EP2505842B1 - Multi stage centrifugal pump system - Google Patents

Multi stage centrifugal pump system Download PDF

Info

Publication number
EP2505842B1
EP2505842B1 EP11002578.0A EP11002578A EP2505842B1 EP 2505842 B1 EP2505842 B1 EP 2505842B1 EP 11002578 A EP11002578 A EP 11002578A EP 2505842 B1 EP2505842 B1 EP 2505842B1
Authority
EP
European Patent Office
Prior art keywords
centrifugal pump
liquid
impeller group
impeller
pump assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP11002578.0A
Other languages
German (de)
French (fr)
Other versions
EP2505842A1 (en
Inventor
Steen Mikkelsen
Bo Møller Jensen
Aage Bruhn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grundfos Management AS
Original Assignee
Grundfos Management AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44515211&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2505842(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Grundfos Management AS filed Critical Grundfos Management AS
Priority to EP11002578.0A priority Critical patent/EP2505842B1/en
Priority to AU2012201654A priority patent/AU2012201654B2/en
Priority to IN817DE2012 priority patent/IN2012DE00817A/en
Priority to RU2012112043/06A priority patent/RU2578778C2/en
Priority to US13/433,398 priority patent/US9879680B2/en
Priority to CN2012100942511A priority patent/CN102734176A/en
Priority to CN201910559567.5A priority patent/CN110307166A/en
Publication of EP2505842A1 publication Critical patent/EP2505842A1/en
Publication of EP2505842B1 publication Critical patent/EP2505842B1/en
Application granted granted Critical
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D9/00Priming; Preventing vapour lock
    • F04D9/004Priming of not self-priming pumps
    • F04D9/005Priming of not self-priming pumps by adducting or recycling liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/06Multi-stage pumps
    • F04D1/063Multi-stage pumps of the vertically split casing type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/08Units comprising pumps and their driving means the pump being electrically driven for submerged use
    • F04D13/10Units comprising pumps and their driving means the pump being electrically driven for submerged use adapted for use in mining bore holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D9/00Priming; Preventing vapour lock
    • F04D9/02Self-priming pumps

Definitions

  • the invention relates to a multi-stage centrifugal pump unit with at least three impellers, d. H. an at least three-stage centrifugal pump unit.
  • DE 22 49 883 A1 discloses a self-priming centrifugal pump which has a second blade arrangement on its impeller, which generates an additional flow for suction.
  • DE 1 703 603 discloses a multi-stage self-priming centrifugal pump.
  • the multi-stage centrifugal pump unit according to the invention has at least three impellers, which are preferably arranged on a common shaft and are driven by a motor, in particular an electric motor, via these.
  • the multi-stage centrifugal pump unit according to the invention is constructed in such a way that it has two successive impeller groups, ie groups of pump stages, in the direction of flow.
  • the first impeller group in the flow direction is designed in such a way that it enables the centrifugal pump to self-priming.
  • a backflow channel is present in the first impeller group, which connects the output side of the first impeller group with its input side. This backflow channel enables a liquid flow through the backflow channel and through the impeller to be effected within the first impeller group by its at least two impellers. I.e. A limited amount of liquid can be circulated in the first impeller group.
  • This circulating amount of liquid causes a sufficient suction effect in the first impeller group in order to draw in further liquid. This means that the entire centrifugal pump unit can automatically draw in liquid. It is only preferred that a limited amount of liquid is always present in the first impeller group, in particular in the return flow channel, in order to ensure that the circulating flow through the impellers of the first impeller group and the return flow channel can start when the pump is started up.
  • At least one valve for closing the return flow channel is present in the return flow channel.
  • This valve can be used to close the return flow channel when the pump has reached its normal operating state. In the normal operating state, when the pump unit is pumping liquid, an open return flow channel and a constant liquid return would impair the efficiency of the centrifugal pump unit. This can be done by closing the valve be prevented after the pump has started up, so that the pump then works like a conventional multi-stage centrifugal pump.
  • the valve is preferably designed such that it closes the return flow channel when a predetermined fluid pressure is reached in the return flow channel or on the exit side of the first impeller group. Reaching the predetermined fluid pressure is recognized as a normal operating state or an operating state in which there is already a sufficient delivery flow when further liquid is drawn in.
  • the fluid pressure in the return flow channel i.e.. H. detected on the output side of the first impeller group.
  • the valve is preferably designed as a spring element, wherein it is kept open by spring action against the fluid pressure prevailing in the return flow channel. When the fluid pressure exceeds the spring force, the valve is closed.
  • the first impeller group is formed at least in two stages with two impellers arranged one behind the other in the flow direction.
  • the return flow channel is arranged such that it leads from the output side of the second impeller to the input side of the first impeller.
  • the two-stage first impeller group enables sufficient flow and suction to be achieved by conveying the liquid in the circuit through the return flow channel in order to generate a sufficient negative pressure overall for suctioning liquid in the suction mouth or suction channel of the centrifugal pump unit.
  • a separating element which is designed to separate air and liquid, is preferably arranged on the output side of the first impeller group. Especially when starting up the pump unit when only a little liquid is initially conveyed through the return flow channel, the centrifugal pump unit will also suck in air through its suction line, with air and liquid ideally mixing when entering the first impeller. It is therefore expedient to separate the air from the liquid on the outlet side of the first impeller group, in order to preferably exclusively return liquid through the return channel to the inlet side of the first impeller group. This prevents the backflow channel from running dry.
  • the separating element is further preferably arranged relative to the return flow channel in such a way that the liquid emerging from the separating element enters the return flow channel. This ensures that the liquid flowing from the return flow channel into the first impeller group, when it exits the first impeller group, substantially completely re-enters the return channel in order to create a circuit.
  • a check valve or a backflow preventer is preferably arranged on the input side of the first impeller group, which prevents liquid from running out of the centrifugal pump unit back into a suction line. This prevents the centrifugal pump unit from running completely dry; rather, the non-return valve keeps liquid inside the centrifugal pump unit even when the centrifugal pump unit is taken out of operation, which fluid enables restarting and renewed suction.
  • the check valve can be integrated directly into the centrifugal pump unit, but can also be attached to the suction port of the centrifugal pump unit as a separate component.
  • At least one liquid reservoir is arranged between the first and the second impeller group.
  • the liquid reservoir is designed in such a way that it fills with liquid during normal operation of the centrifugal pump unit.
  • the centrifugal pump unit is taken out of operation or in the event that the centrifugal pump unit should deliver air bubbles, the liquid in the liquid reservoir can ensure that the pumping action of the centrifugal pump unit does not completely stop, but that there is always enough liquid in the centrifugal pump unit to suck in again To allow liquid through the suction nozzle or the suction line of the centrifugal pump unit.
  • the liquid reservoir preferably has at least one outlet opening which is arranged such that it is opposite an inlet opening of the return flow channel in such a way that liquid can flow from the liquid store into the return flow channel. This ensures that the return flow channel is initially filled or kept filled by the liquid reservoir.
  • the liquid from the return flow channel then flows to the inlet side of the first impeller of the first impeller group and enters it, so that this impeller can immediately achieve a conveying effect and can suck in further liquid through the suction line. Until liquid enters the first impeller from the suction line, the liquid in the return flow channel is then first circulated in the first impeller group, as described above.
  • the centrifugal pump unit according to the invention is preferably designed such that the axis of rotation of the impellers extends vertically.
  • the liquid reservoir described above is then preferably designed such that its outlet opening is arranged on the underside, so that the liquid emerges from the liquid reservoir downward due to gravity and enters the return flow channel can.
  • the liquid store is preferably filled from above via the liquid flowing to the pump stages arranged behind the liquid store or above the liquid store.
  • the return flow channel preferably has an opening directed upwards, so that the liquid from the liquid reservoir can enter this opening from above.
  • At least two liquid stores can be arranged such that an outlet opening of the second liquid store opens into an opening of a first liquid store.
  • two or more liquid reservoirs can be arranged one behind the other in the flow or delivery direction between the first impeller group and the second impeller group.
  • the liquid flows from the first or lower liquid reservoir, as described above, preferably into the return channel.
  • the liquid from the second or subsequent liquid store first flows into the first liquid store and from there into the return channel.
  • liquid can pass from a third liquid store into the second liquid store. All liquid stores preferably have an outlet opening on the underside and an inlet opening on the top side.
  • the at least one liquid reservoir is particularly preferably designed as an annular pot with an open top, which surrounds a shaft driving the impellers.
  • the pot is ring-shaped or toroidal and has an opening in the middle through which the shaft extends.
  • the opening also serves as a flow path for the conveyed liquid from the first impeller group to the second impeller group.
  • a free space surrounding the shaft is provided in the opening.
  • the top of the pot-shaped liquid reservoir is open, so that the liquid that flows through the central opening over the edge of the opening from above into the Pot-shaped liquid storage can enter.
  • the described at least one outlet opening is preferably formed on the underside.
  • the outlet openings of the subsequent liquid stores are arranged such that they are located above the top of the respective preceding liquid store, so that the liquid runs out of the outlet opening into the preceding liquid store. From the first, that is to say the lowest, liquid reservoir, the liquid runs out of the outlet opening, as described, into the return line.
  • the size of the outlet openings is such that the liquid stores slowly empty.
  • the individual impellers of the second impeller group are each arranged in a stepped module, with all the stepped modules having the same axial height, and the at least two impellers of the first impeller group are also arranged in such a stepped module, which has an axial height that the axial height or an integer multiple of the height of a step module of the second impeller group.
  • This modular structure with a fixed grid of the axial heights or lengths of the individual modules has the advantage that centrifugal pump units of different output, in particular different delivery and suction heights, can be realized very easily from the modules.
  • the first self-priming impeller group can also be easily integrated into conventional multi-stage centrifugal pumps, since the parts of the first impeller group have the same grid in their axial length as the modules of the second impeller group.
  • the same tensioning straps can be used to hold the modules together as are used in conventional multi-stage centrifugal pump units. The number of parts required can thus be reduced.
  • the liquid accumulators or spacing elements arranged between the two impeller groups also each have an axial height which corresponds to the axial height or an integer multiple of this height of a step module of the second impeller group.
  • the axial height fits into the existing grid of the axial height of the individual pump stages, which are arranged in the second impeller group.
  • the centrifugal pump unit described by way of example has a total of eight stages, ie eight impellers. Of which two impellers 2 are arranged in a first impeller group 4 and six impellers 6 in a second impeller group 8.
  • the first impeller group 4 faces the inlet or suction port 10 of the pump unit.
  • the second impeller group 8 is connected downstream of the first impeller group in the flow or conveying direction.
  • the liquid to be pumped flows through the individual impellers one after the other and becomes the output side of the the individual impellers and the output side of the last impeller 6 is fed to the pressure port 14 via the annular pressure channel 12. All impellers 2 and 6 are driven by a common shaft 16.
  • the shaft 16 is connected at its shaft end 18 to a motor, not shown here, for example an electric motor for driving.
  • the first impeller group 4 is designed to be self-priming in the manner described below, so that the centrifugal pump can suck in liquid via the suction nozzle 10 even when the suction nozzle 10 and an upstream suction line are not filled with liquid.
  • a separating element 20 is arranged on the output side of the second impeller 2 of the first impeller group 4 in the direction of flow. This is designed so that liquid and air are separated from each other. This is done in that the liquid is accelerated radially outward, so that the air in the central area near the shaft 16 and the liquid in the peripheral area near the peripheral wall 22 emerge from the separating element 20.
  • the liquid emerging from the separating element 20 flows over the peripheral wall 22 at its upper edge and enters a return flow channel 24.
  • the return flow channel 24 leads back on the outer circumference of the first impeller group 4 in the direction of the suction port 10.
  • the return flow channel leads to the suction mouth 28 of the first impeller 2 in the flow direction of the first impeller group 4 of the separating element 20 back through the return flow channel 24 to the suction mouth 28 of the first impeller 2.
  • the seals 30 seal the return channel 24 against the pressure channel 12, so that liquid is prevented from flowing over from the pressure side via the return channel 24 to the suction side in normal operation.
  • a bearing 32 is arranged in the interior of the separating element 20 and is in contact with the outer circumference of the shaft 16. This also serves to seal the separating element 20 with respect to the shaft 16 in order to prevent air from flowing out of the separating element 20 back to the impellers 2.
  • the seal 34 seals the axial end of the shaft 16 to prevent air from flowing from the pressure side of the pump over the shaft to the suction side.
  • the seal 36 also serves to separate the pressure side from the suction side, i. H. to seal the pressure port 14 against the suction port 10.
  • a valve 38 is arranged in the return flow channel 24.
  • This valve 38 is designed such that when a predetermined pressure is reached, it is on the output side of the second impeller 2, ie on the output side of the separating element 20 and in the return flow channel 24 closes the return flow channel. I.e. after reaching this predetermined pressure, the return flow channel 24 is closed and the liquid flows exclusively to the subsequent impellers 6 of the second impeller group 8.
  • Valve elements in the form of spring plates 46 are arranged at the openings 44. These spring plates 46 can assume two positions, namely an open position, which in Fig. 3 is designated by the reference numeral 46 '. In this position, the spring plate 46 'extends in a sinew shape to the inner circumference of the wall 40 and is therefore spaced apart from the opening 44, so that the latter is released. If the pressure now rises in the area of the return flow channel 24, which is located between the peripheral wall 22 and the wall 40, the spring plate 46 'is pressed radially outward and lies against the inside of the wall 40 above the opening 44, so that the Opening 44 is closed.
  • liquid reservoirs 48 are arranged between the first impeller group 4 and the second impeller group 8. These are detailed in Fig. 4 shown.
  • the liquid reservoirs 48 are designed as ring-shaped or toroidal pots which surround the shaft 16.
  • the shaft 16 extends through a central opening 50 of the liquid reservoir 48, the wall of the opening 50 being radially spaced from the outer circumference of the shaft 16.
  • the opening 50 also serves as a flow path for the liquid conveyed from the first impeller group 4 to the second impeller group 8.
  • the circumferential walls 52 of the openings 50 have a length in the direction of the longitudinal axis X which is shorter than the axial length of the outer walls of the liquid stores 48.
  • the liquid reservoirs 48 are thus opened at their top, so that liquid which flows through the openings 50 can flow over the peripheral walls 52 into the interior of the liquid reservoirs 48.
  • the liquid reservoirs 48 are filled when liquid flows from the first impeller group 4 to the second impeller group 8.
  • Each liquid reservoir 48 has an outlet opening 54 with a small diameter on its underside.
  • the outlet openings 54 are spaced radially from the longitudinal axis X to such an extent that they lie above the free space between the peripheral wall 22 and the wall 40 of the separating element 20.
  • the liquid runs from the first, ie lower, liquid store 48 directly into the return flow channel 24. From the two other liquid stores 48, the liquid first runs through the associated outlet opening 54 into the liquid store 48 located below.
  • a check valve or backflow preventer 55 is also arranged on or in the suction nozzle 10.
  • the check valve 55 is arranged directly in the suction nozzle, but it could also be attached to the suction nozzle 10 as a separate component.
  • Such a device can be used to prevent the liquid from the pump unit from running back into the suction line when the suction line adjoining the suction nozzle 10 runs dry. In this way, a certain amount of liquid can always be kept in the pump unit, via which at least the starting circuit in the first impeller group 4 can be put back into operation, in order to then draw in further liquid through the suction nozzle 10. In this way, the entire centrifugal pump unit is designed to be self-priming.
  • the pump unit is of modular construction overall, this modular construction being based on an axial length grid which is defined by the axial length of the pump stages formed by the impellers 6.
  • These pump stages each have a circumferential jacket 56, which forms the jacket of the individual stage modules.
  • These step modules are placed axially on top of each other.
  • the liquid reservoirs 48 have the same axial length as the jackets 56 of the step modules of the second impeller group 8.
  • a jacket 58 which surrounds the first impeller 2 also has the same axial length.
  • the separating element 20 has an axial length in the direction of the longitudinal axis X which corresponds to twice the axial length of the jackets 56 and 58.
  • the entire first impeller group 4 thus has an axial length which corresponds to three times the length of a step module of the second impeller group 8.
  • This uniform length grid favors the modular structure, since tensioning straps, which hold the individual step modules together in the axial direction, only in different lengths, which result from this underlying grids are defined, must be kept.
  • a wide variety of pumps can thus be assembled, with different numbers of impellers, liquid stores 48 and possibly the first impeller group 4 in order to ensure the self-priming properties.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Die Erfindung betrifft ein mehrstufiges Kreiselpumpenaggregat mit zu-mindest drei Laufrädern, d. h. ein mindestens dreistufiges Kreiselpumpenaggregat.The invention relates to a multi-stage centrifugal pump unit with at least three impellers, d. H. an at least three-stage centrifugal pump unit.

