EP2514845A1 - Method for producing semi-finished products on the basis of inter-metallic compounds - Google Patents

Method for producing semi-finished products on the basis of inter-metallic compounds Download PDF

Info

Publication number
EP2514845A1
EP2514845A1 EP12164534A EP12164534A EP2514845A1 EP 2514845 A1 EP2514845 A1 EP 2514845A1 EP 12164534 A EP12164534 A EP 12164534A EP 12164534 A EP12164534 A EP 12164534A EP 2514845 A1 EP2514845 A1 EP 2514845A1
Authority
EP
European Patent Office
Prior art keywords
heat treatment
metal
shell
aluminum
hammering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12164534A
Other languages
German (de)
French (fr)
Other versions
EP2514845B1 (en
Inventor
Jens Freudenberger
Tom Marr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Dresden
Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV
Original Assignee
Technische Universitaet Dresden
Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Dresden, Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV filed Critical Technische Universitaet Dresden
Publication of EP2514845A1 publication Critical patent/EP2514845A1/en
Application granted granted Critical
Publication of EP2514845B1 publication Critical patent/EP2514845B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/17Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging
    • B22F3/172Continuous compaction, e.g. rotary hammering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the invention relates to the fields of materials science and metal forming and relates to a process for the production of semi-finished products based on intermetallic compounds, for example, as a welding wire for welding or welding of components based on intermetallic compounds, such as blades in stationary gas turbines, Low-pressure compressors can be used in aircraft turbines or as a construction material.
  • Intermetallic compounds are chemically homogeneous compounds of two or more metals. In contrast to alloys, they often show crystalline structures (lattices) that differ from those of the constituent metals. In their lattice there is a mixed bond of a metallic bond fraction and lower atomic bonding or ion binding components. For this reason, the melting temperature of such compounds is often higher than that of the individual components.
  • Known intermetallic compounds are, for example, Heusler compounds, compounds of shape memory materials or superconductor compounds (see, for example, Wikipedia, keyword intermetallic compounds).
  • Intermetallic compounds are produced by both powder metallurgy and conventional melting processes, and it is precisely because of their mechanical properties that production and processing can be difficult.
  • titanium aluminides or the like can be produced, for example, by melting and casting in a cold wall induction crucible furnace ( Use of cold wall induction crucible furnace for melting and casting of TiAl alloys, Matthias Vogt, VDI Verlag 2001, Dusseldorf ). It comes only to a low contact between the material to be melted and the slotted, water-cooled copper mold, which is located within an induction coil. The process is therefore suitable for high-melting, high-purity and (when hot) chemically aggressive materials, such as the titanium aluminides, since the process can also be easily operated in a vacuum. Furthermore, other methods for producing such compounds are known ( JP-A-63-247321 ).
  • semi-finished titanium aluminides are produced in a complex, multi-stage powder metallurgy process in which aluminum and titanium powder mixtures are cold isostatically pressed first, the vented green pieces are heated to 455 ° C, and then pressed again and extruded.
  • a disadvantage of the known solutions is that the production of intermetallic compounds is possible only by means of complex processes. Furthermore, semi-finished or component sizes are limited to the melt-metallurgical and powder metallurgy manufacturable dimensions. Wire production via these methods is currently not possible.
  • the invention is based on the object to provide a method for the production of semi-finished products based on intermetallic compounds, which is easier to implement and less expensive.
  • a first shell of at least one metal is at least partially filled with at least one second other metal in a compact and / or powdered form, subsequently the filled and closed first shell is cold-formed by hammering, Thereafter, the resulting Umformgut is crushed and introduced into a further at least second shell of at least one metal and also cold-formed this filled and closed at least second shell again by hammering, this process step is performed once or repeated several times, and at least after the last forming step becomes a Heat treatment carried out, wherein the metals in total with respect to their composition and their volume fraction and the heat treatment for the preparation of the intermetallic compound are selected, and the heat treatment is carried out at a maximum temperature which is always below the melting temperature of the lowest melting metal and / or the phase and is carried out at least until at least the lowest melting metal substantially completely converted into one or more other phases is, and in the case of a multi-stage heat treatment, the maximum temperature is always below the
  • the semi-finished products consist entirely of one or more intermetallic compounds.
  • sheaths of circular, triangular, square, rectangular, polygonal, oval or ellipsoidal cross-section are used.
  • the second other metal is introduced in a compact form in the first shell.
  • the comminution of the formed material is realized by cutting, breaking, grinding.
  • the process step of crushing the formed material to be formed its introduction into a further at least second shell made of at least one metal and its forming by hammering 2 to 10 times.
  • a shell is made.
  • the shell may have a circular, triangular, square, rectangular, polygonal, oval or ellipsoidal cross section. However, any other shape of a cross section is also possible, with the round or approximately round cross section being preferred.
  • an at least second metal in a compact form or in powder form is filled. As compact forms, for example, tubes or rods can be used.
  • the powder form according to the invention should also comprise lumped parts or granules of the second metal.
  • the choice of metals is made according to which intermetallic compound is to have the semifinished product. In this case, the semifinished product should consist essentially completely of the intermetallic compound after manufacture, advantageously completely.
  • the volume fractions of the metals of the shell and of the metals which are filled into the shell are also selected according to the intermetallic compound to be produced.
  • This first filled envelope is then closed, for example, by welding, soldering, folding, folding, riveting or plugging, and is then fed to cold working by means of hammering.
  • cold forming should be understood to mean the deformation of the composites at a temperature below the recrystallization temperature of the lowest-melting metal of the composite.
  • the cold working according to the present invention even at temperatures up to - 196 ° C be realized.
  • the cold working according to the invention should be carried out at and around room temperature.
  • the cold forming is done by hammering.
  • the produced material to be formed is then comminuted.
  • the comminution can be realized by cutting, breaking, grinding.
  • a rod or a wire is produced as Umformgut and this then divided into sections.
  • the comminuted material to be formed is then stacked in one or more second envelope (s).
  • the divided rods are stacked in the second shell.
  • the cold forming is done by hammering again.
  • the hammering is carried out until the desired degree of deformation is reached, and / or the desired semifinished product is produced.
  • this second forming step can be repeated several times, one or more further shells (n) can always be used, which can be used with the divided material previous forming step are filled and then further cold-formed by hammering. These repetitions can be realized as often as desired, but it should be noted for the overall process that the composition of the semi-finished components can be changed by adding each shell material. Therefore, it is advantageous to set both the number of forming steps and the respective proportions of the metals before forming.
  • the Umformgut is heat treated.
  • the heat treatment leads to the transformation of the metallic materials into the intermetallic compounds.
  • the heat treatment is always carried out at a maximum temperature which is below the melting temperature of the lowest-melting metal which has been used. It should be noted that the higher the temperature, the faster the conversion into the intermetallic compounds takes place.
  • the heat treatment must be performed until at least the lowest melting metal has substantially completely diffused into the at least one other metal. In the case of a multi-stage heat treatment, one or more metallic phases can be formed in the meantime in the course of the diffusion, which then has a higher melting temperature than that of the previously existing lowest-melting metal.
  • the maximum temperature of the heat treatment may then be higher than in one of the previous stages of the heat treatment. As a result, a further phase reaction or better homogeneity can be realized.
  • the heat treatment depending on the metals used and their geometric distribution in the composite at temperatures below the melting temperature of the lowest melting phase involved. Typically, temperatures of 100 ° C to 1500 ° C are used within annealing periods between 0.5 h and 24 h. Heat treatments between the forming steps are possible, but in any case, a heat treatment after the last forming step is necessary. Even with heat treatments between the forming steps, the maximum temperatures are limited according to the maximum temperature in the final heat treatment. The duration of the heat treatment between the forming steps must not lead to a significant conversion into intermetallic compounds, so that the Umformgut still remains deformable. The invention will be explained in more detail below with reference to several exemplary embodiments.
  • titanium tube (Titanium Grade 1) with the dimensions: outer diameter (OD) 24.0 mm, inner diameter (ID) 20.0 mm and a length of 400 mm is an aluminum rod of alloy AA 5049 with AD 19.8 mm of length 300 mm used.
  • titanium plugs of the same diameter of 10 mm in length are used.
  • the cold forming is then carried out by hammering at room temperature to AD 2.8 mm of the composite.
  • the composite wire is sawn into 37 pieces each 250 mm long. These pieces are used in a second titanium tube and also closed with plugs front and back.
  • this new composite is cold-formed again to 2.8 mm AD by hammering, comminuted again, inserted into a third titanium sheath and again cold-worked to an OD 2.8 mm.
  • This new wire is converted into the titanium aluminide phase Ti 3 Al in a two-stage annealing process. The first stage takes place at a temperature of 600 ° C for 6 h. The second stage is carried out at a temperature of 1100 ° C for 5h and homogenizes the wire cross-section.
  • titanium tube titanium grade 1 with the dimensions: outer diameter (OD) 24.0 mm, inner diameter (ID) 22.0 mm and a length of 400 mm is an aluminum rod of alloy AA 5049 with AD 21.5 mm of length 300 mm used. Titanium plugs of the same diameter are inserted in front of and behind the aluminum rod. The cold forming is then carried out by hammering at room temperature to AD 2.8 mm of the composite. The composite wire is sawn into 37 pieces each 250 mm long. These pieces are used in a second titanium tube and also closed with plugs front and back. In addition, this new composite is cold-formed again to AD 2.8 mm by hammering.
  • the composite wire is again sawn into 37 pieces each 250 mm in length and inserted into a third titanium tube, sealed and again cold-worked to 2.8 mm by hammering.
  • This new wire will be in a two-stage annealing in the titanium aluminide phase TiAl transferred.
  • the first stage takes place at a temperature of 600 ° C for 4 h.
  • the second stage is carried out at a temperature of 1200 ° C for 8 h and homogenizes the wire cross-section.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

