EP2507346B1 - Vorrichtung und ein verfahren zur thermochemischen harmonisierung und vergasung von feuchtigkeits-biomasse - Google Patents
Vorrichtung und ein verfahren zur thermochemischen harmonisierung und vergasung von feuchtigkeits-biomasse Download PDFInfo
- Publication number
- EP2507346B1 EP2507346B1 EP11719757.4A EP11719757A EP2507346B1 EP 2507346 B1 EP2507346 B1 EP 2507346B1 EP 11719757 A EP11719757 A EP 11719757A EP 2507346 B1 EP2507346 B1 EP 2507346B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reactor
- gasification
- carbonization
- gasification reactor
- biomass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002028 Biomass Substances 0.000 title claims description 69
- 238000002309 gasification Methods 0.000 title claims description 61
- 238000000034 method Methods 0.000 title claims description 46
- 239000007789 gas Substances 0.000 claims description 68
- 238000001816 cooling Methods 0.000 claims description 66
- 238000003763 carbonization Methods 0.000 claims description 49
- 239000012495 reaction gas Substances 0.000 claims description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 25
- 238000010438 heat treatment Methods 0.000 claims description 22
- 238000003860 storage Methods 0.000 claims description 22
- 239000003245 coal Substances 0.000 claims description 16
- 238000012545 processing Methods 0.000 claims description 14
- 239000002994 raw material Substances 0.000 claims description 13
- 229920006395 saturated elastomer Polymers 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 9
- 239000000498 cooling water Substances 0.000 claims description 8
- 239000002699 waste material Substances 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 3
- 239000012876 carrier material Substances 0.000 claims 5
- 238000010924 continuous production Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 22
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 16
- 229910052799 carbon Inorganic materials 0.000 description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 10
- 229910002091 carbon monoxide Inorganic materials 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000001569 carbon dioxide Substances 0.000 description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 239000003610 charcoal Substances 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 6
- 239000000446 fuel Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 239000003570 air Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000011593 sulfur Substances 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 239000000543 intermediate Substances 0.000 description 4
- 239000003077 lignite Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 239000002737 fuel gas Substances 0.000 description 3
- 238000004886 process control Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 238000012432 intermediate storage Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 239000004449 solid propellant Substances 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000010796 biological waste Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003250 coal slurry Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010794 food waste Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000003864 humus Substances 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- -1 oxonium ions Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000009919 sequestration Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 239000005418 vegetable material Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B39/00—Cooling or quenching coke
- C10B39/04—Wet quenching
- C10B39/08—Coke-quenching towers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/02—Fixed-bed gasification of lump fuel
- C10J3/20—Apparatus; Plants
- C10J3/22—Arrangements or dispositions of valves or flues
- C10J3/24—Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed
- C10J3/26—Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed downwardly
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/58—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
- C10J3/60—Processes
- C10J3/62—Processes with separate withdrawal of the distillation products
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/58—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
- C10J3/60—Processes
- C10J3/64—Processes with decomposition of the distillation products
- C10J3/66—Processes with decomposition of the distillation products by introducing them into the gasification zone
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/74—Construction of shells or jackets
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2200/00—Details of gasification apparatus
- C10J2200/09—Mechanical details of gasifiers not otherwise provided for, e.g. sealing means
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0916—Biomass
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0916—Biomass
- C10J2300/092—Wood, cellulose
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/094—Char
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0973—Water
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/164—Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
- C10J2300/1643—Conversion of synthesis gas to energy
- C10J2300/165—Conversion of synthesis gas to energy integrated with a gas turbine or gas motor
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1671—Integration of gasification processes with another plant or parts within the plant with the production of electricity
- C10J2300/1675—Integration of gasification processes with another plant or parts within the plant with the production of electricity making use of a steam turbine
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1687—Integration of gasification processes with another plant or parts within the plant with steam generation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1693—Integration of gasification processes with another plant or parts within the plant with storage facilities for intermediate, feed and/or product
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1807—Recycle loops, e.g. gas, solids, heating medium, water
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Definitions
- the invention relates to a device for thermochemical carbonization and gasification of moisture, especially hydrous and / or dry, biomass for producing an energy and / or raw material carrier with the aid of a closable inlet opening having, heated carbonization reactor in which the biomass into a solid, pourable or gaseous energy and / or raw material carrier is converted and is discharged via a closable outlet to a connected to the carbonation cooling tank for intermediate storage of the energy and / or raw material carrier, which is in communication with an adjoining carburetor, in which from the Biomass gas and waste materials, such as ash, are deposited.
- Biomass gasification is well known. This is understood to mean a process in which biomass is converted by means of a gasification or oxidation agent (usually air, oxygen, carbon dioxide or water vapor) by a partial combustion in a product or fuel gas.
- a gasification or oxidation agent usually air, oxygen, carbon dioxide or water vapor
- the biomass present as a solid fuel can be converted into a gaseous secondary fuel, which in various usage options such.
- a gaseous secondary fuel As the power generation or as a fuel and fuel (fuel gas) or for use as synthesis gas for chemical synthesis can be used more efficiently.
- the gasification of biomass begins after drying at temperatures of about 150 ° C, with first emerge water vapor and oxygen. At higher temperatures, the solid components of the biomass. This gas ignites as soon as secondary air is supplied, the flash point is 230 to 280 ° C.
- the technical biomass gasification is a partial combustion with the aid of a gasification or oxidizing agent (usually air, oxygen, carbon dioxide or water vapor) without ignition at temperatures of 700 to 900 ° C, in which they do not burn to carbon dioxide (CO 2 ) but is essentially oxidized to carbon monoxide (CO).
- a gasification or oxidizing agent usually air, oxygen, carbon dioxide or water vapor
- Other components of the resulting gas are hydrogen (H 2 ), carbon dioxide (CO 2 ), methane (CH 4 ), water vapor (H 2 O) and, depending on the biomass used, a range of trace gases and impurities. It remains a solid residue (ash and coke), in addition, parts of the product gas can condense with temperature reduction (tar and water).
- the combustible product gas can be further oxidized in a subsequent process by combustion (fuel gas) or chemical synthesis (synthesis gas) with release of energy (exothermic process).
- fuel gas fuel gas
- synthesis gas synthesis gas
- release of energy exothermic process
- the product gas which is thereby diluted with nitrogen is often referred to as low calorific value gas (LCV).
- Hydrothermal carbonization (such as "aqueous carbonization at elevated temperature”) is a chemical process for the simple and highly efficient production of lignite, synthesis gas, liquid petroleum precursors and biomass biomass with the release of energy.
- the process which technically mimics the development of lignite ("coalification") in nature within 50,000 to 50 million years within a few hours.
- reaction can be stopped in several stages with incomplete dehydration, giving different intermediates. If broken off after a few minutes, liquid intermediates are formed, lipophilic substances, the handling of which, however, is very difficult because of their high reactivity. Subsequently, these substances polymerize and form peat-like structures, which are present as intermediates after about 8 hours.
- reaction could be catalyzed by certain metal particles, but these would be added quite quickly to the products and lose their function.
- the artificially produced humus could be used to re-plant eroded areas. By thus increasing plant growth, additional carbon dioxide could be bound from the atmosphere, so that in the end a carbon efficiency greater than 1 or a negative CO 2 balance would be achievable.
- the resulting coal slurry could be used to burn or operate novel fuel cell types with 60% efficiency, as currently being researched at Harvard University.
- the carbon-water mixture would first have to be heated more strongly, so that so-called synthesis gas, a gas mixture of carbon monoxide and hydrogen, is formed: C 6 H 2 O + 5H 2 O ⁇ 6CO + 6H 2
- liquid intermediates resulting from the incomplete conversion of the biomass could be used for fuel and plastic production.
- the resulting coal sludge can be briquetted and marketed as an environmentally friendly - because it is carbon dioxide neutral - "natural" which, compared to the starting biomass, should be dried by lower energy input separation / filtering / pressing and less by its higher energy content per volume / mass Transport costs and would require smaller storage space.
- a biomass slurry should decompose under supercritical conditions at 400 ° C and a pressure of at least 221.2 bar (critical temperature of water is 374 ° C) into CO 2 and H 2 , which, however, requires a high energy input.
- the document 10 2008 047 201 A1 already shows (see Fig. 1 ) a method and a device for the carbonization and gasification of biomass, wherein the heatable energy from the carbonization reactor gasification reactor (8) and motor (30) having a closable inlet opening (2), which is surrounded by a heating jacket, is supplied via an outlet opening a Intermediate storage container (6) is connected, which is connected to a subsequent gasifier reactor (16) in which from the biomass gas (via (9)) and waste (via (37)) are deposited and wherein the carbonation reactor (2) connected to a gas reservoir (54).
- a subsequent gasifier reactor (16) in which from the biomass gas (via (9)) and waste (via (37)) are deposited
- the carbonation reactor (2) connected to a gas reservoir (54).
- the object of the invention is to obtain approximately all of the carbon and gases from the biomass and to produce them in a simple and cost-effective manner.
- the process according to the invention preferably uses water-containing biomass, which predominantly accumulates as residues in settlements and in many cases has to be disposed of at a higher cost.
- water-containing biomass which predominantly accumulates as residues in settlements and in many cases has to be disposed of at a higher cost.
- other biomass that need not be disposed of as residue can also be used in this process.
- At least two reactors are used for the implementation of the process. This is on the one hand the carbonation reactor and on the other hand the gasification reactor.
- Reactor gas produced by the process according to the invention is almost completely free of tar or tar-forming constituents due to the gasification process with preceding carbonization of the biomass. This is achieved in particular by the fact that the process control from the biomass, the volatile incombustible fractions can be reduced from 80% previously to about 30%. See Table 1 and Table 2 for comparison. Table 1 shows the values of a plant belonging to the prior art and Table 2 shows the plant according to the invention.
- the reactor gas is after leaving the gasification reactor by a dust separation of solid particles, eg. As fine dust, cleaned and can then be used to generate electricity and heat.
- a dust separation of solid particles eg. As fine dust, cleaned and can then be used to generate electricity and heat.
- the plant can be used on a small technical scale using combined heat and power generation gas engine-generator sets to supply limited local areas of settlement with electricity and heat and in parallel for the disposal of suitable municipal waste.
- the problem of contamination of the gases and tar formation is also solved in that an almost complete internal disposal of critical gaseous and vaporous reaction products by combustion in the gasification reactor is performed.
- An advantage of the hydrothermal carbonization is that the usability of vegetable biomass is not limited to plants with low moisture contents and the energy that can be extracted without carbon dioxide emission is not reduced by necessary drying measures or, if necessary, directly usable for drying the end products. So even barely usable plant material such as blends of gardens and urban green spaces can be used for energy production, while carbon dioxide is saved, which would otherwise - together with the even more climate-damaging methane - would be incurred in the bacterial conversion of biomass. Energy saving, the entire system also works because almost the entire share of the released heat energy is returned to the work process.
