EP2514845A1 - Method for producing semi-finished products on the basis of inter-metallic compounds - Google Patents
Method for producing semi-finished products on the basis of inter-metallic compounds Download PDFInfo
- Publication number
- EP2514845A1 EP2514845A1 EP12164534A EP12164534A EP2514845A1 EP 2514845 A1 EP2514845 A1 EP 2514845A1 EP 12164534 A EP12164534 A EP 12164534A EP 12164534 A EP12164534 A EP 12164534A EP 2514845 A1 EP2514845 A1 EP 2514845A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat treatment
- metal
- shell
- aluminum
- hammering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/17—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging
- B22F3/172—Continuous compaction, e.g. rotary hammering
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/047—Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
- C22F1/183—High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
Definitions
- the invention relates to the fields of materials science and metal forming and relates to a process for the production of semi-finished products based on intermetallic compounds, for example, as a welding wire for welding or welding of components based on intermetallic compounds, such as blades in stationary gas turbines, Low-pressure compressors can be used in aircraft turbines or as a construction material.
- Intermetallic compounds are chemically homogeneous compounds of two or more metals. In contrast to alloys, they often show crystalline structures (lattices) that differ from those of the constituent metals. In their lattice there is a mixed bond of a metallic bond fraction and lower atomic bonding or ion binding components. For this reason, the melting temperature of such compounds is often higher than that of the individual components.
- Known intermetallic compounds are, for example, Heusler compounds, compounds of shape memory materials or superconductor compounds (see, for example, Wikipedia, keyword intermetallic compounds).
- Intermetallic compounds are produced by both powder metallurgy and conventional melting processes, and it is precisely because of their mechanical properties that production and processing can be difficult.
- titanium aluminides or the like can be produced, for example, by melting and casting in a cold wall induction crucible furnace ( Use of cold wall induction crucible furnace for melting and casting of TiAl alloys, Matthias Vogt, VDI Verlag 2001, Dusseldorf ). It comes only to a low contact between the material to be melted and the slotted, water-cooled copper mold, which is located within an induction coil. The process is therefore suitable for high-melting, high-purity and (when hot) chemically aggressive materials, such as the titanium aluminides, since the process can also be easily operated in a vacuum. Furthermore, other methods for producing such compounds are known ( JP-A-63-247321 ).
- semi-finished titanium aluminides are produced in a complex, multi-stage powder metallurgy process in which aluminum and titanium powder mixtures are cold isostatically pressed first, the vented green pieces are heated to 455 ° C, and then pressed again and extruded.
- a disadvantage of the known solutions is that the production of intermetallic compounds is possible only by means of complex processes. Furthermore, semi-finished or component sizes are limited to the melt-metallurgical and powder metallurgy manufacturable dimensions. Wire production via these methods is currently not possible.
- the invention is based on the object to provide a method for the production of semi-finished products based on intermetallic compounds, which is easier to implement and less expensive.
- a first shell of at least one metal is at least partially filled with at least one second other metal in a compact and / or powdered form, subsequently the filled and closed first shell is cold-formed by hammering, Thereafter, the resulting Umformgut is crushed and introduced into a further at least second shell of at least one metal and also cold-formed this filled and closed at least second shell again by hammering, this process step is performed once or repeated several times, and at least after the last forming step becomes a Heat treatment carried out, wherein the metals in total with respect to their composition and their volume fraction and the heat treatment for the preparation of the intermetallic compound are selected, and the heat treatment is carried out at a maximum temperature which is always below the melting temperature of the lowest melting metal and / or the phase and is carried out at least until at least the lowest melting metal substantially completely converted into one or more other phases is, and in the case of a multi-stage heat treatment, the maximum temperature is always below the
- the semi-finished products consist entirely of one or more intermetallic compounds.
- sheaths of circular, triangular, square, rectangular, polygonal, oval or ellipsoidal cross-section are used.
- the second other metal is introduced in a compact form in the first shell.
- the comminution of the formed material is realized by cutting, breaking, grinding.
- the process step of crushing the formed material to be formed its introduction into a further at least second shell made of at least one metal and its forming by hammering 2 to 10 times.
- a shell is made.
- the shell may have a circular, triangular, square, rectangular, polygonal, oval or ellipsoidal cross section. However, any other shape of a cross section is also possible, with the round or approximately round cross section being preferred.
- an at least second metal in a compact form or in powder form is filled. As compact forms, for example, tubes or rods can be used.
- the powder form according to the invention should also comprise lumped parts or granules of the second metal.
- the choice of metals is made according to which intermetallic compound is to have the semifinished product. In this case, the semifinished product should consist essentially completely of the intermetallic compound after manufacture, advantageously completely.
- the volume fractions of the metals of the shell and of the metals which are filled into the shell are also selected according to the intermetallic compound to be produced.
- This first filled envelope is then closed, for example, by welding, soldering, folding, folding, riveting or plugging, and is then fed to cold working by means of hammering.
- cold forming should be understood to mean the deformation of the composites at a temperature below the recrystallization temperature of the lowest-melting metal of the composite.
- the cold working according to the present invention even at temperatures up to - 196 ° C be realized.
- the cold working according to the invention should be carried out at and around room temperature.
- the cold forming is done by hammering.
- the produced material to be formed is then comminuted.
- the comminution can be realized by cutting, breaking, grinding.
- a rod or a wire is produced as Umformgut and this then divided into sections.
- the comminuted material to be formed is then stacked in one or more second envelope (s).
- the divided rods are stacked in the second shell.
- the cold forming is done by hammering again.
- the hammering is carried out until the desired degree of deformation is reached, and / or the desired semifinished product is produced.