Bei derartigen mehrstufigen Kreiselpumpenaggregaten sind mehrere Laufräder in Förderrichtung hintereinander angeordnet, sodass von Stufe zu Stufe eine weitere Druckerhöhung stattfindet. Problematisch bei diesen Kreiselpumpenaggregaten ist, dass sie bei Inbetriebnahme zunächst entlüftet und mit Flüssigkeit gefüllt werden müssen. Die Kreiselpumpenaggregate sind nicht selbstansaugend. Dies ist bei bestimmten Anwendungsfällen nachteilig, beispielsweise in Feuerlöscheinrichtungen, bei denen nicht eine konstante Füllung mit Flüssigkeit, insbesondere Wasser gewährleistet sein kann. In solchen Einrichtungen ist es wichtig, dass die verwendeten Pumpen selbstansaugend sind.In such multi-stage centrifugal pump units, several impellers are arranged one behind the other in the conveying direction, so that a further pressure increase takes place from stage to stage. The problem with these centrifugal pump units is that they have to be vented and filled with liquid when they are started up. The centrifugal pump units are not self-priming. This is disadvantageous in certain applications, for example in fire extinguishing devices in which constant filling with liquid, in particular water, cannot be guaranteed. In such facilities it is important that the pumps used are self-priming.

EP 0 406 787 A2 offenbart ein Kreiselpumpenaggregat, wobei in einer einstufigen Ausführung ein Rückflusskanal von der Druckseite des Laufrades zurück zur Saugseite des Laufrades vorgesehen ist. In einer weiteren Ausführungsform ist ein mehrstufiges Kreiselpumpenaggregat gezeigt, welches jedoch keine Rückführung von der Druckseite zur Saugseite aufweist. EP 0 406 787 A2 discloses a centrifugal pump unit, wherein a return flow channel is provided from the pressure side of the impeller back to the suction side of the impeller in a single-stage embodiment. In a further embodiment, a multi-stage centrifugal pump unit is shown, which, however, has no return from the pressure side to the suction side.

US 5,513,959 A offenbart ein Kreiselpumpenaggregat mit einem Rückfluss von der Druckseite zur Saugseite mit einem Ventil in diesem Rückfluss. Dabei ist die Ausgangsseite mehrerer Pumpenstufen mit der Eingangsseite der ersten Pumpenstufen verbunden. US 5,513,959 A discloses a centrifugal pump unit with a return flow from the pressure side to the suction side with a valve in this return flow. The output side of several pump stages is connected to the input side of the first pump stages.

DE 22 49 883 A1 offenbart eine selbstansaugende Kreiselpumpe, welche an ihrem Laufrad eine zweite Schaufelanordnung aufweist, welche eine zusätzliche Strömung zum Ansaugen erzeugt. DE 22 49 883 A1 discloses a self-priming centrifugal pump which has a second blade arrangement on its impeller, which generates an additional flow for suction.

DE 1 703 603 offenbart eine mehrstufige selbstansaugende Kreiselpumpe. DE 1 703 603 discloses a multi-stage self-priming centrifugal pump.

Es ist Aufgabe der Erfindung, ein mehrstufiges Kreiselpumpenaggregat dahingehend zu verbessern, dass seine selbstansaugenden Eigenschaften optimiert sind.It is an object of the invention to improve a multi-stage centrifugal pump unit in such a way that its self-priming properties are optimized.

Es ist daher Aufgabe der Erfindung, ein mehrstufiges Kreiselpumpenaggregat dahingehend zu verbessern, dass es selbstansaugend ist.It is therefore an object of the invention to improve a multi-stage centrifugal pump unit so that it is self-priming.

Das erfindungsgemäße mehrstufige Kreiselpumpenaggregat weißt zumindest drei Laufräder auf, welche vorzugsweise auf einer gemeinsamen Welle angeordnet sind und über diese von einem Motor, insbesondere einem Elektromotor angetrieben werden.The multi-stage centrifugal pump unit according to the invention has at least three impellers, which are preferably arranged on a common shaft and are driven by a motor, in particular an electric motor, via these.