- the moisture-containing biomass received in the carbonization reactor at pressures between 5 and 30 bar, preferably at pressures between 15 and 25, in particular at pressures of about 20 bar and at temperatures between 200 ° and 1200 ° C, preferably between 400 ° and 800 ° C, evaporated and reaction gas is formed, which is fed directly or indirectly to the gasifier reactor via a line.
- the gasifier reactor in a temperature range between 1200 ° and 1800 ° C, preferably between 1000 ° and 1400 ° C, workable and during the working heat energy over a connecting the gasifier reactor and the carbonation line is deliverable.
- a cyclone separator and / or gas cleaner is connected via a line to the gasifier reactor, between cyclone and / or gas purifier, a heat exchanger may be provided, the gas to the operating temperature of the heat exchanger between 40 ° C. and can lower 80 ° C or between 50 ° C and 60 ° C and the resulting dissipated energy of heating and / or the work process of the system can be fed again and the heat energy emitted by the heat exchanger via a line to a consumer, such as heating, can be fed.
- the pollutants or impurities released in the carbonation reactor and / or in the cooling tank can be destroyed or at least partially destroyed or diverted by means of a thermal device.
- the gasification reactor is connected via a line to a processing device for the treatment and / or further processing of the coal obtained in the gasification reactor.
- cooling tank and / or the gasification reactor is connected via the line to the processing device for the treatment or further processing of the coal obtained in the tank and / or in the gasification reactor.
- saturated steam can be obtained in the gasifier reactor, which is connected via a saturated steam line leading to a consumer or with a heater and / or a steam piston engine.
- the gasifier reactor is connected via at least one line to a consumer or at least to a gas compressor and / or gas engine.
- the gasifier reactor and / or the cooling tank can be cooled by a cooling device, or is surrounded by a cooling jacket and the cooling device is fed with cooling water, at least also supplied cooling water from the cooling jacket of the cooling tank via a line to the gasifier reactor becomes.
- switching valves are provided in one or more lines, which can be switched off or on manually or via a drive device, wherein the drive devices can be controlled by a computer as a function of the working process.
- a carbonation reactor 1 for thermochemical carbonization and gasification of moisture, especially hydrous and / or dry, biomass for producing an energy and / or raw material carrier is shown.
- the carbonation reactor is supplied via a receptacle 2 with biomass, which is provided with an inlet slide or flat slide 13 and a flat or outlet slide 15.
- an agitator 5 is provided, in which the biomass is mixed, which consists of a moisture, especially hydrous and / or dry, biomass. This may include, inter alia, wastes, such as food waste, biological waste, wood.
- the agitator 5 can be driven manually or by means of a motor 3.
- the carbonation reactor 1 is operatively connected to a heating element, in particular surrounded by a heating jacket 4.
- the carbonization reactor 1 is at least external heat energy 60 and in an advantageous, energy-saving manner further heat energy at least from the entire system, in particular from a gasifier reactor 16, fed so that the system can be operated very inexpensively in this way.
- the biomass can be fed continuously or discontinuously to the carbonation reactor 1.
- a pressure relief valve 7 is provided for pressure regulation of the carbonation reactor 1. If the biomass discontinuously supplied to the carbonation reactor 1, the carbonation reactor 1 is with cold or warmed biomass filled and with the help of the heating element so heated, that the water in the biomass evaporates.
- the steam is supplied to a reaction storage 21, so that the energy that is also provided to the gasification reactor 16 can be fully utilized. With further heat input above approx. 180 ° C, the chemical reaction starts and largely coal and gaseous reaction products are formed from the biomass.
- the reaction gas discharged from the carbonation reactor 1 has a temperature of at least 300-400 ° C. This is at least partially passed via line 28 into the reaction gas storage 21 and from there into the gasifier reactor 16. In line 28 is a check valve 80, so that excess pressure from the reaction gas storage 21 can not escape to the carbonization reactor 1.
- the gas via the cooling device 49, which is connected via a line 51 and 30 to the cooling tank 9, cooled to a temperature of about 80 °.
- the cooling tank 9 and the reaction gas storage 21 there is a pressure of about 2 to 5 bar.
- the cooling water is passed from the reaction gas storage 21 via a line 78 to the cooling jacket 52 of the gasifier reactor 16. This can produce more saturated steam. Via the line 78, the reaction gas storage 21 can be completely emptied to the gasifier reactor 16.
- the gas storage 21 has a regulating function and serves to receive the reaction gases from carbonation reactor 1 and cooling tank 9. The reaction gas from the reaction gas storage 21 is burned in the gasifier reactor 16 with the coal.
- synthesis gas is produced, which is then supplied to one or more consumers, such as a gas engine.
- reaction exhaust gas This gas-vapor mixture is referred to as reaction exhaust gas.
- the total pressure within the reactor results from the sum of the boiling pressure of the water vapor and the partial pressure of the inert gas in the carbonation reactor 1.
- the reaction is associated with a heat generation, ie there is an exothermic reaction in the container.
- the carbonation reactor 1 has the pressure-controlled or controlled valve 7. After completion of the reaction, the carbonization reactor 1 is depressurized by fully opening the valve 7 so far that it can be opened safely and the biochar can be removed.
- the biomass is the carbonation reactor 1 in small quantities and at short intervals via a pressure lock, hereinafter referred to as a cooling tank 9, supplied from above.
- a pressure lock hereinafter referred to as a cooling tank 9, supplied from above.
- the supplied biomass heats up in the carbonation reactor 1 and the water contained therein at least partially evaporates, or completely depending on the process duration.
- the reacting biomass passes through the reactor from top to bottom, being constantly stirred.
- the cooling tank 9, also referred to as a pressure lock coal removed.
- reaction offgas is constantly discharged from the C reactor by means of a pressure regulating valve 7.
- the cooling tank 9 can also be designed as a pressure lock.
- the cooling tank 9 So that enough moisture in the cooling tank 9 can be made available during the working process of the biochar, it is supplied via the cooling device 49 and the line 51 fresh water. Furthermore, the cooling tank 9 may be equipped with a stirrer to ensure better penetration of the biochar with moisture.
- the system can also be operated cyclically or with alternating pressure, wherein the carbonization reactor 1, a pressure of about 20 bar and a temperature of 200 ° C are present.
- the biochar in the second container which may be a cooling container 9, is cooled.
- the cooling tank 9 has a cooling jacket 51.
- the pressure in the cooling tank 9 is likewise controlled by a pressure-controlled valve 12 as a function of the process control.
- the moisture-containing biomass received in the carbonation reactor 1 can be at pressures between 5 and 30 bar, preferably at pressures between 15 and 25 bar, in particular at pressures of about 20 bar and at temperatures between 200 ° and 1200 ° C, preferably between 400 ° and 800 ° C, evaporate and reaction gas are formed, which is medium or directly supplied to the gasifier reactor 16 via a line 30.
- the gasifier reactor 16 works with atmospheric pressure. It is subdivided into a carburettor head 61, a carburetor middle part 62 and a carburetor foot 63.
- the biochar taken up in the cooling tank 9 is directed into the gasifier head 61 via a filling opening 64. There, it is heated by supplying heat from the carburetor middle part 62 to a temperature up to about 900 ° C, in which the further gasification of the coal or biochar used.
- the biochar reaches the middle part 62 of the gasifier reactor 16. There, the gasification takes place at temperatures above 900 ° C. The reaction gas leaving the biochar reaches temperatures up to 1800 ° C.
- the temperature of the remaining solids in the gasifier reactor 16 is limited so that the ash does not melt.
- the gasifier reactor 16 consists of an outer housing jacket 66, in which a reactor housing 67 in a funnel-shaped part is housed, which has a larger cross-section in the upper region than in the central region.
- the carburetor reactor bottom 63 widens toward its outlet end.
- the outlet end consists of several outlet ports 68 provided in the carburetor reactor bottom 63 for the discharge of the reactor gas and the ash.
- the reactor gas is directed via the outlet ports 68 in the perforated, partially cylindrically or flared inner wall 69 of the carburetor reactor bottom 63 into an annular gap 70 formed between the outer wall 71 and the inner wall 69 of the carburetor reactor bottom 63.
- the gasifier reactor 16 is also connected directly or indirectly to a cleaning device, such as cyclone separator 18 and / or scrubber 20. From there, the gas reaches a gas compressor 44 and / or a gas engine 48.
- the gasifier reactor 16 is also connected via the line 30 to the reaction gas storage 21 (FIG. Fig. 1 ) connected. Furthermore, the gasifier reactor 16 has maintenance openings 82, which can be opened if necessary.
- the z. B. are designed as a cyclone separator 18 and from which the reactor gas to another use or consumers, such as gas engine 48 or gas compressor 44 is supplied.
- the ash exits at the lower end of the carburetor reactor foot 63 via an outlet opening 65 and is directed from there by means of a transport device to a disposal container.
- reaction offgas 75 can be injected from the carbonation reactor 1 and optionally also from the cooling tank into the gasification zone of the gasification reactor 16.
- the gasifier reactor 16 ( Fig. 1 and 4 ) and / or the cooling vessel 9 are cooled by a cooling device 49 and are each surrounded by a cooling jacket 51, 52.
- the cooling device 49 is supplied with cooling water, wherein at least cooling water from the cooling jacket 51 of the cooling vessel 9 can be supplied to the gasifier reactor 16 via a line 54.
- the heat absorbed by the coolant can be used to evaporate the cooling water and also to overheat the thus generated high-pressure steam 76.
- the gasifier reactor 16 can be operated continuously.
- the biomass is supplied at short intervals or continuously.
- the reactor gas and the ash continuously emerge from the gasifier reactor 16 as volume or mass flows.
- the described reactors 1 and 16 are operated at about the same time. Due to the arrangement of the cooling tank 9 and the gasifier reactor 16 according to Fig. 4 to a business unit, a space-saving arrangement is achieved.
- the biomass feed is located above the overall apparatus, consisting of carbonation reactor 1, cooling tank 9, gasifier reactor 16.
- the biomass is taken up via the inlet pressure lock in receiving container 2 and fed to the gasifier reactor 16. It passes through this from top to bottom and occurs after the carbonization in the cooling tank 9 a.
- reaction gas is also formed, which is fed directly or indirectly to the gasifier reactor 16 via the line 30.
- FIG. 4 Another possibility of constructing the entire apparatus, consisting of carbonation reactor 1, cooling tank 9, and gasifier reactor 16 is in Fig. 4 shown. This is useful if a vertical installation is not possible for reasons of space.
- the biochar emerging from the cooling tank 9 is transported by means of mechanical conveyors, such as conveyor belt or screw conveyor 77, into the hopper of the adjoining carburetor reactor 16 and supplied to it continuously.
