
  • maxima of the echo signal or the echo function are determined, for example, in each measuring cycle and, on the basis of the knowledge of the fill level determined in the preceding measuring cycle and an application-specific maximum rate of change of the filling level Useful echo determined. From a running time of the current useful echo thus determined, the new fill level results.
  • a fourth method is described in DE 102 60 962 A1.
  • the useful echo is determined based on previously stored in a memory data.
  • echo functions are derived from received echo signals which reproduce the amplitudes of the echo signals as a function of their transit time.
  • the echo functions are stored in a table, each column serving to record one echo function each.
  • the echo functions are stored in the columns in an order that correspond to fill levels associated with the respective echo functions.
  • the useful echo and the associated fill level are determined by the echo function of the current one
  • Echo function is determined, at least one echo property of the echo function is determined, and based on the echo properties of at least one previous measurement, a prediction for the expected echo properties in the current measurement is derived.
  • the echo properties of the current measurement are determined using the prediction, and the actual fill level is determined on the basis of the echo properties. This method comes close to echo tracking in the broadest sense.
  • the fill level can be determined with millimeter precision.
  • DE4308373C2 describes a method which extracts the echoes and their echo features from the envelope.
  • the echo features are the form factor, position and time and amplitude of the echo.
  • the form factor feature is determined as the ratio between a 6dB leading width and 6dB total width of the respective echoes. For example, for a symmetric s echo, this value is 1/2.
  • fuzzy logic the probability for each echo is calculated to be a false echo, multiple echo, or true echo. The one with the highest useful echo probability is selected as the useful echo.
  • a method for processing ultrasonic echo signals is also known in which the received signal is digitally sampled and stored in a memory, the received signal being the envelope of the echoes. After the recording of the received signal by the signal processing, the echoes by means of a suitable method, for. B.
  • Optimal filter and a threshold detection extracted and detected all occurring within a measurement echoes.
  • disturbing object echoes can be suppressed by first detecting all disturbing object echoes and storing them in a memory in a teaching phase in which the measuring object is not in the detection range of the sensor. During measurement operation, the currently detected echoes are compared with the learned echoes. If there is a sufficient match, the echo is classified as a noise echo and accordingly suppressed, while the remaining echoes are assigned to DUTs.
  • the documents DE 33 37 690 and EP 0 459 336 also describe methods which hide false echoes caused by multiple reflections between the sensor and an object in that the maximum runtime to be evaluated is limited so that echoes occurring outside this runtime are ignored.
  • the echo amplitude can additionally be evaluated as a criterion for the multi-echo cancellation.
  • the invention has for its object to provide a reliable and fast method for
  • Fig. 1 shows an embodiment of a measuring device for determining the level with a
  • Fig. 2 shows an inventive embodiment of a measuring device for determining the
  • Fig. 4 shows a method according to the invention, for the differentiation of false echoes
  • FIG. 1 shows a measuring device 1 operating according to the transit time measuring method for determining the fill level F of a medium 7.
  • the measuring device 1 is mounted on a container 5 on a nozzle.
  • the measuring device 1 shown is a transmitting / receiving element 6 radiating freely into the process space with a measuring transducer 9.
  • the measuring transducer 9 has at least one transmitting / receiving unit 3, which carries out the generation and the reception of the measuring signals, a control / Evaluation unit 2, which enables the signal processing of the measurement signals and for controlling the measuring device 1, and also a communication unit 4, which controls and regulates the communication via a bus system and the power supply of the measuring device 1 on.
  • a memory element is integrated, in which the measurement parameters and echo parameters are stored and are stored in the measurement factors and echo factors.
  • the transmitting / receiving element 6 is embodied in this embodiment, for example, as a horn antenna, but can be configured as a transmitting / receiving element 6 any known antenna form, such as rod or planar antenna.
  • a measuring signal is generated for example in the form of a high-frequency transmission signal S and emitted via the transmitting / receiving element 6 in a predetermined emission characteristic in the direction of medium 7.
  • the transmission signals S reflected at the boundary surface 8 of the medium 7 are received again as a reflection signal R by the transmission / reception element 6 and the transmission / reception unit 3.
  • the downstream control / evaluation unit 2 determines from the reflection signals R an echo function 10 which determines the amplitudes of the echo signals of these reflection signals R as a function of the
  • An envelope 11 depicting the measurement situation in the container 5 is shown as being proportional to the travel distance x of the transmission signal S.
  • reference lines are assigned to the corresponding echo signals in the envelope 1 1, so that the cause-and-effect principle can be detected at a glance.
  • Formation can arise in the transmitting / receiving element 6 or the neck. Furthermore, in the initial region of the envelope 1 1, an echo signal 14 is shown, which is caused by the false echo K of the inflow or filling flow of the medium 7. There are also false echoes K caused by the formation of voids in solid applications, but the cavities are not explicitly shown in this figure.
  • a pulse radar level indicators 1 is shown, which shows the distance by direct
  • Pulse radar level gauges 1 operate in the time domain and therefore do not require fast Fourier analysis, which is characteristic of single frequency modulated continuous wave (FMCW) radar.
  • the transit time t of the microwave pulses is in the nanosecond range for a distance of a few meters. For this reason, as already mentioned, a special time-transformation method is needed to accurately measure the very short difference times between two pulses. It requires a slow motion recording of the microwave pulses with a stretched time axis.
