EP2513479B1 - Coolant compressor with linear drive - Google Patents

Coolant compressor with linear drive Download PDF

Info

Publication number
EP2513479B1
EP2513479B1 EP10807312.3A EP10807312A EP2513479B1 EP 2513479 B1 EP2513479 B1 EP 2513479B1 EP 10807312 A EP10807312 A EP 10807312A EP 2513479 B1 EP2513479 B1 EP 2513479B1
Authority
EP
European Patent Office
Prior art keywords
piston
permanent magnet
refrigerant compressor
valve plate
compressor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10807312.3A
Other languages
German (de)
French (fr)
Other versions
EP2513479A1 (en
Inventor
Hans Peter SCHÖGLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Secop Austria GmbH
Original Assignee
Secop Austria GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Secop Austria GmbH filed Critical Secop Austria GmbH
Publication of EP2513479A1 publication Critical patent/EP2513479A1/en
Application granted granted Critical
Publication of EP2513479B1 publication Critical patent/EP2513479B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • F04B17/04Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/12Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by varying the length of stroke of the working members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/02Piston parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/02Piston parameters
    • F04B2201/0206Length of piston stroke

Definitions

  • the invention relates to a refrigerant compressor with a hermetically sealed compressor housing, in the interior of a refrigerant-compressing piston-cylinder unit is arranged, the cylinder housing is closed at the end by means of a cylinder head, in which a suction port and a pressure port are provided, via which refrigerant sucked via a suction valve through the suction port and is compressed via a pressure valve through the pressure port, wherein the piston-cylinder unit has at least one piston guided in a piston bore of the cylinder housing, wherein between the cylinder head and a first end face of the piston, a working space for compression a refrigerant is formed, wherein a linear drive is provided, comprising at least one vibrating body surrounded by a field winding, which is connected to the piston in order to move it oscillating along a piston longitudinal axis, according to ß the preamble of claim 1.
  • the refrigeration process with azeotropic gases as such has long been known.
  • the refrigerant is heated by energy intake from the space to be cooled in an evaporator and finally overheated, which leads to evaporation and compressed by a piston-cylinder unit of the refrigerant compressor to a higher pressure level, where it emits heat through a capacitor and a throttle , in which a pressure reduction and cooling of the refrigerant takes place, is transported back into the evaporator.
  • Such refrigerant compressors are used in domestic and industrial applications, where they are usually arranged on the back of a refrigerator or refrigerator.
  • the piston-cylinder unit comprises a cylinder housing provided with a piston bore, in which an oscillating piston is guided.
  • the piston bore of the cylinder housing is closed in a first axial end of a cylinder head or a valve plate, while the piston bore is open in a second axial end portion for receiving the piston or in the assembled state of the refrigerant compressor is penetrated by a connecting rod.
  • the cylinder head can generally be designed on the one hand as a solid, cap-shaped component, for example with a pressure chamber and a suction chamber, which carries a valve plate on its inside. It can be designed as an annular component which holds the valve plate on the cylinder housing, but it can also be designed only as a valve plate which is clamped by means of a clamping device on the cylindrical part of the cylinder housing.
  • the suction port for sucking the refrigerant from the refrigerant circuit is arranged, and the pressure port through which the compressed refrigerant is ejected after the compression process in the refrigerant circuit through the piston.
  • the valve plate is screwed to the most widespread refrigerant piston compressors with the front side of the cylinder housing.
  • bores are arranged both on the cylinder housing and in the valve plate, wherein the bores in the cylinder housing are each provided with a thread, via which the screw connection is made.
  • a cylinder cover having a pressure chamber in which the ejected from the cylinder, compressed Refrigerant is briefly cached, in order subsequently to flow into the refrigerant circuit.
  • Embodiments are also known in which a suction chamber corresponding to the pressure chamber is provided, via which the refrigerant is sucked through the suction opening into the cylinder. Pressure chamber and suction chamber are separated from each other in such cases by appropriate structural measures in the cylinder cover.
  • a refrigerant compressor of conventional design comprises an electric motor which drives the piston oscillating in the piston bore via a crankshaft.
  • the disadvantage of such systems is mechanical wear in the spring elements and the piston components.
  • the spring elements take up valuable space and prove to be inflexible if the cooling capacity of the refrigerant compressor or the piston stroke to be changed.
  • the US 6379125 B1 also discloses a refrigerant compressor with linear drive, in which the piston is reset by means of a spring.
  • Linear drives in which a piston occupies a central position due to the repulsion of Gleichpolpolter permanent magnets are in connection with vacuum pumps from US 2005/112001 A1 and the DE 10314007 A1 known.
  • the DE 19504751 A1 discloses such a concept in the context of a magnetic pump for conveying liquid or gaseous media, none of which are disclosed in the last three documents mentioned However, devices meet the specific requirements of a refrigerant compressor.
  • the present invention is therefore based on the object to propose a simple and reliable way to limit the piston travel in refrigerant compressors with linear drive, which makes dispensable both a providence of mechanical spring elements and a provident consuming sensor and control electronics to limit the piston travel.
  • dead space should be reduced as possible.
  • the piston-cylinder unit is equipped with at least one permanent magnet assembly comprising at least one arranged on the piston or on a component connected to the piston first permanent magnet and at least one arranged on the cylinder housing or on a component connected to the cylinder housing second Permanent magnet, wherein the first permanent magnet and the second permanent magnet, each having the same magnetic pole direction to each other to limit the piston travel in the region of top dead center and / or in the region of bottom dead center when approaching the first permanent magnet to the second permanent magnet a repulsive effect between the two To produce permanent magnets.
  • first and second permanent magnets can be arranged in any position and constellation.
  • the component connected to the piston on which the at least one first - movable - permanent magnet is arranged, it may be in a special embodiment of the invention to the oscillating body or a piston connecting the piston with the oscillating piston piston shaft.
  • a valve plate may be arranged in the cylinder head, wherein the at least one second permanent magnet on the
  • Valve plate preferably at least partially sunk in the valve plate, is arranged. In this way, the piston travel is limited in the region of top dead center.
  • the second permanent magnet can be arranged both outside and inside or even completely or partially in the valve plate.
  • the limitation of the piston travel at bottom dead center can also be done with permanent magnets, but it can also be done conventionally, for example by means of spring elements.
  • the at least one second permanent magnet is disposed within the piston bore of the cylinder housing, in particular within the working space or the working space delimiting.
  • one of the permanent magnets could be recessed in the cylinder housing so that it limits the working space with its front side.
  • the working space is formed by the cylinder housing and designates the space swept by the piston during its oscillation within the cylinder housing.
  • the at least one first permanent magnet can also be arranged outside the piston bore or the working space, for example, as already proposed above, on the oscillating body or on the piston shaft.
  • a particularly simple embodiment provides that the at least one first permanent magnet is arranged in the region of the first end face of the piston facing the cylinder head.
  • the at least one first permanent magnet is sunk in sections or entirely in the end face and / or in the piston skirt.
  • the recessed first and / or second permanent magnet it is possible for the recessed first and / or second permanent magnet to be encased by the material of the piston or of the cylinder head or of the valve plate, preferably encased on all sides.
  • the permanent magnets are sunk in the end faces of the piston and / or the valve plate, that between the permanent magnet and the piston or permanent magnet and valve plate at least one free space is present, which communicates with the working space.
  • This free space preferably extends along the entire circumference of the permanent magnet.
  • the gap-shaped recess favors a free development of the magnetic effect of the permanent magnet or an expansion of the magnetic field lines emanating from the permanent magnet.
  • An expanding of the permanent magnet outgoing magnetic field lines is further favored by the free space is designed according to a preferred embodiment of the invention as a gap, the clear opening width widens in the direction of the working space.
  • the free space can be filled with a non-ferromagnetic material, such as plastic.
  • the permanent magnets can be made substantially cylindrical.
  • the permanent magnets may be made substantially annular, wherein the annular shape is preferably rotationally symmetrical to the piston longitudinal axis.
  • the permanent magnets in this case preferably have a ring-cylindrical shape, so that sunk permanent magnets can be surrounded by a free space in the form of an annular gap.
  • the permanent magnets can also be arranged rotationally symmetrical to an axis which is parallel to the piston longitudinal axis.
  • any modifications to the ring shape are also possible, e.g. oval or elliptical shapes.
  • Alternative embodiments would be e.g. spiral or lattice-shaped permanent magnets.
  • a plurality of permanent magnets are arranged concentrically around the piston longitudinal axis.
  • the first permanent magnet arranged on the piston side essentially has a field strength of the same magnitude, that is, with the same material, preferably a substantially equal mass, on the second permanent magnet arranged on the cylinder housing side. This creates a symmetric magnetic field.
  • a uniform magnetic field is also achieved when a plurality of permanent magnets are arranged on a concentric to the piston longitudinal axis circle, wherein the angular distance of adjacent permanent magnets is substantially equal.
  • the piston-side and the cylinder-housing-side permanent magnets are expediently arranged on a circle, whereby the piston-side and cylinder-housing-side permanent magnets lie opposite one another (ie cover in the piston longitudinal axis).
  • the piston can be designed as a double piston, comprising two at opposite End portions of the double piston arranged, one end face of the double piston forming piston sections. Between the first end face of the double piston and a first cylinder head comprising a first valve head, a first working space and between the second end face of the double piston and a second cylinder head comprising a second valve plate, a second working space is formed.
  • the oscillating body is arranged between the two end faces of the double piston, preferably enclosed by the double piston, wherein an arrangement according to the invention of permanent magnets is provided for each cylinder head-piston portion pairing.
  • the piston-cylinder unit is designed according to one of claims 1 to 20 and the drive strength of the linear drive is set in the case of predetermined permanent magnets in that the piston changes its direction of movement in a predetermined top dead center and / or bottom dead center without the use of a mechanical spring element.
  • the piston changes its direction of movement both at the top and bottom dead center due to only one permanent magnet arrangement.
  • the piston changes its direction of movement due to a permanent magnet arrangement only at one dead center, while a known spring element is used for the change of the direction of movement in the other dead center.
  • the drive strength and / or frequency of the linear drive can be adjusted on the basis of measured position data of the piston or magnetic field strengths. Hall sensors such as those used in inductive encoders or current-voltage measurements of the exciter winding can be used for this purpose.
  • Fig. 1 shows in a schematic way the structure of a linear compressor 23 according to the invention, which by means of a suspension device 28 within a in Figure 13 illustrated, hermetically sealed compressor housing 29 of a small refrigerant compressor is arranged.
  • the linear compressor 23 comprises a piston-cylinder unit 21 with at least one piston 3 guided in a piston bore 2 of a cylinder housing 1.
  • the cylinder housing 1 is closed at the end with a cylinder head 4, more precisely, with a valve plate 5 held in the cylinder head 4.
  • the piston 3 is oscillatingly movable by a linear drive 6 along a piston longitudinal axis 9.
  • the linear drive 6 comprises in a known manner one of a field winding (a stator) 8 surrounded oscillating body 7, which is connected to the piston 3 rigid or articulated.
  • the oscillating body 7 is connected to the piston 3 by means of a piston rod or a piston stem 22.
  • the piston-cylinder unit 21 is equipped with at least one permanent magnet arrangement (namely two: 11a and 12a, 11b and 12b), comprising in each case at least one component on the piston 3 or on a component connected to the piston 3 - in this case, in particular around the oscillating body 7 or around the piston skirt 22 acting-arranged first permanent magnet 11a, 11b and with at least one cylinder housing 1 or on a connected to the cylinder housing 1 component second permanent magnet 12a, 12b.
  • at least one permanent magnet arrangement namely two: 11a and 12a, 11b and 12b
  • the at least one first permanent magnet 11a, 11b and the at least one second permanent magnet 12a, 12b each have the same magnetic pole direction to each other, so that when approaching the at least one first permanent magnet 11 to the at least one second permanent magnet 12, a repulsive effect between the two permanent magnets 11th and 12 and thus the piston travel in the region of top dead center and / or in the region of the bottom dead center of the piston 3 limiting effect arises.
  • a first permanent magnet 11a on the opposite side, a further first permanent magnet 11b is mounted, namely an annular permanent magnet.
  • a second permanent magnet 12a is attached, on the opposite side of the cylinder housing 1, where the piston shaft 22 passes through the cylinder housing 1, another second permanent magnet 12b.
  • the latter is ring-shaped educated.
  • the permanent magnets 11a and 12a cooperate and determine the force increase in the direction of the top dead center of the piston 3, while the permanent magnets 11b and 12b cooperate and determine the increase in force in the direction of the bottom dead center of the piston 3 due to their field strength.
  • the points at which the piston 3 actually reverses may vary.
  • Fig. 2 is an embodiment similar to that in FIG Fig. 1 shown, only in Fig. 2 in the first end face 3 a of the piston 3, an annular permanent magnet 11 and corresponding thereto in the valve plate 5 of the cylinder head 4, an annular second permanent magnet 12 is sunk.
  • the working space 14 facing surface of the first permanent magnet 11 is in a plane with the first end face 3 a of the piston 3.
  • the working space 14 facing surface of the second permanent magnet 12 is in a plane with the flat inner surface of the valve plate. 5
  • the valve plate 5 has a suction opening 17, which is closable on the inside of the valve plate 5 with a suction valve 15. It also has a pressure opening 18 which can be closed on the outside of the valve plate 5 with a pressure valve 16.
  • the two permanent magnets 11, 12 have identical dimensions and are made of the same ferromagnetic material, so that they have the same magnetic field strength. They are designed as annular cylinder, the inner and outer surfaces thus have the shape of a cylinder jacket, the support surface on the piston 3 has the shape of a circular ring, as well as the working space 14 facing surface of the permanent magnets 11, 12th
  • Both permanent magnets 11, 12 are recessed into annular recesses of the piston 3 and the valve plate 5, so that the working space 14 facing surface of the permanent magnets 11, 12 with the first end face 3a of the piston or with the inside of the valve plate 5 just finished.
  • the permanent magnets 11, 12 are in each case at the bottom of the annular recess, between the cylinder surface designed as a cylindrical outer surface of the permanent magnets 11, 12 and the wall of the recess, however, a free space 13 is provided, so that the magnetic field lines - of the metallic material of the piston. 3 or the valve plate 5 undisturbed - can escape through the cylinder jacket-shaped outer surface of the permanent magnets 11, 12.
  • the free space 13 may also, as shown in the piston 3, be filled with non-ferromagnetic material, such as plastic. As a result, the dead space is reduced, so that space between the piston at the dead center and valve plate, which may be filled with refrigerant.
  • a further first permanent magnet such as permanent magnet 11b in Fig. 1 , are arranged with a corresponding permanent magnet 12b on the cylinder housing.
  • a spring element 27 may be provided, which determines the bottom dead center of the piston 3.
  • the design of the piston-cylinder unit is similar to that of Fig. 2 , Additionally is in Fig. 3 still the excitation winding 8 located.
  • the first permanent magnets 11a, 11b are not arranged on the piston 3, but on the cylindrical oscillating body 7 of the linear drive 6.
  • the corresponding second permanent magnets 12a, 12b are arranged on the inside of the housing 24 of the linear drive 6, so that they are aligned in the direction of the piston longitudinal axis 9 with the permanent magnets 11a, 11b.
  • the permanent magnets 11a, 11b, 12a, 12b are formed here as a ring cylinder, but not recessed in the oscillating body 7 or housing 24, but attached to the circular surfaces of the oscillating body 7 and on opposite inner walls of the housing 24.
  • the ring cylinders are arranged concentrically to the piston longitudinal axis 9.
  • the permanent magnets 11 b and 12 b - seen in the direction of the piston longitudinal axis 9 - the lowest due to the force acting on the oscillating body 7 force of the linear drive 6 distance from each other.
  • the permanent magnets 11a and 12a have the greatest possible distance from one another, which corresponds essentially to the piston stroke of the piston 3.
  • Fig. 6 is detail B off Fig. 4 shown enlarged.
  • the permanent magnets 11a and 12a can be seen, of the second permanent magnet arrangement (b) only permanent magnet 11b.
  • the radial outer diameter of the permanent magnets 11 a and 11 b corresponds almost to the radial diameter of the cylindrical oscillating body 7, the diameter of the permanent magnets 11 a, 11 b, 12 a, 12 b is only about 1-5% smaller than that of the oscillating body 7.
  • Fig. 7 shows a modification of the embodiment according to Fig. 4 in that the permanent magnet arrangement for determining the bottom dead center by Fig. 4 is replaced by a spring element 27.
  • the permanent magnets 11a and 12a made Fig. 4 are retained, the permanent magnets 11 b and 12 b are replaced by the spring element 27.
  • Fig. 8 shows a schematic representation of the in the region of the permanent magnets 11, 12 of the Fig. 2 and 3 developed magnetic fields in the form of field lines 25 and 26, wherein the piston 3 is in the region of its bottom dead center. Magnetic field lines are closed, they emerge at the so-called “North Pole” from the permanent magnet and at the so-called “South Pole” in this one. When a permanent magnet with its south pole approaches the north pole of another permanent magnet, the permanent magnets attract and adhere to each other.
  • valve plate 5 and piston 3 are made in this embodiment of steel, so are themselves ferromagnetic, the magnetic field lines 25, 26 can therefore penetrate into the valve plate 5 and the piston 3.
  • the distance between the piston 3 and piston bore 2 is shown exaggerated here.
  • Fig. 9 shows the piston-cylinder assembly 21 with progressive compression stroke, the piston is on the way to top dead center.
  • the magnetic fields of the two permanent magnets 11, 12 affect each other significantly more than in Fig. 8 , In the working area 14, the distance between the own field lines 25, 26 of the permanent magnet decreases, the magnetic field strength is larger, the field lines are "stretched" like a spring.
  • the piston 3 has reached its top dead center. An abutment of the first end face 3 a of the piston 3 to the valve plate 5 is prevented, since the two permanent magnets 11 and 12, each with the same Magnetpolides (with the "north pole") face each other and therefore repel each other. If you were to turn off the excitation field of the excitation winding 8 now, the piston 3 would be moved by the repulsive force of the permanent magnets 11, 12 to the right.
  • Fig. 11 shows a force-displacement diagram for illustrating the increase of the magnetic force when approaching the first 11 to the second permanent magnet 12.
  • the magnetic force F in % On the horizontal axis, the distance between the first 11 and second permanent magnet 12 in cm, plotted on the vertical axis, the magnetic force F in %, where 100% represents the repulsive magnetic force at top dead center.
  • This force must apply the linear drive 6 and the inertia of the piston 3 with the vibrating body 7 to keep the piston 3 for a short time at top dead center.
  • the top dead center is given in this example at a distance of 0.05-0.5 mm between the first 11 and second permanent magnet 12. Both the diamond-shaped measuring points and the measuring curve interpolated on the basis of the measuring points are shown.
  • Fig. 12 shows a piston-cylinder unit according to the invention with a double piston.
  • the piston 3 is embodied as a double piston and comprises two piston sections 19, 20 arranged at opposite end regions, each forming an end face 3a, 3b of the double piston.
  • a first working space is created 14 formed and between the second end face 3b of the double piston and a second valve plate 5 'comprehensive second cylinder head 4', a second working space 14 '.
  • the oscillating body 7 is arranged between the two end faces 3a, 3b of the double piston, preferably enclosed by the double piston 3.
  • a permanent magnet arrangement 11a, 12a or 11b, 12b according to the invention is provided for each cylinder head piston section pairing 4/19 or 4 '/ 20, a permanent magnet arrangement 11a, 12a or 11b, 12b according to the invention is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

