EP2503270A1 - Method and device for creating an oxygen product by cryogenic decomposition of air - Google Patents
Method and device for creating an oxygen product by cryogenic decomposition of air Download PDFInfo
- Publication number
- EP2503270A1 EP2503270A1 EP12001386A EP12001386A EP2503270A1 EP 2503270 A1 EP2503270 A1 EP 2503270A1 EP 12001386 A EP12001386 A EP 12001386A EP 12001386 A EP12001386 A EP 12001386A EP 2503270 A1 EP2503270 A1 EP 2503270A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- liquid
- pressure column
- main
- buffer
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04866—Construction and layout of air fractionation equipments, e.g. valves, machines
- F25J3/04896—Details of columns, e.g. internals, inlet/outlet devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04193—Division of the main heat exchange line in consecutive sections having different functions
- F25J3/042—Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04472—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
- F25J3/04478—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for controlling purposes, e.g. start-up or back-up procedures
- F25J3/0449—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for controlling purposes, e.g. start-up or back-up procedures for rapid load change of the air fractionation unit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04866—Construction and layout of air fractionation equipments, e.g. valves, machines
- F25J3/04896—Details of columns, e.g. internals, inlet/outlet devices
- F25J3/04927—Liquid or gas distribution devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/50—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/50—Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/02—Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2250/00—Details related to the use of reboiler-condensers
- F25J2250/10—Boiler-condenser with superposed stages
Definitions
- the invention relates to a method for producing an oxygen product by cryogenic separation of air according to the preamble of patent claim 1.
- the distillation column system of the invention may be designed as a two-column system (for example as a classic Linde double column system) or as a three-column or multi-column system. It may in addition to the columns for nitrogen-oxygen separation, further devices for obtaining high purity products and / or other air components, in particular of noble gases, for example, an argon production and / or a krypton-xenon recovery.
- the low pressure column has a lower operating pressure than the high pressure column.
- the low-pressure column has a bottom evaporator, which is referred to as the main condenser.
- This is designed as a condenser-evaporator, that is, in indirect heat exchange with the evaporating bottom liquid of the low-pressure column, a gaseous heating fluid is liquefied, for example top nitrogen of the high-pressure column.
- the main condenser is often placed directly inside the low-pressure column (internal main condenser); Alternatively, it is housed in a separate container outside the low-pressure column and connected by piping to the low pressure column (external main condenser).
- Each "condenser-evaporator” has a liquefaction space and an evaporation space, which consist of liquefaction passages or evaporation passages.
- the condensation of a first fluid flow is performed, in the evaporation space the evaporation a second fluid stream.
- the two fluid streams are in indirect heat exchange.
- Evaporation and liquefaction space are formed by groups of passages that are in heat exchange relationship with each other.
- the main capacitor may be formed as a falling film evaporator or bath evaporator.
- the present invention relates to air separation processes in which the main condenser is designed as a bath evaporator.
- a bath evaporator sometimes also called “circulation evaporator” or “thermosiphon evaporator”
- the heat exchanger block is in a liquid bath of the fluid to be evaporated. This flows by means of the thermosiphon effect from bottom to top through the evaporation passages and exits the top again as a two-phase mixture. The remaining liquid flows outside the heat exchanger block back into the liquid bath.
- the evaporation space may comprise both the evaporation passages and the outside space around the heat exchanger block.
- additional measures are necessary to overturn the liquid through the evaporation passages.
- Two or more juxtaposed bath evaporator can be used as the main capacitor, which are then connected in parallel evaporation and liquefaction side.
- Each of these bath evaporator or the only bath evaporator, which forms the main capacitor can be designed as one-storey or multi-storey.
- a "multi-storey bath evaporator" has two or more floors arranged one above the other, each realized by a heat exchanger section. In this case, each individual floor can be realized by a separate heat exchanger block, or at least two or even all floors are formed by sections of a common heat exchanger block. The floors can be connected in series or parallel on both the evaporation and the liquefaction side.
- a specific embodiment of a multi-storey bath evaporator is a "cascade evaporator".
- the floors on the evaporation side are connected in series, ie non-evaporated liquid from an upper floor continues to flow to the floor below.
- cascade evaporator are preferably also connected in series, for example by through all floors continuous liquefaction passages of a common heat exchanger block.
- the floors can be connected in parallel on the liquefaction side.
- the "main heat exchanger” may be formed of one or more parallel and / or serially connected heat exchanger sections, for example one or more plate heat exchanger blocks.
- the invention has for its object to provide such a method and a corresponding device that allow a particularly stable operation of the system, especially during rapid load changes.
- a load change is an operating case in which the plant is in a non-stationary transition phase from a first production amount of oxygen product to a second production amount. With a "load increase” the second production quantity is higher than the first, with a “load reduction” lower.
- a liquid buffer is arranged above the main capacitor. This can be filled during stationary operation of the process with a suitable liquid, for example with a part of the return liquid, which flows from the lowest mass transfer section of the low-pressure column. For example, the liquid buffer is slowly filled during steady state operation so that the buffered liquid is available for non-steady state load increase operation.
- a load reduction liquid from the bottom of the main condenser is introduced into the liquid buffer, thereby increasing the storage capacity of the liquid buffer, that is, a total of more liquid is introduced into the liquid buffer and it is withdrawn.
- liquid is introduced from the liquid buffer into the main capacitor and thereby reduces the storage capacity of the liquid buffer, that is, more liquid is withdrawn from the liquid buffer than is introduced into it.
- a bath evaporator in comparison to the falling film evaporator has the advantage that no such external liquid circulation is necessary.
- the application of such an artificial fluid circulation from the sump to the buffer thus appears at first unrealistic.
- the operational advantage is surprisingly so great that it justifies the corresponding additional expense.
- the system according to the invention also has the advantage that the relatively high amount of liquid, which in this case flows with low purity from the upper mass transfer sections of the low-pressure column, can be at least partially absorbed in the buffer, thus preventing or reducing the contamination of the bottoms liquid becomes.