- FIG. 3 A sequence process of the entire plant is in Fig. 3 shown.
- the gasifier reactor 16 is connected via a line 34 to a further processing device 36 for the treatment and / or further processing of the coal 16 obtained in the gasifier reactor.
- the saturated steam formed in the gasifier reactor 16 is connected via the saturated steam leading line 38 to a consumer or to a heater and / or a steam piston engine 42.
- the reaction gas generated in the entire plant or in the first carbonation reactor 1 is fed directly or indirectly to the cyclone separator 18 and / or scrubber 20 and subsequently to a dehumidifier 56 or directly to a compressor 44 or to the consumer 48.
- switching valves may be provided which can be switched on or off manually or via a drive device, wherein the drive devices are controlled by a computer depending on the working process.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Materials Engineering (AREA)
- Processing Of Solid Wastes (AREA)
Description
- Die Erfindung betrifft eine Vorrichtung zur thermochemischen Carbonisierung und Vergasung von Feuchtigkeits-, insbesondere wasserhaltiger und/oder trockener, Biomasse zur Herstellung eines Energie- und/oder Rohstoffträgers mit Hilfe eines eine verschliessbare Einlassöffnung aufweisenden, beheizbaren Carbonisierungsreaktors, in dem die Biomasse in einen festen, schüttbaren oder gasförmigen Energie- und/oder Rohstoffträger umgewandelt wird und über eine verschliessbare Auslassöffnung an einen an den Carbonisierungsreaktor angeschlossenen Abkühlbehälter zur Zwischenlagerung des Energie- und/oder Rohstoffträgers abgegeben wird, der mit einem sich daran anschliessenden Vergaserreaktor in Verbindung steht, in dem aus der Biomasse Gas und Abfallstoffe, wie Asche, abgeschieden werden.
- Biomassevergasung ist allgemein bekannt. Hierunter wird ein Prozess verstanden, bei dem Biomasse mit Hilfe eines Vergasungs- oder Oxidationsmittels (meist Luft, Sauerstoff Kohlendioxid oder Wasserdampf) durch eine Teilverbrennung in ein Produkt- oder Brenngas umgewandelt wird.
- Über die Vergasung kann die als Festbrennstoff vorliegende Biomasse in einen gasförmigen Sekundärbrennstoff umgewandelt werden, der in verschiedenen Nutzungsoptionen wie z. B. der Stromerzeugung oder als Kraft- und Treibstoff (Brenngas) oder für die Nutzung als Synthesegas für die chemische Synthese effizienter eingesetzt werden kann. Analoge Verfahren existieren auch für andere Festbrennstoffe, speziell für die Vergasung von Kohle (Kohlevergasung).
- Die Vergasung von Biomasse setzt nach der Trocknung bei Temperaturen von ca. 150 °C ein, wobei erst Wasserdampf und Sauerstoff austreten. Bei höheren Temperaturen werden die Festbestandteile der Biomasse. Dieses Gas entzündet sich, sobald Sekundärluft zugeführt wird, der Flammpunkt liegt bei 230 bis 280 °C.
- Bei der technischen Biomassevergasung handelt es sich um eine Teilverbrennung mit Hilfe eines Vergasungs- oder Oxidationsmittels (meist Luft, Sauerstoff, Kohlendioxid oder Wasserdampf) ohne Entzündung bei Temperaturen von 700 bis 900 °C, bei der diese nicht wie bei der Verbrennung zu Kohlendioxid (CO2) sondern im Wesentlichen zu Kohlenmonoxid (CO) oxidiert wird. Weitere Komponenten des entstehenden Gases sind Wasserstoff (H2), Kohlendioxid (CO2), Methan (CH4), Wasserdampf (H2O) sowie abhängig von der eingesetzten Biomasse eine Reihe von Spurengasen und Verunreinigungen. Es verbleibt ein fester Rückstand (Asche und Koks), außerdem können Teile des Produktgases bei Temperaturabsenkung auskondensieren (Teer und Wasser).
- Das brennbare Produktgas kann in einem anschließenden Prozess durch eine Verbrennung (Brenngas) oder eine chemische Synthese (Synthesegas) unter Abgabe von Energie (exothermer Prozess) weiter oxidiert werden. Erfolgt die Vergasung mit Luft, so wird das dadurch mit Stickstoff verdünnte Produktgas häufig auch als Schwachgas (LCV, Low Calorific Value Gas) bezeichnet.
- Die hydrothermale Carbonisierung (etwa: "wässrige Verkohlung bei erhöhter Temperatur") ist ein chemisches Verfahren zur einfachen und hocheffizienten Herstellung von Braunkohle, Synthesegas, flüssigen Erdöl-Vorstufen und Humus aus Biomasse unter Freisetzung von Energie. Der Prozess, der die in der Natur in 50.000 bis 50 Millionen Jahren ablaufende Braunkohle-Entstehung ("Inkohlung") innerhalb weniger Stunden technisch nachahmt.
- Der bisher bekannte Arbeitsprozess ist wie folgt. In einem Druckgefäß wird Biomasse, insbesondere pflanzliches Material, (in der nachfolgenden Reaktionsgleichung vereinfachend als Zucker mit der Formel C6 H12 O6 umschrieben) zusammen mit Wasser, isochor, auf 180 °C erhitzt. Dabei kann der Druck auf 2 MPa ansteigen. Während der Reaktion werden auch Oxoniumionen gebildet, welche den pH-Wert pH 5 und tiefer senken. Diesen Schritt kann man durch Zugabe einer geringen Menge Zitronensäure beschleunigen. Hierbei muss beachtet werden, dass bei niedrigen pH-Werten mehr Kohlenstoff in die wässrige Phase übergeht. Die ablaufende Reaktion ist exotherm, d. h. es wird Energie freigesetzt. Nach 12 Stunden ist der Kohlenstoff der Edukte vollständig umgesetzt, 90 bis 99 % des Kohlenstoffes liegt als wässriger Schlamm aus porösen Braunkohle-Kügelchen (C6H2O) mit Porengrößen zwischen 8 und 20 nm als feste Phase vor, die restlichen 1 bis 10 % Kohlenstoff sind entweder in der wässrigen Phase gelöst oder wurden zu Kohlenstoffdioxid umgewandelt. Die Reaktionsgleichung für die Bildung der Braunkohle lautet:
C6H12O6 → C6H2O + 5 H2O ΔH = -1.105 kJ/mol
- Die Reaktion kann in mehreren Stadien bei unvollständiger Wasserabspaltung abgebrochen werden, wobei man unterschiedliche Zwischenprodukte erhält. Bei Abbruch nach wenigen Minuten entstehen flüssige Zwischenprodukte, lipophile Stoffe, deren Handhabung wegen ihrer hohen Reaktivität allerdings sehr schwierig ist. Im Anschluss daran polymerisieren diese Stoffe und es bilden sich Torfähnliche Strukturen, die nach ca. 8 Stunden als Zwischenprodukte vorliegen.
- Theoretisch ließe sich die Reaktion mit bestimmten Metallpartikeln katalysieren, diese würden aber recht schnell mit den Produkten zugesetzt werden und ihre Funktion verlieren.
- Durch die exotherme Reaktion der hydrothermalen Carbonisierung werden etwa 3/8 des auf die Trockenmasse bezogenen Heizwertes der Biomasse freigesetzt (bei hohem Lignin-, Harz- und/oder Ölgehalt immer noch mindestens 1/4). Bei geschickter Prozessführung könnte es gelingen, mittels dieser Abwärme aus nasser Biomasse trockene Biokohle herzustellen und eventuell einen Teil der umgewandelten Energie zur Energieerzeugung zu nutzen.
- Das Wichtigste soll sein, dass man eine einfache Methode in der Hand hat, atmosphärisches CO2 über den Umweg von Biomasse in eine stabile und ungefährliche Lagerform, eine Kohlenstoff-Senke, zu verwandeln." Mit dem Verfahren der hydrothermalen Carbonisierung, wie auch mit anderen Verfahren zur Verkokung von Biomassen, ließe sich so überall auf der Welt dezentral eine große Menge an Kohlenstoff dauerhaft speichern. Wesentlich sicherer als die derzeit diskutierte flüssige oder gasförmiges Sequestrierung von Kohlendioxid. Bei ausreichender chemischer Stabilität der Kohle könnte sie auch sehr gut zur Verbesserung von Böden eingesetzt werden.
- Der künstlich erzeugte Humus könnte zur Wiederbegrünung erodierter Flächen genutzt werden. Durch das auf diese Weise verstärkte Pflanzenwachstum könnte zusätzliches Kohlenstoffdioxid aus der Atmosphäre gebunden werden, so dass im Endeffekt eine Kohlenstoffeffizienz größer als 1 bzw. eine negative CO2-Bilanz erreichbar wäre. Der entstandene Kohleschlamm ließe sich zur Verbrennung bzw. zum Betrieb neuartiger Brennstoffzellentypen mit einem Wirkungsgrad von 60 % verwenden, wie sie derzeit an der Harvard-Universität erforscht werden. Zur Erzeugung von herkömmlichen Kraftstoffen müsste das Kohlenstoff-Wasser-Gemisch zunächst stärker erhitzt werden, so dass so genanntes Synthesegas, ein Gasgemisch aus Kohlenmonoxid und Wasserstoff, entsteht:
C6H2O + 5 H2O → 6CO + 6 H2
- Alternativ könnten die flüssigen Intermediate, die bei der unvollständigen Umsetzung der Biomasse entstehen, zur Kraftstoff- sowie zur Kunststoff-Herstellung genutzt werden.
- Außerdem kann der entstandene Kohlenschlamm brikettiert und als umweltfreundliche - weil kohlendioxidneutrale - "Naturkohle" vermarktet werden, welche im Vergleich mit der Ausgangs-Biomasse mittels Abscheiden/Filtern/Verpressen mit niedrigerem Energieeinsatz zu trocknen sein sollte und durch ihren höheren Energiegehalt pro Volumen/Masse weniger Transportkosten verursachen sowie kleinere Lagerflächen erfordern würde.
- Das große Problem bei der Herstellung von Synthesegas aus Biomasse ist die Teer-Bildung, die bei hydrothermaler Prozessführung weitgehend vermieden werden kann. Allerdings ist dann nicht einzusehen, warum dafür der Umweg über Biokohle gegangen werden soll. Ein Biomasse-Slurry sollte sich unter überkritischen Bedingungen bei 400 °C und einem Druck von mindestens 221,2 Bar (Kritische Temperatur von Wasser ist 374 °C) in CO2 und H2 zerlegen lassen, was allerdings einen hohen Energieeinsatz bedingt.
- Ungeklärt bei dieser Problematik ist eine geeignete Prozessführung, sowie Probleme bei der Sammlung, dem Transport und der Lagerung anfallender Biomasse. Diese Vorgänge benötigen ebenfalls Energie, diese sollte geringer sein als durch die hydrothermale Carbonisierung freigesetzt wird.
