EP2502340A1 - Umrichter und submodul eines umrichters zum laden oder entladen eines energiespeichers - Google Patents

Umrichter und submodul eines umrichters zum laden oder entladen eines energiespeichers

Info

Publication number
EP2502340A1
EP2502340A1 EP09771516A EP09771516A EP2502340A1 EP 2502340 A1 EP2502340 A1 EP 2502340A1 EP 09771516 A EP09771516 A EP 09771516A EP 09771516 A EP09771516 A EP 09771516A EP 2502340 A1 EP2502340 A1 EP 2502340A1
Authority
EP
European Patent Office
Prior art keywords
voltage
submodule
capacitor
charging
capacitor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP09771516A
Other languages
English (en)
French (fr)
Inventor
Holger Leu
Andreja Rasic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2502340A1 publication Critical patent/EP2502340A1/de
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels

Definitions

  • the invention relates to a submodule for charging or discharging an energy store having a capacitor unit and a power semiconductor circuit, which has switched on and off power semiconductors, wherein the capacitor unit and the power semiconductor circuit are interconnected so that depending on the control of the power semiconductor of the power semiconductor circuit at least on the capacitor falling voltage or zero voltage at output terminals of the submodule can be generated.
  • the invention further relates to a converter with converter valves, which has a series circuit of such submodules.
  • a submodule and such a converter are already known from DE 101 030 31.
  • the Umrich ⁇ ter described there has inverter valves forming a bridge circuit.
  • each Umrichterventil Zvi ⁇ rule an alternating voltage terminal extends to connect the environmental judge voltage connection to an AC voltage supply, a DC-.
  • Each valve has a series circuit ⁇ tion of bipolar submodules, each having a capacitor unit, which is connected in parallel to a power semiconductor circuit.
  • each submodule The two terminals of each submodule are once connected to the capacitor unit and once with the potential point between the two power semiconductor switches ⁇ , each of which a freewheeling diode is connected in parallel in opposite directions. In this way, at the two terminals of each submodule either a zero voltage or the capacitor unit from ⁇ falling capacitor voltage can be generated. In this way, a so-called multistage DC voltage impressing converter is provided.
  • Another charging device for charging a battery has become known from DE 199 13 627 AI. Loading a larger number of energy stores with electrical energy creates a variety of problems.
  • the electric charging device is to be adapted to each energy storage to be charged.
  • different energy stores generally require different charging voltages or charging currents.
  • the device for charging or discharging the energy storage should also be inexpensive.
  • the object of the invention is therefore to provide a submodule and a converter of the aforementioned type, which allow an individual adjustment of the charging process to the requirements of the respective energy storage and which are also inexpensive.
  • the invention achieves this object by virtue of the fact that the energy store can be connected to the submodule via a DC voltage controller, the DC voltage controller being connected to the capacitor unit and for converting a capacitor voltage dropping across the capacitor into a charging voltage which is required for charging the energy store. and configured to convert a discharging voltage dropping to the energy storage during discharging into the capacitor voltage.
  • the invention solves the problem in that converter valves are provided, which consist at least partially of a series circuit sol ⁇ cher submodules.
  • At least one submodule of a modular multistage converter is used for charging external energy stores.
  • a so-called DC voltage controller is provided, which the falling in the capacitor voltage into the respectively required charge or discharge to ⁇ .
  • This has the advantage that the voltage which drops across the capacitors of the submodules can be kept as constant as possible for all submodules.
  • the adaptation to the respective energy storage takes place via the DC voltage controller.
  • the dropped across the capacitor unit of the submodule voltage can be selected by means of the turn-off power semiconductor of the power semiconductor circuit such that it is approximately in the range of charging relationship ⁇ as discharge voltages of the common energy storage.
  • the capacitor voltage for charging accumulators for electric cars is on the order of about 10V.
  • the DC voltage controller therefore does not need to be large To generate voltage differences when converting the DC voltages, so that the requirements of the DC voltage are low, making it cost-effective.
  • the losses of the DC voltage controller, which arise in the conversion of the DC voltage kept low.
  • the DC voltage regulator is connected in parallel with the capacitor unit.
  • an accumulator is provided as energy storage.
  • Accumulators are chemical stores where electrical energy is converted into chemically bound energy and stored. Such accumulators are well known, so that their exact configuration can be omitted at this point. In principle, arbitrary accumulators can be used in the scope of the invention.
  • common battery ⁇ mulatoren here lithium-ion batteries or nickel-cadmium storage batteries may be mentioned. Of course, it is also possible to charge only in the future intended lithium air energy storage with the aid of the device according to the invention or with the submodule according to the invention.
  • the power semiconductor circuit and the capacitor unit are interconnected to form a full-bridge circuit, with four turn-off crugurlei ⁇ ter are provided, each of which a freewheeling diode is connected against ⁇ sensible parallel.
  • Such full bridge circuits are already used as converters or variable voltage sources in the field of energy transfer and energy distribution.
  • the full-bridge circuit it is possible to generate not only a zero voltage and the capacitor voltage but also the inverse capacitor voltage at the output terminals of each sub-module.
  • Deviating from this power semiconductor circuits and capacitor unit form a half bridge circuit having two on and off power semiconductors to which a freewheeling diode is connected in parallel in opposite directions depending ⁇ wells.
  • the submodule has furthermore advantageously has two terminals, one terminal with the capacitor unit and the other terminal connected to the Po ⁇ tenzialddling between the two controllable power semiconductors.
  • the submodule has furthermore advantageously has two terminals, one terminal with the capacitor unit and the other terminal connected to the Po ⁇ tenzialddling between the two controllable power semiconductors.
  • instead of in opposite directions in parallel to a power semiconductor egg ne freewheeling diode in the context of the invention also reverse conducting Kirsmithlei ⁇ terschalter can be used.
  • the DC voltage adjuster has egg ne control unit, which are equipped with measurement sensors for detecting a dropping across the energy store charge or discharge voltage and a falling of the capacitor unit capacitor voltage, the regulation ⁇ unit for adjusting the charging and / or discharge voltage as a function at least one setpoint is set up.
  • the determination of the desired value (s) can be input, for example, by a user. Deviating from this, however, it is also possible to connect the control unit of the DC voltage controller with an energy storage detection unit.
  • the energy storage detection unit reads ⁇ example, in a memory unit of the energy storage of each ⁇ type and the respective required charging relationship ⁇ discharge voltage and transmits this as a setpoint to the control unit of the DC voltage controller. This then provides the output side, the desired discharge rela ⁇ hung as charging voltage, so that the charge relationship ⁇ as discharge of the energy storage can be done with the greatest We ⁇ ciency.
  • the DC voltage controller is, for example, a boost converter or a buck converter.
  • the submodule is a bipolar submodule and has two connection terminals.
  • FIG 1 shows an embodiment of the invention
  • FIG. 1 shows schematically an inverter 1, which consists of a
  • each power semiconductor valve 2, 3, 4, 5, 6 and 7 has a throttle 11 limiting the current flow.
  • connection means 12 for connecting an AC voltage network , This is usually done via a transformer or else galvanically with the aid of chokes or coils, which are connected between the AC voltage terminals 8 and AC voltage not shown in Figure 1.
  • each of the garschlei ⁇ terventile 2, 3, 4, 5, 6 and 7 comprises a series circuit of submodules Bipo ⁇ stellar 13 which are all of identical construction. Therefore, in the right half of Figure 1, only a sub-module 13 is shown in more detail. It can be seen that each submodule 13 has a capacitor unit 14 and a power semiconductor circuit 15 which extends parallel to the capacitor unit 14.
  • the power semiconductor ⁇ circuit 15 has two power semiconductors 16 and 17, which can be both switched on and off.
  • Such power semiconductors are, for example, so-called IGBTs, GTOs, X-FETs, IGCTs or the like. In principle, any turn-off power semiconductor can be used within the scope of the invention.
  • Each of these controllable power semiconductors 16, 17 is a freewheeling diode 18 in opposite directions in parallel ge ⁇ switches. Furthermore, a first terminal 19 is galvanic ⁇ cally connected with the capacitor unit fourteenth A second terminal 20 is connected to the potential point between the power semiconductors 16 and 17. Falls at the condensate sator unit 14 during operation of the converter 1 is a Kon ⁇ densatorschreib U c from.
  • each of the power semiconductor can development of a Unterbrecherstel- 16 or 17, in which a current flow via the respective power semiconductor is interrupted, into its passage position in which a current flow via the power ⁇ semiconductors in a forward direction allows is or vice versa.
  • the power semiconductors 16 and 17, for example, so controlled that the power semiconductor 17 is in its breaker position the power semiconductor 16, however, is in its open position drops at the output terminals 19 and 20, the capacitor voltage U c .
  • the capacitor voltage U c or a zero voltage can be applied to the output terminals 19 and 20.
  • the capacitor unit 14 is connected in parallel with a DC voltage controller 21.
  • the DC voltage controller 21 is the output side connected to an energy storage 22, which is the embodiment shown in Figure 1 is a lithium-ion battery.
  • FIG. 2 shows the submodule of an inverter 1 according to Figure 1 in more detail.
  • the DC voltage controller 21 has a control unit 23 which is connected via Signalleitun ⁇ conditions 24 with voltage sensors 25, which are once for detecting the capacitor voltage U c or for detecting a charging or discharging voltage U L is ⁇ directed.
  • the DC voltage controller 21 is configured to convert the capacitor voltage U c into the charging voltage U L if the accumulator 22 is to be charged.
  • the discharge voltage U L in the capacitor voltage U c in a way that a power flow in both directions through the DC converter 21 is enables.
  • the control unit of the DC voltage controller 21 is connected to a master control unit, can be referred to the 26 beispielswei ⁇ se as so-called "battery management system".
  • the overall battery management system 26 transmits, for example, desired set values, such as charge ⁇ streams and the like before and during a charging process, the control unit 23 to the battery management system, with which optimum charging current by the battery management system can be calculated dynamically 23 to the control unit 26 specific status parameter ,
  • the Batte ⁇ rie management system 26 can be connected to other control units in any manner.