Die Erfindung bezieht sich auf einen Kältemittelverdichter mit einem hermetisch dichten Verdichtergehäuse, in dessen Innerem eine ein Kältemittel verdichtende Kolben-Zylinder-Einheit angeordnet ist, deren Zylindergehäuse stirnseitig mittels eines Zylinderkopfs verschlossen ist, in welchem eine Saugöffnung sowie eine Drucköffnung vorgesehenen sind, über welchen Kältemittel über ein,Saugventil durch die Saugöffnung angesaugt sowie über ein Druckventil durch die Drucköffnung verdichtet wird, wobei die Kolben-Zylinder-Einheit mindestens einen in einer Kolbenbohrung des Zylindergehäuses geführten Kolben aufweist, wobei zwischen dem Zylinderkopf und einer ersten Stirnseite des Kolbens ein Arbeitsraum zur Verdichtung eines Kältemittels ausgebildet wird, wobei ein Linearantrieb vorgesehen ist, umfassend mindestens einen von einer Erregerwicklung umgebenen Schwingkörper, welcher mit dem Kolben verbunden ist, um diesen entlang einer Kolbenlängsachse oszillierend zu bewegen, gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a refrigerant compressor with a hermetically sealed compressor housing, in the interior of a refrigerant-compressing piston-cylinder unit is arranged, the cylinder housing is closed at the end by means of a cylinder head, in which a suction port and a pressure port are provided, via which refrigerant sucked via a suction valve through the suction port and is compressed via a pressure valve through the pressure port, wherein the piston-cylinder unit has at least one piston guided in a piston bore of the cylinder housing, wherein between the cylinder head and a first end face of the piston, a working space for compression a refrigerant is formed, wherein a linear drive is provided, comprising at least one vibrating body surrounded by a field winding, which is connected to the piston in order to move it oscillating along a piston longitudinal axis, according to ß the preamble of claim 1.

Der Kältemaschinenprozess mit azeotropen Gasen als solcher ist seit langem bekannt. Das Kältemittel wird dabei durch Energieaufnahme aus dem zu kühlenden Raum in einem Verdampfer erhitzt und schließlich überhitzt, was zum Verdampfen führt und mittels einer Kolben-Zylinder-Einheit des Kältemittelverdichters auf ein höheres Druckniveau verdichtet, wo es Wärme über einen Kondensator abgibt und über eine Drossel, in der eine Druckreduzierung und Abkühlung des Kältemittels erfolgt, wieder zurück in den Verdampfer befördert wird. Derartige Kältemittelverdichter finden im Haushalts- und Industriebereich Einsatz, wo sie zumeist an der Rückseite eines Kühlschranks oder Kühlregals angeordnet sind. Die Kolben-Zylinder-Einheit umfasst ein mit einer Kolbenbohrung versehenes Zylindergehäuse, in welchem ein oszillierender Kolben geführt ist.The refrigeration process with azeotropic gases as such has long been known. The refrigerant is heated by energy intake from the space to be cooled in an evaporator and finally overheated, which leads to evaporation and compressed by a piston-cylinder unit of the refrigerant compressor to a higher pressure level, where it emits heat through a capacitor and a throttle , in which a pressure reduction and cooling of the refrigerant takes place, is transported back into the evaporator. Such refrigerant compressors are used in domestic and industrial applications, where they are usually arranged on the back of a refrigerator or refrigerator. The piston-cylinder unit comprises a cylinder housing provided with a piston bore, in which an oscillating piston is guided.

Die Kolbenbohrung des Zylindergehäuses ist in einem ersten axialen Endbereich von einem Zylinderkopf bzw. von einer Ventilplatte verschlossen, während die Kolbenbohrung in einem zweiten axialen Endbereich offen für die Aufnahme des Kolbens ist bzw. im Montagezustand des Kältemittelverdichters von einem Pleuel durchsetzt ist.The piston bore of the cylinder housing is closed in a first axial end of a cylinder head or a valve plate, while the piston bore is open in a second axial end portion for receiving the piston or in the assembled state of the refrigerant compressor is penetrated by a connecting rod.

Der Zylinderkopf kann generell einerseits als massiver, kappenförmiger Bauteil, etwa mit einer Druck- und einer Saugkammer, ausgeführt sein, der an seiner Innenseite eine Ventilplatte trägt. Er kann als ringförmiger Bauteil ausgeführt sein, der die Ventilplatte am Zylindergehäuse hält, er kann aber auch nur als Ventilplatte ausgeführt sein, die mittels einer Klemmvorrichtung auf den zylindrischen Teil des Zylindergehäuses geklemmt wird. In der Ventilplatte ist dann die Saugöffnung zum Ansaugen des Kältemittels aus dem Kältemittelkreislauf angeordnet, sowie die Drucköffnung, durch welche das komprimierte Kältemittel nach dem Kompressionsvorgang in den Kältemittelkreislauf durch den Kolben ausgeschoben wird.The cylinder head can generally be designed on the one hand as a solid, cap-shaped component, for example with a pressure chamber and a suction chamber, which carries a valve plate on its inside. It can be designed as an annular component which holds the valve plate on the cylinder housing, but it can also be designed only as a valve plate which is clamped by means of a clamping device on the cylindrical part of the cylinder housing. In the valve plate then the suction port for sucking the refrigerant from the refrigerant circuit is arranged, and the pressure port through which the compressed refrigerant is ejected after the compression process in the refrigerant circuit through the piston.