- the liquid buffer is arranged below the lowermost mass transfer section of the low-pressure column and above the main condenser, that is to say that due to the natural gradient, liquid can flow from the buffer into the evaporation space of the main condenser or its uppermost floor.
- the liquid buffer may for example be formed by one or more shells which are arranged on the column wall, for example by a peripheral shell, or by one or more chimney trays.
- the sump of a one-storey bath evaporator is regularly formed by its liquid bath, whereas in a multi-storey bath evaporator the bottom liquid bath is usually operated as a sump Alternatively, the sump can be formed by a separate space below the main condenser.
- the liquid circulation from the sump to the liquid buffer can also be used in steady-state operation, without necessarily increasing the storage contents;
- the circulation otherwise unusual in bath evaporators, serves to compensate for differences in purity in the evaporating liquid over the height of the evaporator.
- a particularly stable operation can be achieved.
- the liquid is introduced from the bottom of the main condenser by means of a liquid pump in the liquid buffer.
- the bottoms liquid must be raised in order to reach the liquid buffer.
- any method for lifting a liquid can be used for this purpose.
- a liquid pump is used.
- the invention offers particular advantages when used on multistage bath evaporators.
- the greatest advantage is that the main capacitor is designed as a cascade evaporator.
- the liquid circulation from the sump to the buffer not only prevents a possible lack of liquid, but also the concentration differences on the evaporation side of the different floors (levels) are compensated.
- Each stage of a cascade evaporator acts as a partial evaporation, that is, from top to bottom increases the oxygen concentration and thus the evaporation temperature.
- the liquefaction side however, the same nitrogen flows everywhere with a practically constant liquefaction temperature.
- the upper stages of a cascade evaporator basically work with a greater temperature difference than the lower ones.
- the use of the process according to the invention is particularly favorable if the oxygen-enriched product stream has an oxygen concentration of less than 98%, for example 90 to 95%. (All percentages here and below refer to the molar amount, unless stated otherwise.)
- the method can be run with two modes of operation, in which, in a first mode of operation, more liquid is introduced into the liquid buffer than withdrawn therefrom, and in a second mode more liquid is withdrawn from the liquid buffer than is introduced into it.
- the first mode of operation corresponds, for example, to steady-state operation with a constant load
- the second mode corresponds to a load change case, for example an increase in load during the transitional period from a first steady-state operation with a first production quantity to a second steady-state operation with a second, higher production quantity.
- the invention also relates to a device for cryogenic separation of air according to claims 5 to 7.
- Compressed and purified feed air 1 flows under a pressure of about 5.5 bar in the warm end of a main heat exchanger 2, and branched into one A portion of the dry air 1 can be diverted via line 5 as instrument air or to supply other compressed air consumers.
- the first partial air stream 3 is cooled in the main heat exchanger 2 to about dew point and introduced via line 5 in the high-pressure column 6, which is part of a distillation column system for nitrogen-oxygen separation, which also has a low-pressure column 7 and a main condenser 8, as Cascade evaporator is formed.
- the operating pressures in the columns are about 5.2 bar in the high pressure column 6 and about 1.3 bar in the low pressure column. 7
- the second partial air stream 4 is cooled in the main heat exchanger 2 only to an intermediate temperature and fed under this intermediate temperature of an expansion turbine 9, which is braked by means of a generator 10. There he is working expanded to about low-pressure column pressure, fed back via line 11 to the main heat exchanger 2 and finally and via line 12 of the low-pressure column 7 at an intermediate point.
- Gaseous head nitrogen 13 of the high-pressure column 6 is introduced to a part 14 in the liquefaction space of the main capacitor 8.
- the remainder 15 is warmed in the main heat exchanger 2 to about ambient temperature and finally withdrawn via line 16 as gaseous nitrogen pressure product (PGAN).
- GPN gaseous nitrogen pressure product
- the liquid nitrogen 17 produced in the main condenser 8 is fed to a first part 18 as reflux to the top of the high-pressure column 6.
- a second part 19 is cooled in a supercooling countercurrent 23 and fed via line 20 as reflux to the top of the low-pressure column 7.
- a third part 21 can be discharged as a liquid nitrogen product (LIN).
- the oxygen-enriched bottoms liquid 24 of the high-pressure column 6 is likewise cooled in the subcooling countercurrent 23 and introduced via line 25 at an intermediate point into the low-pressure column 7.
- gaseous nitrogen 26 is withdrawn, warmed in the supercooling countercurrent 23 and the main heat exchanger 2 and withdrawn via line 27. It can be used, for example, as a regeneration gas in the air purification, not shown.
- An oxygen-enriched product stream 28 is withdrawn from the lower region of the low-pressure column 7 (here directly above the main condenser 8), heated to approximately ambient temperature in the main heat exchanger 2 and recovered via line 29 as an oxygen product (GOX). Via the lines 30, 31, 33 and a pump 32, part of the liquid can be recovered from the sump 35 of the main condenser 8 as a liquid product (LOX), for example for filling a liquid tank for emergency supply.
- LOX liquid product
- a pressure oxygen product could be obtained by internal compression, by bringing a portion of the liquid oxygen 31 liquid pressure and vaporized in the main heat exchanger 2 or pseudo-evaporated.
- a liquid buffer 33 in the form of an annular shell.
- the liquid buffer 33 may be filled with a portion of the liquid draining from the lowermost mass transfer section 32.
- liquid is selectively directed out of the buffer 33 into the main condenser 8, specifically into the liquid bath of its uppermost floor.
- liquid is introduced from the sump 36 into the liquid buffer 33.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Erzeugung eines Sauerstoffprodukts durch Tieftemperaturzerlegung von Luft gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a method for producing an oxygen product by cryogenic separation of air according to the preamble of patent claim 1.