- Letztlich geht jedem Verbrennungsprozess von Biomasse ein Vergasungsprozess voraus, da nicht diese selbst, sondern grundsätzlich nur die aus der Biomasse austretenden Gase brennbar sind
- Bei der dem Stand der Technik entsprechenden Carbonisierung von Biomasse wie Hydrothermale Carbonisierung HTC in einer wässrigen oder dampfförmigen Umgebung, wird dem Reaktor von außen zusätzlich Wasser oder Wasserdampf zugeführt. Das bedeutet einen erheblichen zusätzlichen Aufwand beim Bau und Betrieb der Carbonisierungsanlage. Zur Bereitstellung des Wassers oder des Dampfes und bei dem für die Erwärmung des Wassers wird Heizenergie benötigt. Die Verwertung bzw. Entsorgung des Prozesswassers nach Ende der Carbonisierung stellt eine zusätzliche Aufgabe dar, die erheblichem technischen und finanziellen Aufwand verbunden ist.
- Bei den bekannten Verfahren entstehen Gase und Dämpfe. Diese stellen oftmals ein zusätzliches Problem dar, das mit technischen Maßnahmen und mit erheblichen Zusatzkosten gelöst werden muss.
- Das Dokument
10 2008 047 201 A1 Fig. 1 ) ein Verfahren sowie eine Vorrichtung zur Carbonisierung und Vergasung von Biomasse, wobei dem eine verschließbare Einlassöffnung aufweisenden (2), der von einem Heizmantel umgeben ist, Wärmeenergie aus dem Carbonisierungsreaktor Vergasungsreaktor (8) und Motor (30) zugeführt wird, über eine Auslassöffnung einen Zwischenlagerungsbehälter (6) angeschlossenen ist, der mit einem sich daran anschließenden Vergaserreaktor (16) in Verbindung steht, in dem aus der Biomasse Gas (via (9)) und Abfallstoffe (via (37)) abgeschieden werden und wobei der Carbonisierungsreaktor (2) an einen Gasspeicher (54) angeschlossen ist. Eine derartige Anlage ist sehr aufwändig und teuer und arbeitet gegenüber dem erfindungsgemäßen Verfahren sowie der Vorrichtung mit einem wesentlich schlechteren Wirkungsgrad. - Bei den bekannten Verfahren entstehen Gase und Dämpfe. Diese stellen oftmals ein zusätzliches Problem dar, das mit technischen Maßnahmen und mit erheblichen Zusatzkosten gelöst werden muss.
- Der Erfindung liegt die Aufgabe zugrunde, in etwa den gesamten Kohlenstoff und Gase aus der Biomasse zu gewinnen und diese auf einfache und kostengünstige Weise herzustellen.
- Die Aufgabe wird erfindungsgemäß dadurch gelöst, dass
- a) dem Carbonisierungsreaktor, der mit einem Heizelement wirkungsmässig verbunden, insbesondere von einem Heizmantel umgeben ist, ist Fremdwärmeenergie zuführbar und über eine weitere den Vergaserreaktor und den Carbonisierungsreaktor verbindende Leitung weitere Wärmeenergie zumindest aus dem Vergaserreaktor zuführbar.
- b) dem Vergaserreaktor ist über eine den Vergaserreaktor und den Abkühlbehälter verbindende Leitung Kühlenergie aus dem Abkühlbehälter zuführbar,
- c) dem Abkühlbehälter ist Feuchtigkeit, insbesondere Wasser, über eine weitere Leitung zuführbar, um eine annähernd konstante Prozessführung sicherzustellen,
- d) aus dem Carbonisierungsreaktor und/oder dem Abkühlbehälter ist Reaktionsgas über eine den Carbonisierungsreaktor und den Gasspeicher verbindende Leitung einem Gasspeicher zuführbar, wobei das Reaktionsgas über eine den Vergaserreaktor und den Gasspeicher verbindende Leitung wieder dem Vergaserreaktor zuführbar ist.
- Hierdurch wird auf einfache und kostengünstige energiesparende Weise mit einer leicht zu erstellenden Anlage aus der Biomasse Kohlenstoff, insbesondere Kohle, zur Beheizung und zum Antrieb von Aggregaten und darüber auch Gase zur Verwendung unterschiedlicher Verbraucher wie Gasmotoren, Gasturbinen oder Heizungsanlagen gewonnen.
- Das erfindungsgemäße Verfahren verwendet vorzugsweise wasserhaltige Biomasse, die überwiegend als Reststoff in Siedlungen anfällt und in vielen Fällen mit höherem Aufwand entsorgt werden muss. In diesem Verfahren kann aber auch andere Biomasse, die nicht als Reststoff entsorgt werden muss, eingesetzt werden.
- Für die Umsetzung des Verfahrens werden zumindest zwei Reaktoren eingesetzt. Dies ist einerseits der Carbonisierungsreaktor und andererseits der Vergasungsreaktor.
- Im Gegensatz dazu wird bei dem hier beschriebenen Verfahren der für die Verdampfung erforderliche Energieaufwand durch Nutzung von Wärme, die bei der Abkühlung des erzeugten Reaktorgases frei wird, bestritten.
- Nach dem erfindungsgemäßen Verfahren produziertes Reaktorgas ist auf Grund der dem Vergasungsvorgang mit vorgeschalteter Carbonisierung der Biomasse fast vollständig frei von Teer bzw. teerbildenden Bestandteilen. Dies wird insbesondere auch dadurch erreicht, dass durch die Prozessführung aus der Biomasse die flüchtigen nicht verbrennbaren Anteile von bisher 80% auf ca. 30 % gesenkt werden kann. Vergleiche hierzu Tabelle 1 und 2. Tabelle 1 gibt die Werte einer zum Stand der Technik gehörenden Anlage und Tabelle 2 die erfindungsgemäßen Anlage wieder.
- Das Reaktorgas wird nach Austritt aus dem Vergasungsreaktor durch eine Staubabscheidung von Festpartikeln, z. B. Feinstaub, gereinigt und kann danach zur Erzeugung von Strom und Wärme genutzt werden.
- Durch den geringen Anteil von zusätzlichem Wasser oder Heizdampf entsteht kein oder kaum Prozesswasser. Es entsteht danach auch kein zusätzlicher Aufwand durch Abwasserbehandlung oder Abwasserentsorgung, da das zugeführte Wasser in der Anlage verdampft wird.
- Die Anlage kann in einem kleinen technischen Maßstab unter Verwendung von Gasmotor-Generator-Sätzen mit Nutzwärmeauskopplung für die Versorgung begrenzter lokaler Siedlungsbereiche mit Strom und Wärme und parallel dazu für die Entsorgung von geeigneten Siedlungsabfällen verwendet werden.
- Bei dem erfindungsgemäßen Verfahren wird das Problem der Verunreinigung der Gase und der Teerbildung auch dadurch auch gelöst, dass eine fast vollständige interne Entsorgung von kritischen gas- und dampfförmigen Reaktionsprodukten durch Verbrennung im Vergasungsreaktor durchgeführt wird.
- Dies führt zur Vermeidung von CO2, wobei hierbei nur ein geringer Teil der möglichen Energie frei werden würde.
- Ein Vorteil der hydrothermalen Carbonisierung ist, dass die Verwendbarkeit pflanzlicher Biomasse nicht auf Pflanzen mit niedrigen Feuchtegehalten beschränkt und die ohne Kohlendioxid-Ausstoß gewinnbare Energie nicht durch notwendige Trocknungsmaßnahmen reduziert wird bzw. bei Bedarf direkt zur Trocknung der Endprodukte nutzbar ist. So kann selbst bisher kaum nutzbares Pflanzenmaterial wie Verschnitt aus Gärten und von städtischen Grünflächen zur Energieerzeugung dienen, wobei gleichzeitig Kohlendioxid eingespart wird, welches sonst - zusammen mit dem noch klimaschädlicheren Methan - bei der bakteriellen Umsetzung der Biomasse anfallen würde. Energiesparend arbeitet die Gesamtanlage auch deshalb, weil annähernd der gesamte Anteil der freigesetzten Wärmeenergie dem Arbeitsprozess wieder zugeführt wird.
- Hierzu ist es vorteilhaft, dass die im Carbonisierungsreaktor aufgenommene feuchtigkeitshaltige Biomasse bei Drücken zwischen 5 und 30 bar, vorzugsweise bei Drücken zwischen 15 und 25, insbesondere bei Drücken von etwa 20 bar und bei Temperaturen zwischen 200° und 1200°C, vorzugsweise zwischen 400° und 800°C, verdampft und Reaktionsgas gebildet wird, das mittel- oder unmittelbar dem Vergaserreaktor über eine Leitung zuführbar ist.
- Auch ist es von Vorteil, dass der Vergaserreaktor in einem Temperaturbereich zwischen 1200° und 1800°C, vorzugsweise zwischen 1000° und 1400°C, arbeitbar und während des Arbeitsprozesses Wärmeenergie über eine den Vergaserreaktor und den Carbonisierungsreaktor verbindende Leitung abgebbar ist.
- Eine zusätzliche Möglichkeit ist gemäß einer Weiterbildung der Erfindung, dass ein Zyklonabscheider und/oder Gasreiniger über eine Leitung an den Vergaserreaktor angeschlossen ist, wobei zwischen Zyklonabscheider und/oder Gasreiniger ein Wärmetauscher vorgesehen sein kann, der Gas auf die Betriebstemperatur des Wärmetauschers zwischen 40°C und 80°C oder zwischen 50°C und 60°C absenken kann und die daraus resultierende abgeführte Energie einer Heizung und/oder dem Arbeitsprozess der Anlage wieder zuführbar und die vom Wärmetauscher abgegebene Wärmeenergie über eine Leitung einem Verbraucher, wie Heizung, zuführbar ist.
- Ferner ist es vorteilhaft, dass die im Carbonisierungsreaktor und/oder im Abkühlbehälter freigesetzten Schadstoffe oder Störstoffe mit Hilfe einer thermischen Einrichtung vernichtbar oder zumindest teilweise vernichtbar oder ableitbar sind.
- Vorteilhaft ist es auch, dass der Vergaserreaktor über eine Leitung an eine Verarbeitungseinrichtung zur Behandlung und/oder Weiterverarbeitung der im Vergaserreaktor gewonnenen Kohle angeschlossen ist.
- Vorteilhaft ist es, dass der Abkühlbehälter und/oder der Vergaserreaktor über die Leitung mit der Verarbeitungseinrichtung zur Behandlung oder Weiterverarbeitung der im Behälter und/oder im Vergaserreaktor gewonnenen Kohle verbunden ist.