The method involves closing the container after filling inter-metallic compounds into the container. The inter-metallic compounds filled with container is compacted in powder form, by cold hammering process. The powdered metal is filled in another container. The cold hammering process is again performed with respect to powdered metal. A heat treatment is performed with respect to powdered metal, such that heating temperature is below the melting point of metal.

Description

Die Erfindung bezieht sich auf die Gebiete der Werkstoffwissenschaft und Umformtechnik und betrifft ein Verfahren zur Herstellung von Halbzeugen auf der Basis von intermetallischen Verbindungen, welche beispielsweise als Schweißdraht für Auftrags- oder Verbindungsschweißen von Bauteilen auf der Basis von intermetallischen Verbindungen, wie Schaufeln in stationären Gasturbinen, Niederdruckverdichtern in Flugzeugturbinen oder als Konstruktionswerkstoff eingesetzt werden können.The invention relates to the fields of materials science and metal forming and relates to a process for the production of semi-finished products based on intermetallic compounds, for example, as a welding wire for welding or welding of components based on intermetallic compounds, such as blades in stationary gas turbines, Low-pressure compressors can be used in aircraft turbines or as a construction material.

Nach dem Stand der Technik sind zahlreiche Verfahren bekannt, metallische und nichtmetallische Materialien zu Halbzeugen zu verarbeiten. Insbesondere für metallische Materialien sind Ur- oder Umformverfahren, wie Gießen, Walzen, Ziehen, gut bekannt Buch: Umformtechnik, Kurt Lange (Hrsg.), 2. Auflage, 1984, Springer Verlag, Berling/Heidelberg u.a ..According to the state of the art, numerous processes are known for processing metallic and non-metallic materials into semi-finished products. Especially for metallic materials are original or forming processes, such as casting, rolling, drawing, well-known book: Umformtechnik, Kurt Lange (ed.), 2nd edition, 1984, Springer Verlag, Berling / Heidelberg and others ..

Weiterhin bekannt sind spezialisierte Metallumformverfahren zur Einstellung von ultrafeinkörnigen Gefügen in metallischen Werkstoffen ( T. Marr, u.a., Adv. Eng. Mater. 12 (2010) 1191-1197 ). Dabei wird eine Umformung mittels einer Schmiedetechnologie erreicht, indem das Ausgangsmaterial durch Rundkneten oder Hämmern im Durchmesser sukzessive reduziert wird. Anschließend erfolgt die Teilung des entstandenen Drahtes und das Einstapeln in ein Hüllrohr. Wiederholtes Rundkneten oder Hämmern dieses Verbundes verfeinert das Gefüge und die geometrische Struktur.Also known are specialized metal forming processes for adjusting ultrafine-grained structures in metallic materials (US Pat. T. Marr, et al., Adv. Eng. Mater. 12 (2010) 1191-1197 ). In this case, a transformation by means of a forging technology is achieved by the starting material is reduced by rotary swaging or hammering in diameter successively. Subsequently, the division of the resulting wire and the stacking takes place in a cladding tube. Repeated rotary swaging or hammering of this composite refines the microstructure and the geometric structure.