Abstract

Um ein Submodul (13) zum Laden oder Entladen eines Energiespeichers (22) mit einer Kondensatoreinheit (14) und einer Leistungshalbleiterschaltung (15), die an- und abschaltbare Leistungshalbleiter (16,17) aufweist, wobei die Kondensatoreinheit (14) und die Leistungshalbleiterschaltung (15) so miteinander verbunden sind, dass je nach Ansteuerung der Leistungshalbleiter (16,17) der Leistungshalbleiterschaltung (15) wenigstens die an der Kondensatoreinheit (14) abfallende Spannung oder eine Nullspannung an Ausgangsklemmen (19,20) des Submoduls (1) erzeugbar ist, bereitzustellen, das das ein individuelles Anpassen des Ladevorgangs auf die Erfordernisse des jeweiligen Energiespeichers ermöglicht und das darüber hinaus kostengünstig ist, wird vorgeschlagen, dass der Energiespeicher (22) über einen Gleichspannungssteller (21) an das Submodul (13) anschließbar ist, wobei der Gleichspannungssteller (21) mit der Kondensatoreinheit (14) verbunden ist und zum Umwandeln einer an der Kondensatoreinheit (14) abfallenden Kondensatorspannung (UC ) in eine Ladespannung (UL ), die zum Laden des Energiespeichers (22) erforderlich ist, und zum Umwandeln einer beim Entladen an dem Energiespeicher (22) abfallenden Entladespannung (EL ) in die Kondensatorspannung (UC ) eingerichtet ist.

