EP2499883B1 - Led lighting device and method for operating an led lighting device - Google Patents

Led lighting device and method for operating an led lighting device Download PDF

Info

Publication number
EP2499883B1
EP2499883B1 EP11701785.5A EP11701785A EP2499883B1 EP 2499883 B1 EP2499883 B1 EP 2499883B1 EP 11701785 A EP11701785 A EP 11701785A EP 2499883 B1 EP2499883 B1 EP 2499883B1
Authority
EP
European Patent Office
Prior art keywords
color
phase
color channels
during
measurement phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11701785.5A
Other languages
German (de)
French (fr)
Other versions
EP2499883A1 (en
Inventor
Tobias Frost
Bakuri Lanchava
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram Beteiligungsverwaltung GmbH
Original Assignee
Osram Beteiligungsverwaltung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Beteiligungsverwaltung GmbH filed Critical Osram Beteiligungsverwaltung GmbH
Publication of EP2499883A1 publication Critical patent/EP2499883A1/en
Application granted granted Critical
Publication of EP2499883B1 publication Critical patent/EP2499883B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/22Controlling the colour of the light using optical feedback

Definitions

  • the invention relates to a method for operating an LED lighting device and an LED lighting device.
  • WO 2006/063552 A1 relates to a motor vehicle headlight element which has at least one light-emitting diode (LED) and at least one control device which is suitable for processing a signal that is dependent on a measured variable and for impressing a current corresponding to the signal in the light-emitting diode, the control device and the light-emitting diode on one common carrier are arranged.
  • LED light-emitting diode
  • control device which is suitable for processing a signal that is dependent on a measured variable and for impressing a current corresponding to the signal in the light-emitting diode, the control device and the light-emitting diode on one common carrier are arranged.
  • US 2004/0036418 A1 relates to a circuit and a method for providing a closed control loop using continuous current switching techniques.
  • LEDs light emitting diodes
  • a circuit has several high-side switches, each of which is connected to an LED array.
  • the LED arrays are connected via a coil to a power switching control point, which switches power to ground or feeds the power back in order to maintain an LED current flow in a desired area.
  • US 2006/0006821 A1 relates to a system and method for implementing an LED-based luminaire that contains one or more color channels.
  • the luminaire includes a controller that uses optical sensing and feedback to control LEDs in each channel to provide consistent luminosity and / or color output.
  • the luminaire controller likes the optical feedback loop Provide uniform luminosity and / or color of the luminaire output.
  • the controller may then set a current and / or a pulse width modulation (PWM) duty cycle, which separate color channels are fed to the luminaire in order to obtain the desired luminosity and / or color.
  • PWM pulse width modulation
  • US 2002/0097000 A1 relates to an LED luminaire system for providing power for LED light sources in order to provide a desired light color, which system has a power supply stage which is configured to provide a direct current signal.
  • a light mixing circuit is coupled to the power supply stage and includes a plurality of LED light sources of red, green and blue colors to produce light of various desired color temperatures.
  • a control system is coupled to the power supply stage and is configured to provide the power supply stage with control signals to maintain the DC signal at a desired level to the desired. Maintain light output.
  • the control system is further configured to estimate lumen output fractions associated with the LED light sources based on a transition temperature of the LED light sources and chromaticity coordinates of the desired light to be generated at the light mixing circuit.
  • the light mixing circuit further includes a temperature sensor for measuring the temperature associated with the LED light sources and a light detector for measuring a lumen output level of light generated by the LED light sources. Based on the measured temperatures, the control system determines the amount of output lumens that each of the LED light sources must produce in order to achieve the desired mixed light output, and the light detector in conjunction with a feedback loop maintains the required lumen output for each of the LED light sources.
  • the EP 1 898 677 A2 shows a color control for a luminaire in which only the light source to be measured and therefore the color to be measured is active during the measurement of a light source.
  • the publication WO 02/23954 A1 discloses a lamp with an array of red, green and blue light emitting diodes and a control system.
  • the control system is set up to operate the individual components in such a way that a desired color impression can be permanently maintained.