Das erfindungsgemäße mehrstufige Kreiselpumpenaggregat ist so aufgebaut, dass es in Strömungsrichtung zwei aufeinanderfolgende Laufradgruppen, d. h. Gruppen von Pumpenstufen aufweist. Die in Strömungsrichtung erste Laufradgruppe ist dabei so ausgestaltet, dass sie ein selbstansaugendes Verhalten der Kreiselpumpe ermöglicht. Dazu ist in der ersten Laufradgruppe ein Rückflusskanal vorhanden, welcher die Ausgangsseite der ersten Laufradgruppe mit deren Eingangsseite verbindet. Dieser Rückflusskanal ermöglicht es, dass innerhalb der ersten Laufradgruppe durch deren zumindest zwei Laufräder eine Flüssigkeitsströmung durch den Rückflusskanal und durch das Laufrad bewirkt werden kann. D. h. in der ersten Laufradgruppe kann eine begrenzte Flüssigkeitsmenge zirkuliert werden. Diese zirkulierende Flüssigkeitsmenge bewirkt in der ersten Laufradgruppe eine ausreichende Sogwirkung, um weitere Flüssigkeit anzusaugen. So kann das gesamte Kreiselpumpenaggregat selbsttätig Flüssigkeit ansaugen. Es ist lediglich bevorzugt, dass in der ersten Laufradgruppe, insbesondere in dem Rückflusskanal eine begrenzte Flüssigkeitsmenge stets vorhanden ist, um zu gewährleisten, dass die zirkulierende Strömung durch die Laufräder der ersten Laufradgruppe und den Rückflusskanal bei Betriebnahme der Pumpe einsetzen kann.The multi-stage centrifugal pump unit according to the invention is constructed in such a way that it has two successive impeller groups, ie groups of pump stages, in the direction of flow. The first impeller group in the flow direction is designed in such a way that it enables the centrifugal pump to self-priming. For this purpose, a backflow channel is present in the first impeller group, which connects the output side of the first impeller group with its input side. This backflow channel enables a liquid flow through the backflow channel and through the impeller to be effected within the first impeller group by its at least two impellers. I.e. A limited amount of liquid can be circulated in the first impeller group. This circulating amount of liquid causes a sufficient suction effect in the first impeller group in order to draw in further liquid. This means that the entire centrifugal pump unit can automatically draw in liquid. It is only preferred that a limited amount of liquid is always present in the first impeller group, in particular in the return flow channel, in order to ensure that the circulating flow through the impellers of the first impeller group and the return flow channel can start when the pump is started up.

Der Rückflusskanal mündet vorzugsweise in den Saugmund einer ersten Stufe der ersten Laufradgruppe. Dadurch wird erreicht, dass die durch den Rückflusskanal fließende Flüssigkeit der Eingangsseite des Laufrades der ersten Stufe wieder zugeführt wird, sodass hier eine zirkulierende Förderströmung erreicht wird.The return flow channel preferably opens into the suction mouth of a first stage of the first impeller group. This ensures that the liquid flowing through the return flow channel is fed back to the input side of the impeller of the first stage, so that a circulating delivery flow is achieved here.

Weiter bevorzugt ist in dem Rückflusskanal zumindest ein Ventil zum Verschließen des Rückflusskanals vorhanden. Durch dieses Ventil kann der Rückflusskanal verschlossen werden, wenn die Pumpe ihren normalen Betriebszustand erreicht hat. Im normalen Betriebszustand, wenn das Pumpenaggregat Flüssigkeit fördert, würde ein offener Rückflusskanal und ein ständiger Flüssigkeitsrücklauf den Wirkungsrad des Kreiselpumpenaggregates verschlechtern. Durch Schließen des Ventils kann dies nach dem Hochfahren der Pumpe verhindert werden, sodass die Pumpe dann wie eine herkömmliche mehrstufige Kreiselpumpe arbeitet.More preferably, at least one valve for closing the return flow channel is present in the return flow channel. This valve can be used to close the return flow channel when the pump has reached its normal operating state. In the normal operating state, when the pump unit is pumping liquid, an open return flow channel and a constant liquid return would impair the efficiency of the centrifugal pump unit. This can be done by closing the valve be prevented after the pump has started up, so that the pump then works like a conventional multi-stage centrifugal pump.

Bevorzugt ist das Ventil derart ausgestaltet, dass es beim Erreichen eines vorbestimmten Fluiddruckes in dem Rückflusskanal bzw. an der Ausgangsseite der ersten Laufradgruppe den Rückflusskanal verschließt. Das Erreichen des vorbestimmten Fluiddruckes wird als normaler Betriebszustand bzw. ein Betriebszustand, in welchem bereits ein ausreichender Förderstrom beim Ansaugen weiterer Flüssigkeit vorhanden ist, erkannt. Vorzugsweise wird von dem Ventil der Fluiddruck im Rückflusskanal, d. h. an der Ausgangsseite der ersten Laufradgruppe erfasst. Das Ventil ist vorzugsweise als Federelement ausgebildet, wobei es durch Federwirkung gegen den im Rückflusskanal herrschenden Fluiddruck offen gehalten wird. Wenn der Fluiddruck die Federkraft übersteigt, wird das Ventil geschlossen. So kann im Rückflusskanal eine Öffnung vorgesehen sein, vor der in Strömungsrichtung ein Federblech liegt, welches so gekrümmt ist, dass das Blech in seiner Ruhelage von der Öffnung beabstandet ist. Durch erhöhten Fluiddruck kann das Blech gegen seine Federvorspannung so verformt werden, dass es gegen die Öffnung gedrückt wird und diese verschließt.The valve is preferably designed such that it closes the return flow channel when a predetermined fluid pressure is reached in the return flow channel or on the exit side of the first impeller group. Reaching the predetermined fluid pressure is recognized as a normal operating state or an operating state in which there is already a sufficient delivery flow when further liquid is drawn in. Preferably, the fluid pressure in the return flow channel, i.e.. H. detected on the output side of the first impeller group. The valve is preferably designed as a spring element, wherein it is kept open by spring action against the fluid pressure prevailing in the return flow channel. When the fluid pressure exceeds the spring force, the valve is closed. Thus, an opening can be provided in the return flow channel, in front of which there is a spring plate in the flow direction, which is curved such that the plate is spaced apart from the opening in its rest position. Due to increased fluid pressure, the sheet can be deformed against its spring preload so that it is pressed against the opening and closes it.

Erfindungsgemäß ist die erste Laufradgruppe zumindest zweistufig mit zwei in Strömungsrichtung hintereinander angeordneten Laufrädern ausgebildet. Dabei ist der Rückflusskanal so angeordnet, dass er von der Ausgangsseite des zweiten Laufrades zu der Eingangsseite des ersten Laufrades führt. Durch die zweistufige erste Laufradgruppe kann eine ausreichende Strömung und ein ausreichender Sog durch Fördern der Flüssigkeit im Kreislauf durch den Rückflusskanal erreicht werden, um insgesamt im Saugmund bzw. Saugkanal des Kreiselpumpenaggregates einen ausreichenden Unterdruck zum Ansaugen von Flüssigkeit zu erzeugen.According to the invention, the first impeller group is formed at least in two stages with two impellers arranged one behind the other in the flow direction. The return flow channel is arranged such that it leads from the output side of the second impeller to the input side of the first impeller. The two-stage first impeller group enables sufficient flow and suction to be achieved by conveying the liquid in the circuit through the return flow channel in order to generate a sufficient negative pressure overall for suctioning liquid in the suction mouth or suction channel of the centrifugal pump unit.

Ausgangsseitig der ersten Laufradgruppe ist vorzugsweise ein Trennelement angeordnet, welches zum Trennen von Luft und Flüssigkeit ausgebildet ist. Gerade beim Anlaufen des Pumpenaggregates wenn zunächst nur wenig Flüssigkeit durch den Rückflusskanal gefördert wird, wird das Kreiselpumpenaggregat durch seine Saugleitung auch Luft ansaugen, wobei sich Luft und Flüssigkeit beim Eintritt in das erste Laufrad idealerweise vermischen. Daher ist es zweckmäßig, die Luft von der Flüssigkeit ausgangsseitig der ersten Laufradgruppe zu trennen, um vorzugsweise ausschließlich Flüssigkeit durch den Rücklaufkanal wieder zu der Eingangsseite der ersten Laufradegruppe zurückzuführen. So wird das Trockenlaufen des Rückflusskanals verhindert.A separating element, which is designed to separate air and liquid, is preferably arranged on the output side of the first impeller group. Especially when starting up the pump unit when only a little liquid is initially conveyed through the return flow channel, the centrifugal pump unit will also suck in air through its suction line, with air and liquid ideally mixing when entering the first impeller. It is therefore expedient to separate the air from the liquid on the outlet side of the first impeller group, in order to preferably exclusively return liquid through the return channel to the inlet side of the first impeller group. This prevents the backflow channel from running dry.

Daher ist das Trennelement weiter bevorzugt relativ zu dem Rückflusskanal so angeordnet, dass die aus dem Trennelement austretende Flüssigkeit in den Rückflusskanal eintritt. So wird sichergestellt, dass die aus dem Rückflusskanal in die erste Laufradgruppe einströmende Flüssigkeit, wenn sie aus der ersten Laufradgruppe wieder austritt, im Wesentlichen vollständig wieder in den Rücklaufkanal eintritt, um so einen Kreislauf zu erzeugen.Therefore, the separating element is further preferably arranged relative to the return flow channel in such a way that the liquid emerging from the separating element enters the return flow channel. This ensures that the liquid flowing from the return flow channel into the first impeller group, when it exits the first impeller group, substantially completely re-enters the return channel in order to create a circuit.