Verfahren und Vorrichtungen zur Tieftemperaturzerlegung von Luft sind zum Beispiel aus
Das Destilliersäulen-System der Erfindung kann als Zwei-Säulen-System (zum Beispiel als klassisches Linde-Doppelsäulensystem), oder auch als Drei- oder Mehr-Säulen-System ausgebildet sein. Es kann zusätzlich zu den Kolonnen zur Stickstoff-Sauerstoff-Trennung weitere Vorrichtungen zur Gewinnung hochreiner Produkte und/oder anderer Luftkomponenten, insbesondere von Edelgasen aufweisen, beispielsweise eine Argongewinnung und/oder eine Krypton-Xenon-Gewinnung.The distillation column system of the invention may be designed as a two-column system (for example as a classic Linde double column system) or as a three-column or multi-column system. It may in addition to the columns for nitrogen-oxygen separation, further devices for obtaining high purity products and / or other air components, in particular of noble gases, for example, an argon production and / or a krypton-xenon recovery.
Die Niederdrucksäule weist einen niedrigeren Betriebsdruck als die Hochdrucksäule auf. Zur Erzeugung von Dampf, der in ihren Stoffaustauschabschnitten aufsteigt, weist die Niederdrucksäule einen Sumpfverdampfer auf, der als Hauptkondensator bezeichnet wird. Dieser ist als Kondensator-Verdampfer ausgebildet, das heißt in indirektem Wärmeaustausch mit der verdampfenden Sumpfflüssigkeit der Niederdrucksäule wird ein gasförmiges Heizfluid verflüssigt, zum Beispiel Kopfstickstoff der Hochdrucksäule. Der Hauptkondensator wird häufig unmittelbar innerhalb der Niederdrucksäule angeordnet (innen liegender Hauptkondensator); alternativ ist er in einem separaten Behälter außerhalb der Niederdrucksäule untergebracht und mit Rohrleitungen mit der Niederdrucksäule verbunden (außen liegender Hauptkondensator).The low pressure column has a lower operating pressure than the high pressure column. To generate steam that rises in its mass transfer sections, the low-pressure column has a bottom evaporator, which is referred to as the main condenser. This is designed as a condenser-evaporator, that is, in indirect heat exchange with the evaporating bottom liquid of the low-pressure column, a gaseous heating fluid is liquefied, for example top nitrogen of the high-pressure column. The main condenser is often placed directly inside the low-pressure column (internal main condenser); Alternatively, it is housed in a separate container outside the low-pressure column and connected by piping to the low pressure column (external main condenser).
Jeder "Kondensator-Verdampfer" weist einen Verflüssigungsraum und einen Verdampfungsraum auf, die aus Verflüssigungspassagen beziehungsweise Verdampfungspassagen bestehen. In dem Verflüssigungsraum wird die Kondensation eines ersten Fluidstroms durchgeführt, in dem Verdampfungsraum die Verdampfung eines zweiten Fluidstroms. Die beiden Fluidströme stehen dabei in indirektem Wärmeaustausch. Verdampfungs- und Verflüssigungsraum werden durch Gruppen von Passagen gebildet, die untereinander in Wärmeaustauschbeziehung stehen.Each "condenser-evaporator" has a liquefaction space and an evaporation space, which consist of liquefaction passages or evaporation passages. In the liquefaction space, the condensation of a first fluid flow is performed, in the evaporation space the evaporation a second fluid stream. The two fluid streams are in indirect heat exchange. Evaporation and liquefaction space are formed by groups of passages that are in heat exchange relationship with each other.
Der Hauptkondensator kann als Fallfilmverdampfer oder Badverdampfer ausgebildet sein. Die vorliegende Erfindung bezieht sich auf Luftzerlegungsverfahren, bei denen der Hauptkondensator als Badverdampfer ausgebildet ist. Bei einem "Badverdampfer" (gelegentlich auch "Umlaufverdampfer" oder "Thermosiphon-Verdampfer" genannt) steht der Wärmetauscherblock in einem Flüssigkeitsbad des zu verdampfenden Fluids. Dieses strömt mittels des Thermosiphon-Effekts von unten nach oben durch die Verdampfungspassagen und tritt oben als Zwei-Phasen-Gemisch wieder aus. Die verbleibende Flüssigkeit strömt außerhalb des Wärmetauscherblocks in das Flüssigkeitsbad zurück. (Bei einem Badverdampfer kann der Verdampfungsraum sowohl die Verdampfungspassagen als auch den Außenraum um den Wärmetauscherblock umfassen.) Bei einem Fallfilmverdampfer sind dagegen zusätzliche Maßnahmen notwendig, um die Flüssigkeit durch die Verdampfungspassagen umzuwerfen.The main capacitor may be formed as a falling film evaporator or bath evaporator. The present invention relates to air separation processes in which the main condenser is designed as a bath evaporator. In a "bath evaporator" (sometimes also called "circulation evaporator" or "thermosiphon evaporator"), the heat exchanger block is in a liquid bath of the fluid to be evaporated. This flows by means of the thermosiphon effect from bottom to top through the evaporation passages and exits the top again as a two-phase mixture. The remaining liquid flows outside the heat exchanger block back into the liquid bath. (In a bath evaporator, the evaporation space may comprise both the evaporation passages and the outside space around the heat exchanger block.) In a falling film evaporator, however, additional measures are necessary to overturn the liquid through the evaporation passages.
Als Hauptkondensator können auch zwei oder mehr nebeneinander angeordnete Badverdampfer eingesetzt werden, die dann verdampfungs- und verflüssigungsseitig parallel geschaltet sind. Jeder dieser Badverdampfer beziehungsweise der einzige Badverdampfer, der den Hauptkondensator bildet, kann einstöckig oder mehrstöckig ausgeführt werden. Ein "mehrstöckiger Badverdampfer" weist zwei oder mehr übereinander angeordnete Stockwerke auf, die jeweils durch einen Wärmetauscherabschnitt realisiert sind. Dabei kann jedes einzelne Stockwerk durch einen separaten Wärmetauscherblock realisiert sein, oder mindestens zwei oder auch alle Stockwerke werden durch Abschnitte eines gemeinsamen Wärmetauscherblocks gebildet. Die Stockwerke können sowohl auf der Verdampfungs- als auch auf der Verflüssigungsseite seriell oder parallel geschaltet sein.Two or more juxtaposed bath evaporator can be used as the main capacitor, which are then connected in parallel evaporation and liquefaction side. Each of these bath evaporator or the only bath evaporator, which forms the main capacitor, can be designed as one-storey or multi-storey. A "multi-storey bath evaporator" has two or more floors arranged one above the other, each realized by a heat exchanger section. In this case, each individual floor can be realized by a separate heat exchanger block, or at least two or even all floors are formed by sections of a common heat exchanger block. The floors can be connected in series or parallel on both the evaporation and the liquefaction side.