  • the pulse radar level gauge 1 uses a uniform periodic transmission signal S having a high pulse repetition frequency. By a sequential sampling method for time stretching the time axis of the received signals or response signal A, the extremely fast and uniform signals into a usable, stretched time signal, the so-called
  • This periodic response signal A consists of the actual transmission signal S, at least one useful echo R and at least one false echo or multiple echo K.
  • the intermediate frequency signal ZF hereby resembles an ultrasonic signal.
  • the microwave pulse of, for example, 6.3 GHz, is transformed by means of the sequential sampling / sampling method into an intermediate frequency ZF of, for example, 76 kHz, and the pulse repetition frequency of, for example, 3.5 MHz is thus reduced to a frequency of 40 Hz.
  • the echoes of a pulse radar are individually separated and separated in time. This means that the pulse radar is better suited for handling multiple echoes and false echoes, which often occur in process and bulk containers.
  • the achievable accuracy of a pulse radar level gauge 1 depends on the application, on the antenna design, on the qualities of the HF electronics or evaluation electronics and on the one used
  • the inventive approach to determine the level F is shown in FIG.
  • the solution proposed by the invention makes use of the approach of an envelope-free evaluation, by directly using the intermediate frequency signal IF to search for the useful echo R.
  • Level F has the advantages that the measurement signal information not only, as with the
  • the model parameter MP can be expressed in a quasi-static environment as a linear time-invariant system.
  • model parameter MP is dependent on all reflections of the test signal T or transmission signal in the container 5, which are located in the field of view of the sensor 6.
  • the response signals A differ in size and shape.
  • the level surface z In contrast, approach at the edge, an impeller or general internals as punctiform or arcuate reflectors form as a noise signal K in the ideal case.
  • a nozzle edge 18 represented an annular reflector.
  • False echo signals or false echoes K of a noise element 12, 13,14,15,16, 18 acts. This principle of differentiation is intended to be proposed here for the selection and identification of the wanted echo R of the filling level F.
  • the method for determining the wanted echo signal R is shown in FIG. 4 and becomes
  • the comparison signals V are expected response signals R to the selected test signal S for a useful echo R generated by level surfaces.
  • the associated fill level F is determined and output as the measured value.
  • test signals S can arbitrary amplitude and angle modulated baseband or
  • ramp-shaped frequency-modulated signals so-called chips, baseband pulses or pulse-shaped modulated, monofrequency high-frequency signals are used.
  • V can be achieved by automated parametric analyzes z. B. by EM simulations or by systematic test measurements and possibly their interpolation can be obtained. You can z. B. stored in a large database with the associated test signals and cataloged by applications.
  • the learning possibility is not limited to the learning phase E but can lead to new insights from test measurements and simulations by means of a continuous, systematic extension and improvement of the database content.
  • the match probability W indicates with what probability that
  • Response signal A comes as a pulse packet in the intermediate frequency range ZF from a flat reflector or the surface 8 of the medium 7.
  • the comparison algorithm has calculated the probability values of 97% for the pulse packet of the wanted echo R in the above image and 6% for the pulse packet of the false echo K of the stirring blade 15 in the lower image.
  • a direct comparison of the response signal A of a measurement with a series of comparison signals V can be very complicated and inefficient, depending on the sensor design 6. Long response signals A with many samples would require a lot of storage space for comparison signals V and response signal A as well as computation-intensive comparison algorithms.
  • VMP comparison model parameters
  • the modeling corresponds to an estimate of the answer operator.
  • the modeling methods are used or can be derived accordingly from:
  • the parametric methods define a specific form of the distribution function of the
  • the subspace algorithm MUSIC Multiple Signal Classification
  • the MUSIC algorithm makes no special demands on the shape of the spatial impulse response of the group. In special cases, e.g. a linear antenna array, can be dispensed with the calculation of the full spectrum.
  • Noise values are all the same, while the eigenvalues of the reflection signal are larger. This fact can be used to estimate the number of received reflection signals.
  • the subspace methods require less computing power, which is particularly favorable for use in process automation, whose field device 1 is operated on the basis of the required intrinsic safety with low consumption power and which therefore has little energy available.
  • the echo separation capability also makes it possible to achieve greater robustness to disturbances, for example, through container installations 12, material deposits 13 and / or agitators 14 in the container 5, since the reflections of the false echoes K of the Nutzechos R originating reflections can be separated.
  • the causal relationships between the input signal or test signal and the corresponding, determined response signals A or output variables are stored in the form of at least one transfer function or model parameter.
  • the method according to the invention also has the advantages that the basic knowledge about the measuring procedure remains in the company and is not disclosed, since the comparison signals supplied in the teaching-in phase always represent only a small part of the database content. Furthermore, updates and thus measures to increase the performance of devices already in operation 1 by exchanging or supplementing the locally stored comparison signals V and modeling methods or their model parameters MP feasible.
  • the inventive method is not only alone, as explicitly shown in Fig. 1 and 2, implemented in free-radiating microwave measuring devices 1, but an application of the method according to the invention can be carried out in other transit time measurement systems, such as TDR measuring devices or ultrasonic measuring devices.
  • TDR measuring devices or ultrasonic measuring devices.
  • ultrasonic measuring devices can be dispensed with the generation of the intermediate frequency signal, since the frequencies of the
  • Ultrasonic signal is located in a frequency working range of the electronics of the signal processing.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