- Von besonderer Bedeutung ist für die vorliegende Erfindung, dass im Vergaserreaktor Sattdampf gewonnen werden kann, der über eine Sattdampf führende Leitung mit einem Verbraucher oder mit einer Heizung und/oder einem Dampfkolbenmotor verbunden ist.
- Auch ist es vorteilhaft, dass der Vergaserreaktor über mindestens eine Leitung mit einem Verbraucher oder zumindest mit einem Gasverdichter und/oder Gasmotor verbunden ist.
- Ferner ist es vorteilhaft, dass der Vergaserreaktor und/oder der Abkühlbehälter über eine Kühleinrichtung gekühlt werden kann, oder von je einem Kühlmantel umgeben ist und die Kühleinrichtung mit Kühlwasser gespeist wird, wobei zumindest auch Kühlwasser aus dem Kühlmantel des Abkühlbehälters über eine Leitung dem Vergaserreaktor zugeführt wird.
- Auch ist es von Vorteil, dass in einer oder mehreren Leitungen Schaltventile vorgesehen sind, die manuell oder über eine Antriebsvorrichtung aus- oder eingeschaltet werden können, wobei die Antriebsvorrichtungen über einen Rechner in Abhängigkeit des Arbeitsprozesses gesteuert werden können.
- Ferner ist es vorteilhaft, dass das Verfahren durch folgende Verfahrensschritte gekennzeichnet ist:
- a) Die Biomasse wird in einen Carbonisierungsreaktor mit Hilfe von Fremdwärmeenergie und weiterer Wärmeenergie, die aus der Anlage dem Carbonisierungsreaktor zugeführt wird, in einen festen, schüttbaren oder gasförmigen Energie- und/oder Rohstoffträger umgewandelt;
- b) das im Carbonisierungsreaktor gebildete Gas wird in einen Reaktionsgasspeicher aufgenommen;
- c) das im Carbonisierungsreaktor und Abkühlbehälter gewonnene oder befindliche Reaktionsgas wird mittel- oder unmittelbar dem Vergaserreaktor zugeführt;
- d) zumindest ein Teil der in dem Verfahren zur thermochemischen Carbonisierung und Vergasung von Feuchtigkeits-, insbesondere wasserhaltiger und/oder trockener, Biomasse gewonnene Energie wird wieder dem Verarbeitungsprozess, insbesondere dem Carbonisierungsreaktor, zugeführt;
- e) die im Vergaserreaktor gewonnene Kohle wird einer weiteren Verarbeitungseinrichtung zugeführt;
- f) die im Abkühlbehälter eingespeiste Kühlenergie wird gleichzeitig oder anschließend dem Kühlmantel des Vergaserreaktors zugeführt;
- g) die im Vergaserreaktor erzeugte freiwerdende Energie oder der Sattdampf wird einem oder mehreren Verbrauchern, wie Heizung und/oder einem Dampfkolbenmotor, zugeführt.
- Weitere Vorteile und Einzelheiten der Erfindung sind in den Patentansprüchen und in der Beschreibung erläutert und in den Figuren dargestellt.
- Dabei zeigen:
- Fig. 1
- den Verfahrensablauf für eine Vorrichtung zur thermochemischen Carbonisierung und Vergasung von Feuchtigkeits- insbesondere wasserhaltiger und/oder trockner Biomasse zur Herstellung eines Energie- und/oder Rohstoffträgers mit Hilfe eines eine verschließbare Einlassöffnung aufweisenden, beheizbaren Carbonisierungsreaktors, in dem die Biomasse in einen festen, schüttbaren oder gasförmigen Energie- und/oder Rohstoffträger umgewandelt wird,
- Fig. 2
- eine Teilansicht einer Vorrichtung zur thermochemischen Carbonisierung und Vergasung von Feuchtigkeits- insbesondere wasserhaltiger und/oder trockner Biomasse zur Herstellung eines Energie- und/oder Rohstoffträgers,
- Fig. 3
- die Gesamtanlage der Vorrichtung zur thermochemischen Carbonisierung und Vergasung von Feuchtigkeits- insbesondere wasserhaltiger und/oder trockner Biomasse zur Herstellung eines Energie- und/oder Rohstoffträgers,
- Fig. 4
- eine Teilansicht des Vergaserreaktors mit einem Vergaserkopf eines Vergasermittelteils und eines Vergaserfußes.
- In
Fig. 1 ist ein Carbonisierungsreaktor 1 zur thermochemischen Carbonisierung und Vergasung von Feuchtigkeits-, insbesondere wasserhaltiger und/oder trockener, Biomasse zur Herstellung eines Energie- und/oder Rohstoffträgers gezeigt. Der Carbonisierungsreaktor, wird über einen Aufnahmebehälter 2 mit Biomasse versorgt, der mit einem Einlassschieber oder Flachschieber 13 und einem Flach- oder Auslassschieber 15 versehen ist. In dem Carbonisierungsreaktor 1 ist ein Rührwerk 5 vorgesehen, in dem die Biomasse vermischt wird, die aus einer Feuchtigkeits-, insbesondere wasserhaltiger und/oder trockener, Biomasse besteht. Hierzu können unter anderem Abfälle, wie Nahrungsmittelreste, biologische Abfälle, Holz gehören. Das Rührwerk 5 kann manuell oder mit Hilfe eines Motors 3 angetrieben werden. - Bei Startbeginn der Gesamtanlage wird zuerst Holz bez. Holzkohle in einen Vergaserreaktor 16 gegeben und dann die Anlage hochgefahren. Das im Vergaserreaktor 16 gewonnene Reaktionsgas wird über eine Leitung 32 einem Heizelement 4 zugeführt, das den Carbonisierungsreaktor 1 umgibt. Hierdurch wird die Carbonisierung in Gang gesetzt. Das in dem Heizelement 4 aufgenommene Gas wird durch Einführung von Biomasse ständig gekühlt. Durch diesen Arbeitsprozess wird Energie gespart. Die hierbei auftretende Verlustenergie wird durch Fremdenergie der Anlage zugeführt.
- Der Carbonisierungsreaktor 1 ist mit einem Heizelement wirkungsmäßig verbunden, insbesondere von einem Heizmantel 4 umgeben. Dem Carbonisierungsreaktor 1 wird zumindest Fremdwärmeenergie 60 und in vorteilhafter, Energie sparender Weise weitere Wärmeenergie zumindest aus der Gesamtanlage, insbesondere aus einem Vergaserreaktor 16, zugeführt, sodass auf diese Weise die Anlage sehr kostengünstig betrieben werden kann. Die Biomasse kann kontinuierlich oder diskontinuierlich dem Carbonisierungsreaktor 1 zugeführt werden. Im oberen Teil des Carbonisierungsreaktors 1 ist ein Überdruckventil 7 zur Druckregulierung des Carbonisierungsreaktors 1 vorgesehen. Wird die Biomasse diskontinuierlich dem Carbonisierungsreaktor 1 zugeführt, so wird der Carbonisierungsreaktor 1 mit kalter oder auch gewärmter Biomasse gefüllt und mit Hilfe des Heizelements so aufgeheizt, dass das in der Biomasse befindliche Wasser verdampft. Der Dampf wird einem Reaktionsspeicher 21 zugeführt, so dass die Energie, die auch dem Vergaserreaktor 16 zur Verfügung gestellt wird, vollständig genutzt werden kann. Bei weiterer Wärmezufuhr über ca. 180° C setzt die chemische Reaktion ein und es entstehen aus der Biomasse weitgehend Kohle und gasförmige Reaktionsprodukte.
- Das vom Carbonisierungsreaktor 1 abgeführte Reaktionsgas weist eine Temperatur von mindestens 300 - 400°C auf. Dies wird zumindest teilweise über die Leitung 28 in den Reaktionsgasspeicher 21 und von dort in den Vergaserreaktor 16 geleitet. In der Leitung 28 befindet sich ein Rückschlagventil 80, damit Überdruck aus dem Reaktionsgasspeicher 21 nicht zum Carbonisierungsreaktor 1 entweichen kann.
- Im Reaktionsgasspeicher 21 wird das Gas über die Kühleinrichtung 49, die über eine Leitung 51 und 30 an den Abkühlbehälter 9 angeschlossen ist, auf eine Temperatur von ca. 80° gekühlt. Im Abkühlbehälter 9 und im Reaktionsgasspeicher 21 herrscht ein Druck von ca. 2 bis 5 bar. Das Kühlwasser wird vom Reaktionsgasspeicher 21 über eine Leitung 78 zum Kühlmantel 52 des Vergaserreaktors 16 geleitet. Hierdurch lässt sich mehr Sattdampf produzieren. Über die Leitung 78 kann der Reaktionsgasspeicher 21 zum Vergaserreaktor 16 vollständig entleert werden.
- Im Behälter 16 sind verschiedene Messpunkte 81 vorgesehen, mit deren Hilfe die Temperatur im Behälter 16 gesteuert werden kann.
- Der Gasspeicher 21 hat eine Regulierungsfunktion und dient zur Aufnahme der Reaktionsgase aus Carbonisierungsreaktor 1 und Abkühlbehälter 9. Das Reaktionsgas aus dem Reaktionsgasspeicher 21 wird im Vergaserreaktor 16 mit der Kohle verbrannt.
- Bei der Verbrennung des Reaktionsgases und der Kohle im Vergaserreaktor 16 entsteht Synthesegas, das dann einem oder mehreren Verbrauchern, wie Gasmotor, zugeführt wird.
- Nach Erreichen der notwendigen Reaktionstemperatur beginnt die chemische Reaktion in der Biomasse und es bilden sich neben der Biokohle auch Gas, überwiegend CO2 und Wasserdampf. Dieses Gas-Dampfgemisch wird als Reaktionsabgas bezeichnet. Der Gesamtdruck innerhalb des Reaktors ergibt sich aus der Summe Siededruck des Wasserdampfs und dem Partialdruck des Inertgasanteils im Carbonisierungsreaktor 1. Die Reaktion ist mit einer Wärmebildung verbunden, d. h. es findet eine exotherme Reaktion im Behälter statt. Zur Druckbegrenzung weist der Carbonisierungsreaktor 1 das druckgeregelte oder gesteuerte Ventil 7 auf. Nach Abschluss der Reaktion wird der Carbonisierungsreaktor 1 durch vollständiges Öffnen des Ventils 7 soweit druckentlastet, dass er gefahrlos geöffnet und die Biokohle entnommen werden kann.