Eine spezielle Ausführungsform eines mehrstöckigen Badverdampfers ist ein "Kaskadenverdampfer". Hier sind die Stockwerke auf der Verdampfungsseite seriell verbunden, das heißt nicht verdampfte Flüssigkeit aus einem oberen Stockwerk fließt weiter zum darunterliegenden Stockwerk. Auf der Verflüssigungsseite sind Kaskadenverdampfer vorzugsweise ebenfalls seriell geschaltet, zum Beispiel durch über sämtliche Stockwerke durchgehenden Verflüssigungspassagen eines gemeinsamen Wärmetauscherblocks. Alternativ können auch bei einem Kaskadenverdampfer die Stockwerke verflüssigungsseitig parallel geschaltet sein.A specific embodiment of a multi-storey bath evaporator is a "cascade evaporator". Here, the floors on the evaporation side are connected in series, ie non-evaporated liquid from an upper floor continues to flow to the floor below. On the liquefaction side cascade evaporator are preferably also connected in series, for example by through all floors continuous liquefaction passages of a common heat exchanger block. Alternatively, even with a cascade evaporator, the floors can be connected in parallel on the liquefaction side.
Der "Hauptwärmetauscher" kann aus einem oder mehreren parallel und/oder seriell verbundenen Wärmetauscherabschnitten gebildet sein, zum Beispiel aus einem oder mehreren Plattenwärmetauscher-Blöcken.The "main heat exchanger" may be formed of one or more parallel and / or serially connected heat exchanger sections, for example one or more plate heat exchanger blocks.
Prozesse mit einstöckigen Badverdampfern sind aus der oben genannten Monografie von Hausen/Linde bekannt. Verfahren der eingangs genannten Art mit mehrstöckigen Badverdampfern sind offenbart in
Der Erfindung liegt die Aufgabe zugrunde, ein derartiges Verfahren und eine entsprechende Vorrichtung anzugeben, die einen besonders stabilen Betrieb des Systems erlauben, insbesondere bei schnellen Lastwechseln.The invention has for its object to provide such a method and a corresponding device that allow a particularly stable operation of the system, especially during rapid load changes.
Ein Lastwechsel ist ein Betriebsfall, in dem sich die Anlage in einer nicht-stationären Übergangsphase von einer ersten Produktionsmenge an Sauerstoffprodukt zu einer zweiten Produktionsmenge befindet. Bei einer "Lasterhöhung" ist die zweite Produktionsmenge höher als die erste, bei einer "Lastverminderung" niedriger.A load change is an operating case in which the plant is in a non-stationary transition phase from a first production amount of oxygen product to a second production amount. With a "load increase" the second production quantity is higher than the first, with a "load reduction" lower.
Diese Aufgabe wird durch die Merkmale des kennzeichnenden Teils des Patentanspruchs 1 gelöst. Erfindungsgemäß ist ein Flüssigkeitspuffer über dem Hauptkondensator angeordnet. Dieser wird kann während des stationären Betriebs des Verfahrens mit einer geeigneten Flüssigkeit gefüllt werden, zum Beispiel mit einem Teil der Rücklaufflüssigkeit, die aus dem untersten Stoffaustauschabschnitt der Niederdrucksäule abfließt. Der Flüssigkeitspuffer wird beispielsweise während des stationären Betriebs langsam gefüllt, sodass die gepufferte Flüssigkeit für den nicht-stationären Betriebsfall einer Lasterhöhung zur Verfügung steht. Insbesondere wird bei der Erfindung während einer Lastverminderung Flüssigkeit aus dem Sumpf des Hauptkondensators in den Flüssigkeitspuffer eingeleitet und dabei der Speicherinhalt des Flüssigkeitspuffers erhöht, das heißt insgesamt wird mehr Flüssigkeit in den Flüssigkeitspuffer eingeleitet als auch ihm abgezogen wird.This object is solved by the features of the characterizing part of patent claim 1. According to the invention, a liquid buffer is arranged above the main capacitor. This can be filled during stationary operation of the process with a suitable liquid, for example with a part of the return liquid, which flows from the lowest mass transfer section of the low-pressure column. For example, the liquid buffer is slowly filled during steady state operation so that the buffered liquid is available for non-steady state load increase operation. In particular, in the invention during a load reduction liquid from the bottom of the main condenser is introduced into the liquid buffer, thereby increasing the storage capacity of the liquid buffer, that is, a total of more liquid is introduced into the liquid buffer and it is withdrawn.
Während einer Lasterhöhung wird dagegen Flüssigkeit aus dem Flüssigkeitspuffer in den Hauptkondensator eingeleitet und dabei der Speicherinhalt des Flüssigkeitspuffers vermindert, das heißt mehr Flüssigkeit aus dem Flüssigkeitspuffer abgezogen als in ihn eingeleitet wird.During a load increase, however, liquid is introduced from the liquid buffer into the main capacitor and thereby reduces the storage capacity of the liquid buffer, that is, more liquid is withdrawn from the liquid buffer than is introduced into it.