Description

Beschreibung
Umrichter und Submodul eines Umrichters zum Laden oder Entla¬ den eines Energiespeichers
Die Erfindung betrifft ein Submodul zum Laden oder Entladen eines Energiespeichers mit einer Kondensatoreinheit und einer Leistungshalbleiterschaltung, die an- und abschaltbare Leistungshalbleiter aufweist, wobei die Kondensatoreinheit und die Leistungshalbleiterschaltung so miteinander verbunden sind, dass je nach Ansteuerung der Leistungshalbleiter der Leistungshalbleiterschaltung wenigstens die an dem Kondensator abfallende Spannung oder eine Nullspannung an Ausgangsklemmen des Submoduls erzeugbar ist.
Die Erfindung betrifft weiterhin einen Umrichter mit Umrichterventilen, der eine Reihenschaltung aus solchen Submodulen aufweist . Ein solches Submodul und ein solcher Umrichter sind aus der DE 101 030 31 bereits bekannt. Der dort beschriebene Umrich¬ ter verfügt über Umrichterventile, die eine Brückenschaltung ausbilden. Dabei erstreckt sich jedes Umrichterventil zwi¬ schen einem Wechselspannungsanschluss zur Verbindung des Um- richters mit einem Wechselspannungsnetz und einem Gleichspan- nungsanschluss . Jedes Ventil verfügt über eine Reihenschal¬ tung aus bipolaren Submodulen, die jeweils eine Kondensatoreinheit aufweisen, die parallel zu einer Leistungshalbleiterschaltung geschaltet ist. Die beiden Anschlussklemmen eines jeden Submoduls sind einmal mit der Kondensatoreinheit und einmal mit dem Potenzialpunkt zwischen den beiden Leistungs¬ halbleiterschaltern verbunden, denen jeweils eine Freilaufdiode gegensinnig parallel geschaltet ist. Auf diese Weise kann an den beiden Anschlussklemmen eines jeden Submoduls entweder eine Nullspannung oder aber die an der Kondensatoreinheit ab¬ fallende Kondensatorspannung erzeugt werden. Auf diese Weise ist ein so genannter mehrstufiger Gleichspannung einprägender Umrichter bereitgestellt.
Die DE 10 2007 051 052 beschreibt ein Verfahren zum Laden von wieder aufladbaren Lithiumakkumulatoren. Hierbei wird eine Wechselspannung im Niederspannungsbereich mit einem Schaltnetzteil verbunden, das ausgangsseitig eine Gleichspannung zum Laden eines Akkumulators bereitstellt.
Eine weitere Ladevorrichtung zum Laden eines Akkumulators ist aus der DE 199 13 627 AI bekannt geworden. Beim Laden einer größeren Anzahl von Energiespeichern mit elektrischer Energie ergibt sich eine Vielzahl von Problemen. Zunächst ist die elektrische Ladevorrichtung auf den jeweils zu ladenden Energiespeicher anzupassen. Unterschiedliche Energiespeicher erfordern jedoch in der Regel unterschiedli- che Ladespannungen oder Ladeströme. Insbesondere im Hinblick auf eine hohe Lebensdauer des Energiespeichers ist es sinn¬ voll, den Lade- beziehungsweise Entladevorgang hinsichtlich der Ladeparameter auf die Bedürfnisse des jeweiligen Energie¬ speichers auszurichten. Darüber hinaus sollte die Vorrichtung zum Laden beziehungsweise Entladen des Energiespeichers auch kostengünstig sein.
Aufgabe der Erfindung ist es daher, ein Submodul und einen Umrichter der eingangs genannten Art bereitzustellen, die ein individuelles Anpassen des Ladevorgangs auf die Erfordernisse des jeweiligen Energiespeichers ermöglichen und die darüber hinaus kostengünstig sind. Die Erfindung löst diese Aufgabe dadurch, dass der Energie¬ speicher über einen Gleichspannungssteller an das Submodul anschließbar ist, wobei der Gleichspannungssteller mit der Kondensatoreinheit verbunden ist und zum Umwandeln einer an dem Kondensator abfallenden Kondensatorspannung in eine Ladespannung, die zum Laden des Energiespeichers erforderlich ist, und zum Umwandeln einer beim Entladen an dem Energiespeicher abfallenden Entladespannung in die Kondensatorspannung eingerichtet ist.
Ausgehend von dem eingangs genannten Umrichter löst die Erfindung die Aufgabe dadurch, dass Umrichterventile vorgesehen sind, die zumindest teilweise aus einer Reihenschaltung sol¬ cher Submodule bestehen.
Erfindungsgemäß wird wenigstens ein Submodul eines modularen Mehrstufenumrichters zum Aufladen externer Energiespeicher eingesetzt. Um beim Laden oder Entladen des Energiespeichers die erforderliche Spannung individuell auswählen zu können, ist ein so genannter Gleichspannungssteller vorgesehen, welcher die in dem Kondensator abfallende Spannung in die jeweils erforderliche Lade- beziehungsweise Entladespannung um¬ wandelt. Dies hat den Vorteil, dass die Spannung, welche an den Kondensatoren der Submodule abfällt, weitestgehend für alle Submodule konstant gehalten werden kann. Die Anpassung auf den jeweiligen Energiespeicher erfolgt über den Gleichspannungssteller. Die an der Kondensatoreinheit des Submoduls abfallende Spannung kann mit Hilfe der abschaltbaren Leistungshalbleiter der Leistungshalbleiterschaltung so gewählt werden, dass diese in etwa im Bereich der Lade- beziehungs¬ weise Entladespannungen der gängigen Energiespeicher liegt. Die Kondensatorspannung zum Aufladen von Akkumulatoren für Elektroautos liegt beispielsweise in der Größenordnung von etwa 10V. Der Gleichspannungssteller muss daher keine großen Spannungsdifferenzen beim Umwandeln der Gleichspannungen erzeugen, so dass die Anforderungen an den Gleichspannungsstel- ler gering sind, wodurch dieser kostengünstig ist. Darüber hinaus werden auch die Verluste des Gleichspannungsstellers, die bei der Umwandlung der Gleichspannung entstehen, gering gehalten .