Eingangsseitig der ersten Laufradgruppe ist vorzugsweise ein Rückschlagventil bzw. ein Rückflussverhinderer angeordnet, welcher verhindert, dass Flüssigkeit aus dem Kreiselpumpenaggregat zurück in eine Saugleitung laufen kann. So wird verhindert, dass das Kreiselpumpenaggregat vollständig trocken laufen kann, es wird vielmehr durch das Rückschlagventil auch bei Außerbetriebnahme des Kreiselpumpenaggregates Flüssigkeit im Inneren des Kreiselpumpenaggregates gehalten, welche das Wideranlaufen und ein erneutes Ansaugen ermöglicht. Das Rückschlagventil kann direkt in das Kreiselpumpenaggregat integriert sein, kann jedoch auch als separates Bauteil an den Saugstutzen des Kreiselpumpenaggregates angesetzt sein.A check valve or a backflow preventer is preferably arranged on the input side of the first impeller group, which prevents liquid from running out of the centrifugal pump unit back into a suction line. This prevents the centrifugal pump unit from running completely dry; rather, the non-return valve keeps liquid inside the centrifugal pump unit even when the centrifugal pump unit is taken out of operation, which fluid enables restarting and renewed suction. The check valve can be integrated directly into the centrifugal pump unit, but can also be attached to the suction port of the centrifugal pump unit as a separate component.

Gemäß einer weiteren bevorzugten Ausführungsform ist zwischen der ersten und der zweiten Laufradgruppe zumindest ein Flüssigkeitsspeicher angeordnet. Der Flüssigkeitsspeicher ist so ausgebildet, dass er sich beim normalen Betrieb des Kreiselpumpenaggregates mit Flüssigkeit füllt. Bei Außerbetriebnahme des Kreiselpumpenaggregates oder in dem Fall, dass das Kreiselpumpenaggregat Luftblasen fördern sollte, kann durch die Flüssigkeit im Flüssigkeitsspeicher sichergestellt werden, dass die Förderwirkung des Kreiselpumpenaggregates nicht vollständig aussetzt, sondern dass stets genug Flüssigkeit in dem Kreiselpumpenaggregat vorhanden ist, um ein erneutes Ansaugen von Flüssigkeit durch den Saugstutzen bzw. die Saugleitung des Kreiselpumpenaggregates zu ermöglichen.According to a further preferred embodiment, at least one liquid reservoir is arranged between the first and the second impeller group. The liquid reservoir is designed in such a way that it fills with liquid during normal operation of the centrifugal pump unit. When the centrifugal pump unit is taken out of operation or in the event that the centrifugal pump unit should deliver air bubbles, the liquid in the liquid reservoir can ensure that the pumping action of the centrifugal pump unit does not completely stop, but that there is always enough liquid in the centrifugal pump unit to suck in again To allow liquid through the suction nozzle or the suction line of the centrifugal pump unit.

Der Flüssigkeitsspeicher weist vorzugsweise zumindest eine Austrittsöffnung auf, welche derart angeordnet ist, dass sie einer Eintrittsöffnung des Rückflusskanals so gegenüberliegt, dass Flüssigkeit aus dem Flüssigkeitsspeicher in den Rückflusskanal fließen kann. So wird erreicht, dass durch den Flüssigkeitsspeicher zunächst der Rückflusskanal gefüllt wird bzw. dieser gefüllt gehalten wird. Die Flüssigkeit aus dem Rückflusskanal fließt dann zur Eingangsseite des ersten Laufrades der ersten Laufradgruppe und tritt in dieses ein, sodass dieses Laufrad sofort eine Förderwirkung erzielen kann und weitere Flüssigkeit durch die Saugleitung ansaugen kann. Bis Flüssigkeit aus der Saugleitung in das erste Laufrad eintritt, wird dann, wie oben beschrieben, die Flüssigkeit im Rückflusskanal zunächst in der ersten Laufradgruppe im Kreis gefördert.The liquid reservoir preferably has at least one outlet opening which is arranged such that it is opposite an inlet opening of the return flow channel in such a way that liquid can flow from the liquid store into the return flow channel. This ensures that the return flow channel is initially filled or kept filled by the liquid reservoir. The liquid from the return flow channel then flows to the inlet side of the first impeller of the first impeller group and enters it, so that this impeller can immediately achieve a conveying effect and can suck in further liquid through the suction line. Until liquid enters the first impeller from the suction line, the liquid in the return flow channel is then first circulated in the first impeller group, as described above.

Das erfindungsgemäße Kreiselpumpenaggregat ist vorzugsweise so ausgebildet, dass sich die Drehachse der Laufräder vertikal erstreckt. Der vorangehend beschriebene Flüssigkeitsspeicher ist dann vorzugsweise so ausgebildet, dass seine Austrittsöffnung an der Unterseite angeordnet ist, sodass die Flüssigkeit aus dem Flüssigkeitsspeicher schwerkraftbedingt nach unten austreten und in den Rückflusskanal eintreten kann. Befüllt wird der Flüssigkeitsspeicher vorzugsweise von oben über die zu den hinter dem Flüssigkeitsspeicher bzw. oberhalb des Flüssigkeitsspeichers angeordneten Pumpenstufen strömende Flüssigkeit. Der Rückflusskanal weist vorzugsweise eine nach oben hin gerichtete Öffnung auf, sodass die Flüssigkeit aus dem Flüssigkeitsspeicher von oben in diese Öffnung eintreten kann.The centrifugal pump unit according to the invention is preferably designed such that the axis of rotation of the impellers extends vertically. The liquid reservoir described above is then preferably designed such that its outlet opening is arranged on the underside, so that the liquid emerges from the liquid reservoir downward due to gravity and enters the return flow channel can. The liquid store is preferably filled from above via the liquid flowing to the pump stages arranged behind the liquid store or above the liquid store. The return flow channel preferably has an opening directed upwards, so that the liquid from the liquid reservoir can enter this opening from above.

Gemäß einer weiteren bevorzugten Ausführungsform können zumindest zwei Flüssigkeitsspeicher derart angeordnet sein, dass eine Austrittsöffnung des zweiten Flüssigkeitsspeichers in eine Öffnung eines ersten Flüssigkeitsspeichers mündet. So können zwei oder mehr Flüssigkeitsspeicher in Strömungs- bzw. Förderrichtung hintereinander zwischen der ersten Laufradgruppe und der zweiten Laufradgruppe angeordnet sein. Dabei fließt die Flüssigkeit aus dem ersten bzw. unteren Flüssigkeitsspeicher, wie vorangehend beschrieben vorzugsweise in den Rücklaufkanal. Die Flüssigkeit aus dem zweiten bzw. nachfolgenden Flüssigkeitsspeicher fließt zunächst in den ersten Flüssigkeitsspeicher und von diesem dann in den Rücklaufkanal. Entsprechend kann Flüssigkeit aus einem dritten Flüssigkeitsspeicher in den zweiten Flüssigkeitsspeicher übertreten. Alle Flüssigkeitsspeicher weisen vorzugsweise eine Austrittsöffnung an der Unterseite und eine Eintrittsöffnung an der Oberseite auf.According to a further preferred embodiment, at least two liquid stores can be arranged such that an outlet opening of the second liquid store opens into an opening of a first liquid store. For example, two or more liquid reservoirs can be arranged one behind the other in the flow or delivery direction between the first impeller group and the second impeller group. The liquid flows from the first or lower liquid reservoir, as described above, preferably into the return channel. The liquid from the second or subsequent liquid store first flows into the first liquid store and from there into the return channel. Accordingly, liquid can pass from a third liquid store into the second liquid store. All liquid stores preferably have an outlet opening on the underside and an inlet opening on the top side.

Besonders bevorzugt ist der zumindest eine Flüssigkeitsspeicher als ringförmiger Topf mit einer offenen Oberseite ausgebildet, welcher eine die Laufräder antreibende Welle umgibt. D. h. der Topf ist ring- bzw. torusförmig und weist in der Mitte eine Öffnung auf, durch welche sich die Welle erstreckt. Die Öffnung dient darüber hinaus als Strömungsweg für die geförderte Flüssigkeit von der ersten Laufradgruppe zu der zweiten Laufradgruppe. Dazu ist in der Öffnung ein die Welle umgehender Freiraum vorgesehen. Der topfförmige Flüssigkeitsspeicher ist an seiner Oberseite offen ausgebildet, sodass die Flüssigkeit, welche durch die zentrale Öffnung strömt über den Rand der Öffnung von oben in den topfförmigen Flüssigkeitsspeicher einlaufen kann. Die beschriebene zumindest eine Austrittsöffnung ist vorzugsweise an der Unterseite ausgebildet. Bei der Anordnung mehrere Flüssigkeitsspeicher sind die Austrittsöffnungen der nachfolgenden Flüssigkeitsspeicher so angeordnet, dass sie oberhalb der Oberseite des jeweils vorangehenden Flüssigkeitsspeichers gelegen sind, sodass die Flüssigkeit aus der Austrittsöffnung in den vorangehenden Flüssigkeitsspeicher läuft. Vom ersten, d. h. untersten Flüssigkeitsspeicher läuft die Flüssigkeit aus der Austrittsöffnung, wie beschrieben, in die Rücklaufleitung. Die Austrittsöffnungen sind in der Größe so dimensioniert, dass sich die Flüssigkeitsspeicher langsam leeren. Gemäß einer besonders bevorzugten Ausführungsform sind die einzelnen Laufräder der zweiten Laufradgruppe jeweils in einem Stufenmodul angeordnet, wobei alle Stufenmodule dieselbe axiale Höhe aufweisen, und die zumindest zwei Laufräder der ersten Laufradgruppe sind ebenfalls in einem solchen Stufenmodul angeordnet, welches eine axiale Höhe hat, die der axialen Höhe oder einem ganzzahligen Vielfachen der Höhe eines Stufenmoduls der zweiten Laufradgruppe entspricht. Dieser modulare Aufbau mit einem festen Raster der axialen Höhen bzw. Längen der einzelnen Module hat den Vorteil, dass aus den Modulen sehr einfach Kreiselpumpenaggregate unterschiedlicher Leistung, insbesondere unterschiedlicher Förder- und Saughöhen realisiert werden können. Auch lässt sich die erste selbstansaugende Laufradgruppe leicht in herkömmliche mehrstufige Kreiselpumpen integrieren, da die Teile der ersten Laufradgruppe in ihrer axialen Länge dasselbe Raster haben wie die Module der zweiten Laufradgruppe. So können beispielsweise dieselben Spannbänder zum Zusammenhalten der Module verwendet werden, wie sie bei herkömmlichen mehrstufigen Kreiselpumpenaggregaten verwendet werden. So kann die erforderliche Teilevielfalt reduziert werden.The at least one liquid reservoir is particularly preferably designed as an annular pot with an open top, which surrounds a shaft driving the impellers. I.e. the pot is ring-shaped or toroidal and has an opening in the middle through which the shaft extends. The opening also serves as a flow path for the conveyed liquid from the first impeller group to the second impeller group. For this purpose, a free space surrounding the shaft is provided in the opening. The top of the pot-shaped liquid reservoir is open, so that the liquid that flows through the central opening over the edge of the opening from above into the Pot-shaped liquid storage can enter. The described at least one outlet opening is preferably formed on the underside. In the case of the arrangement of a plurality of liquid stores, the outlet openings of the subsequent liquid stores are arranged such that they are located above the top of the respective preceding liquid store, so that the liquid runs out of the outlet opening into the preceding liquid store. From the first, that is to say the lowest, liquid reservoir, the liquid runs out of the outlet opening, as described, into the return line. The size of the outlet openings is such that the liquid stores slowly empty. According to a particularly preferred embodiment, the individual impellers of the second impeller group are each arranged in a stepped module, with all the stepped modules having the same axial height, and the at least two impellers of the first impeller group are also arranged in such a stepped module, which has an axial height that the axial height or an integer multiple of the height of a step module of the second impeller group. This modular structure with a fixed grid of the axial heights or lengths of the individual modules has the advantage that centrifugal pump units of different output, in particular different delivery and suction heights, can be realized very easily from the modules. The first self-priming impeller group can also be easily integrated into conventional multi-stage centrifugal pumps, since the parts of the first impeller group have the same grid in their axial length as the modules of the second impeller group. For example, the same tensioning straps can be used to hold the modules together as are used in conventional multi-stage centrifugal pump units. The number of parts required can thus be reduced.