Grundsätzlich weist ein Badverdampfer im Vergleich zum Fallfilmverdampfer den Vorteil auf, dass kein solcher externer Flüssigkeitsumlauf notwendig ist. Die Anwendung eines solchen künstlichen Flüssigkeitsumlaufs vom Sumpf zum Puffer erscheint also zunächst widersinnig. Im Rahmen der Erfindung hat sich jedoch herausgestellt, dass der betriebstechnische Vorteil überraschenderweise so groß ist, dass er den entsprechenden zusätzlichen Aufwand rechtfertigt.Basically, a bath evaporator in comparison to the falling film evaporator has the advantage that no such external liquid circulation is necessary. The application of such an artificial fluid circulation from the sump to the buffer thus appears at first absurd. In the context of the invention, however, it has been found that the operational advantage is surprisingly so great that it justifies the corresponding additional expense.
Während einer Lastverminderung weist das erfindungsgemäße System außerdem den Vorteil auf, dass die relative hohe Flüssigkeitsmenge, die in diesem Fall mit niedriger Reinheit aus den oberen Stoffaustauschabschnitten der Niederdrucksäule herabfließt, mindestens teilweise in dem Puffer aufgefangen werden kann und damit die Verunreinigung der Sumpfflüssigkeit verhindert oder verringert wird.During a load reduction, the system according to the invention also has the advantage that the relatively high amount of liquid, which in this case flows with low purity from the upper mass transfer sections of the low-pressure column, can be at least partially absorbed in the buffer, thus preventing or reducing the contamination of the bottoms liquid becomes.
Bei nicht-stationären Betriebsbedingungen, etwa bei einem Lastwechsel, ist häufig die Wirksamkeit des Wärmeaustauschprozesses am Hauptkondensator verringert. Im Rahmen der Erfindung wurde herausgefunden, dass dies an einem Flüssigkeitsmangel auf der Verdampfungsseite liegt. Mit dem erfindungsgemäßen Verfahren kann nun fehlende Flüssigkeit aus dem Puffer ergänzt werden. Damit ist ein besonders stabiler und störungsfreier Betrieb der Anlage auch bei extremen Betriebsbedingungen möglich, beispielsweise bei einem schnellen Lastwechsel mit einer Verstellgeschwindigkeit von mehr als einem Prozent Laständerung pro Minute.In non-stationary operating conditions, such as a load change, the effectiveness of the heat exchange process on the main capacitor is often reduced. In the context of the invention it has been found that this is due to a lack of liquid on the evaporation side. With the method according to the invention now missing liquid can be supplemented from the buffer. Thus, a particularly stable and trouble-free operation of the system is possible even under extreme operating conditions, for example in a fast load change with an adjustment of more than one percent load change per minute.
Der Flüssigkeitspuffer ist unterhalb des untersten Stoffaustauschabschnitts der Niederdrucksäule angeordnet und oberhalb des Hauptkondensators, das heißt so, dass Flüssigkeit aufgrund des natürlichen Gefälles aus dem Puffer in den Verdampfungsraum des Hauptkondensators beziehungsweise dessen obersten Stockwerks fließen kann. Der Flüssigkeitspuffer kann beispielsweise durch eine oder mehrere Schalen gebildet werden, die an der Kolonnenwand angeordnet sind, beispielsweise durch eine umlaufende Schale, oder auch durch einen oder mehrere Kaminböden.The liquid buffer is arranged below the lowermost mass transfer section of the low-pressure column and above the main condenser, that is to say that due to the natural gradient, liquid can flow from the buffer into the evaporation space of the main condenser or its uppermost floor. The liquid buffer may for example be formed by one or more shells which are arranged on the column wall, for example by a peripheral shell, or by one or more chimney trays.
Der "Sumpf eines einstöckigen Badverdampfers wird regelmäßig durch sein Flüssigkeitsbad gebildet. Bei einem mehrstöckigen Badverdampfer wird in der Regel das unterste Flüssigkeitsbad als Sumpf betrieben. Alternativ kann der Sumpf durch einen separaten Raum unterhalb des Hauptkondensators gebildet werden.The sump of a one-storey bath evaporator is regularly formed by its liquid bath, whereas in a multi-storey bath evaporator the bottom liquid bath is usually operated as a sump Alternatively, the sump can be formed by a separate space below the main condenser.
Der Flüssigkeitsumlauf vom Sumpf zum Flüssigkeitspuffer kann auch im stationären Betriebsfall verwendet werden, ohne dass dabei notwendigerweise der Speicherinhalt steigt; in diesem Fall dient der - bei Badverdampfern ansonsten unübliche - Umlauf dazu, Reinheitsdifferenzen in der verdampfenden Flüssigkeit über die Höhe des Verdampfers auszugleichen. Insbesondere bei mehrstöckigen Badverdampfern kann damit ein besonders stabiler Betrieb erreicht werden.The liquid circulation from the sump to the liquid buffer can also be used in steady-state operation, without necessarily increasing the storage contents; In this case, the circulation, otherwise unusual in bath evaporators, serves to compensate for differences in purity in the evaporating liquid over the height of the evaporator. In particular, in multi-storey bath evaporators thus a particularly stable operation can be achieved.
In einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens wird die Flüssigkeit aus dem Sumpf des Hauptkondensators mittels einer Flüssigkeitspumpe in den Flüssigkeitspuffer eingeleitet.In a further embodiment of the method according to the invention, the liquid is introduced from the bottom of the main condenser by means of a liquid pump in the liquid buffer.
Da der Flüssigkeitspuffer über dem Hauptkondensator, der Sumpf aber darunter beziehungsweise am unteren Ende angeordnet ist, muss die Sumpfflüssigkeit angehoben werden, um zum Flüssigkeitspuffer zu gelangen. Grundsätzlich kann dazu jedes Verfahren zum Anheben einer Flüssigkeit eingesetzt werden. Insbesondere wird eine Flüssigkeitspumpe verwendet.Since the liquid buffer is arranged above the main condenser, but the sump below it or at the lower end, the bottoms liquid must be raised in order to reach the liquid buffer. In principle, any method for lifting a liquid can be used for this purpose. In particular, a liquid pump is used.