Vorteilhafterweise ist der Gleichspannungssteller parallel zur Kondensatoreinheit geschaltet.
Zweckmäßigerweise ist als Energiespeicher ein Akkumulator vorgesehen. Akkumulatoren sind chemische Speicher, bei denen Elektroenergie in chemisch gebundene Energie umgewandelt und so gespeichert wird. Solche Akkumulatoren sind bestens be- kannt, so dass an dieser Stelle deren genaue Ausgestaltung entfallen kann. Grundsätzlich könne im Rahme der Erfindung beliebige Akkumulatoren eingesetzt werden. Als gängige Akku¬ mulatoren seien hier Lithium-Ionen-Akkumulatoren oder Nickel- Kadmium-Akkumulatoren genannt. Selbstverständlich ist es auch möglich, erst in der Zukunft beabsichtigte Lithiumluftenergiespeicher mit Hilfe der erfindungsgemäßen Vorrichtung oder mit dem erfindungsgemäßen Submodul aufzuladen.
Vorteilhafterweise sind die Leistungshalbleiterschaltung und die Kondensatoreinheit zu einer Vollbrückenschaltung miteinander verschaltet, wobei vier abschaltbare Leistungshalblei¬ ter vorgesehen sind, denen jeweils eine Freilaufdiode gegen¬ sinnig parallel geschaltet ist. Solche Vollbrückenschaltungen werden bereits als Umrichter oder variable Spannungsquellen im Bereich der Energieübertragung und Energieverteilung eingesetzt. Mit Hilfe der Vollbrückenschaltung ist es möglich, neben einer Nullspannung und der Kondensatorspannung auch die inverse Kondensatorspannung an den Ausgangsklemmen eines jeden Submoduls zu erzeugen. Abweichend hiervon bilden Leistungshalbleiterschaltungen und Kondensatoreinheit eine Halbbrückenschaltung aus, die zwei an- und abschaltbare Leistungshalbleiter aufweist, denen je¬ weils eine Freilaufdiode gegensinnig parallel geschaltet ist. Das Submodul verfügt darüber hinaus zweckmäßigerweise über zwei Anschlussklemmen, wobei eine Anschlussklemme mit der Kondensatoreinheit und die andere Anschlussklemme mit dem Po¬ tenzialpunkt zwischen den beiden ansteuerbaren Leistungshalbleitern verbunden sind. Anstatt einem Leistungshalbleiter ei- ne Freilaufdiode gegensinnig parallel zu schalten, können im Rahmen der Erfindung auch rückwärts leitende Leitungshalblei¬ terschalter eingesetzt werden.
Zweckmäßigerweise verfügt der Gleichspannungssteller über ei- ne Regelungseinheit, die mit Messsensoren zum Erfassen einer an dem Energiespeicher abfallenden Lade- beziehungsweise Entladespannung und einer an der Kondensatoreinheit abfallenden Kondensatorspannung eingerichtet sind, wobei die Regelungs¬ einheit zum Einstellen der Lade- und/oder Entladespannung in Abhängigkeit wenigstens eines Sollwertes eingerichtet ist.
Die Ermittlung des oder der Sollwerte kann beispielsweise von einem Nutzer eingegeben werden. Abweichend hiervon ist es jedoch auch möglich, die Regelungseinheit des Gleichspannungs- stellers mit einer Energiespeichererkennungseinheit zu ver- binden. Die Energiespeichererkennungseinheit liest beispiels¬ weise in einer Speichereinheit des Energiespeichers den je¬ weiligen Typ und die jeweils erforderliche Lade- beziehungs¬ weise Entladespannung aus und übermittelt diese als Sollwert an die Regelungseinheit des Gleichspannungsstellers . Dieser stellt dann ausgangsseitig die gewünschte Entlade- bezie¬ hungsweise Ladespannung ein, so dass die Ladung beziehungs¬ weise Entladung des Energiespeichers mit dem größten Wir¬ kungsgrad erfolgen kann. Der Gleichspannungssteller ist beispielsweise ein Hochsetzsteller oder ein Tiefsetzsteller.
Zweckmäßig ist es weiterhin, wenn das Submodul ein bipolares Submodul ist und zwei Anschlussklemmen aufweist.
Weitere zweckmäßige Ausgestaltungen und Vorteile der Erfin¬ dung sind Gegenstand der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung unter Bezug auf die Figuren der Zeichnung, wobei gleiche Bezugszeichen auf gleich wirkende Bauteile verweisen und wobei
Figur 1 ein Ausführungsbeispiel des erfindungsgemäßen
Submoduls und des erfindungsgemäßen Umrichters schematisch verdeutlicht und
Figur 2 ein Submodul eines Umrichters gemäß Figur 1 genauer zeigt. Figur 1 zeigt schematisch einen Umrichter 1, der aus einer