Intermetallische Verbindungen sind chemisch homogene Verbindungen aus zwei oder mehr Metallen. Sie zeigen im Unterschied zu Legierungen häufig kristalline Strukturen (Gitter), die sich von denen der konstituierenden Metalle unterscheiden. In ihrem Gitter herrscht eine Mischbindung aus einem metallischen Bindungsanteil und geringeren Atombindungs- bzw. lonenbindungsanteilen. Aus diesem Grund ist die Schmelztemperatur solcher Verbindungen häufig höher als die der Einzelkomponenten.
Bekannte intermetallische Verbindungen sind beispielsweise Heusler-Verbindungen, Verbindungen aus Formgedächtnismaterialien oder Supraleiterverbindungen (siehe beispielsweise Wikipedia, Stichwort Intermetallische Verbindungen).
Intermetallic compounds are chemically homogeneous compounds of two or more metals. In contrast to alloys, they often show crystalline structures (lattices) that differ from those of the constituent metals. In their lattice there is a mixed bond of a metallic bond fraction and lower atomic bonding or ion binding components. For this reason, the melting temperature of such compounds is often higher than that of the individual components.
Known intermetallic compounds are, for example, Heusler compounds, compounds of shape memory materials or superconductor compounds (see, for example, Wikipedia, keyword intermetallic compounds).

Weiterhin bekannt sind Herstellungsverfahren für intermetallische Verbindungen. Hergestellt werden intermetallische Verbindungen sowohl durch pulvermetallurgische, als auch durch herkömmliche Schmelzverfahren, wobei gerade wegen ihrer mechanischen Eigenschaften die Herstellung und Verarbeitung schwierig sein kann.Also known are production processes for intermetallic compounds. Intermetallic compounds are produced by both powder metallurgy and conventional melting processes, and it is precisely because of their mechanical properties that production and processing can be difficult.

So können Titanaluminide o. ä. beispielsweise über Schmelzen und Gießen in einem Kaltwand-Induktions-Tiegelofen hergestellt werden ( Einsatz des Kaltwand-Induktions-Tiegelofens zum Schmelzen und Gießen von TiAl-Legierungen, Matthias Vogt, VDI Verlag 2001, Düsseldorf ). Dabei kommt es nur zu einem geringen Kontakt zwischen dem zu schmelzenden Material und der geschlitzten, wassergekühlten Kupferkokille, die sich innerhalb einer Induktionsspule befindet. Das Verfahren eignet sich daher für hochschmelzende, hochreine und (im heißen Zustand) chemisch aggressive Materialien, wie die Titanaluminide, da das Verfahren auch leicht im Vakuum betrieben werden kann.
Weiterhin sind andere Verfahren zu Herstellung solcher Verbindungen bekannt ( JP-A-63-247321 ). Hier werden Titanaluminidhalbzeuge in einem aufwändigen, mehrstufigen pulvermetallurgischem Verfahren hergestellt, bei dem zunächst Aluminium- und Titanpulvermischungen kalt isostatisch verpresst, die entlüfteten Grünstücke auf 455°C erhitzt, und anschließend nochmals verpresst und extrudiert werden müssen.
Thus titanium aluminides or the like can be produced, for example, by melting and casting in a cold wall induction crucible furnace ( Use of cold wall induction crucible furnace for melting and casting of TiAl alloys, Matthias Vogt, VDI Verlag 2001, Dusseldorf ). It comes only to a low contact between the material to be melted and the slotted, water-cooled copper mold, which is located within an induction coil. The process is therefore suitable for high-melting, high-purity and (when hot) chemically aggressive materials, such as the titanium aluminides, since the process can also be easily operated in a vacuum.
Furthermore, other methods for producing such compounds are known ( JP-A-63-247321 ). Here, semi-finished titanium aluminides are produced in a complex, multi-stage powder metallurgy process in which aluminum and titanium powder mixtures are cold isostatically pressed first, the vented green pieces are heated to 455 ° C, and then pressed again and extruded.

Nachteilig an den bekannten Lösungen ist, dass die Herstellung von intermetallischen Verbindungen nur mittels aufwändiger Verfahren möglich ist. Weiterhin sind Halbzeug- oder Bauteilgrößen auf die über schmelzmetallurgisch und pulvermetallurgisch herstellbaren Abmessungen begrenzt. Eine Drahtherstellung über diese Verfahren ist zum gegenwärtigen Zeitpunkt nicht möglich.A disadvantage of the known solutions is that the production of intermetallic compounds is possible only by means of complex processes. Furthermore, semi-finished or component sizes are limited to the melt-metallurgical and powder metallurgy manufacturable dimensions. Wire production via these methods is currently not possible.

Der Erfindung liegt die Aufgabe zu Grunde, ein Verfahren zur Herstellung von Halbzeugen auf der Basis von intermetallischen Verbindungen anzugeben, welches einfacher realisierbar und kostengünstiger ist.The invention is based on the object to provide a method for the production of semi-finished products based on intermetallic compounds, which is easier to implement and less expensive.

Die Aufgabe wird durch die in den Ansprüchen angegebene Erfindung gelöst. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.The object is achieved by the invention specified in the claims. Advantageous embodiments are the subject of the dependent claims.

Bei dem erfindungsgemäßen Verfahren zur Herstellung von Halbzeugen auf der Basis von intermetallischen Verbindungen wird eine erste Hülle aus mindestens einem Metall mit mindestens einem zweiten anderen Metall in kompakter und/oder Pulverform mindestens teilweise gefüllt, nachfolgend wird die gefüllte und geschlossene erste Hülle mittels Hämmern kaltumgeformt, danach wird das entstandene Umformgut zerkleinert und in eine weitere mindestens zweite Hülle aus mindestens einem Metall eingebracht und auch diese gefüllte und geschlossene mindestens zweite Hülle wieder mittels Hämmern kaltumgeformt, wobei dieser Verfahrensschritt einmal durchgeführt oder mehrmals wiederholt wird, und mindestens nach dem letzten Umformschritt wird eine Wärmebehandlung durchgeführt, wobei die Metalle insgesamt bezüglich ihrer Zusammensetzung und ihres Volumenanteils und die Wärmebehandlung zur Herstellung der intermetallischen Verbindung ausgewählt werden, und die Wärmebehandlung bei einer maximalen Temperatur durchgeführt wird, die immer unterhalb der Schmelztemperatur des niedrigstschmelzenden Metalls und/oder der Phase liegt und mindestens solange durchgeführt wird, bis mindestens das niedrigstschmelzende Metall im Wesentlichen vollständig in eine oder mehrere andere Phasen umgesetzt ist, und im Falle einer mehrstufigen Wärmebehandlung die maximale Temperatur immer unter der Schmelztemperatur des jeweils vorliegenden niedrigstschmelzenden Metalls und/oder Phase liegt.In the method according to the invention for the production of semi-finished products based on intermetallic compounds, a first shell of at least one metal is at least partially filled with at least one second other metal in a compact and / or powdered form, subsequently the filled and closed first shell is cold-formed by hammering, Thereafter, the resulting Umformgut is crushed and introduced into a further at least second shell of at least one metal and also cold-formed this filled and closed at least second shell again by hammering, this process step is performed once or repeated several times, and at least after the last forming step becomes a Heat treatment carried out, wherein the metals in total with respect to their composition and their volume fraction and the heat treatment for the preparation of the intermetallic compound are selected, and the heat treatment is carried out at a maximum temperature which is always below the melting temperature of the lowest melting metal and / or the phase and is carried out at least until at least the lowest melting metal substantially completely converted into one or more other phases is, and in the case of a multi-stage heat treatment, the maximum temperature is always below the melting temperature of the respective present lowest-melting metal and / or phase.