- Bei kontinuierlichem Betrieb wird die Biomasse dem Carbonisierungsreaktor 1 in kleinen Mengen und in kurzen Zeitabständen über eine Druckschleuse, nachstehend als Abkühlbehälter 9 bezeichnet, von oben zugeführt. Im Carbonisierungsreaktor 1 herrscht ständig hoher Druck und hohe Temperatur in etwa 16 bar und 200°C. Die zugeführte Biomasse erwärmt sich im Carbonisierungsreaktor 1 und das darin befindliche Wasser verdampft zumindest teilweise, oder je nach Prozessdauer auch vollständig. Die reagierende Biomasse durchläuft den Reaktor von oben nach unten, wobei sie ständig gerührt wird. Nachdem Reaktionsprozess wird dem Abkühlbehälter 9, auch als Druckschleuse bezeichnet, Kohle entnommen. Zur Begrenzung des Behälterdrucks wird beständig Reaktionsabgas mittels Druckregelventil 7 aus dem C-Reaktor abgelassen. Die Abkühlbehälter 9 kann auch als Druckschleuse ausgeführt sein.
- Damit während des Arbeitsprozesses der Biokohle genügend Feuchte im Abkühlbehälter 9 zur Verfügung gestellt werden kann, wird ihm über die Kühleinrichtung 49 und die Leitung 51 Frischwasser zugeführt. Ferner kann der Abkühlbehälter 9 mit einem Rührwerk ausgestattet sein, um eine bessere Durchdringung der Biokohle mit Feuchte sicherzustellen.
- Die Anlage kann auch zyklisch bzw. mit wechselndem Druck betrieben werden, wobei im Carbonisierungsreaktor 1 ein Druck von ca. 20 bar und eine Temperatur von 200° C vorhanden sind. Die im zweiten Behälter, der ein Abkühlbehälter 9 sein kann, befindliche Biokohle wird abgekühlt. Hierzu weist der Abkühlbehälter 9 einen Kühlmantel 51 auf. Der Druck im Abkühlbehälter 9 wird ebenfalls durch ein druckgeregeltes Ventil 12 in Abhängigkeit der Prozessführung gesteuert. Je nach Prozessführung kann die im Carbonisierungsreaktor 1 aufgenommene feuchtigkeitshaltige Biomasse bei Drücken zwischen 5 und 30 bar, vorzugsweise bei Drücken zwischen 15 und 25 bar, insbesondere bei Drücken von etwa 20 bar und bei Temperaturen zwischen 200° und 1200° C, vorzugsweise zwischen 400° und 800° C, verdampfen und Reaktionsgas gebildet werden, das mittel- oder unmittelbar dem Vergaserreaktor 16 über eine Leitung 30 zugeführt wird.
- Der Vergaserreaktor 16 gemäß
Fig. 1 bzw. gemäßFig. 4 (Teildarstellung) arbeitet mit atmosphärischem Druck. Er ist in einen Vergaserkopf 61, ein Vergasermittelteil 62 und einen Vergaserfuß 63 unterteilt. Die im Abkühlbehälter 9 aufgenommene Biokohle wird über eine Einfüllöffnung 64 in den Vergaserkopf 61 geleitet. Dort erwärmt sie sich durch Wärmezufuhr aus dem Vergasermittelteil 62 auf eine Temperatur bis zu ca. 900° C, bei der die weitere Vergasung der Kohle bzw. Biokohle einsetzt. - Mit dieser Temperatur erreicht die Biokohle das Mittelteil 62 des Vergaserreaktors 16. Dort findet die Vergasung bei Temperaturen über 900° C statt. Das dabei aus der Biokohle austretende Reaktionsgas erreicht Temperaturen bis 1800°C. Durch eine gezielte Steuerung des Reaktionsprozesses mit Hilfe eines Rechners durch manuelle Steuerung wird die Temperatur der im Vergaserreaktor 16 verbleibenden Feststoffe derart begrenzt, dass die Asche nicht schmilzt.
- Wie aus
Fig. 4 hervorgeht besteht der Vergaserreaktor 16 aus einem äußeren Gehäusemantel 66, in dem ein Reaktorgehäuse 67 in einem trichterförmigen Teil untergebracht ist, das im oberen Bereich einen größeren Querschnitt als im mittleren Bereich aufweist. Der Vergaser-Reaktorfuß 63 erweitert sich in Richtung seines Auslassendes. Das Auslassende besteht aus mehreren im Vergaser-Reaktorfuß 63 vorgesehenen Auslassöffnungen 68 für die Abgabe des Reaktorgases und der Asche. - Das Reaktorgas wird über die Auslassöffnungen 68 in der perforierten, teilweise zylindrisch oder konisch erweiterten, inneren Wand 69 des Vergaser-Reaktorfußes 63 in einen Ringspalt 70 geleitet, der zwischen der Außenwand 71 und der inneren Wand 69 des Vergaser-Reaktorfußes 63 gebildet ist.
- Der Vergaserreaktor 16 ist ferner mittel- oder unmittelbar an eine Reinigungsvorrichtung, wie Zyklonabscheider 18 und/oder Gaswäscher 20 angeschlossen. Von dort aus gelangt das Gas zu einem Gasverdichter 44 und/oder zu einem Gasmotor 48.
- Der Vergaserreaktor 16 ist auch über die Leitung 30 an den Reaktionsgasspeicher 21 (
Fig. 1 ) angeschlossen. Ferner weist der Vergaserreaktor 16 Wartungsöffnungen 82 auf, die im Bedarfsfall geöffnet werden können. - Im oberen Teil des Gehäusemantels 66 des Vergaserreaktors 16 befinden sich eine oder mehrere am Umfang verteilte Austrittsöffnungen 72, durch die das Reaktorgas dem Vergaserreaktor 16 entnommen wird. Daran angeschlossene Leitungen 73 münden in einen oder mehrere Staubabscheider, die z. B. als Zyklonabscheider 18 ausgeführt sind und von denen aus das Reaktorgas einer weiteren Verwendung bzw. den Verbrauchern, wie Gasmotor 48 oder Gasverdichter 44 zugeführt wird. Die Asche tritt am unteren Ende des Vergaser-Reaktorfußes 63 über eine Auslassöffnung 65 aus und wird von dort mittels Transportvorrichtung zu einem Entsorgungsbehälter geleitet.
- Im unteren Bereich des Außenumfangs des Vergasermittelteils 62 sind eine oder mehrere Gaslanzen 74 bzw. thermisch verbundene Schmelzaggregate 74 vorgesehen, sodass Reaktionsabgas 75 aus dem Carbonisierungsreaktor 1 und gegebenenfalls auch aus dem Abkühlbehälter in die Vergasungszone des Vergaserreaktors 16 eingedüst werden kann. Hierdurch werden mit Hilfe der hohen Temperaturen noch vorhandene Abfallstoffe, wie Schwefel- und Chlorverbindungen, verbrannt.
- Der Vergaserreaktor 16 (
Fig. 1 und4 ) und/oder der Abkühlbehälter 9 werden über eine Kühleinrichtung 49 gekühlt und sind mit je einem Kühlmantel 51, 52 umgeben. Die Kühleinrichtung 49 wird mit Kühlwasser gespeist, wobei zumindest auch Kühlwasser aus dem Kühlmantel 51 des Abkühlbehälters 9 über eine Leitung 54 dem Vergaserreaktor 16 zugeführt werden kann. - Die durch das Kühlmittel aufgenommene Wärme kann zur Verdampfung des Kühlwassers und auch zur Überhitzung des so erzeugten Hochdruck-Dampfes 76 eingesetzt werden.
- Der Vergaserreaktor 16 kann kontinuierlich betrieben werden. Die Biomasse wird in kurzen Zeitabständen oder kontinuierlich zugeführt. Das Reaktorgas und die Asche treten kontinuierlich als Volumen- bzw. Mengenströme aus dem Vergaserreaktor 16 aus.
- Die beschriebenen Reaktoren 1 und 16 werden in etwa zeitgleich betrieben. Durch die Anordnung des Abkühlbehälters 9 und des Vergaserreaktors 16 gemäß
Fig. 4 zu einer Betriebseinheit wird eine platzsparende Anordnung erzielt. Wie bereits erwähnt, befindet sich die Biomassezufuhr oberhalb der Gesamtvorrichtung, bestehend aus Carbonisierungsreaktor 1, Abkühlbehälter 9, Vergaserreaktor 16. Über die Eingangsdruckschleuse im Aufnahmebehälter 2 wird die Biomasse aufgenommen und dem Vergaserreaktor 16 zugeführt. Sie durchläuft diesen von oben nach unten und tritt nach erfolgter Carbonisierung in den Abkühlbehälter 9 ein. Im kontinuierlichen Betrieb des Abkühlbehälters 9, der Biokohle aus dem Carbonisierungsreaktor 1 aufnimmt, intermittierend betrieben. raturen zwischen 200° und 1200°C, vorzugsweise zwischen 400° und 800°C. Dabei wird auch Reaktionsgas gebildet, das mittel- oder unmittelbar dem Vergaserreaktor 16 über die Leitung 30 zugeführt wird. - Eine weitere Möglichkeit des Aufbaus der Gesamtvorrichtung, bestehend aus Carbonisierungsreaktor 1, Abkühlbehälter 9, und Vergaserreaktor 16 ist in
Fig. 4 dargestellt. Diese bietet sich an, wenn aus Platzgründen eine Vertikalaufstellung nicht möglich ist. - Die aus dem Abkühlbehälter 9 austretende Biokohle wird mittels mechanischer Fördereinrichtungen, wie Förderband oder Förderschnecke 77, in den Einfülltrichter des daneben stehenden Vergaserreaktors 16 transportiert und diesem kontinuierlich zugeführt.
- Ein Ablaufprozess der Gesamtanlage ist in
Fig. 3 dargestellt. - Der Vergaserreaktor 16 ist über eine Leitung 34 an eine Weiterverarbeitungseinrichtung 36 zur Behandlung und/oder Weiterverarbeitung der im Vergaserreaktor 16 gewonnenen Kohle angeschlossen.
- Der im Vergaserreaktor 16 gebildete Sattdampf wird über die Sattdampf führende Leitung 38 mit einem Verbraucher oder mit einer Heizung und/oder einem Dampfkolbenmotor 42 verbunden. Das in der Gesamtanlage oder im ersten Carbonisierungsreaktor 1 erzeugte Reaktionsgas wird mittel- oder unmittelbar dem Zyklonabscheider 18 und/oder Gaswäscher 20 und anschließend einem Entfeuchter 56 oder mittel- oder unmittelbar einem Verdichter 44 oder dem Verbraucher 48 zugeführt.
- In einer oder mehreren Leitungen 26-34, 38, 50, 53, 54 können Schaltventile vorgesehen sein, die manuell oder über eine Antriebsvorrichtung aus- oder eingeschaltet werden können, wobei die Antriebsvorrichtungen über einen Rechner in Abhängigkeit des Arbeitsprozesses gesteuert werden.