Brückenschaltung von Leistungshalbleiterventilen 2, 3, 4, 5, 6 und 7 besteht, wobei sich jedes der besagten Leistungshalb¬ leiterventile zwischen einem Wechselspannungsanschluss 8 und einem positiven Gleichspannungsanschluss 9 beziehungsweise einem negativen Gleichspannungsanschluss 10 erstreckt. Dar¬ über hinaus verfügt jedes Leistungshalbleiterventil, 2, 3, 4, 5, 6 und 7 über eine den Stromfluss begrenzende Drossel 11. In Figur 1 ist nur schematisch angedeutet, dass jeder Wechselspannungsanschluss 8 eines Umrichters mit Anschlussmitteln 12 zum Anschluss eines Wechselspannungsnetzes verbunden ist. Dies erfolgt üblicherweise über einen Transformator oder aber auch galvanisch mit Hilfe von Drosseln oder Spulen, die zwischen die Wechselspannungsanschlüsse 8 und in Figur 1 nicht dargestellte Wechselspannungsnetz geschaltet sind. Es ist weiterhin erkennbar, dass jedes der Leistungshalblei¬ terventile 2, 3, 4, 5, 6 und 7 eine Reihenschaltung von bipo¬ laren Submodulen 13 aufweist, die alle identisch aufgebaut sind. Daher ist in der rechten Hälfte von Figur 1 lediglich ein Submodul 13 genauer dargestellt. Es ist erkennbar, dass jedes Submodul 13 über eine Kondensatoreinheit 14 und eine Leistungshalbleiterschaltung 15 verfügt, die sich parallel zur Kondensatoreinheit 14 erstreckt. Die Leistungshalbleiter¬ schaltung 15 weist zwei Leistungshalbleiter 16 und 17 auf, die sowohl ein- als auch abgeschaltet werden können. Solche Leistungshalbleiter sind beispielsweise so genannte IGBTs, GTOs, X-FETs, IGCTs oder dergleichen. Grundsätzlich ist jeder abschaltbarer Leistungshalbleiter im Rahmen der Erfindung einsetzbar. Jedem dieser ansteuerbaren Leistungshalbleiter 16, 17 ist eine Freilaufdiode 18 gegensinnig parallel ge¬ schaltet. Weiterhin ist eine erste Anschlussklemme 19 galva¬ nisch mit der Kondensatoreinheit 14 verbunden. Eine zweite Anschlussklemme 20 ist an dem Potenzialpunkt zwischen den Leistungshalbleitern 16 und 17 angeschlossen. An der Konden- satoreinheit 14 fällt bei Betrieb des Umrichters 1 eine Kon¬ densatorspannung Uc ab.
Wie bereits weiter oben ausgeführt wurde, kann jeder der Leistungshalbleiter 16 oder 17 von einer Unterbrecherstel- lung, in der ein Stromfluss über den jeweiligen Leistungshalbleiter unterbrochen ist, in seine Durchgangsstellung überführt werden, in der ein Stromfluss über den Leistungs¬ halbleiter in einer Durchlassrichtung ermöglicht ist oder umgekehrt. Werden die Leistungshalbleiter 16 und 17 beispiels- weise so angesteuert, dass sich der Leistungshalbleiter 17 in seiner Unterbrecherstellung, der Leistungshalbleiter 16 jedoch in seiner Durchgangsstellung befindet, fällt an den Ausgangsklemmen 19 und 20 die Kondensatorspannung Uc ab. Ist je¬ doch der Leistungshalbleiter 17 in seiner Durchgangsstellung, der Leistungshalbleiter 16 ist seiner Unterbrecherstellung, fällt an den Ausgangsklemmen 19 und 20 die Spannung Null ab. Somit kann entweder die Kondensatorspannung Uc oder eine Nullspannung an die Ausgangsklemmen 19 und 20 gelegt werden.
Darüber hinaus ist erkennbar, dass die Kondensatoreinheit 14 parallel zu einem Gleichspannungssteller 21 geschaltet ist. Der Gleichspannungssteller 21 ist ausgangsseitig mit einem Energiespeicher 22 verbunden, der dem in Figur 1 gezeigten Ausführungsbeispiel ein Lithium-Ionen-Akkumulator ist.
In der schematischen Darstellung der Figur 1 ist nicht gezeigt, dass jeder Leistungshalbleiter 16, 17 mit einer Rege- lungs- und Schutzeinheit des Umrichters 1 verbunden ist, mit dessen Hilfe die an jeder Kondensatoreinheit abfallende Kon¬ densatorspannung im Wesentlichen einstellbar ist.
Figur 2 zeigt das Submodul eines Umrichters 1 gemäß Figur 1 genauer. Es ist erkennbar, dass der Gleichspannungssteller 21 über eine Regelungseinheit 23 verfügt, die über Signalleitun¬ gen 24 mit Spannungssensoren 25 verbunden ist, die einmal zum Erfassen der Kondensatorspannung Uc beziehungsweise zum Erfassen einer Lade- beziehungsweise Entladespannung UL einge¬ richtet sind. Der Gleichspannungssteller 21 ist zum Umwandeln der Kondensatorspannung Uc in die Ladespannung UL eingerichtet, falls der Akkumulator 22 geladen werden soll. Bei einer Entladung des Akkumulators 22 wandelt der Gleichspannungs¬ steller 21 hingegen die Entladespannung UL in die Kondensatorspannung Uc um, so dass ein Leistungsfluss in beiden Rich- tungen über den Gleichsetzsteller 21 ermöglicht ist. Der Regelungseinheit des Gleichspannungsstellers 21 ist mit einer übergeordneten Steuerungseinheit verbunden, die beispielswei¬ se als so genanntes „Batterie-Management-System" 26 bezeichnet werden kann. Das übergeordnete Batterie-Management-System 26 überträgt beispielsweise gewünschte Sollwerte, wie Lade¬ ströme und dergleichen an die Regelungseinheit 23. Vor und während eines Ladevorganges stellt die Regelungseinheit 23 dem Batterie Management System 26 bestimmte Statusparameter zur Verfügung, mit der ein optimaler Ladestrom seitens des Batterie Management Systems dynamisch berechnet werden kann.
Wie durch die Pfeile in Figur 2 angedeutet, kann das Batte¬ rie-Management-System 26 mit weiteren Steuerungseinheiten auf beliebige Art und Weise verbunden werden.