- this second forming step can be repeated several times, one or more further shells (n) can always be used, which can be used with the divided material previous forming step are filled and then further cold-formed by hammering. These repetitions can be realized as often as desired, but it should be noted for the overall process that the composition of the semi-finished components can be changed by adding each shell material. Therefore, it is advantageous to set both the number of forming steps and the respective proportions of the metals before forming.
- the Umformgut is heat treated.
- the heat treatment leads to the transformation of the metallic materials into the intermetallic compounds.
- the heat treatment is always carried out at a maximum temperature which is below the melting temperature of the lowest-melting metal which has been used. It should be noted that the higher the temperature, the faster the conversion into the intermetallic compounds takes place.
- the heat treatment must be performed until at least the lowest melting metal has substantially completely diffused into the at least one other metal. In the case of a multi-stage heat treatment, one or more metallic phases can be formed in the meantime in the course of the diffusion, which then has a higher melting temperature than that of the previously existing lowest-melting metal.
- the maximum temperature of the heat treatment may then be higher than in one of the previous stages of the heat treatment. As a result, a further phase reaction or better homogeneity can be realized.
- the heat treatment depending on the metals used and their geometric distribution in the composite at temperatures below the melting temperature of the lowest melting phase involved. Typically, temperatures of 100 ° C to 1500 ° C are used within annealing periods between 0.5 h and 24 h. Heat treatments between the forming steps are possible, but in any case, a heat treatment after the last forming step is necessary. Even with heat treatments between the forming steps, the maximum temperatures are limited according to the maximum temperature in the final heat treatment. The duration of the heat treatment between the forming steps must not lead to a significant conversion into intermetallic compounds, so that the Umformgut still remains deformable. The invention will be explained in more detail below with reference to several exemplary embodiments.
- titanium tube (Titanium Grade 1) with the dimensions: outer diameter (OD) 24.0 mm, inner diameter (ID) 20.0 mm and a length of 400 mm is an aluminum rod of alloy AA 5049 with AD 19.8 mm of length 300 mm used.
- titanium plugs of the same diameter of 10 mm in length are used.
- the cold forming is then carried out by hammering at room temperature to AD 2.8 mm of the composite.
- the composite wire is sawn into 37 pieces each 250 mm long. These pieces are used in a second titanium tube and also closed with plugs front and back.
- this new composite is cold-formed again to 2.8 mm AD by hammering, comminuted again, inserted into a third titanium sheath and again cold-worked to an OD 2.8 mm.
- This new wire is converted into the titanium aluminide phase Ti 3 Al in a two-stage annealing process. The first stage takes place at a temperature of 600 ° C for 6 h. The second stage is carried out at a temperature of 1100 ° C for 5h and homogenizes the wire cross-section.
- titanium tube titanium grade 1 with the dimensions: outer diameter (OD) 24.0 mm, inner diameter (ID) 22.0 mm and a length of 400 mm is an aluminum rod of alloy AA 5049 with AD 21.5 mm of length 300 mm used. Titanium plugs of the same diameter are inserted in front of and behind the aluminum rod. The cold forming is then carried out by hammering at room temperature to AD 2.8 mm of the composite. The composite wire is sawn into 37 pieces each 250 mm long. These pieces are used in a second titanium tube and also closed with plugs front and back. In addition, this new composite is cold-formed again to AD 2.8 mm by hammering.
- the composite wire is again sawn into 37 pieces each 250 mm in length and inserted into a third titanium tube, sealed and again cold-worked to 2.8 mm by hammering.
- This new wire will be in a two-stage annealing in the titanium aluminide phase TiAl transferred.
- the first stage takes place at a temperature of 600 ° C for 4 h.
- the second stage is carried out at a temperature of 1200 ° C for 8 h and homogenizes the wire cross-section.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Powder Metallurgy (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
Die Erfindung bezieht sich auf die Gebiete der Werkstoffwissenschaft und Umformtechnik und betrifft ein Verfahren zur Herstellung von Halbzeugen auf der Basis von intermetallischen Verbindungen, welche beispielsweise als Schweißdraht für Auftrags- oder Verbindungsschweißen von Bauteilen auf der Basis von intermetallischen Verbindungen, wie Schaufeln in stationären Gasturbinen, Niederdruckverdichtern in Flugzeugturbinen oder als Konstruktionswerkstoff eingesetzt werden können.The invention relates to the fields of materials science and metal forming and relates to a process for the production of semi-finished products based on intermetallic compounds, for example, as a welding wire for welding or welding of components based on intermetallic compounds, such as blades in stationary gas turbines, Low-pressure compressors can be used in aircraft turbines or as a construction material.
Nach dem Stand der Technik sind zahlreiche Verfahren bekannt, metallische und nichtmetallische Materialien zu Halbzeugen zu verarbeiten. Insbesondere für metallische Materialien sind Ur- oder Umformverfahren, wie Gießen, Walzen, Ziehen, gut bekannt Buch:
Weiterhin bekannt sind spezialisierte Metallumformverfahren zur Einstellung von ultrafeinkörnigen Gefügen in metallischen Werkstoffen (
Intermetallische Verbindungen sind chemisch homogene Verbindungen aus zwei oder mehr Metallen. Sie zeigen im Unterschied zu Legierungen häufig kristalline Strukturen (Gitter), die sich von denen der konstituierenden Metalle unterscheiden. In ihrem Gitter herrscht eine Mischbindung aus einem metallischen Bindungsanteil und geringeren Atombindungs- bzw. lonenbindungsanteilen. Aus diesem Grund ist die Schmelztemperatur solcher Verbindungen häufig höher als die der Einzelkomponenten.