  • DE 10 2005 049 579 A1 relates to a light source that emits mixed-colored light that contains light at least two different colors that is emitted by a plurality of primary light sources, in which: the primary light sources are divided into groups and the brightness values of the primary light sources within a group are determined separately according to color and are controlled so that the color locus of the mixed-colored light lies in a predetermined range of the CIE standard color table. Furthermore, a method for controlling such a light source is specified, as well as a lighting device with such a light source, for example for backlighting a display.
  • the at least two color channels can also include different color channels of the same color.
  • Each color channel comprises one or more LEDs of the same color, e.g. connected in series or connected in parallel.
  • a portion or fraction of the light emitted by the (in particular all) LEDs is detected or sensed by means of the at least one photodetector, in particular a single photodetector.
  • the photodetector can comprise, for example, a photodiode or a phototransistor.
  • the operating phase corresponds to normal operation of the LED lighting device.
  • Color mixing or integral color mixing of the measurement phase can in particular be understood to mean an addition of the light emitted from the color channels during the measurement phase.
  • the order of the successively controlled color channels is fundamentally not restricted.
  • the order of the successively controlled color channels can be the same or different for several measurement phases.
  • the above method has the advantage that the luminous flux detected by the photodetector can be assigned unambiguously and with high accuracy to a specific color channel through the successive (sequential) control of the color channels. This eliminates the need for faulty separation or reconstruction of the luminous fluxes of the individual color channels. This can be used, for example, to determine a correlation between a current through a color channel and the luminous intensity or luminous flux of this color channel resulting therefrom. In this way, for example, a desired color location and / or a desired light intensity can be set or regulated more precisely during the operating phases.
  • a light emitted by the LEDs during the measurement phase has a color mixture which essentially corresponds to a color mixture of the operating phase, a color impression from the previous operating phase is continued at the same time, so that an observer cannot distinguish the measurement phase from the operating phase in terms of color and so the Measurement phase does not perceive as disturbing.
  • each color channel is controlled separately by means of a pulse width modulation so that a ratio of pulse widths of the color channels during the measurement phase essentially corresponds to a ratio of the pulse widths of the color channels during the operating phase.
  • the color impression that is the same as in the operating phase is thus achieved by setting a similar or the same pulse width, which is particularly easy to achieve.
  • a flow level is set separately for each of the color channels so that a ratio of current levels of the color channels during the measurement phase essentially corresponds to a ratio of the current levels of the color channels during the operating phase.
  • an amount of light during the measurement cycle is brought to a value by setting a current level at which a signal level or level of a sensor signal of the at least one photodetector is in a range between 75% and less than 100%, e.g. 99.5 %, of its maximum signal level.
  • a sufficiently high signal level with a high signal-to-noise ratio (SNR) can be achieved and, at the same time, saturation of the photodetector can be avoided.
  • the search algorithm can be, for example, a linear search algorithm.
  • a search algorithm can be used which works faster than the linear search algorithm, in particular a binary search algorithm or an interval search.
  • the level of the sensor signal may be desirable to reduce the level of the sensor signal if a lot of light is reflected back into the photodetector and / or irradiated from the surroundings. This can be the case, for example, when the LED lighting device a light mixer such as a diffuser, beam-shaping optics, etc. is connected downstream, which reflects a comparatively large amount of light. As a result, the photodetector can be saturated, so that in the measurement phase there is no longer any meaningful correlation between a control signal of a color channel and its luminous flux.
  • a light mixer such as a diffuser, beam-shaping optics, etc.
  • the measurement phase in addition to the step of activating the color channels, has a step of not activating all of the color channels. In this “dark phase”, an effect of ambient light incident on the LED lighting device on the sensor signal can be determined.
  • the measurement phase additionally has compensation sections, during which the color channels are controlled as during an operating phase.
  • the color channels can also be operated simultaneously during the compensation sections.
  • these measurements can be omitted or specifically shortened in subsequent measurement phases in order to reduce the time required for the measurement phase.
  • the error caused by the omitted measurements can be corrected, for example, by the compensation sections.
  • a measurement phase does not last longer than approx. 40 ms, in particular no longer than 20 ms, in particular no longer than 10 ms.