Die Ventilplatte ist bei denn am weitesten verbreiteten Kältemittelkolbenkompressoren mit der Stirnseite des Zylindergehäuses verschraubt. Zu diesem Zweck sind sowohl am Zylindergehäuse als auch in der Ventilplatte Bohrungen angeordnet, wobei die Bohrungen im Zylindergehäuse jeweils mit einem Gewinde versehen sind, über welche die Verschraubung vorgenommen wird. Auf der dem Zylindergehäuse gegenüberliegenden Seite der Ventilplatte ist bei dieser am weitesten verbreiteten Art von Kältemittelkolbenkompressoren ein Zylinderdeckel vorgesehen, der eine Druckkammer aufweist, in welcher das aus dem Zylinder ausgestoßene, komprimierte Kältemittel kurz zwischengespeichert wird, um in weiterer Folge in den Kältemittelkreislauf überzuströmen. Es sind auch Ausführungsbeispiele bekannt, bei welchen eine der Druckkammer entsprechende Saugkammer vorgesehen ist, über welche das Kältemittel durch die Saugöffnung in den Zylinder gesaugt wird. Druckkammer und Saugkammer sind in solchen Fällen durch entsprechende bauliche Maßnahmen im Zylinderdeckel voneinander getrennt.The valve plate is screwed to the most widespread refrigerant piston compressors with the front side of the cylinder housing. For this purpose, bores are arranged both on the cylinder housing and in the valve plate, wherein the bores in the cylinder housing are each provided with a thread, via which the screw connection is made. On the cylinder housing opposite side of the valve plate is provided in this most common type of refrigerant piston compressors, a cylinder cover having a pressure chamber in which the ejected from the cylinder, compressed Refrigerant is briefly cached, in order subsequently to flow into the refrigerant circuit. Embodiments are also known in which a suction chamber corresponding to the pressure chamber is provided, via which the refrigerant is sucked through the suction opening into the cylinder. Pressure chamber and suction chamber are separated from each other in such cases by appropriate structural measures in the cylinder cover.

Ein Kältemittelkompressor konventioneller Bauart umfasst einen Elektromotor, welcher über eine Kurbelwelle den in der Kolbenbohrung oszillierenden Kolben antreibt.A refrigerant compressor of conventional design comprises an electric motor which drives the piston oscillating in the piston bore via a crankshaft.

Um die Vorsehung einer Kurbelwelle entbehrlich zu machen, existieren diverse Linearverdichter-Lösungen, bei welchen der Kolben direkt von einem elektrischen Linearantrieb angetrieben wird. Hierbei ist der Kolben mit einem Schwingkörper verbunden, welcher von einer Erregerwicklung (auch als Stator bezeichnet) umgebenen um entlang einer Kolbenlängsachse oszillierend in Bewegung versetzt wird. Der Kolbenhub (=Kolbenweg) kann durch eine variabel induzierte Spannung am Linearantrieb bestimmt werden.In order to make dispensable the provision of a crankshaft, there are various linear compressor solutions in which the piston is driven directly by an electric linear drive. In this case, the piston is connected to a vibrating body, which is surrounded by a field winding (also referred to as a stator) oscillating about a piston longitudinal axis is set in motion. The piston stroke (= piston travel) can be determined by a variably induced voltage at the linear drive.

Problemtisch bei solchen Lösungen ist die exakte Begrenzung des Kolbenweges während der Oszillation des Kolbens. Einerseits soll verhindert werden, dass der Kolben im Bereich des oberen Totpunkts am Zylinderkopf bzw. an der im Zylinderkopf angeordneten Ventilplatte anschlägt. Andererseits soll aber auch verhindert werden, dass sich der obere Totpunkt des Kolbens zu weit nach unten verschiebt bzw. dass der sich dem Zylinderkopf bzw. der Ventilplatte annähernde Kolben zu früh eine Umkehrbewegung vollzieht und dadurch ein leistungsvermindernder Schadraum entsteht.Problematic in such solutions is the exact limitation of the piston travel during the oscillation of the piston. On the one hand, it is intended to prevent the piston from abutting the cylinder head or the valve plate arranged in the cylinder head in the region of top dead center. On the other hand, it should also be prevented that the top dead center of the piston moves too far down or that the piston approaching the cylinder head or the valve plate takes place too early reversing movement and thereby a power-reducing dead space is created.

In den Druckschriften CN 101240793 A und DE 10 2006 009 270 A werden hierfür mechanische Federelemente zur Pufferung des Kolbens und somit zur Begrenzung des Kolbenweges vorgeschlagen. Aus der DE 10 2006 009 256 A ist es bekannt, den Kolbenweg mittels verstellbarer Federelemente zu verändern.In the pamphlets CN 101240793 A and DE 10 2006 009 270 A For this purpose, mechanical spring elements for buffering the piston and thus to limit the piston travel proposed. From the DE 10 2006 009 256 A It is known to change the piston stroke by means of adjustable spring elements.

Der Nachteil derartiger Systeme ist mechanischer Verschleiß in den Federelementen und den Kolbenbauteilen. Die Federelemente beanspruchen wertvollen Platz und erweisen sich als unflexibel, falls die Kälteleistung des Kältemittelkompressors bzw. der Kolbenhub verändert werden sollen.The disadvantage of such systems is mechanical wear in the spring elements and the piston components. The spring elements take up valuable space and prove to be inflexible if the cooling capacity of the refrigerant compressor or the piston stroke to be changed.

Die US 6379125 B1 offenbart ebenfalls einen Kältemittelverdichter mit Linearantrieb, bei welchem der Kolben mittels einer Feder rückgestellt wird.The US 6379125 B1 also discloses a refrigerant compressor with linear drive, in which the piston is reset by means of a spring.

Es existieren auch Linearverdichter, bei welchen der Kolben während seiner Oszillation ausschließlich durch eine elektronische Steuerung des Linearantriebs in Position gehalten wird. Solche z.B. aus der WO 01/48379 A und der WO 2009/103138 A2 bekannte Lösungen zur Begrenzung des Kolbenweges sind jedoch nur unter Vorsehung aufwändiger Sensor- und Auswertetechnik realisierbar. Insbesondere sind Sensoren vorgesehen, welche die Zeitdauer einer Kolbenbewegung ermitteln, welche in weitere Folge von einem Mikroprozessor mit einer auf einem Speichermedium hinterlegten Referenzzeitdauer verglichen und daraus die aktuelle Position des Kolbens errechnet wird. Derartige Systeme sind kostenaufwändig und finden daher in der serienmäßigen Kompressorfertigung kaum Einsatz.There are also linear compressors in which the piston is held in position during its oscillation exclusively by an electronic control of the linear drive. Such as from the WO 01/48379 A and the WO 2009/103138 A2 However, known solutions for limiting the piston travel can only be realized under the provision of expensive sensor and evaluation technology. In particular, sensors are provided which determine the duration of a piston movement, which are compared in a further sequence by a microprocessor with a stored on a storage medium reference period and from this the current position of the piston is calculated. Such systems are expensive and therefore find little use in the standard compressor manufacturing.

Linearantriebe, bei welchen ein Kolben eine Mittelposition aufgrund der Abstoßung gleichgepolter Permanentmagnete einnimmt, sind im Zusammenhang mit Vakuumpumpen aus der US 2005/112001 A1 und der DE 10314007 A1 bekannt. Die DE 19504751 A1 offenbart ein solches Konzept im Zusammenhang mit einer Magnetpumpe zum Fördern von flüssigen oder gasförmigen Medien, Keine der in den drei zuletzt genannten Dokumenten offenbarten Vorrichtungen erfüllt jedoch die spezifischen Anforderungen an einen Kältemittelverdichter.Linear drives, in which a piston occupies a central position due to the repulsion of Gleichpolpolter permanent magnets are in connection with vacuum pumps from US 2005/112001 A1 and the DE 10314007 A1 known. The DE 19504751 A1 discloses such a concept in the context of a magnetic pump for conveying liquid or gaseous media, none of which are disclosed in the last three documents mentioned However, devices meet the specific requirements of a refrigerant compressor.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine einfache und zuverlässige Möglichkeit zur Begrenzung des Kolbenweges bei Kältemittelkompressoren mit Linearantrieb vorzuschlagen, welche sowohl eine Vorsehung mechanischer Federelemente als auch eine Vorsehung aufwändiger Sensor- und Steuerelektronik zur Begrenzung des Kolbenweges entbehrlich macht. Im Zylindergehäuse auftretender Schadraum soll möglichst reduziert werden.The present invention is therefore based on the object to propose a simple and reliable way to limit the piston travel in refrigerant compressors with linear drive, which makes dispensable both a providence of mechanical spring elements and a provident consuming sensor and control electronics to limit the piston travel. In the cylinder housing occurring dead space should be reduced as possible.

Erfindungsgemäß werden diese Aufgaben durch eine Vorrichtung mit den kennzeichnenden Merkmalen des Anspruchs 1 gelöst.According to the invention, these objects are achieved by a device having the characterizing features of claim 1.

Dabei ist vorgesehen, dass die Kolben-Zylinder-Einheit mit mindestens einer Dauermagnetanordnung bestückt ist, umfassend jeweils mindestens einen am Kolben oder an einem mit dem Kolben verbundenen Bauteil angeordneten ersten Dauermagneten und mindestens einen am Zylindergehäuse oder an einem mit dem Zylindergehäuse verbundenen Bauteil angeordneten zweiten Dauermagneten, wobei der erste Dauermagnet und der zweite Dauermagnet mit jeweils gleicher Magnetpolrichtung zueinander weisen, um zur Begrenzung des Kolbenwegs im Bereich des oberen Totpunkts und/oder im Bereich des unteren Totpunkts bei Annäherung des ersten Dauermagneten an den zweiten Dauermagneten eine abstoßende Wirkung zwischen den beiden Dauermagneten zu erzeugen.It is provided that the piston-cylinder unit is equipped with at least one permanent magnet assembly comprising at least one arranged on the piston or on a component connected to the piston first permanent magnet and at least one arranged on the cylinder housing or on a component connected to the cylinder housing second Permanent magnet, wherein the first permanent magnet and the second permanent magnet, each having the same magnetic pole direction to each other to limit the piston travel in the region of top dead center and / or in the region of bottom dead center when approaching the first permanent magnet to the second permanent magnet a repulsive effect between the two To produce permanent magnets.

Auf diese Weise kann der Kolbenweg des Kolbens einfach und zuverlässig limitiert werden. Ein Anschlagen des Kolbens an Elementen des Zylindergehäuses, insbesondere an der Ventilplatte, wird auch ohne elektronischer Sensor- und Steuerungselemente verhindert.In this way, the piston travel of the piston can be limited easily and reliably. An abutment of the piston on elements of the cylinder housing, in particular on the valve plate is prevented even without electronic sensor and control elements.

Grundsätzlich kann eine beliebige Anzahl an ersten und zweiten Dauermagneten in beliebiger Position und Konstellation angeordnet sein.In principle, any number of first and second permanent magnets can be arranged in any position and constellation.

Bei dem mit dem Kolben verbundenen Bauteil, an welchem der mindestens eine erste - bewegliche - Dauermagnet angeordnet ist, kann es sich in einer speziellen Ausführungsvariante der Erfindung um den Schwingkörper oder um einen den Kolben mit dem Schwingkörper verbindenden Kolbenschaft handeln.In the component connected to the piston, on which the at least one first - movable - permanent magnet is arranged, it may be in a special embodiment of the invention to the oscillating body or a piston connecting the piston with the oscillating piston piston shaft.

Beim mit dem Zylindergehäuse verbundenen Bauteil, an bzw. in welchem der mindestens eine zweite - fixe - Dauermagnet angeordnet ist, handelt es sich in einer bevorzugten Ausführungsvariante der Erfindung um den Zylinderkopf.When connected to the cylinder housing component, on or in which the at least one second - fixed - permanent magnet is arranged, it is in a preferred embodiment of the invention to the cylinder head.