Bekannte intermetallische Verbindungen sind beispielsweise Heusler-Verbindungen, Verbindungen aus Formgedächtnismaterialien oder Supraleiterverbindungen (siehe beispielsweise Wikipedia, Stichwort Intermetallische Verbindungen).Intermetallic compounds are chemically homogeneous compounds of two or more metals. In contrast to alloys, they often show crystalline structures (lattices) that differ from those of the constituent metals. In their lattice there is a mixed bond of a metallic bond fraction and lower atomic bonding or ion binding components. For this reason, the melting temperature of such compounds is often higher than that of the individual components.
Known intermetallic compounds are, for example, Heusler compounds, compounds of shape memory materials or superconductor compounds (see, for example, Wikipedia, keyword intermetallic compounds).
Weiterhin bekannt sind Herstellungsverfahren für intermetallische Verbindungen. Hergestellt werden intermetallische Verbindungen sowohl durch pulvermetallurgische, als auch durch herkömmliche Schmelzverfahren, wobei gerade wegen ihrer mechanischen Eigenschaften die Herstellung und Verarbeitung schwierig sein kann.Also known are production processes for intermetallic compounds. Intermetallic compounds are produced by both powder metallurgy and conventional melting processes, and it is precisely because of their mechanical properties that production and processing can be difficult.
So können Titanaluminide o. ä. beispielsweise über Schmelzen und Gießen in einem Kaltwand-Induktions-Tiegelofen hergestellt werden (
Weiterhin sind andere Verfahren zu Herstellung solcher Verbindungen bekannt (
Furthermore, other methods for producing such compounds are known (
Nachteilig an den bekannten Lösungen ist, dass die Herstellung von intermetallischen Verbindungen nur mittels aufwändiger Verfahren möglich ist. Weiterhin sind Halbzeug- oder Bauteilgrößen auf die über schmelzmetallurgisch und pulvermetallurgisch herstellbaren Abmessungen begrenzt. Eine Drahtherstellung über diese Verfahren ist zum gegenwärtigen Zeitpunkt nicht möglich.A disadvantage of the known solutions is that the production of intermetallic compounds is possible only by means of complex processes. Furthermore, semi-finished or component sizes are limited to the melt-metallurgical and powder metallurgy manufacturable dimensions. Wire production via these methods is currently not possible.
Der Erfindung liegt die Aufgabe zu Grunde, ein Verfahren zur Herstellung von Halbzeugen auf der Basis von intermetallischen Verbindungen anzugeben, welches einfacher realisierbar und kostengünstiger ist.The invention is based on the object to provide a method for the production of semi-finished products based on intermetallic compounds, which is easier to implement and less expensive.
Die Aufgabe wird durch die in den Ansprüchen angegebene Erfindung gelöst. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.The object is achieved by the invention specified in the claims. Advantageous embodiments are the subject of the dependent claims.
Bei dem erfindungsgemäßen Verfahren zur Herstellung von Halbzeugen auf der Basis von intermetallischen Verbindungen wird eine erste Hülle aus mindestens einem Metall mit mindestens einem zweiten anderen Metall in kompakter und/oder Pulverform mindestens teilweise gefüllt, nachfolgend wird die gefüllte und geschlossene erste Hülle mittels Hämmern kaltumgeformt, danach wird das entstandene Umformgut zerkleinert und in eine weitere mindestens zweite Hülle aus mindestens einem Metall eingebracht und auch diese gefüllte und geschlossene mindestens zweite Hülle wieder mittels Hämmern kaltumgeformt, wobei dieser Verfahrensschritt einmal durchgeführt oder mehrmals wiederholt wird, und mindestens nach dem letzten Umformschritt wird eine Wärmebehandlung durchgeführt, wobei die Metalle insgesamt bezüglich ihrer Zusammensetzung und ihres Volumenanteils und die Wärmebehandlung zur Herstellung der intermetallischen Verbindung ausgewählt werden, und die Wärmebehandlung bei einer maximalen Temperatur durchgeführt wird, die immer unterhalb der Schmelztemperatur des niedrigstschmelzenden Metalls und/oder der Phase liegt und mindestens solange durchgeführt wird, bis mindestens das niedrigstschmelzende Metall im Wesentlichen vollständig in eine oder mehrere andere Phasen umgesetzt ist, und im Falle einer mehrstufigen Wärmebehandlung die maximale Temperatur immer unter der Schmelztemperatur des jeweils vorliegenden niedrigstschmelzenden Metalls und/oder Phase liegt.In the method according to the invention for the production of semi-finished products based on intermetallic compounds, a first shell of at least one metal is at least partially filled with at least one second other metal in a compact and / or powdered form, subsequently the filled and closed first shell is cold-formed by hammering, Thereafter, the resulting Umformgut is crushed and introduced into a further at least second shell of at least one metal and also cold-formed this filled and closed at least second shell again by hammering, this process step is performed once or repeated several times, and at least after the last forming step becomes a Heat treatment carried out, wherein the metals in total with respect to their composition and their volume fraction and the heat treatment for the preparation of the intermetallic compound are selected, and the heat treatment is carried out at a maximum temperature which is always below the melting temperature of the lowest melting metal and / or the phase and is carried out at least until at least the lowest melting metal substantially completely converted into one or more other phases is, and in the case of a multi-stage heat treatment, the maximum temperature is always below the melting temperature of the respective present lowest-melting metal and / or phase.
Vorteilhafterweise werden Halbzeuge aus Titan und Aluminium, Nickel und Aluminium, Niob und Aluminium, Lithium und Aluminium, Magnesium und Aluminium, Magnesium und Nickel hergestellt.Advantageously, semi-finished products of titanium and aluminum, nickel and aluminum, niobium and aluminum, lithium and aluminum, magnesium and aluminum, magnesium and nickel are produced.