Vorteilhafterweise werden Halbzeuge aus Titan und Aluminium, Nickel und Aluminium, Niob und Aluminium, Lithium und Aluminium, Magnesium und Aluminium, Magnesium und Nickel hergestellt.Advantageously, semi-finished products of titanium and aluminum, nickel and aluminum, niobium and aluminum, lithium and aluminum, magnesium and aluminum, magnesium and nickel are produced.

Weiterhin vorteilhafterweise bestehen die Halbzeuge vollständig aus einer oder mehreren intermetallischen Verbindungen.Further advantageously, the semi-finished products consist entirely of one or more intermetallic compounds.

Ebenfalls vorteilhafterweise werden Hüllen mit kreisförmigem, dreieckigem, quadratischem, rechteckigem, mehreckigem, ovalem oder ellipsoidem Querschnitt eingesetzt.Also advantageously, sheaths of circular, triangular, square, rectangular, polygonal, oval or ellipsoidal cross-section are used.

Es ist auch von Vorteil, wenn das zweite andere Metall in kompakter Form in die erste Hülle eingebracht wird.It is also advantageous if the second other metal is introduced in a compact form in the first shell.

Und weiterhin von Vorteil ist es, wenn die Zerkleinerung des Umformgutes durch Zerschneiden, Brechen, Mahlen realisiert wird.And it is also advantageous if the comminution of the formed material is realized by cutting, breaking, grinding.

Vorteilhaft ist es auch, wenn der Verfahrensschritt des Zerkleinern des das entstandenen Umformgutes, dessen Einbringen in eine weitere mindestens zweite Hülle aus mindestens einem Metall und dessen Umformen mittels Hämmern 2 bis 10mal durchgeführt wird.It is also advantageous if the process step of crushing the formed material to be formed, its introduction into a further at least second shell made of at least one metal and its forming by hammering 2 to 10 times.

Ebenfalls vorteilhaft ist es, wenn die Wärmebehandlung in einem Temperaturbereich 100°C - 1500 °C innerhalb einer Zeit von 0,5 h bis 24 h realisiert wird, noch vorteilhafterweise, wenn die Wärmebehandlung in mehreren Stufen durchgeführt wird.It is also advantageous, if the heat treatment in a temperature range 100 ° C - 1500 ° C within a time of 0.5 h to 24 h is realized, still Advantageously, when the heat treatment is carried out in several stages.

Weiterhin vorteilhaft ist es, wenn zwischen Umformschritten eine Wärmebehandlung in Form einer Zwischenglühung durchgeführt wird.It is also advantageous if a heat treatment in the form of an intermediate annealing is carried out between forming steps.

Mit der erfindungsgemäßen Lösung wird es erstmals möglich, Halbzeuge auf der Basis von intermetallischen Verbindungen mit einem einfachen und kostengünstigen Verfahren herzustellen, sowie auch ein Halbzeug in Form eines Drahtes erstmalig direkt herzustellen.With the solution according to the invention, it becomes possible for the first time to produce semi-finished products based on intermetallic compounds with a simple and cost-effective method, as well as for the first time to directly produce a semi-finished product in the form of a wire.

Aus mindestens einem Metall wird eine Hülle hergestellt. Die Hülle kann dabei einen kreisförmigen, dreieckigen, quadratischen, rechteckigen, mehreckigen, ovalen oder ellipsoiden Querschnitt aufweisen. Jede andere Form eines Querschnittes ist aber ebenfalls möglich, wobei der runde oder annähernd runde Querschnitt bevorzugt ist. In diese Hülle wird ein mindestens zweites Metall in kompakter Form oder in Pulverform eingefüllt. Als kompakte Formen können beispielsweise Rohre oder Stangen zum Einsatz kommen. Die Pulverform soll erfindungsgemäß auch stückige Teile oder Granulate des zweiten Metalls umfassen.
Die Auswahl der Metalle erfolgt danach, welche intermetallische Verbindung das Halbzeug aufweisen soll. Dabei soll das Halbzeug nach der Herstellung im Wesentlichen vollständig aus der intermetallischen Verbindung bestehen, vorteilhafterweise vollständig. Auch die Volumenanteile der Metalle der Hülle und der Metalle, die in die Hülle gefüllt werden, werden nach der herzustellenden intermetallischen Verbindung ausgewählt.
From at least one metal, a shell is made. The shell may have a circular, triangular, square, rectangular, polygonal, oval or ellipsoidal cross section. However, any other shape of a cross section is also possible, with the round or approximately round cross section being preferred. In this shell, an at least second metal in a compact form or in powder form is filled. As compact forms, for example, tubes or rods can be used. The powder form according to the invention should also comprise lumped parts or granules of the second metal.
The choice of metals is made according to which intermetallic compound is to have the semifinished product. In this case, the semifinished product should consist essentially completely of the intermetallic compound after manufacture, advantageously completely. The volume fractions of the metals of the shell and of the metals which are filled into the shell are also selected according to the intermetallic compound to be produced.

Diese erste gefüllte Hülle wird dann geschlossen, beispielsweise durch Schweißen, Löten, Falten, Falzen, Nieten oder Verstopfen und wird dann der Kaltumformung mittels Hämmern zugeführt.
Unter Kaltumformung soll im Rahmen dieser Erfindung die Umformung der Verbunde bei einer Temperatur unterhalb der Rekristallisationstemperatur des am niedrigsten schmelzenden Metalls des Verbundes verstanden werden. Dabei kann die Kaltumformung nach der vorliegenden Erfindung auch bei Temperaturen bis - 196 °C realisiert werden. Vorteilhafterweise soll die erfindungsgemäße Kaltumformung aber bei und um die Raumtemperatur durchgeführt werden.
This first filled envelope is then closed, for example, by welding, soldering, folding, folding, riveting or plugging, and is then fed to cold working by means of hammering.
For the purposes of this invention, cold forming should be understood to mean the deformation of the composites at a temperature below the recrystallization temperature of the lowest-melting metal of the composite. In this case, the cold working according to the present invention even at temperatures up to - 196 ° C be realized. Advantageously, however, the cold working according to the invention should be carried out at and around room temperature.