Dabei kann im Zylinderkopf eine Ventilplatte angeordnet sein, wobei der mindestens eine zweite Dauermagnet an derIn this case, a valve plate may be arranged in the cylinder head, wherein the at least one second permanent magnet on the

Ventilplatte, vorzugsweise zumindest abschnittsweise in der Ventilplatte versenkt, angeordnet ist. Auf diese Weise wird der Kolbenweg im Bereich des oberen Totpunkts begrenzt. Der zweite Dauermagnet kann dabei sowohl außen als auch innen an oder sogar ganz oder teilweise in der Ventilplatte angeordnet sein. Die Begrenzung des Kolbenwegs im unteren Totpunkt kann ebenfalls mit Dauermagneten erfolgen, sie kann aber auch konventionell, etwa mittels Federelementen, erfolgen.Valve plate, preferably at least partially sunk in the valve plate, is arranged. In this way, the piston travel is limited in the region of top dead center. The second permanent magnet can be arranged both outside and inside or even completely or partially in the valve plate. The limitation of the piston travel at bottom dead center can also be done with permanent magnets, but it can also be done conventionally, for example by means of spring elements.

Gemäß einer besonders bevorzugten Ausführungsvariante der Erfindung ist der mindestens eine zweite Dauermagnet innerhalb der Kolbenbohrung des Zylindergehäuses, insbesondere innerhalb des Arbeitsraumes bzw. den Arbeitsraum begrenzend angeordnet. So könnte beispielsweise einer der Dauermagnete so in das Zylindergehäuse versenkt sein, dass er mit seiner Stirnseite den Arbeitsraum begrenzt. Der Arbeitsraum wird vom Zylindergehäuse gebildet und bezeichnet den vom Kolben während seiner Oszillation durchstrichenen Raum innerhalb des Zylindergehäuses.According to a particularly preferred embodiment of the invention, the at least one second permanent magnet is disposed within the piston bore of the cylinder housing, in particular within the working space or the working space delimiting. For example, one of the permanent magnets could be recessed in the cylinder housing so that it limits the working space with its front side. The working space is formed by the cylinder housing and designates the space swept by the piston during its oscillation within the cylinder housing.

Wie bereits erwähnt, wäre es gemäß einer weiteren Ausführungsvariante der Erfindung auch möglich, den zweiten Dauermagneten außerhalb der Kolbenbohrung bzw. des Arbeitsraumes anzuordnen.As already mentioned, according to a further embodiment variant of the invention, it would also be possible to arrange the second permanent magnet outside the piston bore or the working space.

Selbstverständlich kann auch der mindestens eine erste Dauermagnet außerhalb der Kolbenbohrung bzw. des Arbeitsraumes angeordnet sein, z.B., wie bereits vorangehend vorgeschlagen, am Schwingkörper oder am Kolbenschaft.Of course, the at least one first permanent magnet can also be arranged outside the piston bore or the working space, for example, as already proposed above, on the oscillating body or on the piston shaft.

Eine besonders einfache Ausführungsform sieht vor, dass der mindestens eine erste Dauermagnet im Bereich der dem Zylinderkopf zugewandten ersten Stirnseite des Kolbens angeordnet ist.A particularly simple embodiment provides that the at least one first permanent magnet is arranged in the region of the first end face of the piston facing the cylinder head.

Um Schadraumverluste zu vermeiden, kann vorgesehen werden, dass - wie schon bei den zweiten Dauermagneten - der mindestens eine erste Dauermagnet abschnittsweise oder ganz in der Stirnseite und/oder im Kolbenschaft versenkt ist. Insbesondere ist es möglich, dass der versenkte erste und/oder zweite Dauermagnet vom Material des Kolbens oder des Zylinderkopfes bzw. der Ventilplatte ummantelt, vorzugsweise allseitig ummantelt ist.In order to avoid dead space losses, it can be provided that - as in the case of the second permanent magnets - the at least one first permanent magnet is sunk in sections or entirely in the end face and / or in the piston skirt. In particular, it is possible for the recessed first and / or second permanent magnet to be encased by the material of the piston or of the cylinder head or of the valve plate, preferably encased on all sides.

Gemäß einer Fortbildung der Erfindung ist vorgesehen, dass die Dauermagnete so in den Stirnseiten des Kolbens und/oder der Ventilplatte versenkt sind, dass zwischen Dauermagnet und Kolben bzw. Dauermagnet und Ventilplatte mindestens ein freier Raum vorhanden ist, der mit dem Arbeitsraum kommuniziert. Dieser freie Raum erstreckt sich vorzugsweise entlang des gesamten Umfangs des Dauermagneten. Die spaltförmige Ausnehmung begünstigt eine freie Entfaltung der magnetischen Wirkung des Dauermagneten bzw. ein Expandieren der vom Dauermagneten ausgehenden magnetischen Feldlinien.According to a development of the invention it is provided that the permanent magnets are sunk in the end faces of the piston and / or the valve plate, that between the permanent magnet and the piston or permanent magnet and valve plate at least one free space is present, which communicates with the working space. This free space preferably extends along the entire circumference of the permanent magnet. The gap-shaped recess favors a free development of the magnetic effect of the permanent magnet or an expansion of the magnetic field lines emanating from the permanent magnet.

Ein Expandieren der vom Dauermagneten ausgehenden magnetischen Feldlinien wird weiter begünstigt, indem der freie Raum gemäß einer bevorzugten Ausführungsvariante der Erfindung als Spalt ausgeführt ist, dessen lichte Öffnungsweite sich in Richtung des Arbeitsraumes erweitert.An expanding of the permanent magnet outgoing magnetic field lines is further favored by the free space is designed according to a preferred embodiment of the invention as a gap, the clear opening width widens in the direction of the working space.

Der freie Raum kann mit einem nicht ferromagnetischen Material, etwa Kunststoff, gefüllt sein. Durch eine solche Ausfüllung der Ausnehmung kann unerwünschter Schadraum (verbleibender Raum zwischen Kolben und Zylinderkopf bzw. Ventilplatte im oberen Totpunkt des Kolbens), welcher die Leistung des Kältemittelkompressors verringern würde, vermieden werden.The free space can be filled with a non-ferromagnetic material, such as plastic. By such a filling of the recess undesirable dead space (remaining space between the piston and cylinder head or valve plate at top dead center of the piston), which would reduce the performance of the refrigerant compressor can be avoided.

Zur optimalen Paarung der kolbenseitig angeordneten ersten und der zylindergehäuseseitig angeordneten zweiten Dauermagneten sind im Folgenden erfindungsgemäße Maßnahmen vorgeschlagen. Es soll jeweils eine fokussierte Wirkung der Dauermagnete aufeinander und eine stabile Lage des Kolbens, insbesondere während seiner Umkehrbewegung an den Totpunkten, gewährleistet sein.For optimal pairing of the piston side arranged first and the cylinder housing side arranged second permanent magnet measures according to the invention are proposed below. It should each have a focused effect of the permanent magnets each other and a stable position of the piston, in particular during its reversal movement at the dead centers, be ensured.

Die Dauermagnete können etwa im Wesentlichen zylindrisch ausgeführt sein.The permanent magnets can be made substantially cylindrical.

Insbesondere können die Dauermagnete im Wesentlichen ringförmig ausgeführt sein, wobei die Ringform vorzugsweise rotationssymmetrisch zur Kolbenlängsachse verläuft. Die Dauermagnete weisen hierbei vorzugsweise eine ringzylindrische Form auf, sodass versenkte Dauermagnete von einem freien Raum in Form eines Ringspalts umgeben sein können.In particular, the permanent magnets may be made substantially annular, wherein the annular shape is preferably rotationally symmetrical to the piston longitudinal axis. The permanent magnets in this case preferably have a ring-cylindrical shape, so that sunk permanent magnets can be surrounded by a free space in the form of an annular gap.

Die Dauermagnete können aber auch rotationssymmetrisch zu einer Achse angeordnet sein, die zur Kolbenlängsachse parallel ist.The permanent magnets can also be arranged rotationally symmetrical to an axis which is parallel to the piston longitudinal axis.

Es sind auch beliebige Modifikationen zur Ringform möglich z.B. ovale oder elliptische Formen. Alternative Ausführungsvarianten wären z.B. spiralförmige oder gitterförmige Dauermagneten. In einer speziellen Ausführungsvariante sind mehrere Dauermagnete konzentrisch um die Kolbenlängsachse angeordnet.Any modifications to the ring shape are also possible, e.g. oval or elliptical shapes. Alternative embodiments would be e.g. spiral or lattice-shaped permanent magnets. In a specific embodiment, a plurality of permanent magnets are arranged concentrically around the piston longitudinal axis.

Wenn die Stirnseite des kolbenseitig angeordneten mindestens einen ersten Dauermagneten im Wesentlichen parallel zur Stirnseite des zylindergehäuseseitig angeordneten mindestens einen zweiten Dauermagneten verläuft, ist eine gleichmäßige Ausbildung des Magnetfeldes gewährleistet.If the end face of the at least one first permanent magnet arranged on the piston side runs substantially parallel to the end face of the at least one second permanent magnet arranged on the cylinder housing side, a uniform formation of the magnetic field is ensured.

Gemäß einer weiteren bevorzugten Ausführungsvariante der Erfindung weist der kolbenseitig angeordnete erste Dauermagnet im Wesentlichen eine gleich große Feldstärke, bei gleichem Material also vorzugsweise eine im Wesentlichen gleich große Masse, auf wie der zylindergehäuseseitig angeordnete zweite Dauermagnet. Dadurch wird ein symmetrisches Magnetfeld erzeugt.According to a further preferred embodiment of the invention, the first permanent magnet arranged on the piston side essentially has a field strength of the same magnitude, that is, with the same material, preferably a substantially equal mass, on the second permanent magnet arranged on the cylinder housing side. This creates a symmetric magnetic field.

Ein gleichmäßiges Magnetfeld wird auch erreicht, wenn mehrere Dauermagnete auf einem konzentrisch zur Kolbenlängsachse verlaufenden Kreis angeordnet sind, wobei der Winkelabstand benachbarter Dauermagnete im Wesentlichen gleich groß ist. Sinnvoller Weise sind dabei jeweils die kolbenseitigen und die zylindergehäuseseitigen Dauermagnete auf einem Kreis angeordnet, wobei sich kolbenseitige und zylindergehäuseseitige Dauermagnete gegenüberliegen (also in Kolbenlängsachse gesehen decken).A uniform magnetic field is also achieved when a plurality of permanent magnets are arranged on a concentric to the piston longitudinal axis circle, wherein the angular distance of adjacent permanent magnets is substantially equal. In this case, the piston-side and the cylinder-housing-side permanent magnets are expediently arranged on a circle, whereby the piston-side and cylinder-housing-side permanent magnets lie opposite one another (ie cover in the piston longitudinal axis).

In einer speziellen Bauweise kann der Kolben als Doppelkolben ausgeführt sein, umfassend zwei an gegenüberliegenden Endbereichen des Doppelkolbens angeordnete, jeweils eine Stirnseite des Doppelkolbens ausbildende Kolbenabschnitte. Zwischen der ersten Stirnseite des Doppelkolbens und einem eine erste Ventilplatte umfassenden ersten Zylinderkopf ist ein erster Arbeitsraum und zwischen der zweitem Stirnseite des Doppelkolbens und einem eine zweite Ventilplatte umfassenden zweiten Zylinderkopf ist ein zweiter Arbeitsraum ausgebildet. Der Schwingkörper ist zwischen den beiden Stirnseiten des Doppelkolbens, vorzugsweise vom Doppelkolben eingeschlossen, angeordnet, wobei für jede Zylinderkopf-Kolbenabschnitt-Paarung eine erfindungsgemäße Anordnung von Dauermagneten vorgesehen ist.In a special construction, the piston can be designed as a double piston, comprising two at opposite End portions of the double piston arranged, one end face of the double piston forming piston sections. Between the first end face of the double piston and a first cylinder head comprising a first valve head, a first working space and between the second end face of the double piston and a second cylinder head comprising a second valve plate, a second working space is formed. The oscillating body is arranged between the two end faces of the double piston, preferably enclosed by the double piston, wherein an arrangement according to the invention of permanent magnets is provided for each cylinder head-piston portion pairing.