L'invention concerne un procédé de détermination et de surveillance du niveau de remplissage d'un contenant, renfermant un fluide, à l'aide d'un appareil de terrain et selon un procédé de mesure du temps de propagation. Dans une phase d'apprentissage, sont déterminés des signaux d'essai correspondants, liés à l'application et à l'appareil, et des signaux de réponse à escompter depuis la surface du niveau de remplissage et, à partir de là, on détermine des signaux de comparaison liés à l'application et à l'appareil. Dans une phase de fonctionnement, des signaux d'essai sont émis en direction du milieu et des signaux de réponse liés à l'application et à l'appareil sont reçus, puis, à l'aide d'un algorithme de comparaison, les signaux de comparaison sont comparés aux signaux de réponse, et une valeur de probabilité de coïncidence (w) est déterminée; en cas de dépassement de la valeur de probabilité de coïncidence déterminée, le niveau de remplissage est déterminé par une valeur limite prédéterminée et est émise en tant que valeur de mesure, et/ou, en cas de dépassement en deçà de la valeur limite prédéterminée, un nouveau signal d'essai est émis aux fins d'une nouvelle détermination d'un signal de réponse lié à l'application et à l'appareil.
EP10776682A 2009-12-23 2010-11-11 Procédé de détermination et de surveillance du niveau de remplissage d'un contenant, renfermant un fluide, selon un procédé de mesure du temps de propagation Ceased EP2516973A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009055262A DE102009055262A1 (de) 2009-12-23 2009-12-23 Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter nach einem Laufzeitmessverfahren
PCT/EP2010/067254 WO2011076478A2 (fr) 2009-12-23 2010-11-11 Procédé de détermination et de surveillance du niveau de remplissage d'un contenant, renfermant un fluide, selon un procédé de mesure du temps de propagation