Nach dem Schließen der Hülle erfolgt die Kaltumformung mittels Hämmern. Das hergestellte Umformgut wird dann zerkleinert. Die Zerkleinerung kann durch Zerschneiden, Brechen, Mahlen realisiert werden. Vorteilhafterweise wird eine Stange oder ein Draht als Umformgut hergestellt und dieses dann in Abschnitte zerteilt.
Das zerkleinerte Umformgut wird anschließend in eine oder mehrere zweite Hülle(n) eingestapelt. Vorteilhafterweise werden die zerteilten Stangen in die zweite Hülle eingestapelt. Es kann aber auch das zerkleinerte Umformgut in Form von Granulat oder Stücken oder Pulver in die mindestens zweite Hülle eingefüllt werden.
Alle Hüllmaterialien sind weiterhin Metalle. Die Auswahl der Hüllmaterialien ist immer von der zu erzielenden Zusammensetzung der intermetallischen Verbindung abhängig.
After closing the shell, the cold forming is done by hammering. The produced material to be formed is then comminuted. The comminution can be realized by cutting, breaking, grinding. Advantageously, a rod or a wire is produced as Umformgut and this then divided into sections.
The comminuted material to be formed is then stacked in one or more second envelope (s). Advantageously, the divided rods are stacked in the second shell. However, it is also possible to fill the comminuted material to be shaped in the form of granules or pieces or powder into the at least second casing.
All shell materials are still metals. The choice of the shell materials always depends on the composition of the intermetallic compound to be achieved.

Nach dem Verschließen der Hülle erfolgt erneut die Kaltumformung mittels Hämmern. Dabei wird das Hämmern solange durchgeführt, bis der gewünschte Umformgrad erreicht, und/oder das gewünschte Halbzeug hergestellt ist. Sofern das Halbzeug sowohl hinsichtlich seiner geometrischen Abmessungen als auch hinsichtlich seiner Zusammensetzung nicht mit einem Kaltumformschritt mittels Hämmern herstellbar ist, kann dieser zweite Umformschritt mehrfach wiederholt werden, wobei immer eine oder mehrere weitere Hülle(n) eingesetzt werden können, die mit dem zerteilten Umformgut des vorherigen Umformschrittes gefüllt werden und dann mittels Hämmern weiter kaltumgeformt werden. Diese Wiederholungen können beliebig oft realisiert werden, wobei jedoch für den Gesamtprozess zu beachten ist, dass durch das Hinzufügen jedes Hüllmateriales die Zusammensetzung der im Halbzeug befindlichen Komponenten verändert werden kann. Daher ist es vorteilhaft, sowohl die Anzahl der Umformschritte als auch die jeweiligen Anteile an den Metallen vor der Umformung festzulegen.After closing the envelope, the cold forming is done by hammering again. In this case, the hammering is carried out until the desired degree of deformation is reached, and / or the desired semifinished product is produced. If the semifinished product can not be produced with a cold forming step by means of hammering, both in terms of its geometric dimensions and its composition, this second forming step can be repeated several times, one or more further shells (n) can always be used, which can be used with the divided material previous forming step are filled and then further cold-formed by hammering. These repetitions can be realized as often as desired, but it should be noted for the overall process that the composition of the semi-finished components can be changed by adding each shell material. Therefore, it is advantageous to set both the number of forming steps and the respective proportions of the metals before forming.

Für den erfindungsgemäßen Umformprozess ist zu beachten, dass während der Umformung im Wesentlichen noch keine Umwandlung der metallischen Materialien in intermetallische Verbindungen erfolgen darf. Geringe Umwandlungen sind möglich, solange das Umformgut noch umformbar ist.For the forming process according to the invention, it should be noted that essentially no conversion of the metallic materials takes place during the forming process may take place in intermetallic compounds. Low conversions are possible as long as the formed product is still deformable.

Mindestens nach dem letzten Umformschritt wird das Umformgut wärmebehandelt. Die Wärmebehandlung führt zur Umwandlung der metallischen Materialien in die intermetallischen Verbindungen. Die Wärmebehandlung wird dabei immer bei einer maximalen Temperatur durchgeführt, die unterhalb der Schmelztemperatur des niedrigstschmelzenden Metalls, welches eingesetzt worden ist, liegt. Dabei ist zu berücksichtigen, dass je höher die Temperatur liegt, umso schneller die Umwandlung in die intermetallischen Verbindungen erfolgt.
Weiterhin muss die Wärmebehandlung solange durchgeführt werden, bis mindestens das niedrigstschmelzende Metall im Wesentlichen vollständig in das mindestens andere Metall diffundiert ist.
Im Falle einer mehrstufigen Wärmebehandlung kann im Zuge der Diffusion zwischenzeitlich eine oder mehrere metallische Phasen gebildet werden, die dann eine höhere Schmelztemperatur aufweist/aufweisen, als die des vorher vorhandenen niedrigstschmelzenden Metalls. Nach dessen vollständiger Umsetzung kann dann die maximale Temperatur der Wärmebehandlung auch höher sein, als in einer der vorherigen Stufen der Wärmebehandlung. Dadurch kann eine weitere Phasenreaktion oder eine bessere Homogenität realisiert werden.
Vorteilhafterweise wird die Wärmebehandlung je nach eingesetzten Metallen und deren geometrischer Verteilung im Verbund bei Temperaturen unterhalb der Schmelztemperatur der niedrigstschmelzenden beteiligten Phase liegt. Typischerweise kommen dabei Temperaturen von 100°C bis 1500°C innerhalb von Glühdauern zwischen 0,5 h und 24 h zum Einsatz.
Wärmebehandlungen zwischen den Umformschritten sind möglich, jedoch ist in jedem Fall eine Wärmebehandlung nach dem letzten Umformschritt notwendig. Auch bei Wärmebehandlungen zwischen den Umformschritten sind die maximalen Temperaturen entsprechend der maximalen Temperatur bei der abschließenden Wärmebehandlung begrenzt. Die Dauer der Wärmebehandlungen zwischen den Umformschritten darf dabei nicht zu einer nennenswerten Umwandlung in intermetallische Verbindungen führen, damit das Umformgut noch umformbar bleibt. Nachfolgend wird die Erfindung an mehreren Ausführungsbeispielen näher erläutert.
At least after the last forming step, the Umformgut is heat treated. The heat treatment leads to the transformation of the metallic materials into the intermetallic compounds. The heat treatment is always carried out at a maximum temperature which is below the melting temperature of the lowest-melting metal which has been used. It should be noted that the higher the temperature, the faster the conversion into the intermetallic compounds takes place.
Furthermore, the heat treatment must be performed until at least the lowest melting metal has substantially completely diffused into the at least one other metal.
In the case of a multi-stage heat treatment, one or more metallic phases can be formed in the meantime in the course of the diffusion, which then has a higher melting temperature than that of the previously existing lowest-melting metal. After its completion, the maximum temperature of the heat treatment may then be higher than in one of the previous stages of the heat treatment. As a result, a further phase reaction or better homogeneity can be realized.
Advantageously, the heat treatment, depending on the metals used and their geometric distribution in the composite at temperatures below the melting temperature of the lowest melting phase involved. Typically, temperatures of 100 ° C to 1500 ° C are used within annealing periods between 0.5 h and 24 h.
Heat treatments between the forming steps are possible, but in any case, a heat treatment after the last forming step is necessary. Even with heat treatments between the forming steps, the maximum temperatures are limited according to the maximum temperature in the final heat treatment. The duration of the heat treatment between the forming steps must not lead to a significant conversion into intermetallic compounds, so that the Umformgut still remains deformable. The invention will be explained in more detail below with reference to several exemplary embodiments.