Weiter bevorzugt weisen ebenfalls die zwischen den beiden Laufradgruppen angeordneten Flüssigkeitsspeicher oder Abstandselemente jeweils eine axiale Höhe auf, welcher der axialen Höhe oder einem ganzzahligen Vielfachen dieser Höhe eines Stufenmoduls der zweiten Laufradgruppe entspricht. So wird auch bezüglich dieser Komponenten erreicht, dass die axiale Höhe in das vorhandene Raster der axialen Höhe der einzelnen Pumpenstufen, welche in der zweiten Laufradgruppe angeordnet sind, passt.More preferably, the liquid accumulators or spacing elements arranged between the two impeller groups also each have an axial height which corresponds to the axial height or an integer multiple of this height of a step module of the second impeller group. With these components, it is also achieved that the axial height fits into the existing grid of the axial height of the individual pump stages, which are arranged in the second impeller group.

Nachfolgend wird die Erfindung beispielhaft anhand der beigefügten Figuren beschreiben. In diesen zeigt:

Fig. 1
eine Schnittansicht eines erfindungsgemäßen Pumpenaggregates,
Fig. 2
eine Detailansicht der ersten Laufradgruppe des Pumpenaggregates gemäß Fig. 1,
Fig. 3
in einer teilweise geschnittenen Detailansicht ein Ventil im Rücklaufkanal und
Fig. 4
in einer Schnittansicht die Flüssigkeitsspeicher des Pumpenaggregates gemäß Fig. 1.
The invention is described below by way of example with reference to the attached figures. In these shows:
Fig. 1
2 shows a sectional view of a pump unit according to the invention,
Fig. 2
a detailed view of the first impeller group of the pump unit according to Fig. 1 .
Fig. 3
in a partially sectioned detailed view of a valve in the return duct and
Fig. 4
in a sectional view according to the liquid reservoir of the pump unit Fig. 1 ,

Das beispielhaft beschriebene Kreiselpumpenaggregat weit insgesamt acht Stufen, d. h. acht Laufräder auf. Von denen sind zwei Laufräder 2 in einer ersten Laufradgruppe 4 und sechs Laufräder 6 in einer zweiten Laufradgruppe 8 angeordnet. Die erste Laufradgruppe 4 ist dem Einlass- bzw. Saugstutzen 10 des Pumpenaggregates zugewandt. Die zweite Laufradgruppe 8 ist der ersten Laufradgruppe in strömungs- bzw. Förderrichtung nachgeschaltet. Wie bei bekannten mehrstufigen Kreiselpumpenaggregaten durchströmt die zu fördernde Flüssigkeit nacheinander die einzelnen Laufräder und wird ausgangsseitig des einander die einzelnen Laufräder und wird ausgangsseitig des letzten Laufrades 6 über den ringförmigen Druckkanal 12 dem Druckstutzen 14 zugeführt. Alle Laufräder 2 und 6 werden über eine gemeinsame Welle 16 angetrieben. Die Welle 16 wird an ihrem Wellenende 18 mit einem hier nicht gezeigten Motor, beispielsweise einem Elektromotor zum Antrieb verbunden.The centrifugal pump unit described by way of example has a total of eight stages, ie eight impellers. Of which two impellers 2 are arranged in a first impeller group 4 and six impellers 6 in a second impeller group 8. The first impeller group 4 faces the inlet or suction port 10 of the pump unit. The second impeller group 8 is connected downstream of the first impeller group in the flow or conveying direction. As with known multi-stage centrifugal pump units, the liquid to be pumped flows through the individual impellers one after the other and becomes the output side of the the individual impellers and the output side of the last impeller 6 is fed to the pressure port 14 via the annular pressure channel 12. All impellers 2 and 6 are driven by a common shaft 16. The shaft 16 is connected at its shaft end 18 to a motor, not shown here, for example an electric motor for driving.

Die erste Laufradgruppe 4 ist in der nachfolgend beschriebenen Weise selbstansaugend ausgebildet, sodass die Kreiselpumpe über den Saugstutzen 10 Flüssigkeit auch dann ansaugen kann, wenn der Saugstutzen 10 und eine sich stromaufwärts anschließende Saugleitung nicht mit Flüssigkeit gefüllt sind.The first impeller group 4 is designed to be self-priming in the manner described below, so that the centrifugal pump can suck in liquid via the suction nozzle 10 even when the suction nozzle 10 and an upstream suction line are not filled with liquid.

Die selbstansaugende Wirkung der ersten Laufradgruppe 4 wird durch die anhand von Fig. 2 näher erläuterte Ausgestaltung erreicht. Ausgangsseitig des in Strömungsrichtung zweiten Laufrades 2 der ersten Laufradgruppe 4 ist ein Trennelement 20 angeordnet. Dieses ist so ausgebildet, dass Flüssigkeit und Luft voneinander getrennt werden. Dies geschieht dadurch, dass die Flüssigkeit radial nach außen beschleunigt wird, sodass aus dem Trennelement 20 die Luft im Zentralbereich nahe der Welle 16 und die Flüssigkeit im Umfangsbereich nahe der Umfangswandung 22 austritt. Die aus dem Trennelement 20 austretende Flüssigkeit überströmt die Umfangswandung 22 an ihrer Oberkante und tritt in einen Rückflusskanal 24 ein. Der Rückflusskanal 24 führt am Außenumfang der ersten Laufradgruppe 4 zurück in Richtung des Saugstutzens 10. Über Öffnungen 26 in einer Bodenplatte führt der Rückflusskanal zum Saugmund 28 des in Strömungsrichtung ersten Laufrades 2 der ersten Laufradgruppe 4. So wird ein geschlossener Flüssigkeitskreislauf über die beiden Laufräder 2 des Trennelement 20 zurück durch den Rückflusskanal 24 zum Saugmund 28 des ersten Laufrades 2 realisiert.The self-priming effect of the first impeller group 4 is determined by the Fig. 2 achieved in more detail. A separating element 20 is arranged on the output side of the second impeller 2 of the first impeller group 4 in the direction of flow. This is designed so that liquid and air are separated from each other. This is done in that the liquid is accelerated radially outward, so that the air in the central area near the shaft 16 and the liquid in the peripheral area near the peripheral wall 22 emerge from the separating element 20. The liquid emerging from the separating element 20 flows over the peripheral wall 22 at its upper edge and enters a return flow channel 24. The return flow channel 24 leads back on the outer circumference of the first impeller group 4 in the direction of the suction port 10. Via openings 26 in a base plate, the return flow channel leads to the suction mouth 28 of the first impeller 2 in the flow direction of the first impeller group 4 of the separating element 20 back through the return flow channel 24 to the suction mouth 28 of the first impeller 2.

Zum Starten der Pumpe reicht eine geringe Flüssigkeitsmenge, um den beschriebenen Kreislauf durch die beiden Laufräder 2 und den Rückflusskanal 24 in Betrieb zu nehmen. Dadurch erzeugen die Laufräder 2 einen Unterdruck, durch welchen dann durch den Saugstutzen 10 weitere Flüssigkeit angesaugt werden kann. Bei der Erstinbetriebnahme des Pumpenaggregates ist es erforderlich, dass Pumpenaggregat wie herkömmliche Kreiselpumpenaggregate zu entlüften, d. h. mit einer gewissen Flüssigkeitsmenge zu füllen.To start the pump, a small amount of liquid is sufficient to put the circuit described into operation through the two impellers 2 and the return flow channel 24. As a result, the impellers 2 generate a negative pressure, through which further liquid can then be sucked in through the suction nozzle 10. When commissioning the pump set for the first time, it is necessary to vent the pump set like conventional centrifugal pump sets. H. to fill with a certain amount of liquid.

Um den beschriebenen Kreislauf über die Rückflussleitung 24 aufrechterhalten zu können, ist es wichtig, dass die Pumpe im Bereich der ersten Laufradgruppe 4 möglichst luftdicht ausgebildet ist. Hierzu sind verschiedene Dichtungen angeordnet. Die Dichtungen 30 dichten den Rücklaufkanal 24 gegen den Druckkanal 12 ab, sodass verhindert wird, dass Flüssigkeit von der Druckseite über den Rücklaufkanal 24 im normalen Betrieb zur Saugseite überströmen kann. Im Inneren des Trennelementes 20 ist ein Lager 32 angeordnet, welches mit dem Außenumfang der Welle 16 in Kontakt ist. Dieses dient gleichzeitig der Abdichtung des Trennelementes 20 gegenüber der Welle 16, um zu verhindern, dass Luft aus dem Trennelement 20 zurück zu den Laufrädern 2 strömen kann. Die Dichtung 34 dichtet das axiale Ende der Welle 16 ab, um zu verhindern, dass Luft von der Druckseite der Pumpe über die Welle zur Saugseite strömt. Die Dichtung 36 dient ebenfalls dazu, die Druckseite von der Saugseite zu trennen, d. h. den Druckstutzen 14 gegenüber dem Saugstutzen 10 abzudichten.In order to be able to maintain the described circuit via the return line 24, it is important that the pump in the area of the first impeller group 4 is designed to be as airtight as possible. Various seals are arranged for this. The seals 30 seal the return channel 24 against the pressure channel 12, so that liquid is prevented from flowing over from the pressure side via the return channel 24 to the suction side in normal operation. A bearing 32 is arranged in the interior of the separating element 20 and is in contact with the outer circumference of the shaft 16. This also serves to seal the separating element 20 with respect to the shaft 16 in order to prevent air from flowing out of the separating element 20 back to the impellers 2. The seal 34 seals the axial end of the shaft 16 to prevent air from flowing from the pressure side of the pump over the shaft to the suction side. The seal 36 also serves to separate the pressure side from the suction side, i. H. to seal the pressure port 14 against the suction port 10.