Weiterhin vorteilhafterweise bestehen die Halbzeuge vollständig aus einer oder mehreren intermetallischen Verbindungen.Further advantageously, the semi-finished products consist entirely of one or more intermetallic compounds.
Ebenfalls vorteilhafterweise werden Hüllen mit kreisförmigem, dreieckigem, quadratischem, rechteckigem, mehreckigem, ovalem oder ellipsoidem Querschnitt eingesetzt.Also advantageously, sheaths of circular, triangular, square, rectangular, polygonal, oval or ellipsoidal cross-section are used.
Es ist auch von Vorteil, wenn das zweite andere Metall in kompakter Form in die erste Hülle eingebracht wird.It is also advantageous if the second other metal is introduced in a compact form in the first shell.
Und weiterhin von Vorteil ist es, wenn die Zerkleinerung des Umformgutes durch Zerschneiden, Brechen, Mahlen realisiert wird.And it is also advantageous if the comminution of the formed material is realized by cutting, breaking, grinding.
Vorteilhaft ist es auch, wenn der Verfahrensschritt des Zerkleinern des das entstandenen Umformgutes, dessen Einbringen in eine weitere mindestens zweite Hülle aus mindestens einem Metall und dessen Umformen mittels Hämmern 2 bis 10mal durchgeführt wird.It is also advantageous if the process step of crushing the formed material to be formed, its introduction into a further at least second shell made of at least one metal and its forming by hammering 2 to 10 times.
Ebenfalls vorteilhaft ist es, wenn die Wärmebehandlung in einem Temperaturbereich 100°C - 1500 °C innerhalb einer Zeit von 0,5 h bis 24 h realisiert wird, noch vorteilhafterweise, wenn die Wärmebehandlung in mehreren Stufen durchgeführt wird.It is also advantageous, if the heat treatment in a temperature range 100 ° C - 1500 ° C within a time of 0.5 h to 24 h is realized, still Advantageously, when the heat treatment is carried out in several stages.
Weiterhin vorteilhaft ist es, wenn zwischen Umformschritten eine Wärmebehandlung in Form einer Zwischenglühung durchgeführt wird.It is also advantageous if a heat treatment in the form of an intermediate annealing is carried out between forming steps.
Mit der erfindungsgemäßen Lösung wird es erstmals möglich, Halbzeuge auf der Basis von intermetallischen Verbindungen mit einem einfachen und kostengünstigen Verfahren herzustellen, sowie auch ein Halbzeug in Form eines Drahtes erstmalig direkt herzustellen.With the solution according to the invention, it becomes possible for the first time to produce semi-finished products based on intermetallic compounds with a simple and cost-effective method, as well as for the first time to directly produce a semi-finished product in the form of a wire.
Aus mindestens einem Metall wird eine Hülle hergestellt. Die Hülle kann dabei einen kreisförmigen, dreieckigen, quadratischen, rechteckigen, mehreckigen, ovalen oder ellipsoiden Querschnitt aufweisen. Jede andere Form eines Querschnittes ist aber ebenfalls möglich, wobei der runde oder annähernd runde Querschnitt bevorzugt ist. In diese Hülle wird ein mindestens zweites Metall in kompakter Form oder in Pulverform eingefüllt. Als kompakte Formen können beispielsweise Rohre oder Stangen zum Einsatz kommen. Die Pulverform soll erfindungsgemäß auch stückige Teile oder Granulate des zweiten Metalls umfassen.
Die Auswahl der Metalle erfolgt danach, welche intermetallische Verbindung das Halbzeug aufweisen soll. Dabei soll das Halbzeug nach der Herstellung im Wesentlichen vollständig aus der intermetallischen Verbindung bestehen, vorteilhafterweise vollständig. Auch die Volumenanteile der Metalle der Hülle und der Metalle, die in die Hülle gefüllt werden, werden nach der herzustellenden intermetallischen Verbindung ausgewählt.From at least one metal, a shell is made. The shell may have a circular, triangular, square, rectangular, polygonal, oval or ellipsoidal cross section. However, any other shape of a cross section is also possible, with the round or approximately round cross section being preferred. In this shell, an at least second metal in a compact form or in powder form is filled. As compact forms, for example, tubes or rods can be used. The powder form according to the invention should also comprise lumped parts or granules of the second metal.
The choice of metals is made according to which intermetallic compound is to have the semifinished product. In this case, the semifinished product should consist essentially completely of the intermetallic compound after manufacture, advantageously completely. The volume fractions of the metals of the shell and of the metals which are filled into the shell are also selected according to the intermetallic compound to be produced.
Diese erste gefüllte Hülle wird dann geschlossen, beispielsweise durch Schweißen, Löten, Falten, Falzen, Nieten oder Verstopfen und wird dann der Kaltumformung mittels Hämmern zugeführt.
Unter Kaltumformung soll im Rahmen dieser Erfindung die Umformung der Verbunde bei einer Temperatur unterhalb der Rekristallisationstemperatur des am niedrigsten schmelzenden Metalls des Verbundes verstanden werden. Dabei kann die Kaltumformung nach der vorliegenden Erfindung auch bei Temperaturen bis - 196 °C realisiert werden. Vorteilhafterweise soll die erfindungsgemäße Kaltumformung aber bei und um die Raumtemperatur durchgeführt werden.This first filled envelope is then closed, for example, by welding, soldering, folding, folding, riveting or plugging, and is then fed to cold working by means of hammering.