Bei einem erfindungsgemäßen Verfahren zur Festlegung des Kolbenweges eines Linearverdichters in einem Kältemittelkompressor gemäß dem Oberbegriff von Anspruch 1, ist vorgesehen, dass die Kolben-Zylinder-Einheit nach einem der Ansprüche 1 bis 20 ausgebildet ist und bei vorgegebenen Dauermagneten die Antriebsstärke des Linearantriebs so eingestellt wird, dass der Kolben in einem vorgegebenen oberen Totpunkt und/oder unteren Totpunkt seine Bewegungsrichtung ohne Verwendung eines mechanischen Federelements ändert.In a method according to the invention for determining the piston stroke of a linear compressor in a refrigerant compressor according to the preamble of claim 1, it is provided that the piston-cylinder unit is designed according to one of claims 1 to 20 and the drive strength of the linear drive is set in the case of predetermined permanent magnets in that the piston changes its direction of movement in a predetermined top dead center and / or bottom dead center without the use of a mechanical spring element.

Es kann z.B. vorgesehen sein, dass der Kolben sowohl am oberen als auch am unteren Totpunkt seine Bewegungsrichtung nur aufgrund von jeweils einer Dauermagnetanordnung ändert. Es kann aber auch vorgesehen sein, dass der Kolben nur in einem Totpunkt seine Bewegungsrichtung aufgrund einer Dauermagnetanordnung ändert, während für die Änderung der Bewegungsrichtung im anderen Totpunkt ein bekanntes Federelement verwendet wird.It can e.g. be provided that the piston changes its direction of movement both at the top and bottom dead center due to only one permanent magnet arrangement. But it can also be provided that the piston changes its direction of movement due to a permanent magnet arrangement only at one dead center, while a known spring element is used for the change of the direction of movement in the other dead center.

Mit den Dauermagneten bildet der Kolben gemeinsam mit Schwingkörper und gegebenenfalls dem Kolbenschaft ein nichtlineares Masse-Federsystem. Dadurch sind in diesem Masse-Federsystem unterschiedliche Resonanzfrequenzen möglich, wenn man nicht den vollen Weg des Masse-Federsystems ausnützt, während in einem linearen Masse-Federsystem, wie etwa bei ausschließlicher Verwendung von Federelementen, nur eine Resonanzfrequenz auftritt, bei welcher der Kolben normalerweise betrieben wird. Erfindungsgemäß sind daher unterschiedliche Kolbenfrequenzen und damit unterschiedliche Kälteleistungen möglich.With the permanent magnets of the piston forms together with the oscillating body and possibly the piston skirt a non-linear mass-spring system. As a result, different resonance frequencies are possible in this mass-spring system, if one does not take full advantage of the mass spring system, while in a linear mass spring system, such as the exclusive use of spring elements, only one resonant frequency occurs at which the piston is normally operated. According to the invention therefore different piston frequencies and thus different cooling capacities are possible.

Entsprechend kann daher vorgesehen sein, dass - zum Erzielen unterschiedlicher Kälteleistungen - zusätzlich eine bestimmte Frequenz des Linearantriebs vorgegeben wird.Accordingly, it can therefore be provided that - to achieve different cooling capacities - in addition a certain frequency of the linear drive is specified.

Als zusätzliche Sicherheitsmaßnahme, damit der Kolben nicht an der Ventilplatte anschlägt, kann vorgesehen sein, dass Antriebsstärke und/oder Frequenz des Linearantriebs aufgrund von gemessenen Positionsdaten des Kolbens oder magnetischen Feldstärken eingestellt werden. Hierzu können etwa Hallsensoren wie in induktiven Gebern oder Strom-Spannungmessungen der Erregerwicklung Einsatz finden.As an additional safety measure, so that the piston does not hit the valve plate, it can be provided that the drive strength and / or frequency of the linear drive can be adjusted on the basis of measured position data of the piston or magnetic field strengths. Hall sensors such as those used in inductive encoders or current-voltage measurements of the exciter winding can be used for this purpose.

Die Erfindung wird nun anhand eines Ausführungsbeispiels näher erläutert. Dabei zeigt:

Fig. 1
eine schematische Darstellung eines erfindungsgemäßen Linearverdichters
Fig. 2
einen Längsschnitt durch eine erfindungsgemäßen Kolben-Zylinder-Einheit
Fig. 3
eine erfindungsgemäße Kolben-Zylinder-Einheit mit einem Federelement
Fig. 4
eine erfindungsgemäße Kolben-Zylinder-Einheit mit Dauermagneten am Schwingkörper des Linearantriebs
Fig. 5
die Ausführungsvariante gemäß Fig. 4, wobei sich der Kolben in seinem unteren Totpunkt befindet
Fig. 6
ein Detail "B" aus Fig. 4
Fig. 7
eine Modifizierung der Ausführungsvariante gemäß Fig. 4 mit Federelement
Fig. 8
eine schematische Darstellung der im Bereich der Dauermagnete entwickelten Magnetfelder in Form von Feldlinien (Kolben im unteren Totpunkt)
Fig. 9
Darstellung wie in Fig. 8 (Kolben am Weg Richtung oberer Totpunkt)
Fig. 10
Darstellung wie in Fig.8 (Kolben erreicht oberen Totpunkt)
Fig. 11
ein Kraft-Weg-Diagramm zur Darstellung des Anstiegs der Magnetkraft bei Annäherung des ersten an den zweiten Dauermagneten
Fig. 12
eine erfindungsgemäße Kolben-Zylinder-Einheit mit Doppelkolben
Fig. 13
eine schematische Darstellung eines in einem Verdichtergehäuse angeordneten erfindungsgemäßen Linearverdichters
The invention will now be explained in more detail with reference to an embodiment. Showing:
Fig. 1
a schematic representation of a linear compressor according to the invention
Fig. 2
a longitudinal section through a piston-cylinder unit according to the invention
Fig. 3
an inventive piston-cylinder unit with a spring element
Fig. 4
an inventive piston-cylinder unit with permanent magnets on the oscillating body of the linear drive
Fig. 5
the embodiment according to Fig. 4 with the piston in its bottom dead center
Fig. 6
a detail "B" off Fig. 4
Fig. 7
a modification of the embodiment according to Fig. 4 with spring element
Fig. 8
a schematic representation of the magnetic fields developed in the field of permanent magnets in the form of field lines (piston at bottom dead center)
Fig. 9
Representation as in Fig. 8 (Piston on the way to top dead center)
Fig. 10
Representation as in Figure 8 (Piston reaches top dead center)
Fig. 11
a force-displacement diagram illustrating the increase of the magnetic force upon approach of the first to the second permanent magnet
Fig. 12
a piston-cylinder unit according to the invention with double piston
Fig. 13
a schematic representation of a arranged in a compressor housing according to the invention linear compressor

Fig. 1 zeigt in schematischer Weise den Aufbau eines erfindungsgemäßen Linearverdichters 23, welcher mittels einer Aufhängevorrichtung 28 innerhalb eines in Fig.13 dargestellten, hermetisch abgedichteten Verdichtergehäuses 29 eines Kleinkältemittelverdichters angeordnet ist. Der Linearverdichter 23 umfasst eine Kolben-Zylinder-Einheit 21 mit mindestens einem in einer Kolbenbohrung 2 eines Zylindergehäuses 1 geführten Kolben 3. Das Zylindergehäuse 1 ist stirnseitig mit einem Zylinderkopf 4, genauer gesagt, mit einer im Zylinderkopf 4 gehaltenen Ventilplatte 5 verschlossen. Fig. 1 shows in a schematic way the structure of a linear compressor 23 according to the invention, which by means of a suspension device 28 within a in Figure 13 illustrated, hermetically sealed compressor housing 29 of a small refrigerant compressor is arranged. The linear compressor 23 comprises a piston-cylinder unit 21 with at least one piston 3 guided in a piston bore 2 of a cylinder housing 1. The cylinder housing 1 is closed at the end with a cylinder head 4, more precisely, with a valve plate 5 held in the cylinder head 4.

Der Kolben 3 ist von einem Linearantrieb 6 entlang einer Kolbenlängsachse 9 oszillierend bewegbar. Der Linearantrieb 6 umfasst in bekannter Weise einen von einer Erregerwicklung (einem Stator) 8 umgebenen Schwingkörper 7, welcher mit dem Kolben 3 starr oder gelenkig verbunden ist. Im vorliegenden Ausführungsbeispiel ist der Schwingkörper 7 mittels einer Kolbenstange bzw. eines Kolbenschafts 22 mit dem Kolben 3 verbunden.The piston 3 is oscillatingly movable by a linear drive 6 along a piston longitudinal axis 9. The linear drive 6 comprises in a known manner one of a field winding (a stator) 8 surrounded oscillating body 7, which is connected to the piston 3 rigid or articulated. In the present embodiment, the oscillating body 7 is connected to the piston 3 by means of a piston rod or a piston stem 22.

Erfindungsgemäß ist die Kolben-Zylinder-Einheit 21 mit mindestens einer Dauermagnetanordnung (nämlich hier zwei: 11a und 12a; 11b und 12b) bestückt, umfassend jeweils mindestens einen am Kolben 3 oder an einem mit dem Kolben 3 verbundenen Bauteil - hierbei könnte es sich insbesondere um den Schwingkörper 7 oder um den Kolbenschaft 22 handeln-angeordneten ersten Dauermagneten 11a, 11b sowie mit mindestens einen am Zylindergehäuse 1 oder an einem mit dem Zylindergehäuse 1 verbundenen Bauteil angeordneten zweiten Dauermagneten 12a, 12b. Hierbei weisen der mindestens eine erste Dauermagnet 11a, 11b und der der mindestens eine zweite Dauermagnet 12a, 12b mit jeweils gleicher Magnetpolrichtung zueinander, sodass bei Annäherung des mindestens einen ersten Dauermagneten 11 an den mindestens einen zweiten Dauermagneten 12 eine abstoßende Wirkung zwischen den beiden Dauermagneten 11 und 12 und somit eine den Kolbenweg im Bereich des oberen Totpunkts und/oder im Bereich des unteren Totpunkts des Kolbens 3 begrenzende Wirkung entsteht.According to the invention, the piston-cylinder unit 21 is equipped with at least one permanent magnet arrangement (namely two: 11a and 12a, 11b and 12b), comprising in each case at least one component on the piston 3 or on a component connected to the piston 3 - in this case, in particular around the oscillating body 7 or around the piston skirt 22 acting-arranged first permanent magnet 11a, 11b and with at least one cylinder housing 1 or on a connected to the cylinder housing 1 component second permanent magnet 12a, 12b. In this case, the at least one first permanent magnet 11a, 11b and the at least one second permanent magnet 12a, 12b each have the same magnetic pole direction to each other, so that when approaching the at least one first permanent magnet 11 to the at least one second permanent magnet 12, a repulsive effect between the two permanent magnets 11th and 12 and thus the piston travel in the region of top dead center and / or in the region of the bottom dead center of the piston 3 limiting effect arises.

Im Fall der Fig. 1 sind an der Stirnseite des Kolbens 3 ein erster Dauermagnet 11a, an der gegenüberliegenden Seite ist ein weiterer erster Dauermagnet 11b angebracht, nämlich ein ringförmiger Dauermagnet. Am Zylinderkopf 4 bzw. an dessen Ventilplatte ist ein zweiter Dauermagnet 12a angebracht, an der gegenüberliegenden Seite des Zylindergehäuses 1, wo der Kolbenschaft 22 durch das Zylindergehäuse 1 tritt, ein weiterer zweiter Dauermagnet 12b. Letzterer ist ringförmig ausgebildet. Dabei wirken die Dauermagneten 11a und 12a zusammen und bestimmen aufgrund ihrer Feldstärke den Kraftanstieg in Richtung des oberen Totpunkts des Kolbens 3, während die Dauermagnete 11b und 12b zusammenwirken und aufgrund ihrer Feldstärke den Kraftanstieg in Richtung des unteren Totpunkts des Kolbens 3 festlegen. Je nach Last können die Punkte an denen der Kolben 3 tatsächlich umkehrt, variieren.In the case of Fig. 1 are at the front side of the piston 3, a first permanent magnet 11a, on the opposite side, a further first permanent magnet 11b is mounted, namely an annular permanent magnet. On the cylinder head 4 and on the valve plate, a second permanent magnet 12a is attached, on the opposite side of the cylinder housing 1, where the piston shaft 22 passes through the cylinder housing 1, another second permanent magnet 12b. The latter is ring-shaped educated. In this case, the permanent magnets 11a and 12a cooperate and determine the force increase in the direction of the top dead center of the piston 3, while the permanent magnets 11b and 12b cooperate and determine the increase in force in the direction of the bottom dead center of the piston 3 due to their field strength. Depending on the load, the points at which the piston 3 actually reverses may vary.