Um nach Erreichen des normalen Betriebszustandes, in dem Flüssigkeit durch den Saugstutzen 10 angesaugt wird, zu verhindern, dass Flüssigkeit über den Rückflusskanal 24 zurück zur Saugseite strömt, ist in dem Rückflusskanal 24 ein Ventil 38 angeordnet. Dieses Ventil 38 ist so ausgebildet, dass es beim Erreichen eines vorbestimmten Druckes ausgangsseitig des zweiten Laufrades 2, d. h. ausgangsseitig des Trennelementes 20 und im Rückflusskanal 24 den Rückflusskanal verschließt. D. h. nach Erreichen dieses vorbestimmten Druckes ist der Rückflusskanal 24 verschlossen und die Flüssigkeit strömt ausschließlich zu den nachfolgenden Laufrädern 6 der zweiten Laufradgruppe 8.In order to prevent liquid from flowing back via the return flow channel 24 back to the suction side after reaching the normal operating state in which liquid is sucked in through the suction nozzle 10, a valve 38 is arranged in the return flow channel 24. This valve 38 is designed such that when a predetermined pressure is reached, it is on the output side of the second impeller 2, ie on the output side of the separating element 20 and in the return flow channel 24 closes the return flow channel. I.e. after reaching this predetermined pressure, the return flow channel 24 is closed and the liquid flows exclusively to the subsequent impellers 6 of the second impeller group 8.

Die Ausgestaltung des Ventils 38 wird näher anhand von Fig. 3 erläutert. Fig. 3 zeigt eine Detailansicht des Trennelementes 20. Das Trennelement 20 definiert zwischen dem Außenumfang der Umfangswandung 22 und einer radial weiter außen gelegenen ringförmigen Wandung 40, einen ersten Abschnitt des Rückflusskanals 24, welcher einen Eintrittsbereich des Rückflusskanals 24 bildet. Der zweite Abschnitt des Rückflusskanals 24 wird zwischen dem Außenumfang der Wandung 40 und einer radial beabstandeten Hülse 42 (siehe Fig. 2) definiert. In der Wandung 40 sind mehrere Löcher 44 ausgebildet, welche den Übertritt von dem Einlassbereich des Rückflusskanals 24 in den zweiten Abschnitt des Rückflusskanals 24 zwischen der Wandung 40 und der Hülse 42 ermöglichen. An den Öffnungen 44 sind Ventilelemente in Form von Federblechen 46 angeordnet. Diese Federbleche 46 können zwei Positionen einnehmen, nämlich einmal eine geöffnete Position, welche in Fig. 3 mit dem Bezugszeichen 46' bezeichnet ist. In dieser Position erstreckt sich das Federblech 46' sehnenförmig zum Innenumfang der Wandung 40 und ist somit beabstandet von der Öffnung 44, sodass diese freigegeben ist. Steigt nun der Druck in dem Bereich des Rückflusskanals 24, welcher zwischen der Umfangswandung 22 und der Wandung 40 gelegen ist an, wird das Federblech 46' radial nach außen gedrückt und legt sich an die Innenseite der Wandung 40 über der Öffnung 44 an, sodass die Öffnung 44 verschlossen wird.The configuration of the valve 38 is explained in more detail on the basis of FIG Fig. 3 explained. Fig. 3 shows a detailed view of the separating element 20. The separating element 20 defines, between the outer circumference of the peripheral wall 22 and an annular wall 40 located radially further out, a first section of the return flow channel 24, which forms an entry region of the return flow channel 24. The second portion of the backflow channel 24 is between the outer periphery of the wall 40 and a radially spaced sleeve 42 (see Fig. 2 ) Are defined. A plurality of holes 44 are formed in the wall 40, which enable the passage from the inlet region of the return flow channel 24 into the second section of the return flow channel 24 between the wall 40 and the sleeve 42. Valve elements in the form of spring plates 46 are arranged at the openings 44. These spring plates 46 can assume two positions, namely an open position, which in Fig. 3 is designated by the reference numeral 46 '. In this position, the spring plate 46 'extends in a sinew shape to the inner circumference of the wall 40 and is therefore spaced apart from the opening 44, so that the latter is released. If the pressure now rises in the area of the return flow channel 24, which is located between the peripheral wall 22 and the wall 40, the spring plate 46 'is pressed radially outward and lies against the inside of the wall 40 above the opening 44, so that the Opening 44 is closed.

Um den sicheren Betrieb des Kreiselpumpenaggregates auch dann zu gewährleisten, wenn größere Luftblasen das System passieren, sind zwischen der ersten Laufradgruppe 4 und der zweiten Laufradgruppe 8 drei Flüssigkeitsspeicher 48 angeordnet. Diese sind im Detail in Fig. 4 gezeigt. Die Flüssigkeitsspeicher 48 sind als ring- bzw. torusförmige Töpfe ausgebildet, welche die Welle 16 umgeben. Die Welle 16 erstreckt sich durch eine zentrale Öffnung 50 der Flüssigkeitsspeicher 48, wobei die Wandung der Öffnung 50 radial vom Außenumfang der Welle 16 beabstandet ist. So dient die Öffnung 50 auch als Strömungsweg für die geförderte Flüssigkeit von der ersten Laufradgruppe 4 zu der zweiten Laufradgruppe 8. Die Umfangswandungen 52 der Öffnungen 50 haben dabei in Richtung der Längsachse X eine Länge, welche kürzer ist als die axiale Länge der Außenwandungen der Flüssigkeitsspeicher 48. So sind die Flüssigkeitsspeicher 48 an ihrer Oberseite geöffnet, sodass Flüssigkeit, welche durch die Öffnungen 50 strömt über die Umfangswandungen 52 hinüber in das Innere der Flüssigkeitsspeicher 48 strömen kann. So werden die Flüssigkeitsspeicher 48 im normalen Betrieb des Pumpenaggregates, wenn Flüssigkeit von der ersten Laufradgruppe 4 zu der zweiten Laufradgruppe 8 strömt, gefüllt.In order to ensure the safe operation of the centrifugal pump unit even when larger air bubbles pass through the system, three liquid reservoirs 48 are arranged between the first impeller group 4 and the second impeller group 8. These are detailed in Fig. 4 shown. The liquid reservoirs 48 are designed as ring-shaped or toroidal pots which surround the shaft 16. The shaft 16 extends through a central opening 50 of the liquid reservoir 48, the wall of the opening 50 being radially spaced from the outer circumference of the shaft 16. Thus, the opening 50 also serves as a flow path for the liquid conveyed from the first impeller group 4 to the second impeller group 8. The circumferential walls 52 of the openings 50 have a length in the direction of the longitudinal axis X which is shorter than the axial length of the outer walls of the liquid stores 48. The liquid reservoirs 48 are thus opened at their top, so that liquid which flows through the openings 50 can flow over the peripheral walls 52 into the interior of the liquid reservoirs 48. Thus, during normal operation of the pump unit, the liquid reservoirs 48 are filled when liquid flows from the first impeller group 4 to the second impeller group 8.

Jeder Flüssigkeitsspeicher 48 weist an seiner Unterseite eine Auslassöffnung 54 mit kleinem Durchmesser auf. Die Auslassöffnungen 54 sind von der Längsachse X soweit radial beabstandet, dass sie oberhalb des Freiraums zwischen der Umfangswandung 22 und der Wandung 40 des Trennelementes 20 liegen. So läuft die Flüssigkeit aus dem ersten, d. h. unterem Flüssigkeitsspeicher 48 direkt in den Rückflusskanal 24. Aus den beiden anderen Flüssigkeitsspeichern 48 läuft die Flüssigkeit über die zugehörigen Auslassöffnung 54 zunächst in den darunter gelegenen Flüssigkeitsspeicher 48. Dadurch, dass die Flüssigkeit aus den Flüssigkeitsspeichern 48 über die kleine Auslassöffnung 54 langsam abläuft, kann auch dann, wenn größere Luftblasen oder Gasblasen das Pumpenaggregat durchströmen, sichergestellt werden, dass im Pumpenaggregat noch eine ausreichende Flüssigkeitsmenge vorhanden ist, um zumindest den Startkreislauf durch die erste Laufradgruppe 4, d. h. durch den Rückflusskanal 24 in der oben beschriebenen Weise wieder in Betrieb zu nehmen.Each liquid reservoir 48 has an outlet opening 54 with a small diameter on its underside. The outlet openings 54 are spaced radially from the longitudinal axis X to such an extent that they lie above the free space between the peripheral wall 22 and the wall 40 of the separating element 20. Thus, the liquid runs from the first, ie lower, liquid store 48 directly into the return flow channel 24. From the two other liquid stores 48, the liquid first runs through the associated outlet opening 54 into the liquid store 48 located below. The liquid from the liquid stores 48 the small outlet opening 54 runs slowly, even if larger air bubbles or gas bubbles flow through the pump assembly, it can be ensured that the pump assembly still has a sufficient amount of liquid to at least have the starting circuit through the first impeller group 4, ie through the return flow channel 24 in FIG to put into operation again as described above.