For the purposes of this invention, cold forming should be understood to mean the deformation of the composites at a temperature below the recrystallization temperature of the lowest-melting metal of the composite. In this case, the cold working according to the present invention even at temperatures up to - 196 ° C be realized. Advantageously, however, the cold working according to the invention should be carried out at and around room temperature.
Nach dem Schließen der Hülle erfolgt die Kaltumformung mittels Hämmern. Das hergestellte Umformgut wird dann zerkleinert. Die Zerkleinerung kann durch Zerschneiden, Brechen, Mahlen realisiert werden. Vorteilhafterweise wird eine Stange oder ein Draht als Umformgut hergestellt und dieses dann in Abschnitte zerteilt.
Das zerkleinerte Umformgut wird anschließend in eine oder mehrere zweite Hülle(n) eingestapelt. Vorteilhafterweise werden die zerteilten Stangen in die zweite Hülle eingestapelt. Es kann aber auch das zerkleinerte Umformgut in Form von Granulat oder Stücken oder Pulver in die mindestens zweite Hülle eingefüllt werden.
Alle Hüllmaterialien sind weiterhin Metalle. Die Auswahl der Hüllmaterialien ist immer von der zu erzielenden Zusammensetzung der intermetallischen Verbindung abhängig.After closing the shell, the cold forming is done by hammering. The produced material to be formed is then comminuted. The comminution can be realized by cutting, breaking, grinding. Advantageously, a rod or a wire is produced as Umformgut and this then divided into sections.
The comminuted material to be formed is then stacked in one or more second envelope (s). Advantageously, the divided rods are stacked in the second shell. However, it is also possible to fill the comminuted material to be shaped in the form of granules or pieces or powder into the at least second casing.
All shell materials are still metals. The choice of the shell materials always depends on the composition of the intermetallic compound to be achieved.
Nach dem Verschließen der Hülle erfolgt erneut die Kaltumformung mittels Hämmern. Dabei wird das Hämmern solange durchgeführt, bis der gewünschte Umformgrad erreicht, und/oder das gewünschte Halbzeug hergestellt ist. Sofern das Halbzeug sowohl hinsichtlich seiner geometrischen Abmessungen als auch hinsichtlich seiner Zusammensetzung nicht mit einem Kaltumformschritt mittels Hämmern herstellbar ist, kann dieser zweite Umformschritt mehrfach wiederholt werden, wobei immer eine oder mehrere weitere Hülle(n) eingesetzt werden können, die mit dem zerteilten Umformgut des vorherigen Umformschrittes gefüllt werden und dann mittels Hämmern weiter kaltumgeformt werden. Diese Wiederholungen können beliebig oft realisiert werden, wobei jedoch für den Gesamtprozess zu beachten ist, dass durch das Hinzufügen jedes Hüllmateriales die Zusammensetzung der im Halbzeug befindlichen Komponenten verändert werden kann. Daher ist es vorteilhaft, sowohl die Anzahl der Umformschritte als auch die jeweiligen Anteile an den Metallen vor der Umformung festzulegen.After closing the envelope, the cold forming is done by hammering again. In this case, the hammering is carried out until the desired degree of deformation is reached, and / or the desired semifinished product is produced. If the semifinished product can not be produced with a cold forming step by means of hammering, both in terms of its geometric dimensions and its composition, this second forming step can be repeated several times, one or more further shells (n) can always be used, which can be used with the divided material previous forming step are filled and then further cold-formed by hammering. These repetitions can be realized as often as desired, but it should be noted for the overall process that the composition of the semi-finished components can be changed by adding each shell material. Therefore, it is advantageous to set both the number of forming steps and the respective proportions of the metals before forming.
Für den erfindungsgemäßen Umformprozess ist zu beachten, dass während der Umformung im Wesentlichen noch keine Umwandlung der metallischen Materialien in intermetallische Verbindungen erfolgen darf. Geringe Umwandlungen sind möglich, solange das Umformgut noch umformbar ist.For the forming process according to the invention, it should be noted that essentially no conversion of the metallic materials takes place during the forming process may take place in intermetallic compounds. Low conversions are possible as long as the formed product is still deformable.
Mindestens nach dem letzten Umformschritt wird das Umformgut wärmebehandelt. Die Wärmebehandlung führt zur Umwandlung der metallischen Materialien in die intermetallischen Verbindungen. Die Wärmebehandlung wird dabei immer bei einer maximalen Temperatur durchgeführt, die unterhalb der Schmelztemperatur des niedrigstschmelzenden Metalls, welches eingesetzt worden ist, liegt. Dabei ist zu berücksichtigen, dass je höher die Temperatur liegt, umso schneller die Umwandlung in die intermetallischen Verbindungen erfolgt.
Weiterhin muss die Wärmebehandlung solange durchgeführt werden, bis mindestens das niedrigstschmelzende Metall im Wesentlichen vollständig in das mindestens andere Metall diffundiert ist.
Im Falle einer mehrstufigen Wärmebehandlung kann im Zuge der Diffusion zwischenzeitlich eine oder mehrere metallische Phasen gebildet werden, die dann eine höhere Schmelztemperatur aufweist/aufweisen, als die des vorher vorhandenen niedrigstschmelzenden Metalls. Nach dessen vollständiger Umsetzung kann dann die maximale Temperatur der Wärmebehandlung auch höher sein, als in einer der vorherigen Stufen der Wärmebehandlung. Dadurch kann eine weitere Phasenreaktion oder eine bessere Homogenität realisiert werden.
Vorteilhafterweise wird die Wärmebehandlung je nach eingesetzten Metallen und deren geometrischer Verteilung im Verbund bei Temperaturen unterhalb der Schmelztemperatur der niedrigstschmelzenden beteiligten Phase liegt. Typischerweise kommen dabei Temperaturen von 100°C bis 1500°C innerhalb von Glühdauern zwischen 0,5 h und 24 h zum Einsatz.