Publications (1)

Publication Number Publication Date
EP2516973A2 true EP2516973A2 (fr) 2012-10-31

Family

ID=44168224

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10776682A Ceased EP2516973A2 (fr) 2009-12-23 2010-11-11 Procédé de détermination et de surveillance du niveau de remplissage d'un contenant, renfermant un fluide, selon un procédé de mesure du temps de propagation

Country Status (5)

Country Link
US (1) US20120265486A1 (fr)
EP (1) EP2516973A2 (fr)
CN (1) CN102812337B (fr)
DE (1) DE102009055262A1 (fr)
WO (1) WO2011076478A2 (fr)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011007372B4 (de) * 2011-04-14 2023-05-04 Endress+Hauser SE+Co. KG Kalibrations- und/oder Überwachungsverfahren für FMCW-Radar Füllstandsmessgeräte
DE102011089231A1 (de) * 2011-12-20 2013-06-20 Endress + Hauser Gmbh + Co. Kg Verfahren und Messgerät zur Füllstandsmessung
DE102012007979A1 (de) 2012-04-24 2013-10-24 Krohne Messtechnik Gmbh Verfahren zur Bestimmung des Füllstandes eines Mediums und entsprechende Vorrichtung
DE102012107146A1 (de) * 2012-08-03 2014-02-20 Endress + Hauser Gmbh + Co. Kg Verfahren zur Bestimmung und/oder Überwachung des Füllstands eines Mediums in einem Behälter
DE102013103532A1 (de) * 2013-04-09 2014-10-09 Endress + Hauser Gmbh + Co. Kg Verfahren zur Füllstandsmessung nach dem Laufzeitprinzip
DE102013214324A1 (de) * 2013-07-22 2015-01-22 Vega Grieshaber Kg Radarfüllstandmessgerät mit einer Sicherheitseinrichtung
DE102013107847A1 (de) * 2013-07-23 2015-01-29 Endress + Hauser Gmbh + Co. Kg Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter nach einem Laufzeitmessverfahren
EP2869042B1 (fr) * 2013-11-04 2016-08-10 VEGA Grieshaber KG Suppression du bruit basée sur un modèle pour des appareils de mesure du niveau de remplissage
DE102014113993A1 (de) * 2014-09-26 2016-03-31 Endress + Hauser Gmbh + Co. Kg Verfahren zum Herstellen eines Behältnisses für ein Medium
US9767671B2 (en) * 2014-11-05 2017-09-19 Intel Corporation System for determining sensor condition
US10436625B2 (en) * 2015-01-19 2019-10-08 University Of Florida Research Foundation, Inc. Interferometric doppler radar and method for wave and water level measurement
DE102015120736B4 (de) * 2015-11-30 2022-07-14 Endress+Hauser SE+Co. KG Verfahren und Füllstandsmessgerät zur Bestimmung des Füllstands eines in einem Behälter befindlichen Füllgutes
DE102016114647A1 (de) * 2016-08-08 2018-02-08 Krohne Messtechnik Gmbh Verfahren zum Betreiben eines Messgeräts und Messgerät
DE102016124364A1 (de) * 2016-12-14 2018-06-14 Endress+Hauser SE+Co. KG Grenzstandschalter mit Ausfallsicherheit
DE102017109316A1 (de) 2017-05-02 2018-11-08 Endress+Hauser SE+Co. KG Verfahren zur Bestimmung und/oder Überwachung des Füllstands
KR102164547B1 (ko) 2017-07-31 2020-10-12 주식회사 엘지화학 배터리 관리 장치 및 이를 포함하는 배터리 팩
US10578479B2 (en) * 2017-08-09 2020-03-03 Fluke Corporation Calibration bath with acoustic liquid level sensor
US10746625B2 (en) 2017-12-22 2020-08-18 Infineon Technologies Ag System and method of monitoring a structural object using a millimeter-wave radar sensor
US10576328B2 (en) 2018-02-06 2020-03-03 Infineon Technologies Ag System and method for contactless sensing on a treadmill
US10761187B2 (en) 2018-04-11 2020-09-01 Infineon Technologies Ag Liquid detection using millimeter-wave radar sensor
US10775482B2 (en) 2018-04-11 2020-09-15 Infineon Technologies Ag Human detection and identification in a setting using millimeter-wave radar
US10794841B2 (en) 2018-05-07 2020-10-06 Infineon Technologies Ag Composite material structure monitoring system
EP3575817A1 (fr) * 2018-05-30 2019-12-04 VEGA Grieshaber KG Procédé de mesure de remplissage
US10903567B2 (en) 2018-06-04 2021-01-26 Infineon Technologies Ag Calibrating a phased array system
US11416077B2 (en) 2018-07-19 2022-08-16 Infineon Technologies Ag Gesture detection system and method using a radar sensor