Beispiel 1 (Ti3Al)Example 1 (Ti 3 Al)

In ein Titanrohr (Titan Grade 1) mit den Abmessungen: Außendurchmesser (AD) 24,0 mm, Innendurchmesser (ID) 20,0 mm und einer Länge von 400 mm wird eine Aluminiumstange der Legierung AA 5049 mit AD 19,8 mm der Länge 300 mm eingesetzt. Vor und hinter die Aluminiumstange werden Titanstopfen desselben Durchmessers von 10 mm Länge eingesetzt. Anschließend erfolgt die Kaltumformung durch Hämmern bei Raumtemperatur auf AD 2,8 mm des Verbundes. Der Verbunddraht wird in 37 Stücke zu je 250 mm Länge gesägt. Diese Stücke werden in ein zweites Hüllrohr aus Titan eingesetzt und ebenfalls mit Stopfen vorn und hinten verschlossen. Im Weiteren wird dieser neue Verbund wieder auf AD 2,8 mm mittels Hämmern kaltumgeformt, wieder zerkleinert, in eine dritte Titanhülle eingefügt und wiederum auf AD 2,8 mm kaltumgeformt. Dieser neue Draht wird in einer zweistufigen Glühung in die Titanaluminidphase Ti3Al überführt. Die erste Stufe erfolgt bei einer Temperatur von 600 °C für 6 h. Die zweite Stufe wird bei einer Temperatur von 1100 °C über 5h durchgeführt und homogenisiert den Drahtquerschnitt.In a titanium tube (Titanium Grade 1) with the dimensions: outer diameter (OD) 24.0 mm, inner diameter (ID) 20.0 mm and a length of 400 mm is an aluminum rod of alloy AA 5049 with AD 19.8 mm of length 300 mm used. Before and behind the aluminum rod, titanium plugs of the same diameter of 10 mm in length are used. The cold forming is then carried out by hammering at room temperature to AD 2.8 mm of the composite. The composite wire is sawn into 37 pieces each 250 mm long. These pieces are used in a second titanium tube and also closed with plugs front and back. Furthermore, this new composite is cold-formed again to 2.8 mm AD by hammering, comminuted again, inserted into a third titanium sheath and again cold-worked to an OD 2.8 mm. This new wire is converted into the titanium aluminide phase Ti 3 Al in a two-stage annealing process. The first stage takes place at a temperature of 600 ° C for 6 h. The second stage is carried out at a temperature of 1100 ° C for 5h and homogenizes the wire cross-section.

Beispiel 2 (TiA1)Example 2 (TiA1)

In ein Titanrohr (Titan Grade 1) mit den Abmessungen: Außendurchmesser (AD) 24,0 mm, Innendurchmesser (ID) 22,0 mm und einer Länge von 400 mm wird eine Aluminiumstange der Legierung AA 5049 mit AD 21,5 mm der Länge 300 mm eingesetzt. Vor und hinter die Aluminiumstange werden Titanstopfen desselben Durchmessers eingesetzt. Anschließend erfolgt die Kaltumformung durch Hämmern bei Raumtemperatur auf AD 2,8 mm des Verbundes. Der Verbunddraht wird in 37 Stücke zu je 250 mm Länge gesägt. Diese Stücke werden in ein zweites Hüllrohr aus Titan eingesetzt und ebenfalls mit Stopfen vorn und hinten verschlossen. Im Weiteren wird dieser neue Verbund wieder auf AD 2,8 mm mittels Hämmern kaltumgeformt. Der Verbunddraht wird wiederum in 37 Stücke zu je 250 mm Länge gesägt und diese in ein drittes Hüllrohr aus Titan eingesetzt, verschlossen und wiederum auf 2,8 mm mittels Hämmern kaltumgeformt. Dieser neue Draht wird in einer zweistufigen Glühung in die Titanaluminidphase TiAl überführt. Die erste Stufe erfolgt bei einer Temperatur von 600 °C für 4 h. Die zweite Stufe wird bei einer Temperatur von 1200 °C über 8 h durchgeführt und homogenisiert den Drahtquerschnitt.In a titanium tube (titanium grade 1) with the dimensions: outer diameter (OD) 24.0 mm, inner diameter (ID) 22.0 mm and a length of 400 mm is an aluminum rod of alloy AA 5049 with AD 21.5 mm of length 300 mm used. Titanium plugs of the same diameter are inserted in front of and behind the aluminum rod. The cold forming is then carried out by hammering at room temperature to AD 2.8 mm of the composite. The composite wire is sawn into 37 pieces each 250 mm long. These pieces are used in a second titanium tube and also closed with plugs front and back. In addition, this new composite is cold-formed again to AD 2.8 mm by hammering. The composite wire is again sawn into 37 pieces each 250 mm in length and inserted into a third titanium tube, sealed and again cold-worked to 2.8 mm by hammering. This new wire will be in a two-stage annealing in the titanium aluminide phase TiAl transferred. The first stage takes place at a temperature of 600 ° C for 4 h. The second stage is carried out at a temperature of 1200 ° C for 8 h and homogenizes the wire cross-section.