  • the duration of the measurement phase in which a color channel is activated can last as long as is necessary for the measurement value acquisition of the individual channels, that is, for example, even without a dark phase.
  • a period of time between two measurement phases is not constant.
  • a plurality of LED lighting devices in particular several times one behind the other, are simultaneously (collectively) in their measurement phase and thus reinforce a difference to an impression from an operating phase for a viewer.
  • This effect can be suppressed particularly effectively if a period of time between two measurement phases is non-deterministic, e.g. determined randomly or pseudo-randomly.
  • a sensor signal output by the at least one photodetector during the measurement phase is used, at least in sections, to adapt a control in a subsequent operating phase.
  • This can take the form of feedback, for example.
  • the result can be used to calculate and / or readjust the amount of light required to reach the color location in a control loop.
  • the dark phase is advantageous if one is provided. This results in a particularly fast measurement and thus a short measurement phase, which minimizes the risk of brightness fluctuations that are visible to the observer.
  • the switching device can, for example, be a functional part of a general control device of the LED lighting device.
  • the LED lighting device is set up to carry out a method as described above.
  • the first row off Fig. 1 shows an excerpt from a first control signal S1 for a first color channel Ch1 of an LED lighting device.
  • the first color channel Ch1 contains all light emitting diodes (LEDs) of a first color, for example red, which are controlled jointly by means of the common control signal S1.
  • the red light-emitting diodes of the first, red color channel Ch1 can be connected in series, for example.
  • the second row shows an excerpt from a second control signal S2 for a second color channel Ch2 of an LED lighting device.
  • the second color channel Ch2 contains all light emitting diodes (LEDs) of a second color, e.g. green, which are controlled by means of the common control signal S2.
  • the green light-emitting diodes of the second, green color channel Ch2 can be connected in series, for example.
  • the third row shows a section from a third control signal S3 for a third color channel Ch3 of an LED lighting device.
  • the third color channel Ch3 contains all light-emitting diodes (LEDs) of a third color, for example blue, which are controlled jointly by means of the common control signal S3.
  • the blue light-emitting diodes of the third, blue color channel Ch3 can be connected in series, for example.
  • Fig. 1 each shows simultaneous excerpts of the control signals S1, S2 and S3.
  • the sections each show a first operating phase BP1, which is followed by a measurement phase MP, which is followed by a second operating phase BP2.
  • a pulse in particular a current pulse, is applied to all three color channels Ch1, Ch2, Ch3 in an activation cycle, wherein a pulse width PB1, PB2, PB3 of the color channels Ch1, Ch2, Ch3 can differ.
  • the pulse width PB1, PB2, PB3 can be set by the LED lighting device and can, for example, be based on a desired color temperature. For example, a specific color or color location of the light emitted by the LED lighting device, e.g.
  • warm-white or cold-white can be assigned a specific ratio of the pulse widths PB1, PB2, PB3 and thus activation times of the color channels Ch1, Ch2, Ch3.
  • the pulse widths PB1, PB2 or PB3 can depend, for example, on the desired color location of the LED lighting device, the luminosity, the color and the number of LED (s) per color channel, etc.
  • the pulse widths PB1, PB2, PB3 can be varied, for example in order to change a color location and / or a light intensity of the mixed light.
  • the three color channels Ch1, Ch2, Ch3 can be controlled independently of one another, so that, for example, simultaneous control, in particular energization, of the three color channels Ch1, Ch2, Ch3 can be achieved particularly easily.
  • a sequential control can also be used in which no two color channels Ch1, Ch2, Ch3 are controlled at the same time.
  • color channels only two color channels may be used, e.g. with red LED (S) or mint green LED (s) to generate a white mixed light. More than three color channels can also be used, e.g. additionally with amber-colored LED (s) ('amber') to generate a warm-white mixed light.
  • a portion of the light emitted by the LEDs of the color channels Ch1, Ch2, Ch3 is captured by means of at least one photodetector.
  • the at least one photodetector is at least able to detect a luminous flux of the LEDs and output a corresponding sensor signal, e.g. to an evaluation logic of the LED control device.