US11183772B2 (en) 2018-09-13 2021-11-23 Infineon Technologies Ag Embedded downlight and radar system
US11125869B2 (en) 2018-10-16 2021-09-21 Infineon Technologies Ag Estimating angle of human target using mmWave radar
US11397239B2 (en) 2018-10-24 2022-07-26 Infineon Technologies Ag Radar sensor FSM low power mode
US11360185B2 (en) 2018-10-24 2022-06-14 Infineon Technologies Ag Phase coded FMCW radar
DE102018127012A1 (de) * 2018-10-30 2020-04-30 Endress+Hauser SE+Co. KG Füllstandsmessgerät
EP3654053A1 (fr) 2018-11-14 2020-05-20 Infineon Technologies AG Emballage comportant un ou des dispositifs de détection acoustique et des éléments de détection à ondes millimétriques
US11087115B2 (en) 2019-01-22 2021-08-10 Infineon Technologies Ag User authentication using mm-Wave sensor for automotive radar systems
US11126885B2 (en) 2019-03-21 2021-09-21 Infineon Technologies Ag Character recognition in air-writing based on network of radars
US11415451B2 (en) 2019-04-01 2022-08-16 Abb Schweiz Ag High and/or low energy system coupler
US11193809B2 (en) * 2019-04-01 2021-12-07 Abb Schweiz Ag Expert control systems and methods for level measurement
US11079473B2 (en) 2019-04-01 2021-08-03 Abb Schweiz Ag Timing control circuit for guided wave radar level transmitter
US11454696B2 (en) 2019-04-05 2022-09-27 Infineon Technologies Ag FMCW radar integration with communication system
CN110243436B (zh) * 2019-07-08 2020-05-19 智驰华芯(无锡)传感科技有限公司 一种用于雷达物位计的近距离干扰信号消除系统
US11327167B2 (en) 2019-09-13 2022-05-10 Infineon Technologies Ag Human target tracking system and method
US11774592B2 (en) 2019-09-18 2023-10-03 Infineon Technologies Ag Multimode communication and radar system resource allocation
US11435443B2 (en) 2019-10-22 2022-09-06 Infineon Technologies Ag Integration of tracking with classifier in mmwave radar
DE102019135288A1 (de) * 2019-12-19 2021-06-24 Endress+Hauser Group Services Ag System und verfahren zum überwachen eines zustands von mindestens einem objekt, das in einem rohrleitungssystem umfasst ist
US11808883B2 (en) 2020-01-31 2023-11-07 Infineon Technologies Ag Synchronization of multiple mmWave devices
US11614516B2 (en) 2020-02-19 2023-03-28 Infineon Technologies Ag Radar vital signal tracking using a Kalman filter
US11585891B2 (en) 2020-04-20 2023-02-21 Infineon Technologies Ag Radar-based vital sign estimation
US11567185B2 (en) 2020-05-05 2023-01-31 Infineon Technologies Ag Radar-based target tracking using motion detection
US11774553B2 (en) 2020-06-18 2023-10-03 Infineon Technologies Ag Parametric CNN for radar processing
US11704917B2 (en) 2020-07-09 2023-07-18 Infineon Technologies Ag Multi-sensor analysis of food
US11614511B2 (en) 2020-09-17 2023-03-28 Infineon Technologies Ag Radar interference mitigation
US11719787B2 (en) 2020-10-30 2023-08-08 Infineon Technologies Ag Radar-based target set generation
US11719805B2 (en) 2020-11-18 2023-08-08 Infineon Technologies Ag Radar based tracker using empirical mode decomposition (EMD) and invariant feature transform (IFT)
EP4012356B1 (fr) * 2020-12-11 2023-08-30 Pepperl+Fuchs SE Procédé de détermination d'un niveau de remplissage, capteur à ultrasons et dispositif de mesure permettant de déterminer un volume d'un produit de remplissage
CN113155240B (zh) * 2020-12-31 2023-03-07 重庆川仪自动化股份有限公司 一种用于雷达物位计标定装置的全自动控制方法
US11662430B2 (en) 2021-03-17 2023-05-30 Infineon Technologies Ag MmWave radar testing
US11921187B1 (en) * 2021-04-16 2024-03-05 Amazon Technologies, Inc. Monitoring non-stationary object distance using ultrasonic signals
US11950895B2 (en) 2021-05-28 2024-04-09 Infineon Technologies Ag Radar sensor system for blood pressure sensing, and associated method
DE102021115871A1 (de) * 2021-06-18 2022-12-22 Endress+Hauser SE+Co. KG Grenzschicht-Detektion
DE102021115874A1 (de) * 2021-06-18 2022-12-22 Endress+Hauser SE+Co. KG Füllstandsmessung