Claims (10)

Verfahren zur Herstellung von Halbzeugen auf der Basis von intermetallischen Verbindungen, bei dem eine erste Hülle aus mindestens einem Metall mit mindestens einem zweiten anderen Metall in kompakter und/oder Pulverform mindestens teilweise gefüllt wird, nachfolgend die gefüllte und geschlossene erste Hülle mittels Hämmern kaltumgeformt wird, danach das entstandene Umformgut zerkleinert und in eine weitere mindestens zweite Hülle aus mindestens einem Metall eingebracht und auch diese gefüllte und geschlossene mindestens zweite Hülle wieder mittels Hämmern kaltumgeformt wird, wobei dieser Verfahrensschritt einmal durchgeführt oder mehrmals wiederholt wird, und mindestens nach dem letzten Umformschritt eine Wärmebehandlung durchgeführt wird, wobei die Metalle insgesamt bezüglich ihrer Zusammensetzung und ihres Volumenanteils und die Wärmebehandlung zur Herstellung der intermetallischen Verbindung ausgewählt werden, und die Wärmebehandlung bei einer maximalen Temperatur durchgeführt wird, die immer unterhalb der Schmelztemperatur des niedrigstschmelzenden Metalls und/oder der Phase liegt und mindestens solange durchgeführt wird, bis mindestens das niedrigstschmelzende Metall im Wesentlichen vollständig in eine oder mehrere andere Phasen umgesetzt ist, und im Falle einer mehrstufigen Wärmebehandlung die maximale Temperatur immer unter der Schmelztemperatur des jeweils vorliegenden niedrigstschmelzenden Metalls und/oder Phase liegt.A process for the production of semi-finished products based on intermetallic compounds, in which a first shell of at least one metal is at least partially filled with at least one second other metal in a compact and / or powdered form, then the filled and closed first shell is cold-worked by hammering, then the resulting formed material comminuted and introduced into a further at least second shell of at least one metal and this filled and closed at least second shell is cold-formed again by hammering, this process step is performed once or repeated several times, and at least after the last forming step, a heat treatment is carried out, wherein the metals are selected in total with respect to their composition and their volume fraction and the heat treatment for the production of the intermetallic compound, and the heat treatment at a maximum temperature d is performed, which is always below the melting temperature of the lowest melting metal and / or the phase and is carried out at least until at least the lowest melting metal is substantially completely converted into one or more other phases, and in the case of a multi-stage heat treatment, the maximum temperature always is below the melting temperature of the respective lowest-melting metal and / or phase present. Verfahren nach Anspruch 1, bei dem Halbzeuge aus Titan und Aluminium, Nickel und Aluminium, Niob und Aluminium, Lithium und Aluminium, Magnesium und Aluminium, Magnesium und Nickel hergestellt werden.A method according to claim 1, wherein semi-finished products are made of titanium and aluminum, nickel and aluminum, niobium and aluminum, lithium and aluminum, magnesium and aluminum, magnesium and nickel. Verfahren nach Anspruch 1, bei dem die Halbzeuge vollständig aus einer oder mehreren intermetallischen Verbindungen bestehen.A method according to claim 1, wherein the semi-finished products consist entirely of one or more intermetallic compounds. Verfahren nach Anspruch 1, bei dem Hüllen mit kreisförmigem, dreieckigem, quadratischem, rechteckigem, mehreckigem, ovalem oder ellipsoidem Querschnitt eingesetzt werden.The method of claim 1, wherein sheaths of circular, triangular, square, rectangular, polygonal, oval or ellipsoidal cross-section are used. Verfahren nach Anspruch 1, bei dem das zweite andere Metall in kompakter Form in die erste Hülle eingebracht wird.The method of claim 1, wherein the second other metal is introduced in a compact form in the first shell. Verfahren nach Anspruch 1, bei dem die Zerkleinerung des Umformgutes durch Zerschneiden, Brechen, Mahlen realisiert wird.A method according to claim 1, wherein the comminution of the material to be formed by cutting, breaking, grinding is realized. Verfahren nach Anspruch 1, bei dem der Verfahrensschritt des Zerkleinern des das entstandenen Umformgutes, dessen Einbringen in eine weitere mindestens zweite Hülle aus mindestens einem Metall und dessen Umformen mittels Hämmern 2 bis 10mal durchgeführt wird.The method of claim 1, wherein the method step of crushing the resulting formed material, its introduction is carried out in a further at least second shell of at least one metal and its forming by hammering 2 to 10 times. Verfahren nach Anspruch 1, bei dem die Wärmebehandlung in einem Temperaturbereich 100 °C - 1500 °C innerhalb einer Zeit von 0,5 h bis 24 h realisiert wird.The method of claim 1, wherein the heat treatment is realized in a temperature range of 100 ° C - 1500 ° C within a time of 0.5 h to 24 h. Verfahren nach Anspruch 8, bei dem die Wärmebehandlung in mehreren Stufen durchgeführt wird.The method of claim 8, wherein the heat treatment is performed in multiple stages. Verfahren nach Anspruch 1, bei dem zwischen Umformschritten eine Wärmebehandlung in Form einer Zwischenglühung durchgeführt wird.A method according to claim 1, wherein a heat treatment in the form of an intermediate annealing is carried out between forming steps.
EP12164534.5A 2011-04-21 2012-04-18 Method for producing semi-finished products on the basis of inter-metallic compounds Not-in-force EP2514845B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011007898.3A DE102011007898B4 (en) 2011-04-21 2011-04-21 Process for the production of semi-finished products based on intermetallic compounds

Publications (2)

Publication Number Publication Date
EP2514845A1 true EP2514845A1 (en) 2012-10-24
EP2514845B1 EP2514845B1 (en) 2016-06-08

Family

ID=45976813

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12164534.5A Not-in-force EP2514845B1 (en) 2011-04-21 2012-04-18 Method for producing semi-finished products on the basis of inter-metallic compounds

Country Status (2)

Country Link
EP (1) EP2514845B1 (en)
DE (1) DE102011007898B4 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018207448A1 (en) * 2018-05-15 2019-11-21 MTU Aero Engines AG Method for producing a welding wire, welding wire for machining a component and component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63247321A (en) 1987-04-02 1988-10-14 Sumitomo Light Metal Ind Ltd Formation of ti-al intermetallic compound member
JPH02243747A (en) * 1989-03-15 1990-09-27 Sumitomo Electric Ind Ltd Intermetallic compound wire and its production
JPH03188230A (en) * 1989-12-14 1991-08-16 Nhk Spring Co Ltd Elastic member essentially consisting of intermetallic compound and its manufacture
DE10329552A1 (en) * 2003-06-30 2005-02-03 Meyer, Lothar W., Prof. Dr.-Ing. Production of an infiltration composite material made from titanium aluminide, titanium and aluminum comprises cleaning and crushing titanium (alloy) material and aluminum (alloy) material, and further processing
EP2272664A1 (en) * 2009-07-08 2011-01-12 Brandenburgische Technische Universität Process for manufacturing foils, sheets and shaped parts from an alloy with titanium and aluminium as its main elements.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63247321A (en) 1987-04-02 1988-10-14 Sumitomo Light Metal Ind Ltd Formation of ti-al intermetallic compound member
JPH02243747A (en) * 1989-03-15 1990-09-27 Sumitomo Electric Ind Ltd Intermetallic compound wire and its production
JPH03188230A (en) * 1989-12-14 1991-08-16 Nhk Spring Co Ltd Elastic member essentially consisting of intermetallic compound and its manufacture
DE10329552A1 (en) * 2003-06-30 2005-02-03 Meyer, Lothar W., Prof. Dr.-Ing. Production of an infiltration composite material made from titanium aluminide, titanium and aluminum comprises cleaning and crushing titanium (alloy) material and aluminum (alloy) material, and further processing
EP2272664A1 (en) * 2009-07-08 2011-01-12 Brandenburgische Technische Universität Process for manufacturing foils, sheets and shaped parts from an alloy with titanium and aluminium as its main elements.