In Fig. 2 ist eine Ausführungsform ähnlich jener in Fig. 1 dargestellt, nur das in Fig. 2 in der ersten Stirnseite 3a des Kolbens 3 ein ringförmiger Dauermagnet 11 und korrespondierend dazu in der Ventilplatte 5 des Zylinderkopfes 4 ein ringförmiger zweiter Dauermagnet 12 versenkt ist. Die dem Arbeitsraum 14 zugewandte Oberfläche des ersten Dauermagneten 11 ist in einer Ebene mit der ersten Stirnseite 3a des Kolbens 3. Die dem Arbeitsraum 14 zugewandte Oberfläche des zweiten Dauermagneten 12 ist in einer Ebene mit der ebenen Innenfläche der Ventilplatte 5.In Fig. 2 is an embodiment similar to that in FIG Fig. 1 shown, only in Fig. 2 in the first end face 3 a of the piston 3, an annular permanent magnet 11 and corresponding thereto in the valve plate 5 of the cylinder head 4, an annular second permanent magnet 12 is sunk. The working space 14 facing surface of the first permanent magnet 11 is in a plane with the first end face 3 a of the piston 3. The working space 14 facing surface of the second permanent magnet 12 is in a plane with the flat inner surface of the valve plate. 5

Die Ventilplatte 5 weist eine Saugöffnung 17 auf, die an der Innenseite der Ventilplatte 5 mit einem Saugventil 15 verschließbar ist. Sie weist weiters eine Drucköffnung 18 auf, die an der Außenseite der Ventilplatte 5 mit einem Druckventil 16 verschlossen werden kann.The valve plate 5 has a suction opening 17, which is closable on the inside of the valve plate 5 with a suction valve 15. It also has a pressure opening 18 which can be closed on the outside of the valve plate 5 with a pressure valve 16.

Beim hier dargestellten Ansaugtakt (der Kolben 3 bewegt sich nach rechts) strömt das Kältemittel über die Saugöffnung 17 am geöffneten Saugventil 15 vorbei in einen zwischen der Ventilplatte 5 und einer dieser zugewandten ersten Stirnseite 3a des Kolbens 3 ausgebildeten Arbeitsraum 14 ein. Beim Verdichtungstakt (der Kolben 3 bewegt sich dann nach links) wird Kältemittel über die Drucköffnung 18 wieder aus dem Inneren des Zylindergehäuses 1 hinausbefördert. Der Kolbenschaft 22 ist in Fig. 2 nicht dargestellt.In the intake stroke shown here (the piston 3 moves to the right), the refrigerant flows via the suction opening 17 past the opened suction valve 15 into a working space 14 formed between the valve plate 5 and a first end face 3a of the piston 3 facing it. During the compression stroke (the piston 3 then moves to the left), refrigerant is again conveyed out of the interior of the cylinder housing 1 via the pressure opening 18. The piston shaft 22 is in Fig. 2 not shown.

Die beiden Dauermagnete 11, 12 haben identische Abmessungen und sind aus dem gleichen ferromagnetischen Material gefertigt, sodass sie gleiche magnetische Feldstärke aufweisen. Sie sind als Ringzylinder ausgebildet, die inneren und die äußeren Oberflächen haben folglich die Form eines Zylindermantels, die Auflagefläche am Kolben 3 hat die Form eines Kreisrings, ebenso wie die dem Arbeitsraum 14 zugewandte Oberfläche der Dauermagnete 11, 12.The two permanent magnets 11, 12 have identical dimensions and are made of the same ferromagnetic material, so that they have the same magnetic field strength. They are designed as annular cylinder, the inner and outer surfaces thus have the shape of a cylinder jacket, the support surface on the piston 3 has the shape of a circular ring, as well as the working space 14 facing surface of the permanent magnets 11, 12th

Beide Dauermagnete 11, 12 sind in ringförmige Vertiefungen des Kolbens 3 bzw. der Ventilplatte 5 versenkt, sodass die dem Arbeitsraum 14 zugewandte Oberfläche der Dauermagnete 11, 12 mit der ersten Stirnseite 3a des Kolbens bzw. mit der Innenseite der Ventilplatte 5 eben abschließt. Die Dauermagnete 11, 12 liegen jeweils am Boden der ringförmigen Vertiefung auf, zwischen der als Zylindermantel ausgebildeten äußeren Oberfläche der Dauermagnete 11, 12 und der Wand der Vertiefung ist jedoch ein freier Raum 13 vorgesehen, sodass die magnetischen Feldlinien - vom metallischen Material des Kolbens 3 bzw. der Ventilplatte 5 ungestört - durch die Zylindermantel-förmige äußere Oberfläche der Dauermagneten 11, 12 austreten können. Der freie Raum 13 kann auch, wie beim Kolben 3 eingezeichnet, mit nicht ferromagnetischem Material ausgefüllt sein, etwa mit Kunststoff. Dadurch wird der Schadraum verringert, also jener Raum zwischen Kolben im Totpunkt und Ventilplatte, der mit Kältemittel ausgefüllt sein kann.Both permanent magnets 11, 12 are recessed into annular recesses of the piston 3 and the valve plate 5, so that the working space 14 facing surface of the permanent magnets 11, 12 with the first end face 3a of the piston or with the inside of the valve plate 5 just finished. The permanent magnets 11, 12 are in each case at the bottom of the annular recess, between the cylinder surface designed as a cylindrical outer surface of the permanent magnets 11, 12 and the wall of the recess, however, a free space 13 is provided, so that the magnetic field lines - of the metallic material of the piston. 3 or the valve plate 5 undisturbed - can escape through the cylinder jacket-shaped outer surface of the permanent magnets 11, 12. The free space 13 may also, as shown in the piston 3, be filled with non-ferromagnetic material, such as plastic. As a result, the dead space is reduced, so that space between the piston at the dead center and valve plate, which may be filled with refrigerant.

Mit der Ausführung gemäß Fig. 2 ist der Kolbenweg am oberen Totpunkt durch die Dauermagnete 11, 12 begrenzt. Zur Begrenzung des Kolbenwegs am unteren Totpunkt kann entweder auf der zweiten Stirnseite 3b des Kolbens 3 ebenfalls ein weiterer erster Dauermagnet, wie Dauermagnet 11b in Fig. 1, angeordnet werden, mit einem entsprechenden Dauermagnet 12b am Zylindergehäuse.With the execution according to Fig. 2 is the piston stroke at top dead center by the permanent magnets 11, 12 limited. To limit the piston travel at bottom dead center, either on the second end face 3b of the piston 3, a further first permanent magnet, such as permanent magnet 11b in Fig. 1 , are arranged with a corresponding permanent magnet 12b on the cylinder housing.

Oder es kann, wie in Fig. 3 dargestellt, ein Federelement 27 vorgesehen sein, das den unteren Totpunkt des Kolbens 3 festlegt. Die Ausführung der Kolben-Zylinder-Einheit gleicht jener von Fig. 2. Zusätzlich ist in Fig. 3 noch die Erregerwicklung 8 eingezeichnet.Or it can, as in Fig. 3 shown, a spring element 27 may be provided, which determines the bottom dead center of the piston 3. The design of the piston-cylinder unit is similar to that of Fig. 2 , Additionally is in Fig. 3 still the excitation winding 8 located.

In der Ausführungsvariante gemäß der Fig. 4-6 sind die ersten Dauermagneten 11a, 11b nicht am Kolben 3, sondern am zylindrischen Schwingkörper 7 des Linearantriebs 6 angeordnet. Die korrespondierenden zweiten Dauermagneten 12a, 12b sind an der Innenseite des Gehäuses 24 des Linearantriebs 6 angeordnet, sodass sie in Richtung der Kolbenlängsachse 9 mit den Dauermagneten 11a, 11b fluchten.In the embodiment according to the Fig. 4-6 the first permanent magnets 11a, 11b are not arranged on the piston 3, but on the cylindrical oscillating body 7 of the linear drive 6. The corresponding second permanent magnets 12a, 12b are arranged on the inside of the housing 24 of the linear drive 6, so that they are aligned in the direction of the piston longitudinal axis 9 with the permanent magnets 11a, 11b.

Die Dauermagneten 11a, 11b, 12a, 12b sind auch hier als Ringzylinder ausgebildet, jedoch nicht im Schwingkörper 7 bzw. Gehäuse 24 versenkt, sondern an den kreisförmigen Oberflächen des Schwingkörpers 7 bzw. an gegenüber liegenden Innenwänden des Gehäuses 24 befestigt. Die Ringzylinder sind dabei konzentrisch zur Kolbenlängsachse 9 angeordnet.The permanent magnets 11a, 11b, 12a, 12b are formed here as a ring cylinder, but not recessed in the oscillating body 7 or housing 24, but attached to the circular surfaces of the oscillating body 7 and on opposite inner walls of the housing 24. The ring cylinders are arranged concentrically to the piston longitudinal axis 9.

Wenn sich der Kolben 3 im oberen Totpunkt befindet, siehe Fig. 4, dann haben die Dauermagnete 11a und 12a - in Richtung der Kolbenlängsachse 9 gesehen - den aufgrund der auf den Schwingkörper 7 wirkenden Kraft des Linearantriebs 6 geringst möglichen Abstand voneinander. Die Dauermagnete 11b und 12b haben jedoch den größtmöglichen Abstand voneinander, der im Wesentlichen dem Kolbenhub des Kolbens 3 entspricht.When the piston 3 is at top dead center, see Fig. 4 , then have the permanent magnets 11a and 12a - seen in the direction of the piston longitudinal axis 9 - the least possible due to the forces acting on the oscillating body 7 force of the linear drive 6 distance from each other. However, the permanent magnets 11b and 12b have the greatest possible distance from one another, which essentially corresponds to the piston stroke of the piston 3.

Befindet sich der Kolben 3 im unteren Totpunkt, siehe Fig. 5, dann haben die Dauermagnete 11b und 12b - in Richtung der Kolbenlängsachse 9 gesehen - den aufgrund der auf den Schwingkörper 7 wirkenden Kraft des Linearantriebs 6 geringst möglichen Abstand voneinander. Die Dauermagnete 11a und 12a haben jedoch den größtmöglichen Abstand voneinander, der im Wesentlichen dem Kolbenhub des Kolbens 3 entspricht.If the piston 3 is at bottom dead center, see Fig. 5 , then have the permanent magnets 11 b and 12 b - seen in the direction of the piston longitudinal axis 9 - the lowest due to the force acting on the oscillating body 7 force of the linear drive 6 distance from each other. However, the permanent magnets 11a and 12a have the greatest possible distance from one another, which corresponds essentially to the piston stroke of the piston 3.

In Fig. 6 ist Detail B aus Fig. 4 vergrößert dargestellt. Von der einen Dauermagnetanordnung (a) sind die Dauermagnete 11a und 12a zu sehen, von der zweiten Dauermagnetanordnung (b) nur Dauermagnet 11b. Der radiale Außendurchmesser der Dauermagnete 11a und 11b entspricht fast dem radialen Durchmesser des zylindrischen Schwingkörpers 7, der Durchmesser der Dauermagnete 11a, 11b, 12a, 12b ist nur um etwa 1-5% kleiner als jener des Schwingkörpers 7.In Fig. 6 is detail B off Fig. 4 shown enlarged. Of the one permanent magnet arrangement (a), the permanent magnets 11a and 12a can be seen, of the second permanent magnet arrangement (b) only permanent magnet 11b. The radial outer diameter of the permanent magnets 11 a and 11 b corresponds almost to the radial diameter of the cylindrical oscillating body 7, the diameter of the permanent magnets 11 a, 11 b, 12 a, 12 b is only about 1-5% smaller than that of the oscillating body 7.

Fig. 7 zeigt eine Modifizierung der Ausführungsvariante gemäß Fig. 4, indem die Dauermagnetanordnung zur Festlegung des unteren Totpunkts durch aus Fig. 4 durch ein mit Federelement 27 ersetzt wird. Die Dauermagnete 11a und 12a aus Fig. 4 werden beibehalten, die Dauermagnete 11b und 12b werden durch das Federelement 27 ersetzt. Fig. 7 shows a modification of the embodiment according to Fig. 4 in that the permanent magnet arrangement for determining the bottom dead center by Fig. 4 is replaced by a spring element 27. The permanent magnets 11a and 12a made Fig. 4 are retained, the permanent magnets 11 b and 12 b are replaced by the spring element 27.