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3337690A1 (de) 1983-10-17 1985-04-25 VEGA Grieshaber GmbH & Co, 7620 Wolfach Verfahren und vorrichtung zur messung des fuellstands in einem behaelter mittels schall-/ultraschallwellen
DE3821577A1 (de) 1988-06-25 1990-01-04 Hipp Johann F Verfahren und vorrichtung zur hinderniserkennung mit ultraschallentfernungsmessung
US5060205A (en) 1990-05-29 1991-10-22 Deere & Company Ultrasonic distance measuring system
DE4223346C2 (de) * 1992-07-16 1996-05-02 Grieshaber Vega Kg Anordnung und Verfahren zur berührungslosen Füllstandmessung
DE4308373C2 (de) * 1993-03-16 1995-04-13 Siemens Ag Verfahren zur Erkennung und Separation von Nutz- und Störechos im Empfangssignal von Abstandssensoren, welche nach dem Impuls-Echo-Prinzip arbeiten
FR2718249B1 (fr) * 1994-04-05 1996-04-26 Thomson Csf Procédé et dispositif radar de mesure de distance.
DE19824267A1 (de) * 1998-05-29 1999-12-02 Siemens Ag Verfahren zur Erkennung von Nutz- und Störechos im Empfangssignal von Abstandssensoren sowie Anordnung zur Durchführung des Verfahrens
GB9919366D0 (en) * 1999-08-16 1999-10-20 Meggitt Mobrey Limited Ultrasound level detection using a dynamic threshold
US6577960B1 (en) * 2000-07-13 2003-06-10 Simmonds Precision Products, Inc. Liquid gauging apparatus using a time delay neural network
EP1235059A1 (fr) 2001-02-14 2002-08-28 Endress + Hauser GmbH + Co. KG Détecteur de niveau à micro-ondes
CN100357714C (zh) * 2002-07-19 2007-12-26 Vega格里沙贝两合公司 确定填充高度回波和错误回波的期望范围的方法和设备
DE10260962A1 (de) 2002-12-20 2004-07-01 Endress + Hauser Gmbh + Co. Kg Füllstandsmeßgerät und Verfahren zur Füllstandsmessung nach dem Laufzeitprinzip
DE10325267A1 (de) * 2003-06-03 2004-12-23 Endress + Hauser Gmbh + Co. Kg Anordnung und Verfahren zur Füllstandsmessung
DE10360710A1 (de) 2003-12-19 2005-10-06 Endress + Hauser Gmbh + Co. Kg Verfahren zur Füllstandsmessung nach dem Laufzeitprinzip
DE102004052110B4 (de) 2004-10-26 2018-08-23 Endress+Hauser SE+Co. KG Verfahren zur Füllstandsmessung nach dem Laufzeitprinzip
DE102005003152A1 (de) * 2005-01-21 2006-07-27 Endress + Hauser Gmbh + Co. Kg Verfahren zur Überprüfung der ordnungsgemäßen Funktion eines Füllstandmessgeräts
DE102006019191A1 (de) * 2006-04-21 2007-10-25 Endress + Hauser Gmbh + Co. Kg Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2011076478A2 *