Die Erfindung bietet besondere Vorteile bei der Anwendung auf mehrstöckige Badverdampfer. Am größten ist der Vorteil, wenn der Hauptkondensator als Kaskadenverdampfer ausgebildet ist. Hier wird durch den Flüssigkeitsumlauf vom Sumpf zum Puffer nicht nur ein möglicher Flüssigkeitsmangel verhindert, sondern außerdem werden die Konzentrationsunterschiede auf der Verdampfungsseite der verschiedenen Stockwerke (Stufen) ausgeglichen. Jede Stufe eines Kaskadenverdampfers wirkt nämlich als partielle Verdampfung, das heißt, von oben nach unten nimmt die Sauerstoffkonzentration zu und damit die Verdampfungstemperatur. Auf der Verflüssigungsseite strömt jedoch überall der gleiche Stickstoff mit praktisch konstanter Verflüssigungstemperatur. Dadurch arbeiten die oberen Stufen eines Kaskadenverdampfers grundsätzlich mit größerer Temperaturdifferenz als die unteren. Bei Lastwechseln verstärkt dies den Mangel an Flüssigkeit in den oberen Stufen weiter, weil diese mehr Wärme umsetzen als die unteren. Im Rahmen dieser Ausgestaltung der Erfindung wird nun die reinste Flüssigkeit, die aus der untersten Stufe in den Sumpf austritt, wieder nach oben in den Puffer und von dort auf die oberste Verdampfungsstufe geführt. Sie gleicht damit die relativ niedrige Reinheit dort aus und erzeugt insgesamt ein flacheres Konzentrationsprofil auf der Verdampfungsseite über die Höhe des Kaskadenverdampfers. Sie wirkt damit beiden negativen Effekten beim Betrieb eines Kaskadenverdampfers gleichzeitig entgegen, nämlich dem Flüssigkeitsmangel bei Lastwechseln und den unerwünschten Konzentrationsunterschieden über die Höhe des Hauptkondensators.The invention offers particular advantages when used on multistage bath evaporators. The greatest advantage is that the main capacitor is designed as a cascade evaporator. Here, the liquid circulation from the sump to the buffer not only prevents a possible lack of liquid, but also the concentration differences on the evaporation side of the different floors (levels) are compensated. Each stage of a cascade evaporator acts as a partial evaporation, that is, from top to bottom increases the oxygen concentration and thus the evaporation temperature. On the liquefaction side, however, the same nitrogen flows everywhere with a practically constant liquefaction temperature. As a result, the upper stages of a cascade evaporator basically work with a greater temperature difference than the lower ones. In load changes this reinforces the lack of Fluid continues in the upper stages because they convert more heat than the lower ones. In the context of this embodiment of the invention, the purest liquid emerging from the lowest stage in the sump, then again up to the buffer and from there to the top evaporation stage. It compensates for the relatively low purity there and generally produces a flatter concentration profile on the evaporation side over the height of the cascade evaporator. It thus counteracts both negative effects when operating a cascade evaporator at the same time, namely the lack of liquid during load changes and the undesirable concentration differences over the height of the main capacitor.
Besonders günstig ist die Anwendung des erfindungsgemäßen Verfahrens, wenn der sauerstoffangereicherte Produktstrom eine Sauerstoffkonzentration von weniger als 98 % aufweist, beispielsweise 90 bis 95 %. (Alle Prozentangaben beziehen sich hier und im Folgenden auf die molare Menge, soweit nichts anderes angegeben ist.)The use of the process according to the invention is particularly favorable if the oxygen-enriched product stream has an oxygen concentration of less than 98%, for example 90 to 95%. (All percentages here and below refer to the molar amount, unless stated otherwise.)
Das Verfahren kann insbesondere mit zwei Betriebsweisen gefahren werden, indem in einer ersten Betriebsweise mehr Flüssigkeit in den Flüssigkeitspuffer eingeleitet wird, als aus ihm abgezogen wird, und in einer zweiten Betriebsweise mehr Flüssigkeit aus dem Flüssigkeitspuffer abgezogen wird, als in ihn eingeleitet wird. Die erste Betriebsweise entspricht beispielsweise einem stationären Betrieb mit konstanter Last, die zweite Betriebsweise einem Lastwechselfall, beispielsweise einer Lasterhöhung während der Übergangszeit von einem ersten stationären Betrieb mit einer ersten Produktionsmenge zu einem zweiten stationären Betrieb mit einer zweiten, höheren Produktionsmenge.In particular, the method can be run with two modes of operation, in which, in a first mode of operation, more liquid is introduced into the liquid buffer than withdrawn therefrom, and in a second mode more liquid is withdrawn from the liquid buffer than is introduced into it. The first mode of operation corresponds, for example, to steady-state operation with a constant load, the second mode corresponds to a load change case, for example an increase in load during the transitional period from a first steady-state operation with a first production quantity to a second steady-state operation with a second, higher production quantity.
Die Erfindung betrifft außerdem eine Vorrichtung zur Tieftemperaturzerlegung von Luft gemäß den Patentansprüchen 5 bis 7 .The invention also relates to a device for cryogenic separation of air according to
Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispiels näher erläutert.The invention and further details of the invention are explained in more detail below with reference to an embodiment schematically illustrated in the drawing.