Claims

Patentansprüche
1. Submodul (13) zum Laden oder Entladen eines Energiespei¬ chers (22) mit einer Kondensatoreinheit (14) und einer Leis- tungshalbleiterschaltung (15), die an- und abschaltbare Leis¬ tungshalbleiter (16,17) aufweist, wobei die Kondensatoreinheit (14) und die Leistungshalbleiterschaltung (15) so miteinander verbunden sind, dass je nach Ansteuerung der Leistungshalbleiter (16,17) der Leistungshalbleiterschaltung (15) wenigstens die an der Kondensatoreinheit (14) abfallende
Spannung oder eine Nullspannung an Ausgangsklemmen (19,20) des Submoduls (1) erzeugbar ist,
d a d u r c h g e k e n n z e i c h n e t , dass
der Energiespeicher (22) über einen Gleichspannungssteller (21) an das Submodul (13) anschließbar ist, wobei der Gleichspannungssteller (21) mit der Kondensatoreinheit (14) verbunden ist und zum Umwandeln einer an der Kondensatoreinheit (14) abfallenden Kondensatorspannung (Uc) in eine Ladespannung (UL) , die zum Laden des Energiespeichers (22) erforder- lieh ist, und zum Umwandeln einer beim Entladen an dem Energiespeicher (22) abfallenden Entladespannung (EL) in die Kondensatorspannung (Uc) eingerichtet ist.
2. Submodul (13) nach Anspruch 1,
d a d u r c h g e k e n n z e i c h n e t , dass
der Gleichspannungssteller (21) parallel zur Kondensatoreinheit (14) geschaltet ist.
3. Submodul (13) nach Anspruch 2 oder 3,
d a d u r c h g e k e n n z e i c h n e t , dass
als Energiespeicher ein Akkumulator (22) anschließbar ist.
4. Submodul (13) nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t , dass
der Akkumulator ein chemischer Akkumulator (22) ist.
5. Submodul (13) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass
die Leistungshalbleiterschaltung (15) und die Kondensatoreinheit (14) zu einer Vollbrückenschaltung miteinander verschaltet sind, wobei vier abschaltbare Leistungshalbleiter vorge¬ sehen sind, denen jeweils eine Freilaufdiode gegensinnig pa- rallel geschaltet ist.
6. Submodul (13) nach einem der Ansprüche 1 bis 4,
d a d u r c h g e k e n n z e i c h n e t , dass
die Leistungshalbleiterschaltung (15) und die Kondensatorein- heit (14) eine Halbbrückenschaltung ausbilden, die zwei abschaltbare Leistungshalbleiter (16,17) aufweist, denen jeweils eine Freilaufdiode (18) gegensinnig parallel geschaltet ist .
7. Submodul (13) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass
der Gleichspannungssteller (21) eine Regelungseinheit (23) aufweist, die mit Messsensoren (25) zum Erfassen einer an dem Energiespeicher (22) abfallenden Lade- beziehungsweise Entla- despannung (UL) und einer an der Kondensatoreinheit (14) ab¬ fallenden Kondensatorspannung (Uc) eingerichtet sind, wobei die Regelungseinheit (23) zum Einstellen der Lade- oder Ent¬ ladespannung (UL) in Abhängigkeit wenigstens eines Sollwertes eingerichtet ist.
8. Submodul (13) nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der Gleichspannungssteller (21) ein Hochsetzsteller oder ein Tiefsetzsteller ist.
9. Submodul (13) nach einem der vorhergehenden Ansprüche, g e k e n n z e i c h n e t d u r c h
zwei Anschlussklemmen.
10. Umrichter (1) mit Umrichterventilen (2,3,4,5,6,7), die eine Reihenschaltung aus Submodulen (13) gemäß einem der vorhergehenden Ansprüche aufweisen.
EP09771516A 2009-11-19 2009-11-19 Umrichter und submodul eines umrichters zum laden oder entladen eines energiespeichers Ceased EP2502340A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2009/065491 WO2011060823A1 (de) 2009-11-19 2009-11-19 Umrichter und submodul eines umrichters zum laden oder entladen eines energiespeichers