Neben diesen Maßnahmen ist am oder im Saugstutzen 10 noch ein Rückschlagventil bzw. Rückflussverhinderer 55 angeordnet. Hier ist das Rückschlagventil 55 direkt im Saugstutzen angeordnet, es könnte jedoch auch als separates Bauteil an den Saugstutzen 10 angesetzt werden. Über einen solchen kann verhindert werden, dass wenn die sich an den Saugstutzen 10 anschließende Saugleitung trockenläuft, die Flüssigkeit aus dem Pumpenaggregat durch den Saugstutzen 10 zurück in die Saugleitung läuft. So kann stets eine gewisse Flüssigkeitsmenge in dem Pumpenaggregat gehalten werden, über welche zumindest der Startkreislauf in der ersten Laufradgruppe 4 wieder in Betrieb genommen werden kann, um dann weitere Flüssigkeit durch den Saugstutzen 10 anzusaugen. Auf diese Weise wird das gesamte Kreiselpumpenaggregat selbstansaugend ausgebildet.In addition to these measures, a check valve or backflow preventer 55 is also arranged on or in the suction nozzle 10. Here, the check valve 55 is arranged directly in the suction nozzle, but it could also be attached to the suction nozzle 10 as a separate component. Such a device can be used to prevent the liquid from the pump unit from running back into the suction line when the suction line adjoining the suction nozzle 10 runs dry. In this way, a certain amount of liquid can always be kept in the pump unit, via which at least the starting circuit in the first impeller group 4 can be put back into operation, in order to then draw in further liquid through the suction nozzle 10. In this way, the entire centrifugal pump unit is designed to be self-priming.

Wie in Fig. 1 zu erkennen ist, ist das Pumpenaggregat insgesamt modular aufgebaut, wobei diesem modularen Aufbau ein axiales Längenraster zugrunde liegt, welches durch die axiale Länge der von den Laufrädern 6 gebildeten Pumpenstufen definiert ist. Diese Pumpenstufen weisen jeweils einen umfänglichen Mantel 56 auf, welcher den Mantel der einzelnen Stufenmodule bildet. Diese Stufenmodule sind axial aufeinandergesetzt. Die Flüssigkeitsspeicher 48 weisen dieselbe axiale Länge wie die Mäntel 56 der Stufenmodule der zweiten Laufradgruppe 8 auf. Darüber hinaus weist auch ein Mantel 58, welcher das erste Laufrad 2 umgibt, dieselbe axiale Länge auf. Das Trennelement 20 weist eine axiale Länge in Richtung der Längsachse X auf, welche dem Doppelten der axialen Länge der Mäntel 56 und 58 entspricht. So hat die gesamte erste Laufradgruppe 4 eine axiale Länge, welche der dreifachen Länge eines Stufenmoduls der zweiten Laufradgruppe 8 entspricht. Dieses einheitliche Längenraster begünstigt den modularen Aufbau, da Spannbänder, welche die einzelnen Stufenmodule in axialer Richtung zusammenhalten, nur in unterschiedlichen Längen, welche durch dieses zugrundliegende Raster definiert sind, vorgehalten werden müssen. Damit können verschiedenste Pumpen zusammengebaut werden, mit unterschiedlichen Zahlen von Laufrädern, Flüssigkeitsspeichern 48 und ggfs. der ersten Laufradgruppe 4 um die selbstansaugenden Eigenschaften sicherzustellen.As in Fig. 1 It can be seen that the pump unit is of modular construction overall, this modular construction being based on an axial length grid which is defined by the axial length of the pump stages formed by the impellers 6. These pump stages each have a circumferential jacket 56, which forms the jacket of the individual stage modules. These step modules are placed axially on top of each other. The liquid reservoirs 48 have the same axial length as the jackets 56 of the step modules of the second impeller group 8. In addition, a jacket 58, which surrounds the first impeller 2, also has the same axial length. The separating element 20 has an axial length in the direction of the longitudinal axis X which corresponds to twice the axial length of the jackets 56 and 58. The entire first impeller group 4 thus has an axial length which corresponds to three times the length of a step module of the second impeller group 8. This uniform length grid favors the modular structure, since tensioning straps, which hold the individual step modules together in the axial direction, only in different lengths, which result from this underlying grids are defined, must be kept. A wide variety of pumps can thus be assembled, with different numbers of impellers, liquid stores 48 and possibly the first impeller group 4 in order to ensure the self-priming properties.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

22
Laufräderimpellers
44
Erste LaufradgruppeFirst wheel group
66
Laufräderimpellers
88th
Zweite LaufradgruppeSecond wheel group
1010
Saugstutzensuction
1212
Druckkanalpressure channel
1414
Druckstutzenpressure port
1616
Wellewave
1818
Wellenendeshaft end
2020
Trennelementseparating element
2222
Umfangswandung des TrennelementesCircumferential wall of the separating element
2424
RückflusskanalBackflow channel
2626
Öffnungenopenings
2828
Saugmundsaugmund
3030
Dichtungenseals
3232
Lagercamp
34, 3634, 36
Dichtungenseals
3838
VentilValve
4040
Wandungwall
4242
Hülseshell
4444
Öffnungenopenings
4646
Federblech/VentilSpring plate / valve
4848
Flüssigkeitsspeicherliquid storage
5050
Öffnungopening
5252
Umfangswandungenperipheral walls
5454
Auslassöffnungenoutlet
5555
Rückschlagventilcheck valve
56, 5856, 58
Mantelcoat
XX
Längsachselongitudinal axis

Claims (13)

  1. A multistage centrifugal pump assembly with at least three impellers (2, 6), wherein two impeller groups (4, 8) which are consecutive in the flow direction are present, characterised in that the first impeller group (4) is designed in at least two-stage manner with two impellers (2)which are successively arranged in the flow direction, a backflow channel (24) which connects the exit side of the first impeller group (4) to its entry side is present in a first impeller group (4), and the second impeller group (8) comprises at least one impeller (6).
  2. A multistage centrifugal pump assembly according to claim 1, characterised in that the backflow channel (24) runs out into the suction port (28) of a first stage of the first impeller group (4).
  3. A multistage centrifugal pump assembly according to claim 1 or 2, characterised in that at least one valve (38) for closing the backflow channel (24) is present in the backflow channel (24).
  4. A multistage centrifugal pump assembly according to claim 3, characterised in that the valve (38) is designed in a manner such that on reaching a predefined fluid pressure in the backflow channel (24), it closes this.
  5. A multistage centrifugal pump assembly according to one of the preceding claims, characterised in that the first impeller group (4) at its exit side comprises a separating element (20) which is designed for separating air and fluid.
  6. A multistage centrifugal pump assembly according to claim 5, characterised in that the separating element (20) is arranged relative to the backflow channel (24) such that the fluid which exits from the separating element (20) enters into the backflow channel (24).
  7. A multistage centrifugal pump assembly according to one of the preceding claims, characterised in that a check valve is arranged at the entry side of the first impeller group (4).
  8. A multistage centrifugal pump assembly according to one of the preceding claims, characterised in that at least one fluid store (48) is arranged between the first (4) and the second impeller group (8).
  9. A multistage centrifugal pump assembly according to claim 8, characterised in that the fluid store (48) comprises at least one exit opening which is arranged in a manner such that it lies opposite an entry opening of the backflow channel (24) in a manner such that fluid can flow out of the fluid store (48) into the backflow channel (24).
  10. A multistage centrifugal pump assembly according to claim 8 or 9, characterised in that at least two fluid stores (48) are arranged in a manner such that an exit opening of a second fluid store (48) runs out into an opening of a first fluid store (48).
  11. A multistage centrifugal pump assembly according to one of the claims 8 to 10, characterised in that the at least one fluid store (48) is designed as an annular pot with an open upper side which surrounds a shaft (16) which drives the impellers (2, 6).
  12. A multistage centrifugal pump assembly according to one of the preceding claims, characterised in that the individual impellers (6) of the second impeller group (8) are each arranged in a stage module, wherein all stage modules have the same axial height, and the at least two impellers (2) of the first impeller group (4) are arranged in a stage module which has an axial height which corresponds to the axial height or an integer multiple of this height, of a stage module of the second impeller group (8).
  13. A multistage centrifugal pump assembly according to claim 12 with one of the claims 8 to 11, characterised in that fluid stores (48) or spacer elements, which are arranged between the two impeller groups (4, 8) each have an axial height which corresponds to the axial height or an integer multiple of this height, of a stage module of the second impeller group (8).
EP11002578.0A 2011-03-29 2011-03-29 Multi stage centrifugal pump system Revoked EP2505842B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP11002578.0A EP2505842B1 (en) 2011-03-29 2011-03-29 Multi stage centrifugal pump system
AU2012201654A AU2012201654B2 (en) 2011-03-29 2012-03-21 Centrifugal radial pumps and method for manufacturing thereof
IN817DE2012 IN2012DE00817A (en) 2011-03-29 2012-03-21
RU2012112043/06A RU2578778C2 (en) 2011-03-29 2012-03-28 Multistage rotary pump unit
US13/433,398 US9879680B2 (en) 2011-03-29 2012-03-29 Multi-stage centrifugal pump unit
CN2012100942511A CN102734176A (en) 2011-03-29 2012-03-29 Multi stage centrifugal pump system
CN201910559567.5A CN110307166A (en) 2011-03-29 2012-03-29 Multistage centrifugal pump assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11002578.0A EP2505842B1 (en) 2011-03-29 2011-03-29 Multi stage centrifugal pump system

Publications (2)

Publication Number Publication Date
EP2505842A1 EP2505842A1 (en) 2012-10-03
EP2505842B1 true EP2505842B1 (en) 2019-12-25

Family

ID=44515211

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11002578.0A Revoked EP2505842B1 (en) 2011-03-29 2011-03-29 Multi stage centrifugal pump system

Country Status (6)

Country Link
US (1) US9879680B2 (en)
EP (1) EP2505842B1 (en)
CN (2) CN110307166A (en)
AU (1) AU2012201654B2 (en)
IN (1) IN2012DE00817A (en)
RU (1) RU2578778C2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2607703B1 (en) * 2011-12-22 2014-06-18 Grundfos Holding A/S Centrifugal pump
AU2014270689B2 (en) * 2013-05-22 2016-11-03 Grundfos Holding A/S Multistage self-suctioning centrifugal pump unit
DE102014214805A1 (en) * 2014-07-29 2016-02-04 Ksb Aktiengesellschaft Barrel casing pump
EP3244066B1 (en) * 2016-05-12 2020-11-18 Grundfos Holding A/S Centrifugal pump
DE102016109994A1 (en) 2016-05-31 2017-11-30 Eberspächer Climate Control Systems GmbH & Co. KG Side channel blower, especially for a vehicle heater
EP3293397B1 (en) * 2016-09-13 2018-10-24 Grundfos Holding A/S Centrifugal pump and method for venting
CN109996963B (en) 2016-09-26 2021-01-26 流体处理有限责任公司 Multi-stage impeller produced via additive manufacturing
EP3343054A1 (en) 2016-12-28 2018-07-04 Grundfos Holding A/S Bearing retainer for multistage centrifugal pump
CN108953158A (en) * 2018-09-20 2018-12-07 浙江南元泵业有限公司 Multi-outlet centrifugal pump
EP3686434A1 (en) * 2019-01-25 2020-07-29 Pentair Flow Technologies, LLC Self-priming assembly for use in a multi-stage pump
CN111594451A (en) * 2020-05-29 2020-08-28 广东凌霄泵业股份有限公司 Horizontal self-priming pump
EP3929445A1 (en) * 2020-06-22 2021-12-29 Grundfos Holding A/S Centrifugal pump device
CN112112840B (en) * 2020-09-11 2022-09-23 南通大通宝富风机有限公司 Furniture factory fan filters protective component
CN117823415B (en) * 2024-03-04 2024-05-03 山东华立供水设备有限公司 Multistage centrifugal pump