Wärmebehandlungen zwischen den Umformschritten sind möglich, jedoch ist in jedem Fall eine Wärmebehandlung nach dem letzten Umformschritt notwendig. Auch bei Wärmebehandlungen zwischen den Umformschritten sind die maximalen Temperaturen entsprechend der maximalen Temperatur bei der abschließenden Wärmebehandlung begrenzt. Die Dauer der Wärmebehandlungen zwischen den Umformschritten darf dabei nicht zu einer nennenswerten Umwandlung in intermetallische Verbindungen führen, damit das Umformgut noch umformbar bleibt. Nachfolgend wird die Erfindung an mehreren Ausführungsbeispielen näher erläutert.At least after the last forming step, the Umformgut is heat treated. The heat treatment leads to the transformation of the metallic materials into the intermetallic compounds. The heat treatment is always carried out at a maximum temperature which is below the melting temperature of the lowest-melting metal which has been used. It should be noted that the higher the temperature, the faster the conversion into the intermetallic compounds takes place.
Furthermore, the heat treatment must be performed until at least the lowest melting metal has substantially completely diffused into the at least one other metal.
In the case of a multi-stage heat treatment, one or more metallic phases can be formed in the meantime in the course of the diffusion, which then has a higher melting temperature than that of the previously existing lowest-melting metal. After its completion, the maximum temperature of the heat treatment may then be higher than in one of the previous stages of the heat treatment. As a result, a further phase reaction or better homogeneity can be realized.
Advantageously, the heat treatment, depending on the metals used and their geometric distribution in the composite at temperatures below the melting temperature of the lowest melting phase involved. Typically, temperatures of 100 ° C to 1500 ° C are used within annealing periods between 0.5 h and 24 h.
Heat treatments between the forming steps are possible, but in any case, a heat treatment after the last forming step is necessary. Even with heat treatments between the forming steps, the maximum temperatures are limited according to the maximum temperature in the final heat treatment. The duration of the heat treatment between the forming steps must not lead to a significant conversion into intermetallic compounds, so that the Umformgut still remains deformable. The invention will be explained in more detail below with reference to several exemplary embodiments.
In ein Titanrohr (Titan Grade 1) mit den Abmessungen: Außendurchmesser (AD) 24,0 mm, Innendurchmesser (ID) 20,0 mm und einer Länge von 400 mm wird eine Aluminiumstange der Legierung AA 5049 mit AD 19,8 mm der Länge 300 mm eingesetzt. Vor und hinter die Aluminiumstange werden Titanstopfen desselben Durchmessers von 10 mm Länge eingesetzt. Anschließend erfolgt die Kaltumformung durch Hämmern bei Raumtemperatur auf AD 2,8 mm des Verbundes. Der Verbunddraht wird in 37 Stücke zu je 250 mm Länge gesägt. Diese Stücke werden in ein zweites Hüllrohr aus Titan eingesetzt und ebenfalls mit Stopfen vorn und hinten verschlossen. Im Weiteren wird dieser neue Verbund wieder auf AD 2,8 mm mittels Hämmern kaltumgeformt, wieder zerkleinert, in eine dritte Titanhülle eingefügt und wiederum auf AD 2,8 mm kaltumgeformt. Dieser neue Draht wird in einer zweistufigen Glühung in die Titanaluminidphase Ti3Al überführt. Die erste Stufe erfolgt bei einer Temperatur von 600 °C für 6 h. Die zweite Stufe wird bei einer Temperatur von 1100 °C über 5h durchgeführt und homogenisiert den Drahtquerschnitt.In a titanium tube (Titanium Grade 1) with the dimensions: outer diameter (OD) 24.0 mm, inner diameter (ID) 20.0 mm and a length of 400 mm is an aluminum rod of alloy AA 5049 with AD 19.8 mm of length 300 mm used. Before and behind the aluminum rod, titanium plugs of the same diameter of 10 mm in length are used. The cold forming is then carried out by hammering at room temperature to AD 2.8 mm of the composite. The composite wire is sawn into 37 pieces each 250 mm long. These pieces are used in a second titanium tube and also closed with plugs front and back. Furthermore, this new composite is cold-formed again to 2.8 mm AD by hammering, comminuted again, inserted into a third titanium sheath and again cold-worked to an OD 2.8 mm. This new wire is converted into the titanium aluminide phase Ti 3 Al in a two-stage annealing process. The first stage takes place at a temperature of 600 ° C for 6 h. The second stage is carried out at a temperature of 1100 ° C for 5h and homogenizes the wire cross-section.