-
Tabelle 1 Analyse Luftgetrocknete Holzkohle HTC Trockene Holzkohle HTC Promimate Analyse % Feuchtigkeit 8,8 0,0 Asche 6,9 7,6 Flüchtende Bestandteile 58,5 64,1 Fixer Kohlenstoff 25,8 28,3 Schwefel Total Schwefel 0,58 0,6 Heizwerte in Kcal/kg Unterer Heizwert Kcal / kg 4668 5169 Oberer Heizwert Kcal / kg 4969 5446 Elementaranalyse C 53,86 59,0 H 5,92 5,4 N 5,36 5,9 O 34,86 29,7 -
Tabelle 2 Analyse Original Holzkohle Luftgetrocknete Holzkohle Trockene Holzkohle Promimate Analyse % Feuchtigkeit 34.9 % 21.6 % 0,0 % Asche 1,9 % 2,3 % 2,9 % Flüchtende Bestandteile 24,2 % 29,2 % 37,2 % Fixer Kohlenstoff 39,0 46,9 59,9 Schwefel Total Schwefel 0,2 0,2 0,2 Heizwerte in Kcal/kg Unterer Heizwert Kcal / kg 4382 5392 7030 Oberer Heizwert Kcal /kg 4730 5699 7269 Elementaranalyse C 63,2 83,64 H 5,56 4 N 0,22 0,29 O 30,82 14,89
Claims (12)
- Vorrichtung zur thermochemischen Carbonisierung und Vergasung von Feuchtigkeits-, insbesondere wasserhaltiger und/oder trockener, Biomasse zur Herstellung eines Energie- und/oder Rohstoffträgers mit Hilfe eines eine verschliessbare Einlassöffnung (13) aufweisenden, beheizbaren Carbonisierungsreaktors (1), in dem die Biomasse in einen festen, schüttbaren oder gasförmigen Energie- und/oder Rohstoffträger umgewandelt wird und über eine verschliessbare Auslassöffnung (14) an einen an den Carbonisierungsreaktor (1) angeschlossenen Abkühlbehälter (9) zur Zwischenlagerung des Energie- und/oder Rohstoffträgers abgegeben wird, der mit einem sich daran anschliessenden Vergaserreaktor (16) in Verbindung steht, in dem aus der Biomasse Gas und Abfallstoffe, wie Asche, abgeschieden werden,
gekennzeichnet durch folgende Merkmale:a) dem Carbonisierungsreaktor (1), der mit einem Heizelement (4) wirkungsmässig verbunden, insbesondere von einem Heizmantel umgeben ist, ist Fremdwärmeenergie (60) zuführbar und über eine weitere den Vergaserreaktor (16) und den Carbonisierungsreaktor (1) verbindende Leitung (31) weitere Wärmeenergie zumindest aus dem Vergaserreaktor (16) zuführbar.b) dem Vergaserreaktor ist über eine den Vergaserreaktor (16) und den Abkühlbehälter (9) verbindende Leitung (54) Kühlenergie aus dem Abkühlbehälter (9) zuführbar,c) dem Abkühlbehälter (9) ist Feuchtigkeit, insbesondere Wasser, über eine weitere Leitung (51) zuführbar, um eine annähernd konstante Prozessführung sicherzustellen,d) aus dem Carbonisierungsreaktor (1) und/oder dem Abkühlbehälter (9) ist Reaktionsgas über eine den Carbonisierungsreaktor (1) und den Gasspeicher (21) verbindende Leitung (28, 30) einem Gasspeicher (21) zuführbar, wobei das Reaktionsgas über eine den Vergaserreaktor (16) und den Gasspeicher (21) verbindende Leitung (78) wieder dem Vergaserreaktor (16) zuführbar ist. - Vorrichtung nach Anspruch 1
dadurch gekennzeichnet,
dass die im Carbonisierungsreaktor (1) aufgenommene feuchtigkeitshaltige Biomasse bei Drücken zwischen 5 und 30 bar, vorzugsweise bei Drücken zwischen 15 und 25, insbesondere bei Drücken von etwa 20 bar und bei Temperaturen zwischen 200° und 1200°C, vorzugsweise zwischen 400° und 800°C, verdampft und Reaktionsgas gebildet wird, das mittel- oder unmittelbar dem Vergaserreaktor (16) über eine Leitung (30) zuführbar ist. - Vorrichtung nach Anspruch 1 oder 2
dadurch gekennzeichnet,
dass der Vergaserreaktor (16) in einem Temperaturbereich zwischen 1200° und 1800°C, vorzugsweise zwischen 1000° und 1400°C, arbeitbar und während des Arbeitsprozesses Wärmeenergie über eine den Vergaserreaktor (16) und den Carbonisierungsreaktor (1) verbindende Leitung (31) abgebbar ist. - Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass ein Zyklonabscheider (18) und/oder Gasreiniger (20) über eine Leitung (22) an den Vergaserreaktor (16) angeschlossen ist, wobei zwischen Zyklonabscheider (18) und/oder Gasreiniger (20) ein Wärmetauscher vorgesehen sein kann, der Gas auf die Betriebstemperatur des Wärmetauschers zwischen 40°C und 80°C oder zwischen 50°C und 60°C absenken kann und die daraus resultierende abgeführte Energie einer Heizung und/oder dem Arbeitsprozess der Anlage wieder zuführbar und die vom Wärmetauscher (40) abgegebene Wärmeenergie über eine Leitung (41) einem Verbraucher, wie Heizung, zuführbar ist. - Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die im Carbonisierungsreaktor (1) und/oder im Abkühlbehälter (9) freigesetzten Schadstoffe oder Störstoffe mit Hilfe einer thermischen Einrichtung vernichtbar oder zumindest teilweise vernichtbar oder ableitbar sind. - Vorrichtung nach Anspruch 1
dadurch gekennzeichnet,
dass der Vergaserreaktor (16) über eine Leitung (34) an eine Verarbeitungseinrichtung (36) zur Behandlung und/oder Weiterverarbeitung der im Vergaserreaktor (16) gewonnenen Kohle angeschlossen ist. - Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass der Abkühlbehälter (9) und/oder der Vergaserreaktor (16) über die Leitung (34) mit der Verarbeitungseinrichtung (36) zur Behandlung oder Weiterverarbeitung der im Behälter (9) und/oder im Vergaserreaktor (16) gewonnenen Kohle verbunden ist. - Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass im Vergaserreaktor (16) Sattdampf gewonnen werden kann, der über eine Sattdampf führende Leitung (42) mit einem Verbraucher oder mit einer Heizung und/oder einem Dampfkolbenmotor verbunden ist. - Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass der Vergaserreaktor (16) über mindestens eine Leitung (53) mit einem Verbraucher oder zumindest mit einem Gasverdichter und/oder Gasmotor (48) verbunden ist. - Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass der Vergaserreaktor (16) und/oder der Abkühlbehälter (9) über eine Kühleinrichtung (49) gekühlt werden kann, oder von je einem Kühlmantel (51, 52) umgeben ist und die Kühleinrichtung (49) mit Kühlwasser gespeist wird, wobei zumindest auch Kühlwasser aus dem Kühlmantel (51) des Abkühlbehälters (9) über eine Leitung (54) dem Vergaserreaktor (16) zugeführt wird. - Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass in einer oder mehreren Leitungen (26-34, 38, 40, 50, 53, 54) Schaltventile vorgesehen sind, die manuell oder über eine Antriebsvorrichtung aus- oder eingeschaltet werden können, wobei die Antriebsvorrichtungen über einen Rechner in Abhängigkeit des Arbeitsprozesses gesteuert werden können. - Verfahren zur thermochemischen Carbonisierung und Vergasung von Feuchtigkeits-, insbesondere wasserhaltiger und/oder trockener, Biomasse zur Herstellung eines Energie- und/oder Rohstoffträgers aus feuchtigkeitshaltiger und/oder trockener Biomasse unter Verwendung der Vorrichtung nach einem der vorhergehenden Ansprüche 1-11
gekennzeichnet durch folgende Verfahrensschritte:a) Die Biomasse wird in einen Carbonisierungsreaktor (1) mit Hilfe von Fremdwärmeenergie (60) und weiterer Wärmeenergie, die aus der Anlage dem Carbonisierungsreaktor (1) zugeführt wird, in einen festen, schüttbaren oder gasförmigen Energie- und/oder Rohstoffträger umgewandelt;b) das im Carbonisierungsreaktor (1) gebildete Gas wird in einen Reaktionsgasspeicher (21) aufgenommen;c) das im Carbonisierungsreaktor und Abkühlbehälter gewonnene oder befindliche Reaktionsgas wird mittel- oder unmittelbar dem Vergaserreaktor (16) zugeführt;d) zumindest ein Teil der in dem Verfahren zur thermochemischen Carbonisierung und Vergasung von Feuchtigkeits-, insbesondere 4 wasserhaltiger und/oder trockener, Biomasse gewonnene Energie wird wieder dem Verarbeitungsprozess, insbesondere dem Carbonisierungsreaktor (1), zugeführt;e) die im Vergaserreaktor (16) gewonnene Kohle wird einer weiteren Verarbeitungseinrichtung (36) zugeführt;f) die im Abkühlbehälter (9) eingespeiste Kühlenergie wird gleichzeitig oder anschließend dem Kühlmantel (52) des Vergaserreaktors (16) zugeführt;g) die im Vergaserreaktör (16) erzeugte freiwerdende Energie oder der Sattdampf wird einem oder mehreren Verbrauchern, wie Heizung und/oder einem Dampfkolbenmotor, zugeführt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL11719757T PL2507346T4 (pl) | 2011-02-14 | 2011-02-14 | Urządzenie i sposób do chemiczno-termicznej karbonizacji i gazyfikacji mokrej biomasy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/DE2011/075023 WO2012110012A1 (de) | 2011-02-14 | 2011-02-14 | Vorrichtung und ein verfahren zur thermochemischen harmonisierung und vergasung von feuchtigkeits-biomasse |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2507346A1 EP2507346A1 (de) | 2012-10-10 |
EP2507346B1 true EP2507346B1 (de) | 2015-09-30 |
Family
ID=44626378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11719757.4A Active EP2507346B1 (de) | 2011-02-14 | 2011-02-14 | Vorrichtung und ein verfahren zur thermochemischen harmonisierung und vergasung von feuchtigkeits-biomasse |
Country Status (11)
Country | Link |
---|---|
US (1) | US20130199920A1 (de) |
EP (1) | EP2507346B1 (de) |
JP (1) | JP5938788B2 (de) |
CN (1) | CN102959056B (de) |
CA (1) | CA2800606C (de) |
DE (1) | DE112011104882A5 (de) |
DK (1) | DK2507346T3 (de) |
ES (1) | ES2558318T3 (de) |
PL (1) | PL2507346T4 (de) |
RU (1) | RU2562112C2 (de) |
WO (1) | WO2012110012A1 (de) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2923215A1 (en) * | 2013-09-05 | 2015-03-12 | Ag Energy Solutions, Inc. | Apparatuses, systems, mobile gasification systems, and methods for gasifying residual biomass |
US9631151B2 (en) | 2014-09-04 | 2017-04-25 | Ag Energy Solutions, Inc. | Apparatuses, systems, tar crackers, and methods for gasifying having at least two modes of operation |
US10711214B2 (en) * | 2015-04-22 | 2020-07-14 | North-West University | Production of a carbonaceous feedstock material from a waste carbon source |
WO2017153970A1 (en) * | 2016-03-11 | 2017-09-14 | King Abdullah University Of Science And Technology | Supercritical water gasification with decoupled pressure and heat transfer modules |