Also Published As

Publication number Publication date
CN102812337B (zh) 2015-05-27
CN102812337A (zh) 2012-12-05
US20120265486A1 (en) 2012-10-18
DE102009055262A1 (de) 2011-06-30
WO2011076478A3 (fr) 2011-10-06
WO2011076478A2 (fr) 2011-06-30

Similar Documents

Publication Publication Date Title
EP2516973A2 (fr) Procédé de détermination et de surveillance du niveau de remplissage d'un contenant, renfermant un fluide, selon un procédé de mesure du temps de propagation
EP2856086B1 (fr) Procédé de mesure de niveau de remplissage d'après le principe du temps de vol
DE102006062606A1 (de) Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter nach einem Laufzeitverfahren
EP1839017B1 (fr) Procede pour verifier le bon fonctionnement d'un dispositif de mesure de niveau de remplissage
DE102012107146A1 (de) Verfahren zur Bestimmung und/oder Überwachung des Füllstands eines Mediums in einem Behälter
DE102012003373B4 (de) Verfahren zur Überwachung und Verfahren zum Betreiben eines nach dem Radar-Prinzip arbeitenden Füllstandmesssystems und entsprechendes Füllstandmesssystem
EP3308110B1 (fr) Procédé et dispositif pour contrôler la fonctionnalité d'un appareil de mesure du niveau de remplissage basé sur un radar
DE102005063079B4 (de) Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter
DE102010042525A1 (de) Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter mittels eines Füllstandsmessgeräts nach einem Laufzeitmessverfahren
DE102009001010A1 (de) Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter nach einem Laufzeitmessverfahren
EP2527805A1 (fr) Dispositif d'évaluation et procédé de détermination d'une grandeur caractéristique pour la position d'une surface limite dans un récipient
DE102013107847A1 (de) Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter nach einem Laufzeitmessverfahren
EP3861305B1 (fr) Procédé de mesure de niveau de remplissage
WO2018127356A1 (fr) Procédé permettant de détecter un état de défaillance d'un appareil de mesure de niveau de remplissage basé sur une onde continue modulée en fréquence
DE102015120362A1 (de) Verfahren zur Radar-basierten Messung des Füllstands
EP1573281A2 (fr) Appareil de mesure de niveau et procede pour mesurer un niveau
EP2739946B1 (fr) Relation lineaire entre pistes
DE102019132354A1 (de) FMCW-basiertes Abstandsmessgerät
EP3746753B1 (fr) Procédé de détection d'états d'erreur potentiels sur un dispositif de mesure de remplissage à base de fmcw
EP3575817A1 (fr) Procédé de mesure de remplissage
WO2022028670A1 (fr) Procédé de détermination distribuée d'un niveau de remplissage ou d'un niveau limite
EP4177578B1 (fr) Procédé de mise en service d'un appareil de mesure de niveau de remplissage
DE102021115874A1 (de) Füllstandsmessung
DE102021115871A1 (de) Grenzschicht-Detektion
DE102022105195A1 (de) Füllstandsmessgerät

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120521

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ENDRESS+HAUSER SE+CO. KG

17Q First examination report despatched

Effective date: 20180606

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20190427