Verdichtete und gereinigte Einsatzluft 1 strömt unter einem Druck von ca. 5,5 bar in das warme Ende eines Hauptwärmetauschers 2 ein, und zwar verzweigt in einen ersten Luftteilstrom 3 und einen zweiten Luftteilstrom 4. Ein Teil der trockenen Luft 1 kann über Leitung 5 als Instrumentenluft oder zur Versorgung anderer Druckluftverbraucher abgezweigt werden.Compressed and purified feed air 1 flows under a pressure of about 5.5 bar in the warm end of a
Der erste Luftteilstrom 3 wird in dem Hauptwärmetauscher 2 auf etwa Taupunkt abgekühlt und über Leitung 5 in die Hochdrucksäule 6 eingeleitet, die Teil eines Destilliersäulen-Systems zur Stickstoff-Sauerstoff-Trennung ist, das außerdem eine Niederdrucksäule 7 und einen Hauptkondensator 8 aufweist, der als Kaskadenverdampfer ausgebildet ist. Die Betriebsdrücke in den Säulen (jeweils am Kopf) betragen ca. 5,2 bar in der Hochdrucksäule 6 und ca. 1,3 bar in der Niederdrucksäule 7.The first
Der zweite Luftteilstrom 4 wird im Hauptwärmetauscher 2 nur auf eine Zwischentemperatur abgekühlt und unter dieser Zwischentemperatur einer Entspannungsturbine 9 zugeleitet, die mittels eines Generators 10 gebremst wird. Dort wird er arbeitsleistend auf etwa Niederdrucksäulendruck entspannt, über Leitung 11 wieder dem Hauptwärmetauscher 2 und schließlich und über Leitung 12 der Niederdrucksäule 7 an einer Zwischenstelle zugeleitet.The second
Gasförmiger Kopfstickstoff 13 der Hochdrucksäule 6 wird zu einem Teil 14 in den Verflüssigungsraum des Hauptkondensators 8 eingeleitet. Der Rest 15 wird im Hauptwärmetauscher 2 auf etwa Umgebungstemperatur angewärmt und schließlich über Leitung 16 als gasförmiges Stickstoff-Druckprodukt (PGAN) abgezogen.Gaseous head nitrogen 13 of the high-
Der in dem Hauptkondensator 8 erzeugte flüssige Stickstoff 17 wird zu einem ersten Teil 18 als Rücklauf auf den Kopf der Hochdrucksäule 6 aufgegeben. Ein zweiter Teil 19 wird in einem Unterkühlungs-Gegenströmer 23 abgekühlt und über Leitung 20 als Rücklauf auf den Kopf der Niederdrucksäule 7 aufgegeben. Bei Bedarf kann ein dritter Teil 21 als flüssiges Stickstoffprodukt (LIN) abgeführt werden.The
Die sauerstoffangereicherte Sumpfflüssigkeit 24 der Hochdrucksäule 6 wird ebenfalls im Unterkühlungs-Gegenströmer 23 abgekühlt und über Leitung 25 an einer Zwischenstelle in die Niederdrucksäule 7 eingeleitet.The oxygen-enriched bottoms liquid 24 of the high-
Vom Kopf der Niederdrucksäule 7 wird gasförmiger Stickstoff 26 abgezogen, im Unterkühlungs-Gegenströmer 23 und im Hauptwärmetauscher 2 angewärmt und über Leitung 27 abgezogen. Er kann beispielsweise als Regeneriergas in der nicht dargestellten Luftreinigung eingesetzt werden.From the top of the low-
Aus dem unteren Bereich der Niederdrucksäule 7 (hier unmittelbar oberhalb des Hauptkondensators 8) wird ein sauerstoffangereicherter Produktstrom 28 abzogen, in dem Hauptwärmetauscher 2 auf etwa Umgebungstemperatur angewärmt und über Leitung 29 als Sauerstoffprodukt (GOX) gewonnen. Über die Leitungen 30, 31, 33 und eine Pumpe 32 kann ein Teil der Flüssigkeit aus dem Sumpf 35 des Hauptkondensators 8 als Flüssigprodukt (LOX) gewonnen, beispielsweise zum Füllen eines Flüssigtanks zur Notversorgung.An oxygen-enriched
Alternativ oder zusätzlich zur gasförmigen Produktentnahme könnte ein Drucksauerstoffprodukt durch Innenverdichtung gewonnen werden, indem ein Teil des flüssigen Sauerstoffs 31 flüssig auf Druck gebracht und im Hauptwärmetauscher 2 verdampft beziehungsweise pseudo-verdampft wird.Alternatively or additionally to the gaseous product removal, a pressure oxygen product could be obtained by internal compression, by bringing a portion of the
Erfindungsgemäß befindet sich unmittelbar unterhalb des untersten Stoffaustauschabschnitts 32 der Niederdrucksäule 7 ein Flüssigkeitspuffer 33 in Form einer ringförmigen Schale. Während des stationären Betriebs der Anlage kann dieser mit einem Teil der Flüssigkeit, die aus dem untersten Stoffaustauschabschnitt 32 abläuft, gefüllt werden. Über Leitung 34 wird im Falle einer Lasterhöhung Flüssigkeit aus dem Puffer 33 gezielt in den Hauptkondensator 8 geleitet, und zwar in das Flüssigkeitsbad seines obersten Stockwerks.According to the invention, immediately below the lowermost
Jedenfalls wird bei einer Lastverminderung über eine Flüssigkeitspumpe 36 und Leitung 37 Flüssigkeit aus dem Sumpf 36 in den Flüssigkeitspuffer 33 eingeleitet.In any case, at a load reduction via a liquid pump 36 and
Claims (7)
dadurch gekennzeichnet, dass
characterized in that
gekennzeichnet durch
marked by
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12001386A EP2503270A1 (en) | 2011-03-22 | 2012-03-01 | Method and device for creating an oxygen product by cryogenic decomposition of air |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11002364 | 2011-03-22 | ||
EP12001386A EP2503270A1 (en) | 2011-03-22 | 2012-03-01 | Method and device for creating an oxygen product by cryogenic decomposition of air |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2503270A1 true EP2503270A1 (en) | 2012-09-26 |
Family
ID=44583651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12001386A Withdrawn EP2503270A1 (en) | 2011-03-22 | 2012-03-01 | Method and device for creating an oxygen product by cryogenic decomposition of air |
Country Status (3)
Country | Link |
---|---|
US (1) | US20120240620A1 (en) |
EP (1) | EP2503270A1 (en) |
CN (1) | CN102692114A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022258222A1 (en) * | 2021-06-07 | 2022-12-15 | Linde Gmbh | Air separation plant and air separation method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1152432B (en) | 1962-04-21 | 1963-08-08 | Linde Eismasch Ag | Plate condenser evaporator, especially for gas and air separators |