US10611657B2 (en) | 2016-07-29 | 2020-04-07 | Tongji University | Method and system for preparing fuel gas by utilizing organic waste with high water content |
DE102017008577A1 (de) * | 2017-09-13 | 2019-03-14 | Christian Blank | Verfahren zur Speicherung von aus fossiler Kohle oder beliebiger Biomasse gewonnenem Wasserstoff |
EP3782725A1 (de) * | 2019-08-21 | 2021-02-24 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO | Reaktor zur hydrothermalen behandlung von biomasse |
CN111378464B (zh) * | 2020-03-25 | 2022-02-25 | 重庆交通大学 | 一种水热碳化技术处理餐厨垃圾的家用小型原位处理设备及全封闭回收系统 |
EP3950606A1 (de) * | 2020-08-07 | 2022-02-09 | HBI S.r.l. | Biomassebehandlungsverfahren und -anlage |
US11827859B1 (en) | 2022-05-03 | 2023-11-28 | NuPhY, Inc. | Biomass gasifier system with rotating distribution manifold |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4123406C2 (de) * | 1991-07-15 | 1995-02-02 | Engineering Der Voest Alpine I | Verfahren zum Vergasen von minderwertigen festen Brennstoffen in einem schachtförmigen Vergasungsreaktor |
DE4404673C2 (de) * | 1994-02-15 | 1995-11-23 | Entec Recycling Und Industriea | Verfahren zur Erzeugung von Brenngas |
US20050247553A1 (en) * | 2004-03-23 | 2005-11-10 | Central Research Institute Of Electric Power Industry | Carbonization and gasification of biomass and power generation system |
CN2698791Y (zh) * | 2004-05-26 | 2005-05-11 | 河南省焦作市秸秆燃气有限公司 | 生物质干馏炭化气化装置 |
CN1699512A (zh) * | 2005-07-04 | 2005-11-23 | 刘伟奇 | 生物质洁净燃气发生装置及其洁净燃气的制备方法 |
CN100575455C (zh) * | 2006-09-21 | 2009-12-30 | 武汉凯迪科技发展研究院有限公司 | 生物质深度脱水炭化连续处理工艺及其设备 |
CN1931959B (zh) * | 2006-09-28 | 2010-10-20 | 武汉凯迪工程技术研究总院有限公司 | 利用生物质制造合成气的复合循环式高温气化工艺方法 |
DE102007005799B4 (de) * | 2006-10-18 | 2018-01-25 | Heinz-Jürgen Mühlen | Verfahren zur Erzeugung eines wasserstoffreichen Produktgases |
RU2341552C1 (ru) * | 2007-06-13 | 2008-12-20 | Общество с ограниченной ответственностью "Углеводород" | Способ получения синтез-газа |
JP5397878B2 (ja) * | 2008-07-04 | 2014-01-22 | 一般財団法人電力中央研究所 | バイオマス燃料を用いたガス化設備及びガス化発電設備 |
DE102008047201B4 (de) * | 2008-09-15 | 2011-10-06 | Semiha Pektas-Cehreli | Verfahren und Vorrichtung zur Produktion von Synthesegas und zum Betreiben eines Verbrennungsmotors damit |
CN101418239B (zh) * | 2008-12-01 | 2011-12-21 | 武汉凯迪工程技术研究总院有限公司 | 利用生物质制造合成气的高温气化工艺方法及系统 |
-
2011
- 2011-02-14 CA CA2800606A patent/CA2800606C/en active Active
- 2011-02-14 JP JP2013552830A patent/JP5938788B2/ja active Active
- 2011-02-14 RU RU2012151909/10A patent/RU2562112C2/ru active
- 2011-02-14 WO PCT/DE2011/075023 patent/WO2012110012A1/de active Application Filing
- 2011-02-14 PL PL11719757T patent/PL2507346T4/pl unknown
- 2011-02-14 US US13/878,765 patent/US20130199920A1/en not_active Abandoned
- 2011-02-14 CN CN201180027535.2A patent/CN102959056B/zh active Active
- 2011-02-14 DK DK11719757.4T patent/DK2507346T3/en active
- 2011-02-14 EP EP11719757.4A patent/EP2507346B1/de active Active
- 2011-02-14 DE DE112011104882T patent/DE112011104882A5/de not_active Withdrawn
- 2011-02-14 ES ES11719757.4T patent/ES2558318T3/es active Active
Also Published As
Publication number | Publication date |
---|---|
DK2507346T3 (en) | 2016-01-11 |
PL2507346T3 (pl) | 2016-03-31 |
RU2012151909A (ru) | 2015-01-10 |
CN102959056A (zh) | 2013-03-06 |
JP2014505149A (ja) | 2014-02-27 |
DE112011104882A5 (de) | 2013-11-28 |
WO2012110012A1 (de) | 2012-08-23 |
CN102959056B (zh) | 2014-11-19 |
PL2507346T4 (pl) | 2016-04-29 |
JP5938788B2 (ja) | 2016-06-22 |
EP2507346A1 (de) | 2012-10-10 |
CA2800606A1 (en) | 2012-08-23 |
RU2562112C2 (ru) | 2015-09-10 |
US20130199920A1 (en) | 2013-08-08 |
ES2558318T3 (es) | 2016-02-03 |
CA2800606C (en) | 2018-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2507346B1 (de) | Vorrichtung und ein verfahren zur thermochemischen harmonisierung und vergasung von feuchtigkeits-biomasse | |
EP2501786B1 (de) | Thermisch-chemische verwertung von kohlenstoffhaltigen materialien, insbesondere zur emissionsfreien erzeugung von energie | |
EP2414494A1 (de) | Verfahren zur hydrothermalen karbonisierung nachwachsender rohstoffe und organischer reststoffe | |
WO2010003968A2 (de) | Verfahren und vorrichtung zur herstellung von teerarmem synthesegas aus biomasse | |
EP2284141A1 (de) | Verfahren und Vorrichtung zur Herstellung von mit Mineralstoffen angereicherten Kohlepartikeln | |
DE102007011763B3 (de) | Verfahren zur katalytischen Aufbereitung von Klärschlamm und Einrichtung zur Durchführung des Verfahrens | |
DE102006061217B3 (de) | Verfahren zur thermischen Aufbereitung von Klärschlamm und Einrichtung zur Durchführung des Verfahrens | |
DE10021383A1 (de) | Verfahren und Vorrichtung zur vollständigen und schadstoffreien Konversion von Reststoffgemengen | |
EP2650347A1 (de) | Kombi-Mischgasanlage mit Gasreinigung und Gasreinigungseinrichtung | |
DE19857870A1 (de) | Verfahren und Vorrichtung zur vollständigen und schadstoffreien Konversion von Material | |
DE10107712A1 (de) | Vorrichtung und Verfahren zur energetischen Nutzung von Faulschlammvergasungsgas | |
WO2006131293A1 (de) | Verfahren zur erzeugung von treibstoffen aus biogenen rohstoffen sowie anlage und katalysatorzusammensetzung zur durchführung des verfahrens | |
EP3356299B1 (de) | System zur aufarbeitung von organischen reststoffen mittels hydrthermaler karbonisierung | |
DE19809400C1 (de) | Verfahren zur Aufbereitung von Reststoffgemengen und zur Konversion von kohlenstoffhaltigen Rest- oder Rohstoffen in den Reststoffgemengen und Vorrichtung zur Durchführung derartiger Verfahren | |
EP1910499A2 (de) | Verfahren und vorrichtung zur thermochemischen umwandlung von organischen substanzen in hochwertige organische produkte | |
EP2325287A1 (de) | Emissionsfreies Kraftwerk zur Erzeugung von elektrischer und mechanischer Energie | |
CN103402930B (zh) | 由来自废水净化设备的污泥制备生物油的集成方法 | |
Al Afif et al. | Evaluation of biochar and hydrocar energy potential derived from olive mills waste: The case of Montenegro | |
WO2001079123A1 (de) | Konditionierungsverfahren biogener feststoffe | |
EP3508556A1 (de) | Verfahren zum betreiben einer anlage zur energiegewinnung und anlage hierfür | |
WO2008034596A1 (de) | Anlage und verfahren zur erzeugung von treibstoffen aus biogenen rohstoffen | |
AT512361A2 (de) | Thermochemische Holzvergasungsanlage mit Festbettreaktor mit doppelt aufsteigender Gegenstromvergasung, Gasreinigung, Gasbereitstellung, Schadstoffverwertung und Schadstoffentsorgung für den Dauerbetrieb mit Gas-Kolbenmotoren und Gasturbinen | |
DE102006007457B4 (de) | Verfahren und Vorrichtung zum Erzeugen von Gas aus kohlenstoffhaltigem Material | |
AT510932B1 (de) | Verfahren zum betreiben einer anlage zur energiegewinnung | |
EP4186962A1 (de) | Verfahren und vorrichtung zur herstellung eines rohölvorläufers und eines rohöls aus organischem abfall |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120622 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
17Q | First examination report despatched |
Effective date: 20130527 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150512 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 752421 Country of ref document: AT Kind code of ref document: T Effective date: 20151015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502011008047 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: MICHELI AND CIE SA, CH |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20160107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151230 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2558318 Country of ref document: ES Kind code of ref document: T3 Effective date: 20160203 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160130 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502011008047 Country of ref document: DE Representative=s name: HERNANDEZ, YORCK, DIPL.-ING., DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160201 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20150402680 Country of ref document: GR Effective date: 20160414 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502011008047 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20160701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160214 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160214 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20170206 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180214 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170214 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: IT Effective date: 20190402 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20220211 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20230224 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20230331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220215 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230224 Year of fee payment: 13 Ref country code: DK Payment date: 20230224 Year of fee payment: 13 Ref country code: CH Payment date: 20230303 Year of fee payment: 13 Ref country code: AT Payment date: 20230224 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20230224 Year of fee payment: 13 Ref country code: IT Payment date: 20230224 Year of fee payment: 13 Ref country code: GR Payment date: 20230224 Year of fee payment: 13 Ref country code: GB Payment date: 20230214 Year of fee payment: 13 Ref country code: BE Payment date: 20230224 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20230301 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240227 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20240229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160214 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20240301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240904 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 752421 Country of ref document: AT Kind code of ref document: T Effective date: 20240214 |