Publications (1)

Publication Number Publication Date
EP2502340A1 true EP2502340A1 (de) 2012-09-26

Family

ID=42543236

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09771516A Ceased EP2502340A1 (de) 2009-11-19 2009-11-19 Umrichter und submodul eines umrichters zum laden oder entladen eines energiespeichers

Country Status (7)

Country Link
US (1) US8981712B2 (de)
EP (1) EP2502340A1 (de)
CN (1) CN102714471B (de)
BR (1) BR112012012140A2 (de)
HK (1) HK1174744A1 (de)
RU (1) RU2524363C2 (de)
WO (1) WO2011060823A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020225332A1 (fr) 2019-05-07 2020-11-12 Supergrid Institute Convertisseur de tension multi niveaux à stockage d'énergie additionnel optimisé

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011017597A1 (de) 2011-04-27 2012-10-31 Siemens Aktiengesellschaft Energiespeichervorrichtung, umfassend mehrere Speichermodule für elektrische Energie
DE102011075576A1 (de) * 2011-05-10 2012-11-15 Siemens Aktiengesellschaft Umrichteranordnung
DE102012202173B4 (de) 2012-02-14 2013-08-29 Siemens Aktiengesellschaft Verfahren zum Betrieb eines mehrphasigen, modularen Multilevelstromrichters
DE102012202187B4 (de) 2012-02-14 2016-06-09 Siemens Aktiengesellschaft Verteilungsnetz für elektrische Energie
DE102012205895A1 (de) * 2012-04-11 2013-10-17 Robert Bosch Gmbh Energiespeicherabdeckungsmodul und Verfahren zur Montage eines Energiespeicherabdeckungsmoduls
CN103078539B (zh) * 2013-01-15 2015-02-11 南京南瑞继保电气有限公司 一种模块化多电平换流器的充电方法
DE102013212716A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Energiespeichereinrichtung mit Gleichspannungsversorgungsschaltung und Verfahren zum Bereitstellen einer Gleichspannung aus einer Energiespeichereinrichtung
CN104811073B (zh) * 2014-01-24 2019-05-31 通用电气能源电能变换科技有限公司 变换器模块、装置、系统和相关方法
WO2016124237A1 (en) 2015-02-04 2016-08-11 Abb Technology Ltd Multilevel converter with energy storage
CN209571964U (zh) * 2015-04-23 2019-11-01 西门子公司 包括至少一个有至少两个子模块和电感的串联电路的装置
FR3039940B1 (fr) * 2015-08-03 2017-08-11 Inst Supergrid Capacite virtuelle
ES2805201T3 (es) * 2016-03-18 2021-02-11 Siemens Ag Convertidor multietapa modular
DE102016220262A1 (de) * 2016-10-17 2018-04-19 Robert Bosch Gmbh Elektromechanischer Adapter, Energiespeichersystem sowie Verfahren zum Betreiben eines Energiespeichersystems
RU2656302C1 (ru) * 2017-06-26 2018-06-04 Общество с ограниченной ответственностью "ЧЭАЗ-ЭЛПРИ" Подмодуль полумостовой силового полупроводникового модуля
RU2690839C1 (ru) * 2018-09-17 2019-06-06 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Понижающий конденсаторный преобразователь напряжения
EP3633816A1 (de) * 2018-10-01 2020-04-08 ABB Schweiz AG Wechselrichteranordnung mit elementen zur bereitstellung von fotovoltaischer energie

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10103031A1 (de) * 2001-01-24 2002-07-25 Rainer Marquardt Stromrichterschaltungen mit verteilten Energiespeichern

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1758802A1 (ru) 1989-07-05 1992-08-30 Е.М.Силкин и В.Н.Силкина Статический преобразователь частоты
DE4311229C1 (de) * 1993-04-02 1994-09-01 Mannesmann Ag Nicht-spurgebundenes Fahrzeug mit Elektromotor
GB2294821A (en) 1994-11-04 1996-05-08 Gec Alsthom Ltd Multilevel converter
WO1996018937A1 (en) * 1994-12-14 1996-06-20 Kenetech Windpower, Inc. Grid connected bi-directional converter including a pwm, dc-dc chopper, and energy storage/supply device
DE19913627A1 (de) 1999-03-25 2000-10-26 Siemens Ag Verfahren und Vorrichtung zum Laden eines Akkumulators sowie Verfahren zum Überprüfen des Ladezustands eines Akkumulators
US6198257B1 (en) * 1999-10-01 2001-03-06 Metropolitan Industries, Inc. Transformerless DC-to-AC power converter and method
JP3977841B2 (ja) * 2003-01-24 2007-09-19 三菱電機株式会社 バッテリ用電力回路
CN101258670A (zh) 2005-09-09 2008-09-03 西门子公司 用于电能传输的设备
EP1922803B1 (de) 2005-09-09 2018-02-21 Siemens Aktiengesellschaft Vorrichtung für die elektroenergieübertragung
CN2915591Y (zh) 2006-03-01 2007-06-27 上海御能动力科技有限公司 混合动力汽车用直流母线电压主动控制式电机驱动系统
FR2910387B1 (fr) 2006-12-20 2009-07-17 Peugeot Citroen Automobiles Sa Procede et dispositif de pilotage d'un vehicule, notamment d'un vehicule automobile hybride
DE102007051052A1 (de) 2007-10-16 2009-04-23 C. & E. Fein Gmbh Verfahren zum Laden von wiederaufladbaren Lithium-Akkumulatoren, Ladegerät und Lithium-Akkumulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10103031A1 (de) * 2001-01-24 2002-07-25 Rainer Marquardt Stromrichterschaltungen mit verteilten Energiespeichern