DE1949609A1 (en) | 1969-10-01 | 1971-04-08 | Linde Ag | Condenser evaporator for a rectification column |
US5222549A (en) * | 1988-07-04 | 1993-06-29 | Japan Oxygen Co., Ltd. | Condenser/evaporator |
EP0681153A1 (en) * | 1994-05-04 | 1995-11-08 | Linde Aktiengesellschaft | Process and apparatus for the low temperature separation of air |
JPH1054656A (en) * | 1996-08-12 | 1998-02-24 | Nippon Sanso Kk | Air liquefying and separating device and method thereof |
WO2001092798A2 (en) | 2000-05-31 | 2001-12-06 | Linde Ag | Multistoreyed bath condenser |
EP1287302B1 (en) | 2000-05-31 | 2005-09-21 | Linde AG | Multistoreyed bath condenser |
DE102005028012A1 (en) * | 2005-06-16 | 2006-09-14 | Linde Ag | Separation of air into nitrogen and oxygen at low temperatures, with a distillation column system, uses liquefied natural gas |
DE102007003437A1 (en) | 2007-01-23 | 2007-09-20 | Linde Ag | Condenser bath used as the primary condenser in cryogenic fractionation plant, comprises quadrangular condenser blocks having evaporation passages for liquid and liquefaction passages for heating medium, and liquid supply container |
-
2012
- 2012-03-01 EP EP12001386A patent/EP2503270A1/en not_active Withdrawn
- 2012-03-21 US US13/425,569 patent/US20120240620A1/en not_active Abandoned
- 2012-03-21 CN CN201210120155XA patent/CN102692114A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1152432B (en) | 1962-04-21 | 1963-08-08 | Linde Eismasch Ag | Plate condenser evaporator, especially for gas and air separators |
DE1949609A1 (en) | 1969-10-01 | 1971-04-08 | Linde Ag | Condenser evaporator for a rectification column |
US5222549A (en) * | 1988-07-04 | 1993-06-29 | Japan Oxygen Co., Ltd. | Condenser/evaporator |
EP0681153A1 (en) * | 1994-05-04 | 1995-11-08 | Linde Aktiengesellschaft | Process and apparatus for the low temperature separation of air |
JPH1054656A (en) * | 1996-08-12 | 1998-02-24 | Nippon Sanso Kk | Air liquefying and separating device and method thereof |
WO2001092798A2 (en) | 2000-05-31 | 2001-12-06 | Linde Ag | Multistoreyed bath condenser |
EP1287302B1 (en) | 2000-05-31 | 2005-09-21 | Linde AG | Multistoreyed bath condenser |
DE102005028012A1 (en) * | 2005-06-16 | 2006-09-14 | Linde Ag | Separation of air into nitrogen and oxygen at low temperatures, with a distillation column system, uses liquefied natural gas |
DE102007003437A1 (en) | 2007-01-23 | 2007-09-20 | Linde Ag | Condenser bath used as the primary condenser in cryogenic fractionation plant, comprises quadrangular condenser blocks having evaporation passages for liquid and liquefaction passages for heating medium, and liquid supply container |
Non-Patent Citations (1)
Title |
---|
HAUSEN; LINDE: "Tieftemperaturtechnik", 1985, pages: 281 - 337 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022258222A1 (en) * | 2021-06-07 | 2022-12-15 | Linde Gmbh | Air separation plant and air separation method |
Also Published As
Publication number | Publication date |
---|---|
CN102692114A (en) | 2012-09-26 |
US20120240620A1 (en) | 2012-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1308680B1 (en) | Process and system for production of krypton and/or xenon by cryogenic air separation | |
EP2235460B1 (en) | Process and device for the cryogenic separation of air | |
EP1243882B1 (en) | Production of argon using a triple pressure air separation system with an argon column | |
EP3019803B1 (en) | Method and device for oxygen production by low-temperature separation of air at variable energy consumption | |
EP1482266A1 (en) | Process and device for the recovery of Krypton and/or Xenon by cryogenic separation of air | |
EP2236964A1 (en) | Method and device for low-temperature air separation | |
EP3133361B1 (en) | Distillation column system and system for the production of oxygen by cryogenic decomposition of air | |
WO2012019753A2 (en) | Method and device for obtaining compressed oxygen and compressed nitrogen by the low-temperature separation of air | |
EP2758734B1 (en) | Method and device for cryogenic decomposition of air | |
WO2016146246A1 (en) | Plant for producing oxygen by cryogenic air separation | |
DE10161584A1 (en) | Device and method for generating gaseous oxygen under increased pressure | |
EP3394536A1 (en) | Method and device for obtaining pure nitrogen and pure oxygen by low-temperature separation of air | |
EP2767787A1 (en) | Method for producing gaseous oxygen by cryogenic air decomposition | |
WO2014102014A2 (en) | Method and device for low-temperature air separation | |
EP2914913A2 (en) | Process for the low-temperature separation of air in an air separation plant and air separation plant | |
EP2503270A1 (en) | Method and device for creating an oxygen product by cryogenic decomposition of air | |
DE10153919A1 (en) | Process for recovering highly pure oxygen from less pure oxygen in a distillation system comprises cooling the heat exchange fluid downstream of the high pressure column sump vaporizer and upstream of a pressure relieving device | |
WO2020187449A1 (en) | Method and system for low-temperature air separation | |
EP2865978A1 (en) | Method for low-temperature air separation and low temperature air separation plant | |
DE20319823U1 (en) | Device for extracting krypton and / or xenon by cryogenic decomposition | |
DE10045128A1 (en) | Method and device for producing high-purity nitrogen by low-temperature air separation | |
DE102013018664A1 (en) | Process for the cryogenic separation of air and cryogenic air separation plant | |
WO2023030679A1 (en) | Method for the low-temperature separation of air and air separation plant | |
EP1052465A1 (en) | Process and device for cryogenic air separation | |
WO2022258222A1 (en) | Air separation plant and air separation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20130301 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20151001 |