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"Umformtechnik", 1984, SPRINGER VERLAG
CHAUDHARI G P ET AL: "Titanium aluminide sheets made using roll bonding and reaction annealing", INTERMETALLICS, ELSEVIER SCIENCE PUBLISHERS B.V, GB, vol. 18, no. 4, 1 April 2010 (2010-04-01), pages 472 - 478, XP026935029, ISSN: 0966-9795, [retrieved on 20091028], DOI: 10.1016/J.INTERMET.2009.09.008 *
JINKEUN OH ET AL: "Microstructural analysis of multilayered titanium aluminide sheets fabricated by hot rolling and heat treatment", METALLURGICAL AND MATERIALS TRANSACTIONS A, SPRINGER-VERLAG, NEW YORK, vol. 33, no. 12, 1 December 2002 (2002-12-01), pages 3649 - 3659, XP019694074, ISSN: 1543-1940 *
MATTHIAS VOGT: "Einsatz des Kaltwand-Induktions-Tiegelofens zum Schmelzen und Gießen von TiAI-Legierungen", 2001, VDI VERLAG
T. MARR, ADV. ENG. MATER, vol. 12, 2010, pages 1191 - 1197
T. MARR, J. FREUDENBERGER, A. KAUFFMANN, J. SCHARNWEBER, C.-G. OERTEL, W. SKROTZKI, U. SIEGEL, U. KÜHN, J. ECKERT, U. MARTIN, L. S: "Damascene Light-Weight Metals", ADVANCED ENGINEERING MATERIALS, vol. 12, no. 12, 2010, pages 1191 - 1197, XP002678788 *
V. SU ET AL: "Investigation on a fabrication technique of TiAl sheet", MATERIALS SCIENCE FORUM, vol. 475-479, 1 January 2005 (2005-01-01), CH, pages 805 - 808, XP009125200, ISSN: 0255-5476 *
XU L ET AL: "Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples", MATERIALS SCIENCE AND ENGINEERING A: STRUCTURAL MATERIALS:PROPERTIES, MICROSTRUCTURE & PROCESSING, LAUSANNE, CH, vol. 435-436, 5 November 2006 (2006-11-05), pages 638 - 647, XP027953001, ISSN: 0921-5093, [retrieved on 20061105] *
ZHANG ET AL: "Processing sheet materials by accumulative roll bonding and reaction annealing from Ti/Al/Nb elemental foils", MATERIALS SCIENCE AND ENGINEERING A: STRUCTURAL MATERIALS:PROPERTIES, MICROSTRUCTURE & PROCESSING, LAUSANNE, CH, vol. 463, no. 1-2, 17 May 2007 (2007-05-17), pages 67 - 73, XP022082239, ISSN: 0921-5093, DOI: 10.1016/J.MSEA.2006.06.144 *

Also Published As

Publication number Publication date
DE102011007898B4 (en) 2016-07-21
EP2514845B1 (en) 2016-06-08
DE102011007898A1 (en) 2012-10-25

Similar Documents

Publication Publication Date Title
EP3069802B1 (en) Method for producing a component made of a compound material with a metal matrix and incorporated intermetallic phases
DE102006015167B3 (en) Production of a wire or strip used e.g. as an electrode in spark plugs comprises producing an intermetallic compound, grinding, mixing with metal powder, feeding the mixture into a tube and deforming the filled tube
JP5971821B2 (en) Method for manufacturing titanium alloy welding wire
EP3372700B1 (en) Method for making forged tial components
EP1438150B1 (en) Device and method for producing microcrystalline materials
EP0035601B1 (en) Process for making a memory alloy
AT509613A1 (en) METHOD FOR PRODUCING MOLDINGS FROM ALUMINUM ALLOYS
EP3269838B1 (en) High temperature resistant tial alloy, method for production of a composent from a corresponding tial alloy, component from a corresponding tial alloy
DE102009017596B3 (en) Method of making a semi-finished product for Mokume Gane jewelry
EP0200079B1 (en) Method of manufacturing a metallic article from an amorphous alloy
EP1706516B1 (en) Method for the production of cast components
DE4001799C2 (en) Process for producing an intermetallic compound
EP2514845B1 (en) Method for producing semi-finished products on the basis of inter-metallic compounds
EP3251145B1 (en) Method of producing a coating source and coating source
EP0213410A1 (en) Process for manufacturing a metallic work piece from an amorphous alloy with at least partly magnetic components
JP2008195978A (en) Magnesium-based composite material
DE102009056504B4 (en) A method of making an inclusion-free Nb alloy of powder metallurgy material for an implantable medical device
EP2003224B1 (en) Secondary processing of structures derived from AI-RE-TM Alloys
DE756272C (en) Process for the production of objects from aluminum-silicon alloys
EP0035070A1 (en) Memory alloy based on a highly cupriferous or nickelous mixed crystal
DE3919107A1 (en) METHOD FOR SHAPING AND IMPROVING THE MECHANICAL PROPERTIES OF POWDER METALLICALLY PRODUCED BLANKS FROM AN ALLOY WITH INCREASED RESISTANCE TO HEAT BY EXTRACTION
WO2016087515A1 (en) Metal matrix composite and method for the production thereof
WO2010066529A1 (en) Pre-product for the production of sintered metallic components, a method for producing the pre-product and the production of components
DE19910365C1 (en) Process for the production of compacts as an intermediate for the production of near-net shape components, and compacts of this type
DE102009036298A1 (en) Use of powder metallurgy starting material for producing an alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120823

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 805302

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012007338

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160908

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160909

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161008

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161010

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012007338

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

26N No opposition filed

Effective date: 20170309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170418

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 805302

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200421

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200423

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012007338

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012007338

Country of ref document: DE

Owner name: MARR, TOM, DE

Free format text: FORMER OWNERS: LEIBNIZ-INSTITUT FUER FESTKOERPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V., 01069 DRESDEN, DE; TECHNISCHE UNIVERSITAET DRESDEN, 01069 DRESDEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210625

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210418

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012007338

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103