In ein Titanrohr (Titan Grade 1) mit den Abmessungen: Außendurchmesser (AD) 24,0 mm, Innendurchmesser (ID) 22,0 mm und einer Länge von 400 mm wird eine Aluminiumstange der Legierung AA 5049 mit AD 21,5 mm der Länge 300 mm eingesetzt. Vor und hinter die Aluminiumstange werden Titanstopfen desselben Durchmessers eingesetzt. Anschließend erfolgt die Kaltumformung durch Hämmern bei Raumtemperatur auf AD 2,8 mm des Verbundes. Der Verbunddraht wird in 37 Stücke zu je 250 mm Länge gesägt. Diese Stücke werden in ein zweites Hüllrohr aus Titan eingesetzt und ebenfalls mit Stopfen vorn und hinten verschlossen. Im Weiteren wird dieser neue Verbund wieder auf AD 2,8 mm mittels Hämmern kaltumgeformt. Der Verbunddraht wird wiederum in 37 Stücke zu je 250 mm Länge gesägt und diese in ein drittes Hüllrohr aus Titan eingesetzt, verschlossen und wiederum auf 2,8 mm mittels Hämmern kaltumgeformt. Dieser neue Draht wird in einer zweistufigen Glühung in die Titanaluminidphase TiAl überführt. Die erste Stufe erfolgt bei einer Temperatur von 600 °C für 4 h. Die zweite Stufe wird bei einer Temperatur von 1200 °C über 8 h durchgeführt und homogenisiert den Drahtquerschnitt.In a titanium tube (titanium grade 1) with the dimensions: outer diameter (OD) 24.0 mm, inner diameter (ID) 22.0 mm and a length of 400 mm is an aluminum rod of alloy AA 5049 with AD 21.5 mm of length 300 mm used. Titanium plugs of the same diameter are inserted in front of and behind the aluminum rod. The cold forming is then carried out by hammering at room temperature to AD 2.8 mm of the composite. The composite wire is sawn into 37 pieces each 250 mm long. These pieces are used in a second titanium tube and also closed with plugs front and back. In addition, this new composite is cold-formed again to AD 2.8 mm by hammering. The composite wire is again sawn into 37 pieces each 250 mm in length and inserted into a third titanium tube, sealed and again cold-worked to 2.8 mm by hammering. This new wire will be in a two-stage annealing in the titanium aluminide phase TiAl transferred. The first stage takes place at a temperature of 600 ° C for 4 h. The second stage is carried out at a temperature of 1200 ° C for 8 h and homogenizes the wire cross-section.
Claims (10)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011007898.3A DE102011007898B4 (en) | 2011-04-21 | 2011-04-21 | Process for the production of semi-finished products based on intermetallic compounds |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2514845A1 true EP2514845A1 (en) | 2012-10-24 |
EP2514845B1 EP2514845B1 (en) | 2016-06-08 |
Family
ID=45976813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12164534.5A Not-in-force EP2514845B1 (en) | 2011-04-21 | 2012-04-18 | Method for producing semi-finished products on the basis of inter-metallic compounds |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2514845B1 (en) |
DE (1) | DE102011007898B4 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018207448A1 (en) * | 2018-05-15 | 2019-11-21 | MTU Aero Engines AG | Method for producing a welding wire, welding wire for machining a component and component |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63247321A (en) | 1987-04-02 | 1988-10-14 | Sumitomo Light Metal Ind Ltd | Formation of ti-al intermetallic compound member |
JPH02243747A (en) * | 1989-03-15 | 1990-09-27 | Sumitomo Electric Ind Ltd | Intermetallic compound wire and its production |
JPH03188230A (en) * | 1989-12-14 | 1991-08-16 | Nhk Spring Co Ltd | Elastic member essentially consisting of intermetallic compound and its manufacture |
DE10329552A1 (en) * | 2003-06-30 | 2005-02-03 | Meyer, Lothar W., Prof. Dr.-Ing. | Production of an infiltration composite material made from titanium aluminide, titanium and aluminum comprises cleaning and crushing titanium (alloy) material and aluminum (alloy) material, and further processing |
EP2272664A1 (en) * | 2009-07-08 | 2011-01-12 | Brandenburgische Technische Universität | Process for manufacturing foils, sheets and shaped parts from an alloy with titanium and aluminium as its main elements. |
-
2011
- 2011-04-21 DE DE102011007898.3A patent/DE102011007898B4/en not_active Expired - Fee Related
-
2012
- 2012-04-18 EP EP12164534.5A patent/EP2514845B1/en not_active Not-in-force
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63247321A (en) | 1987-04-02 | 1988-10-14 | Sumitomo Light Metal Ind Ltd | Formation of ti-al intermetallic compound member |
JPH02243747A (en) * | 1989-03-15 | 1990-09-27 | Sumitomo Electric Ind Ltd | Intermetallic compound wire and its production |
JPH03188230A (en) * | 1989-12-14 | 1991-08-16 | Nhk Spring Co Ltd | Elastic member essentially consisting of intermetallic compound and its manufacture |
DE10329552A1 (en) * | 2003-06-30 | 2005-02-03 | Meyer, Lothar W., Prof. Dr.-Ing. | Production of an infiltration composite material made from titanium aluminide, titanium and aluminum comprises cleaning and crushing titanium (alloy) material and aluminum (alloy) material, and further processing |
EP2272664A1 (en) * | 2009-07-08 | 2011-01-12 | Brandenburgische Technische Universität | Process for manufacturing foils, sheets and shaped parts from an alloy with titanium and aluminium as its main elements. |
Non-Patent Citations (9)
Title |
---|
"Umformtechnik", 1984, SPRINGER VERLAG |
CHAUDHARI G P ET AL: "Titanium aluminide sheets made using roll bonding and reaction annealing", INTERMETALLICS, ELSEVIER SCIENCE PUBLISHERS B.V, GB, vol. 18, no. 4, 1 April 2010 (2010-04-01), pages 472 - 478, XP026935029, ISSN: 0966-9795, [retrieved on 20091028], DOI: 10.1016/J.INTERMET.2009.09.008 * |
JINKEUN OH ET AL: "Microstructural analysis of multilayered titanium aluminide sheets fabricated by hot rolling and heat treatment", METALLURGICAL AND MATERIALS TRANSACTIONS A, SPRINGER-VERLAG, NEW YORK, vol. 33, no. 12, 1 December 2002 (2002-12-01), pages 3649 - 3659, XP019694074, ISSN: 1543-1940 * |
MATTHIAS VOGT: "Einsatz des Kaltwand-Induktions-Tiegelofens zum Schmelzen und Gießen von TiAI-Legierungen", 2001, VDI VERLAG |
T. MARR, ADV. ENG. MATER, vol. 12, 2010, pages 1191 - 1197 |
T. MARR, J. FREUDENBERGER, A. KAUFFMANN, J. SCHARNWEBER, C.-G. OERTEL, W. SKROTZKI, U. SIEGEL, U. KÜHN, J. ECKERT, U. MARTIN, L. S: "Damascene Light-Weight Metals", ADVANCED ENGINEERING MATERIALS, vol. 12, no. 12, 2010, pages 1191 - 1197, XP002678788 * |
V. SU ET AL: "Investigation on a fabrication technique of TiAl sheet", MATERIALS SCIENCE FORUM, vol. 475-479, 1 January 2005 (2005-01-01), CH, pages 805 - 808, XP009125200, ISSN: 0255-5476 * |