Fig. 8 zeigt eine schematische Darstellung der im Bereich der Dauermagnete 11, 12 der Fig. 2 und 3 entwickelten Magnetfelder in Form von Feldlinien 25 bzw. 26, wobei sich der Kolben 3 dabei im Bereich seines unteren Totpunkts befindet. Magnetische Feldlinien sind geschlossen, sie treten jeweils am sogenannten "Nordpol" aus dem Dauermagneten aus und am sogenannten "Südpol" in diesen ein. Wenn ein Dauermagnet mit seinem Südpol an den Nordpol eines anderen Dauermagneten angenähert wird, ziehen sich die Dauermagneten an und bleiben aneinander haften. Wird ein Dauermagnet mit seinem Nordpol an den Nordpol eines anderen Dauermagneten (oder mit seinem Südpol an den Südpol eines anderen Dauermagneten) angenähert, so stoßen sich die beiden Dauermagneten ab, es ist nicht bzw. nur mit einer bestimmten Kraft möglich, die Dauermagneten so weit aneinander anzunähern, dass sich ihre Südpole berühren. Dieses Prinzip wird bei dieser Erfindung ausgenützt. Da die abstoßende Kraft zwischen den gleichnamigen Magnetpolen umgekehrt proportional zum Abstand der Magnetpole ist, ist auch die Kraft zum Annähern des Kolbens 3 an die Ventilplatte 5 nicht linear zum Abstand zwischen Kolben 3 und Ventilplatte 5. Dies ist ein wesentlicher Unterschied zu einem zwischen Ventilplatte 5 und Kolben 3 angeordneten Federelement, bei welchem die Kraft linear vom Abstand zwischen Ventilplatte 5 und Kolben 3 abhängt. Fig. 8 shows a schematic representation of the in the region of the permanent magnets 11, 12 of the Fig. 2 and 3 developed magnetic fields in the form of field lines 25 and 26, wherein the piston 3 is in the region of its bottom dead center. Magnetic field lines are closed, they emerge at the so-called "North Pole" from the permanent magnet and at the so-called "South Pole" in this one. When a permanent magnet with its south pole approaches the north pole of another permanent magnet, the permanent magnets attract and adhere to each other. If a permanent magnet is approximated with its north pole to the north pole of another permanent magnet (or with its south pole to the south pole of another permanent magnet), the two permanent magnets repel, it is not possible or only with a certain force, the permanent magnets so far to approach each other so that their south poles touch each other. This principle is exploited in this invention. Since the repulsive force between the magnetic poles of the same name is inversely proportional to the distance of the magnetic poles, and the force for approaching the piston 3 to the valve plate 5 is not linear to the distance between the piston 3 and Valve plate 5. This is an essential difference to a arranged between the valve plate 5 and piston 3 spring element, in which the force depends linearly on the distance between the valve plate 5 and piston 3.

Sowohl Ventilplatte 5 als auch Kolben 3 sind in diesem Ausführungsbeispiel aus Stahl gefertigt, sind also selbst ferromagnetisch, die magnetischen Feldlinien 25, 26 können daher in die Ventilplatte 5 und den Kolben 3 eindringen. Der Abstand zwischen Kolben 3 und Kolbenbohrung 2 ist hier übertrieben groß dargestellt.Both valve plate 5 and piston 3 are made in this embodiment of steel, so are themselves ferromagnetic, the magnetic field lines 25, 26 can therefore penetrate into the valve plate 5 and the piston 3. The distance between the piston 3 and piston bore 2 is shown exaggerated here.

Fig. 9 zeigt die Kolben-Zylinder-Anordnung 21 bei fortschreitendem Verdichtungstakt, der Kolben ist am Weg Richtung oberer Totpunkt. Der an der ersten Stirnseite 3a des Kolbens 3 angeordnete erste Dauermagnet 11 nähert sich dem in der Ventilplatte 5 versenkten, ortsfesten zweiten Dauermagneten 12 an. Die Magnetfelder der beiden Dauermagneten 11, 12 beeinflussen einander deutlich mehr als in Fig. 8. Im Arbeitsbereich 14 verringert sich der Abstand zwischen den eigenen Feldlinien 25, 26 des Dauermagneten, die magnetische Feldstärke wird größer, die Feldlinien werden gleichsam wie eine Feder "gespannt". Fig. 9 shows the piston-cylinder assembly 21 with progressive compression stroke, the piston is on the way to top dead center. The first permanent magnet 11, which is arranged on the first end face 3a of the piston 3, approaches the stationary, second permanent magnet 12 which is sunk in the valve plate 5. The magnetic fields of the two permanent magnets 11, 12 affect each other significantly more than in Fig. 8 , In the working area 14, the distance between the own field lines 25, 26 of the permanent magnet decreases, the magnetic field strength is larger, the field lines are "stretched" like a spring.

Gemäß Fig. 10 hat der Kolben 3 seinen oberen Totpunkt erreicht. Ein Anschlagen der ersten Stirnseite 3a des Kolbens 3 an die Ventilplatte 5 ist verhindert, da die beiden Dauermagneten 11 und 12 mit jeweils gleicher Magnetpolrichtung (mit dem "Nordpol") zueinander weisen und sich daher voneinander abstoßen. Würde man das Erregerfeld der Erregerwicklung 8 nun abschalten, würde der Kolben 3 durch die abstoßende Kraft der Dauermagneten 11, 12 nach rechts verschoben werden.According to Fig. 10 the piston 3 has reached its top dead center. An abutment of the first end face 3 a of the piston 3 to the valve plate 5 is prevented, since the two permanent magnets 11 and 12, each with the same Magnetpolrichtung (with the "north pole") face each other and therefore repel each other. If you were to turn off the excitation field of the excitation winding 8 now, the piston 3 would be moved by the repulsive force of the permanent magnets 11, 12 to the right.

Auf dieselbe prinzipielle Weise, wie der Kolbenweg gemäß den Fig. 8-10 im Bereich des oberen Totpunkts begrenzt wird, kann auch eine Begrenzung des Kolbenweges im Bereich des unteren Totpunkts erfolgen.In the same basic way as the piston travel according to Fig. 8-10 is limited in the range of top dead center, can also a limitation of the piston travel in the area of bottom dead center.

Fig. 11 zeigt ein Kraft-Weg-Diagramm zur Darstellung des Anstiegs der Magnetkraft bei Annäherung des ersten 11 an den zweiten Dauermagneten 12. Auf der waagrechten Achse ist der Abstand zwischen erstem 11 und zweitem Dauermagneten 12 in cm aufgetragen, auf der senkrechten Achse die Magnetkraft F in %, wobei 100% die abstoßende Magnetkraft im oberen Totpunkt darstellt. Diese Kraft muss der Linearantrieb 6 und die Massenträgkeit des Kolbens 3 mit dem Schwingkörper 7 aufbringen, um den Kolben 3 für kurze Zeit im oberen Totpunkt zu halten. Der obere Totpunkt ist in diesem Beispiel bei einem Abstand von 0,05-0,5 mm zwischen erstem 11 und zweitem Dauermagneten 12 gegeben. Es sind sowohl die rautenförmigen Messpunkte als auch die aufgrund der Messpunkte interpolierte Messkurve eingezeichnet. Fig. 11 shows a force-displacement diagram for illustrating the increase of the magnetic force when approaching the first 11 to the second permanent magnet 12. On the horizontal axis, the distance between the first 11 and second permanent magnet 12 in cm, plotted on the vertical axis, the magnetic force F in %, where 100% represents the repulsive magnetic force at top dead center. This force must apply the linear drive 6 and the inertia of the piston 3 with the vibrating body 7 to keep the piston 3 for a short time at top dead center. The top dead center is given in this example at a distance of 0.05-0.5 mm between the first 11 and second permanent magnet 12. Both the diamond-shaped measuring points and the measuring curve interpolated on the basis of the measuring points are shown.

Fig. 12 zeigt eine erfindungsgemäße Kolben-Zylinder-Einheit mit einem Doppelkolben. Der Kolben 3 ist als Doppelkolben ausgeführt und umfasst zwei an gegenüberliegenden Endbereichen angeordnete, jeweils eine Stirnseite 3a, 3b des Doppelkolbens ausbildende Kolbenabschnitte 19, 20. Zwischen der ersten Stirnseite 3a des Doppelkolbens und einem eine erste Ventilplatte 5 umfassenden ersten Zylinderkopf 4 wird ein erster Arbeitsraum 14 gebildet und zwischen der zweiten Stirnseite 3b des Doppelkolbens und einem eine zweite Ventilplatte 5' umfassenden zweiten Zylinderkopf 4' ein zweiter Arbeitsraum 14'. Der Schwingkörper 7 ist zwischen den beiden Stirnseiten 3a, 3b des Doppelkolbens angeordnet, vorzugsweise vom Doppelkolben 3 eingeschlossen. Für jede Zylinderkopf-Kolbenabschnitt-Paarung 4/19 bzw. 4'/20 ist eine erfindungsgemäße Dauermagnetanordnung 11a, 12a bzw. 11b, 12b vorgesehen. Fig. 12 shows a piston-cylinder unit according to the invention with a double piston. The piston 3 is embodied as a double piston and comprises two piston sections 19, 20 arranged at opposite end regions, each forming an end face 3a, 3b of the double piston. Between the first end 3a of the double piston and a first cylinder head 4 comprising a first valve plate 5, a first working space is created 14 formed and between the second end face 3b of the double piston and a second valve plate 5 'comprehensive second cylinder head 4', a second working space 14 '. The oscillating body 7 is arranged between the two end faces 3a, 3b of the double piston, preferably enclosed by the double piston 3. For each cylinder head piston section pairing 4/19 or 4 '/ 20, a permanent magnet arrangement 11a, 12a or 11b, 12b according to the invention is provided.

Bezugszeichenliste:LIST OF REFERENCE NUMBERS

11
Zylindergehäusecylinder housing
22
Kolbenbohrungpiston bore
33
Kolbenpiston
3a3a
erste Stirnseite des Kolbensfirst end of the piston
3b3b
zweite Stirnseite des Kolbenssecond end face of the piston
44
Zylinderkopfcylinder head
4'4 '
zweiter Zylinderkopfsecond cylinder head
55
Ventilplattevalve plate
5'5 '
zweite Ventilplattesecond valve plate
66
Linearantrieblinear actuator
77
Schwingkörperoscillating body
88th
Erregerwicklung (Stator)Excitation winding (stator)
99
Kolbenlängsachsepiston longitudinal axis
11,11a,11b11,11a, 11b
Erster DauermagnetFirst permanent magnet
12,12a,12b12,12a, 12b
Zweiter DauermagnetSecond permanent magnet
1313
Freier RaumBlank
1414
Arbeitsraum des Kolbens 3Working space of the piston 3
14'14 '
zweiter Arbeitsraum des Kolbens 3second working space of the piston 3
1515
Saugventilsuction
15'15 '
zweites Saugventilsecond suction valve
1616
Druckventilpressure valve
16'16 '
zweites Druckventilsecond pressure valve
1717
Saugöffnungsuction opening
17'17 '
zweite Saugöffnungsecond suction opening
1818
Drucköffnungpressure opening
18'18 '
zweite Drucköffnungsecond pressure opening
1919
Erster Kolbenabschnitt des DoppelkolbensFirst piston section of the double piston
2020
Zweiter Kolbenabschnitt des DoppelkolbensSecond piston section of the double piston
2121
Kolben-Zylinder-EinheitPiston-cylinder unit
2222
Kolbenschaftpiston shaft
2323
Linearverdichterlinear compressor
2424
Gehäuse des LinearantriebsHousing of the linear drive
2525
Feldlinien des ersten DauermagnetsField lines of the first permanent magnet
2626
Feldlinien des zweiten DauermagnetsField lines of the second permanent magnet
2727
Federelementspring element

Claims (14)