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LESNICAR ET AL: "A new modular voltage source inverter topology", 20030101; 20030000, 1 January 2003 (2003-01-01), XP002447361 *
MARQUARDT ET AL: "New Concept for High Voltage - Modular Multilevel Converter", POWER ELECTRONICS SPECIALISTS CONFERENCE, 2004. PESC 04. 2004 IEEE 35TH ANNUAL, AACHEN, GERMANY 20-25 JUNE 2004, PISCATAWAY, NJ, USA,IEEE, US, 1 January 2004 (2004-01-01), XP002447362, ISBN: 978-0-7803-8399-9 *
See also references of WO2011060823A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020225332A1 (fr) 2019-05-07 2020-11-12 Supergrid Institute Convertisseur de tension multi niveaux à stockage d'énergie additionnel optimisé
FR3095909A1 (fr) 2019-05-07 2020-11-13 Ecole Centrale De Lyon Convertisseur de tension multi niveaux à stockage d’énergie additionnel

Also Published As

Publication number Publication date
US20120229080A1 (en) 2012-09-13
WO2011060823A1 (de) 2011-05-26
RU2524363C2 (ru) 2014-07-27
HK1174744A1 (zh) 2013-06-14
CN102714471B (zh) 2016-01-13
BR112012012140A2 (pt) 2016-04-12
US8981712B2 (en) 2015-03-17
CN102714471A (zh) 2012-10-03
RU2012125250A (ru) 2013-12-27

Similar Documents

Publication Publication Date Title
EP2502340A1 (de) Umrichter und submodul eines umrichters zum laden oder entladen eines energiespeichers
DE102013212716A1 (de) Energiespeichereinrichtung mit Gleichspannungsversorgungsschaltung und Verfahren zum Bereitstellen einer Gleichspannung aus einer Energiespeichereinrichtung
WO2016012247A1 (de) Modulares energiespeicher-direktumrichtersystem
DE102011077708A1 (de) Batteriesystem und Verfahren zum Bereitstellen einer Zwischenspannung
DE102013200949A1 (de) Ladeeinrichtung zum Laden einer Anzahl N von Elektrofahrzeugen und Ladestation
DE102018008603A1 (de) Schaltungsanordnung und Verfahren zum Laden einer Batterieanordnung mit mehreren Batteriemodulen
EP2362522A2 (de) Ladegerät für ein Elektrofahrzeug
DE102013212682A1 (de) Energiespeichereinrichtung mit Gleichspannungsversorgungsschaltung und Verfahren zum Bereitstellen einer Gleichspannung aus einer Energiespeichereinrichtung
AT511890B1 (de) Prüfanordnung für einen Energiespeicher
DE102013221830A1 (de) Ladeschaltung für eine Energiespeichereinrichtung und Verfahren zum Laden einer Energiespeichereinrichtung
DE102012220376A1 (de) Vorrichtung und Verfahren zum Laden eines elektrischen Energiespeichers aus einer Wechselspannungsquelle
DE102013219965A1 (de) Traktionsbatterie mit integrierter Bordnetzbatterie
DE4426017C2 (de) Stromversorgungsgerät, insbesondere Batterie-Ladegerät für Elektrofahrzeuge oder dergleichen
DE102017206579A1 (de) Konverter zum Steuern von Leistungsflüssen zwischen Gleichstromquellen
DE102018221519B4 (de) Fahrzeugseitige Ladevorrichtung
WO2023170226A1 (de) Schaltungsanordnung zum erzeugen einer ausgangsgleichspannung sowie verwendung der schaltungsanordnung zum testen von elektrischen energiespeichern
DE102012218738A1 (de) Ladesystem und Verfahren zum gleichzeitigen Laden mehrerer Fahrzeugbatterien
CH715078A2 (de) Elektronische Schaltung zum Durchführen eines Ladezustandsausgleichs zwischen Batteriezellen eines Batteriesystems.
DE102014005124A1 (de) Schaltungsanordnung und Verfahren zum Austausch elektrischer Energie
DE102017130387A1 (de) Umrichter-Vorrichtung, Anordnung mit mehreren solcher Umrichter-Vorrichtungen sowie Verfahren zum Betreiben einer Umrichter-Vorrichtung
DE102014100256A1 (de) Modularer Stromrichter
DE102020104252A1 (de) Leistungswandler
DE102019211692A1 (de) Gleichspannungskonverter und Verfahren zum Betrieb eines Gleichspannungskonverters
DE102014100257A1 (de) Modularer Umrichter und Energieübertragungseinrichtung
DE102012209773A1 (de) Ladungsausgleichsschaltung für einen Energiespeicher und Verfahren zum Ausgleichen von Ladungsunterschieden in einem Energiespeicher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120424

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20170327

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20181019