XU L ET AL: "Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples", MATERIALS SCIENCE AND ENGINEERING A: STRUCTURAL MATERIALS:PROPERTIES, MICROSTRUCTURE & PROCESSING, LAUSANNE, CH, vol. 435-436, 5 November 2006 (2006-11-05), pages 638 - 647, XP027953001, ISSN: 0921-5093, [retrieved on 20061105] * |
ZHANG ET AL: "Processing sheet materials by accumulative roll bonding and reaction annealing from Ti/Al/Nb elemental foils", MATERIALS SCIENCE AND ENGINEERING A: STRUCTURAL MATERIALS:PROPERTIES, MICROSTRUCTURE & PROCESSING, LAUSANNE, CH, vol. 463, no. 1-2, 17 May 2007 (2007-05-17), pages 67 - 73, XP022082239, ISSN: 0921-5093, DOI: 10.1016/J.MSEA.2006.06.144 * |
Also Published As
Publication number | Publication date |
---|---|
DE102011007898B4 (en) | 2016-07-21 |
EP2514845B1 (en) | 2016-06-08 |
DE102011007898A1 (en) | 2012-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3069802B1 (en) | Method for producing a component made of a compound material with a metal matrix and incorporated intermetallic phases | |
DE102006015167B3 (en) | Production of a wire or strip used e.g. as an electrode in spark plugs comprises producing an intermetallic compound, grinding, mixing with metal powder, feeding the mixture into a tube and deforming the filled tube | |
JP5971821B2 (en) | Method for manufacturing titanium alloy welding wire | |
EP3372700B1 (en) | Method for making forged tial components | |
EP1438150B1 (en) | Device and method for producing microcrystalline materials | |
EP0035601B1 (en) | Process for making a memory alloy | |
AT509613A1 (en) | METHOD FOR PRODUCING MOLDINGS FROM ALUMINUM ALLOYS | |
EP3269838B1 (en) | High temperature resistant tial alloy, method for production of a composent from a corresponding tial alloy, component from a corresponding tial alloy | |
DE102009017596B3 (en) | Method of making a semi-finished product for Mokume Gane jewelry | |
EP0200079B1 (en) | Method of manufacturing a metallic article from an amorphous alloy | |
EP1706516B1 (en) | Method for the production of cast components | |
DE4001799C2 (en) | Process for producing an intermetallic compound | |
EP2514845B1 (en) | Method for producing semi-finished products on the basis of inter-metallic compounds | |
EP3251145B1 (en) | Method of producing a coating source and coating source | |
EP0213410A1 (en) | Process for manufacturing a metallic work piece from an amorphous alloy with at least partly magnetic components | |
JP2008195978A (en) | Magnesium-based composite material | |
DE102009056504B4 (en) | A method of making an inclusion-free Nb alloy of powder metallurgy material for an implantable medical device | |
EP2003224B1 (en) | Secondary processing of structures derived from AI-RE-TM Alloys | |
DE756272C (en) | Process for the production of objects from aluminum-silicon alloys | |
EP0035070A1 (en) | Memory alloy based on a highly cupriferous or nickelous mixed crystal | |
DE3919107A1 (en) | METHOD FOR SHAPING AND IMPROVING THE MECHANICAL PROPERTIES OF POWDER METALLICALLY PRODUCED BLANKS FROM AN ALLOY WITH INCREASED RESISTANCE TO HEAT BY EXTRACTION | |
WO2016087515A1 (en) | Metal matrix composite and method for the production thereof | |
WO2010066529A1 (en) | Pre-product for the production of sintered metallic components, a method for producing the pre-product and the production of components | |
DE19910365C1 (en) | Process for the production of compacts as an intermediate for the production of near-net shape components, and compacts of this type | |
DE102009036298A1 (en) | Use of powder metallurgy starting material for producing an alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120823 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160108 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 805302 Country of ref document: AT Kind code of ref document: T Effective date: 20160715 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502012007338 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160608 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160908 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160608 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160608 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160608 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160608 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160608 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160909 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160608 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160608 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160608 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161008 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160608 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160608 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161010 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160608 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502012007338 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
26N | No opposition filed |
Effective date: 20170309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160608 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160608 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170418 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170430 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170430 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170418 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170430 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 805302 Country of ref document: AT Kind code of ref document: T Effective date: 20170418 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170418 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120418 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160608 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200421 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20200423 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502012007338 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502012007338 Country of ref document: DE Owner name: MARR, TOM, DE Free format text: FORMER OWNERS: LEIBNIZ-INSTITUT FUER FESTKOERPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V., 01069 DRESDEN, DE; TECHNISCHE UNIVERSITAET DRESDEN, 01069 DRESDEN, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210625 Year of fee payment: 10 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210418 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210418 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210430 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502012007338 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221103 |