  1. A refrigerant compressor having a hermetically sealed compressor housing, in whose interior a piston-cylinder unit (21), which compresses a refrigerant, is arranged, whose cylinder housing (1) is frontally closed by means of a cylinder head (4), in which a suction opening (17) and a pressure opening (18) are provided, via which refrigerant is suctioned in via a suction valve (15) through the suction opening and compressed via a pressure valve (16) through the pressure opening, the piston-cylinder unit (21) having at least one piston (3) guided in a piston bore (2) of the cylinder housing (1), a working space (14) for compressing a refrigerant being formed between the cylinder head (4) and a first front side (3a) of the piston (3), a linear drive (6) being provided, comprising at least one oscillating body (7) enclosed by an exciter winding (8), which is connected to the piston (3), in order to move it along a piston longitudinal axis (9) in oscillating manner, the piston-cylinder unit (21) being equipped with at least one permanent magnet arrangement, comprising respectively at least one first permanent magnet (11) arranged on the piston (3) or on a component connected to the piston (3), characterized in that the at least one permanent magnet arrangement comprises at least one second permanent magnet (12) arranged on the cylinder housing (1) or on a component connected to the cylinder housing (1), the first permanent magnet (11) and the second permanent magnet (12) pointing toward one another with the same magnetic pole direction in each case, to generate a repelling effect between the two permanent magnets (11, 12) to delimit the piston travel in the region of the top dead center and/or in the region of the bottom dead center upon approach of the first permanent magnet (11) to the second permanent magnet (12), the component connected to the cylinder housing (1), on or in which the at least one second permanent magnet (12) is arranged, is the cylinder head (4), a valve plate (5) is arranged in the cylinder head (4) and the at least one second permanent magnet (12) is arranged on the valve plate (5), preferably at least sectionally countersunk in the valve plate (5), in order to delimit the piston travel in the region of the top dead center, the permanent magnets (11, 12) are countersunk into the front side (3a, 3b) of the piston (3) and/or the valve plate (5) so that at least one free space (13) is provided between permanent magnet and piston or valve plate, which communicates with the working space (14), and this free space (13) extends along the entire periphery of the permanent magnets (11, 12).
  2. The refrigerant compressor according to Claim 1, characterized in that the component connected to the piston (3), on which the at least one first permanent magnet (11) is arranged, is the oscillating body (7) or a piston shaft (22) connecting the piston (3) to the oscillating body (7).
  3. The refrigerant compressor according to one of Claims 1 to 2, characterized in that the at least one second permanent magnet (12) is arranged inside the piston bore (2) of the cylinder housing (1).
  4. The refrigerant compressor according to one of Claims 1 to 3, characterized in that the at least one second permanent magnet (12) is arranged inside the working space (14) or to delimit the working space (14).
  5. The refrigerant compressor according to one of Claims 1 to 4, characterized in that the at least one first permanent magnet (11) is arranged in the region of the first front side (3a) of the piston (3) facing toward the cylinder head (4).
  6. The refrigerant compressor according to Claim 5, characterized in that the at least one first permanent magnet (11) is sectionally or entirely countersunk in the front side (3a) and/or in the piston shaft (22).
  7. The refrigerant compressor according to one of Claims 1 or 6, characterized in that the free space (13) is implemented as a gap, whose clear opening width widens in the direction of the working space (14).
  8. The refrigerant compressor according to one of Claims 6 or 7, characterized in that the free space (13) is filled using a non-ferromagnetic material.
  9. The refrigerant compressor according to one of Claims 1 to 8, characterized in that the at least one first permanent magnet (11) is arranged opposite to the at least one second permanent magnet (12).
  10. The refrigerant compressor according to one of Claims 1 to 9, characterized in that the permanent magnets (11, 12) are implemented as essentially ring-shaped, the ring shape preferably extending rotationally-symmetric to the piston longitudinal axis (9) and/or the free space preferably being implemented as a ring gap.
  11. The refrigerant compressor according to one of Claims 1 to 10, characterized in that one front side (11a) of the at least one first permanent magnet (11) extends substantially parallel to one front side (12a) of the at least one second permanent magnet (12).
  12. The refrigerant compressor according to one of Claims 6 to 11, characterized in that the at least one first permanent magnet (11) has an essentially equal field strength, preferably an essentially equal mass, as the at least one second permanent magnet (12).
  13. The refrigerant compressor according to one of Claims 6 to 12, characterized in that multiple permanent magnets (11, 12) are arranged on a circle extending concentrically to the piston longitudinal axis (9), the angle spacing of adjacent permanent magnets (11, 12) being essentially equal.
  14. The refrigerant compressor according to one of Claims 1 to 13, characterized in that the piston (3) is implemented as a double piston, comprising two piston sections (19, 20), arranged on opposing end regions of the double piston (3) and each forming one front side (3a, 3b) of the double piston, a first working space (14) being formed between the first front side (3a) of the double piston (3) and a first cylinder head (4) comprising a first valve plate (5) and a second working space (14') being formed between the second front side (3b) of the double piston (3) and a second cylinder head (4') comprising a second valve plate (5'), and the oscillating body (7) being arranged between the two front sides (3a, 3b) of the double piston (3), preferably enclosed by the double piston (3), and one permanent magnet arrangement according to one of the preceding claims being provided for each cylinder head-piston section pair (4/19, 4'/20).
EP10807312.3A 2009-12-14 2010-12-14 Coolant compressor with linear drive Active EP2513479B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0079009U AT12038U1 (en) 2009-12-14 2009-12-14 REFRIGERANT COMPRESSOR WITH LINEAR ACTUATOR
PCT/AT2010/000478 WO2011079330A1 (en) 2009-12-14 2010-12-14 Coolant compressor with linear drive

Publications (2)

Publication Number Publication Date
EP2513479A1 EP2513479A1 (en) 2012-10-24
EP2513479B1 true EP2513479B1 (en) 2015-08-19

Family

ID=44246906

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10807312.3A Active EP2513479B1 (en) 2009-12-14 2010-12-14 Coolant compressor with linear drive

Country Status (5)

Country Link
US (1) US20130034456A1 (en)
EP (1) EP2513479B1 (en)
CN (1) CN102741551A (en)
AT (1) AT12038U1 (en)
WO (1) WO2011079330A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012210347A1 (en) * 2012-06-19 2013-12-19 Hilti Aktiengesellschaft Setting tool and control method
US8714946B2 (en) * 2012-09-13 2014-05-06 General Electric Company Linear compressor with an electro-magnetic spring
DE102014205209A1 (en) * 2014-03-20 2015-09-24 Robert Bosch Gmbh Linear drive, piston pump arrangement
US9145878B1 (en) * 2014-07-11 2015-09-29 Marvin Ray McKenzie Oscillating linear compressor
US10502201B2 (en) 2015-01-28 2019-12-10 Haier Us Appliance Solutions, Inc. Method for operating a linear compressor
US10208741B2 (en) 2015-01-28 2019-02-19 Haier Us Appliance Solutions, Inc. Method for operating a linear compressor
US10190604B2 (en) * 2015-10-22 2019-01-29 Caterpillar Inc. Piston and magnetic bearing for hydraulic hammer
US10174753B2 (en) * 2015-11-04 2019-01-08 Haier Us Appliance Solutions, Inc. Method for operating a linear compressor
US10830230B2 (en) 2017-01-04 2020-11-10 Haier Us Appliance Solutions, Inc. Method for operating a linear compressor
CN107061221B (en) * 2017-01-24 2020-03-31 青岛海尔智能技术研发有限公司 Linear compressor
US10670008B2 (en) 2017-08-31 2020-06-02 Haier Us Appliance Solutions, Inc. Method for detecting head crashing in a linear compressor
US10641263B2 (en) 2017-08-31 2020-05-05 Haier Us Appliance Solutions, Inc. Method for operating a linear compressor
CN108194312A (en) * 2018-01-29 2018-06-22 东莞市卓奇电子科技有限公司 Permanent magnetism oscillator piston component, asynchronous push-pull type Electromagnetic Vibrator compressor and asynchronous double-push-pull type Electromagnetic Vibrator compressibility
CN114233719A (en) * 2021-11-30 2022-03-25 江苏龙城鸿辉液压机电有限公司 Buffer structure of ultra-large hydraulic hoist

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1312246A2 (en) * 1984-04-13 1987-05-23 Грузинский политехнический институт им.В.И.Ленина Electromagnetic machine
CN2119514U (en) * 1991-11-14 1992-10-21 臧立华 Electricity-saving magnetic compressor
DE19504751A1 (en) * 1995-02-03 1996-08-08 Werner Sommer Magnet pump for liquid and gas media
WO1998001675A1 (en) * 1996-07-09 1998-01-15 Sanyo Electric Co., Ltd. Linear compressor
EP1171711B1 (en) * 1999-04-19 2004-10-13 LEYBOLD VACUUM GmbH Oscillating piston drive mechanism
BR9907432B1 (en) 1999-12-23 2014-04-22 Brasil Compressores Sa COMPRESSOR CONTROL METHOD, PISTON POSITION MONITORING SYSTEM AND COMPRESSOR
DE10314007A1 (en) * 2003-03-28 2004-10-07 Leybold Vakuum Gmbh Piston vacuum pump for pumping gas, has sensor that detects speed of switching supply of energizing current between electrical coils by magnet arrangement
DE102006009256A1 (en) 2006-02-28 2007-08-30 BSH Bosch und Siemens Hausgeräte GmbH Compressor apparatus for household cooling equipment e.g. refrigerator, freezer has linear drive having adjustable rotor zero position, and linear compressor having adjustable piston zero position
DE102006009270A1 (en) 2006-02-28 2007-08-30 BSH Bosch und Siemens Hausgeräte GmbH Linear compressor for cooling equipment e.g. refrigerator, freezer has linkage having spring, and which couples compressor piston to drive
BRPI0800251B1 (en) 2008-02-22 2021-02-23 Embraco Indústria De Compressores E Soluções Em Refrigeração Ltda linear compressor control system and method
CN101240793B (en) 2008-03-14 2011-04-27 刘新春 Linear motor double cylinder compression pump

Also Published As

Publication number Publication date
US20130034456A1 (en) 2013-02-07
EP2513479A1 (en) 2012-10-24
CN102741551A (en) 2012-10-17
WO2011079330A1 (en) 2011-07-07
AT12038U1 (en) 2011-09-15

Similar Documents

Publication Publication Date Title
EP2513479B1 (en) Coolant compressor with linear drive
DE4015006C2 (en)
DE10203703B4 (en) Piston compressor with electromagnetic linear motor
WO2009013131A1 (en) Stroke-regulated linear compressor
EP1171711A1 (en) Rotary piston drive mechanism
EP2284341B1 (en) Fastener for locking an opening
EP0506799A1 (en) Magnetic drive with permanent-magnet solenoid armature.
DE102005000894A1 (en) Reciprocating compressor for use in refrigerator, has motor with inner stator that is arranged at inner circumferential surface of outer stator, where winding coil is wound around inner stator
WO2007098995A1 (en) Linear drive and linear compressor with adaptable output
EP0977017A1 (en) Wear monitor
EP2304234B1 (en) Linear compressor
DE4342318C2 (en) Swash plate compressor
DE3109455C2 (en) Swing compressor
DE4122340C2 (en) Swashplate refrigerant compressor with variable output
WO2018178117A1 (en) Piston compressor valve and method for operating a piston compressor valve
WO2009013105A1 (en) Linear compressor
DE10331916A1 (en) Drive device for generating a reciprocating movement of a driven component, in particular in weaving machines
DE10019108A1 (en) Oscillating piston drive
DE102006059762A1 (en) piston compressor
DE102005038785B4 (en) Linear compressor, in particular refrigerant compressor
EP3601798B1 (en) Valve closure for a piston compressor valve and method of operating the valve closure
DE102010003772A1 (en) linear compressor
EP2137407B1 (en) Piston engine, especially for dental and medical purposes
DE3719460A1 (en) Method for driving a pump's pumping element connected to an oscillating-armature drive, and pump working according to it
EP3488107A1 (en) Oscillating displacement pump having an electrodynamic drive and method for operation thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120626

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SECOP AUSTRIA GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SECOP AUSTRIA GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150310

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 744028

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010010121

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151120

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151119

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 19511

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151221

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010010121

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151214

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010010121

Country of ref document: DE

Representative=s name: KUHNEN & WACKER PATENT- UND RECHTSANWALTSBUERO, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010010121

Country of ref document: DE

Owner name: SECOP GMBH, DE

Free format text: FORMER OWNER: SECOP AUSTRIA GMBH, FUERSTENFELD, AT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151214

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 744028

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151214

REG Reference to a national code

Ref country code: SK

Ref legal event code: PC4A

Ref document number: E 19511

Country of ref document: SK

Owner name: SECOP GMBH, FLENSBURG, DE

Free format text: FORMER OWNER: SECOP AUSTRIA GMBH, FUERSTENFELD, AT

Effective date: 20170315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101214

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151214

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20231129

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231221

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231227

Year of fee payment: 14