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE610778C (en) 1933-11-24 1935-03-16 Carl Metz Feuerwehrgeraetefabr Self-priming multistage centrifugal pump
GB674815A (en) * 1950-05-15 1952-07-02 Schulz Wilhelm Improvements relating to centrifugal pumps
GB732293A (en) 1952-05-12 1955-06-22 Jacuzzi Brothers Inc Improvements in or relating to self-priming pump systems, particularly for deep wells
DE2025117A1 (en) 1969-05-29 1970-12-03 Etablissements Pompes Guinard S.A., Saint-Cloud (Frankreich) Improvement of centrifugal pumps with automatic suction
DE1703603A1 (en) * 1967-07-07 1972-04-06 Muanyagipari Kutato Intezet Single or multi-stage self-priming pump
JPS58143189A (en) 1982-02-19 1983-08-25 Fuji Electric Co Ltd Pump starting device for pump unit
DE2707776C2 (en) 1976-02-27 1986-04-24 Le Matériel Téléphonique S.A., Boulogne-Billancourt Self-priming centrifugal pump
DE3130832C2 (en) 1980-08-05 1986-05-22 Sihi Gmbh & Co Kg, 2210 Itzehoe Self-priming centrifugal pump, especially for pumping liquids close to their boiling point
US4780050A (en) * 1985-12-23 1988-10-25 Sundstrand Corporation Self-priming pump system
EP0619001B1 (en) 1991-12-05 1997-03-12 NOCCHI POMPE S.p.A. Centrifugal pump with adaptor for various valves
DE69520262T2 (en) 1994-12-20 2001-06-21 Bombas Electricas Sa Multi-stage electric centrifugal pump
CN2471976Y (en) 2001-03-19 2002-01-16 佛山柴油机厂有限公司 Multifunctional self sucking centrifugal pump with casing integrated with body
DE10239997A1 (en) 2002-08-27 2004-03-04 Gardena Manufacturing Gmbh Electromagnetic pump has multiple turbine stages with output of last stage connected to discharge chamber of first stage
US20050196269A1 (en) * 2004-03-08 2005-09-08 Racer Donald W. Stacked self-priming pump and centrifugal pump
CN1811190A (en) 2005-01-30 2006-08-02 陆雄 Dynamic regulation method of axial force in multi-stage centrifugal pump with symmetrically configured vane wheel
EP1729009A1 (en) 2005-05-31 2006-12-06 Pedrollo S.p.a. Centrifugal pump
CN201610847U (en) 2009-11-30 2010-10-20 镇江正汉泵业有限公司 Vertical self-priming pump capable of improving self-priming capacity

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR936832A (en) * 1945-02-03 1948-07-30 Multiple centrifugal pump with rotors mounted in series with self-priming
SU88903A1 (en) * 1950-01-14 1950-11-30 М.М. Калинин Self-priming centrifugal pump
US4872808A (en) * 1987-06-22 1989-10-10 Oil Dynamics, Inc. Centrifugal pump modular bearing support for pumping fluids containing abrasive particles
IT1234126B (en) * 1989-07-05 1992-04-29 Nowax Srl STATIC CASE, ESPECIALLY FOR CENTRIFUGAL RADIAL PUMP, AS WELL AS METHOD FOR ITS REALIZATION
FR2686137B1 (en) * 1992-01-14 1995-06-09 Ksb Sa VALVE, PARTICULARLY FOR PRIMING CIRCUIT OF A PUMP.
CN2217126Y (en) * 1994-01-14 1996-01-10 仪群 portable and folding type self-suction pump for pipe-line
DE4415157A1 (en) * 1994-05-02 1995-11-09 Klein Schanzlin & Becker Ag Self-priming multi-stage centrifugal pump
JPH09195969A (en) * 1996-01-17 1997-07-29 Shin Meiwa Ind Co Ltd Priming circulating device by self-priming type pump
CN2744859Y (en) * 2004-11-01 2005-12-07 义乌市第二石油化工泵厂 Guide vane type multistage self-suction centrifugal pump with strong gas-liquid separation function
US8414257B2 (en) * 2006-09-21 2013-04-09 The Gorman-Rupp Co. Self-priming centrifugal pump

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE610778C (en) 1933-11-24 1935-03-16 Carl Metz Feuerwehrgeraetefabr Self-priming multistage centrifugal pump
GB674815A (en) * 1950-05-15 1952-07-02 Schulz Wilhelm Improvements relating to centrifugal pumps
GB732293A (en) 1952-05-12 1955-06-22 Jacuzzi Brothers Inc Improvements in or relating to self-priming pump systems, particularly for deep wells
DE1703603A1 (en) * 1967-07-07 1972-04-06 Muanyagipari Kutato Intezet Single or multi-stage self-priming pump
DE2025117A1 (en) 1969-05-29 1970-12-03 Etablissements Pompes Guinard S.A., Saint-Cloud (Frankreich) Improvement of centrifugal pumps with automatic suction
DE2707776C2 (en) 1976-02-27 1986-04-24 Le Matériel Téléphonique S.A., Boulogne-Billancourt Self-priming centrifugal pump
DE3130832C2 (en) 1980-08-05 1986-05-22 Sihi Gmbh & Co Kg, 2210 Itzehoe Self-priming centrifugal pump, especially for pumping liquids close to their boiling point
JPS58143189A (en) 1982-02-19 1983-08-25 Fuji Electric Co Ltd Pump starting device for pump unit
US4780050A (en) * 1985-12-23 1988-10-25 Sundstrand Corporation Self-priming pump system
EP0619001B1 (en) 1991-12-05 1997-03-12 NOCCHI POMPE S.p.A. Centrifugal pump with adaptor for various valves
DE69520262T2 (en) 1994-12-20 2001-06-21 Bombas Electricas Sa Multi-stage electric centrifugal pump
CN2471976Y (en) 2001-03-19 2002-01-16 佛山柴油机厂有限公司 Multifunctional self sucking centrifugal pump with casing integrated with body
DE10239997A1 (en) 2002-08-27 2004-03-04 Gardena Manufacturing Gmbh Electromagnetic pump has multiple turbine stages with output of last stage connected to discharge chamber of first stage
US20050196269A1 (en) * 2004-03-08 2005-09-08 Racer Donald W. Stacked self-priming pump and centrifugal pump
CN1811190A (en) 2005-01-30 2006-08-02 陆雄 Dynamic regulation method of axial force in multi-stage centrifugal pump with symmetrically configured vane wheel
EP1729009A1 (en) 2005-05-31 2006-12-06 Pedrollo S.p.a. Centrifugal pump
CN201610847U (en) 2009-11-30 2010-10-20 镇江正汉泵业有限公司 Vertical self-priming pump capable of improving self-priming capacity

Also Published As

Publication number Publication date
EP2505842A1 (en) 2012-10-03
RU2578778C2 (en) 2016-03-27
RU2012112043A (en) 2013-10-10
US9879680B2 (en) 2018-01-30
AU2012201654B2 (en) 2015-08-20
US20120251308A1 (en) 2012-10-04
CN110307166A (en) 2019-10-08
CN102734176A (en) 2012-10-17
IN2012DE00817A (en) 2015-08-21
AU2012201654A1 (en) 2012-10-18

Similar Documents

Publication Publication Date Title
EP2505842B1 (en) Multi stage centrifugal pump system
EP2802780B1 (en) Axial or diagonal fan with trip edge on the blade suction side
DE69023699T2 (en) Self-priming centrifugal pump.
WO2014187648A1 (en) Multistage self-suctioning centrifugal pump unit
EP3161320B1 (en) Side channel pump
WO2017186565A1 (en) Steam extraction device with diagonal ventilator
DE102009006652A1 (en) Side channel blower, in particular secondary air blower for an internal combustion engine
DE60218820T2 (en) SELF-SUCKING PUMP UNIT
DE3128374A1 (en) RADIAL BLADE SUPPORTED SIDE CHANNEL PUMP
DE102004022962B4 (en) Centrifugal fan and housing thereof
DE102016225533B4 (en) Pump assembly and nuclear reactor with such a pump assembly
DE19626896C2 (en) Fan
DE69723488T2 (en) Side channel pump
EP2362101B1 (en) Dosing pump
DE102016123171A1 (en) Impeller and pump using the impeller
EP2165085B1 (en) Pump for a household appliance
DE102008056106B4 (en) Side channel blower, in particular secondary air blower for an internal combustion engine
EP3156663B1 (en) Centrifugal pump assembly
EP2505843A1 (en) Centrifugal pump assembly
EP2409039A1 (en) Multi-inlet vacuum pump
EP2420677A1 (en) Multi-layer circulation pump
DE102004028942B4 (en) Blower for an electrical device and associated modular system
DE60303788T2 (en) Self-priming centrifugal pump
DE102007025403B4 (en) End shield for bearing a shaft
EP3728860B1 (en) Side channel blower, in particular secondary air blower for an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130302

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180102

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190819

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011016344

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1217417

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200326

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200319

Year of fee payment: 10

Ref country code: GB

Payment date: 20200325

Year of fee payment: 10

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200325

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200425

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200422

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502011016344

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26 Opposition filed

Opponent name: KSB SE & CO. KGAA

Effective date: 20200925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200329

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1217417

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200329

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 502011016344

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 502011016344

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200329

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FI

Ref legal event code: MGE

27W Patent revoked

Effective date: 20210607

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20210607

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 1217417

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225