  • the operating phase BP1 changes to the measurement phase MP at a point in time tm0 for all three color channels Ch1, Ch2, Ch3.
  • the three color channels Ch1, Ch2, Ch3 are controlled one after the other or sequentially and not contemporaneous.
  • a sensor signal of the at least one photodetector can be easily and unambiguously assigned to a specific color channel Ch1, Ch2, Ch3 and evaluated, for example for determining and / or setting the light intensity or the color location of the mixed light.
  • a time for activating the color channels Ch1, Ch2, Ch3 preferably does not last more than 40 ms, in particular not more than 20 ms, in particular not more than 10 ms. It is particularly preferred if the total duration tm of the measurement phase MP does not last more than 40 ms, in particular not more than 20 ms, in particular not more than 10 ms.
  • the color channels Ch1, Ch2, Ch3 are controlled in such a way that light emitted by the LEDs during the measurement phase has an integral color mixture, which is essentially one Color mix corresponds to the operating phase.
  • An integral color mixture can be understood to mean, in particular, an accumulation, in particular addition, of the light emitted by the LEDs during the measurement phase.
  • a ratio of the pulse widths PM1, PM2, PM3 of the color channels Ch1, Ch2, Ch3 during the measurement phase MP essentially corresponds to a ratio of the pulse widths PB1, PB2, PB3 of the color channels Ch1, Ch2, Ch3 during the operating phase BP1, even if whose absolute width or duration in the measurement phase MP and the previous operating phase BP1 need not match. Because of the inertia of the eyes, an observer then perceives the same color impression in the measurement phase MP as in the operating phase BP1.
  • the LED lighting device can use the sensor signals, for example for each of the color channels Ch1, Ch2, Ch3, to create a correlation between an associated control signal S1, S2, S3, for example a current, and a color-specific light intensity and if there is a deviation from a setpoint value, for example the light intensity, modify the control signal accordingly. For example, if it is determined that a light intensity for a specific color channel Ch1, Ch2, Ch3 is lower than a value of the light intensity stored for the pulse width PM1, PM2 or PM3 used, the pulse width PB1, PB2, PB3 for this color channel Ch1, Ch2, Ch3 are increased in a subsequent operating phase BP2.
  • a lower luminous intensity can be caused, for example, by aging of the LEDs, temperature effects or by failure of an LED.
  • the section for which the color channels Ch1, Ch2, Ch3 are sequentially controlled or activated is followed by an optional section during which none of the color channels is controlled or activated, a so-called dark phase DP.
  • a black value can be measured which, for example, takes into account ambient light radiated into the LED device, in particular the photodetector.
  • a switch is made to a second operating phase BP2, in which the control signals S1, S2, S3 can be modified in comparison to the control signals S1, S2, S3 of the first operating phase BP1 on the basis of knowledge gained from the measurement phase MP.
  • the time interval between two measurement phases MP can be predetermined, for example a measurement phase MP can be carried out every n activation cycles.
  • a measurement phase MP can be carried out every n activation cycles.
  • the measurement phases MP of the several LED lighting devices occur essentially at the same time or only slightly offset in time. A viewer can then possibly perceive these measurement phases MP collectively.
  • the time interval (duration) of two measurement phases MP of an LED lighting device can be non-deterministic, for example random or pseudo-random, in particular within a predetermined time interval.
  • Fig. 2 outlines an LED lighting device L which, among other things, has a control device T, in particular a driver, for operating light-emitting diodes LD1, LD2 and LD3.
  • the light-emitting diodes are divided into three strings, which correspond to a respective color channel Ch1, Ch2 or Ch3.
  • Each color channel contains one or more light-emitting diodes LD1, LD2 or LD3 of the same color, for example the color channel Ch1 the red light-emitting diodes LD1, the color channel Ch2 the green light-emitting diodes LD1 and the color channel Ch3 the blue light-emitting diodes LD3.
  • the color channels Ch1, Ch2 and Ch3 can be controlled separately or individually by means of the control device T.
  • the color channels Ch1, Ch2 and Ch3 can, for example, contain the light-emitting diodes LD1, LD2 and LD3 in a series connection.
  • An LED LD1, LD2, LD3 can be understood as an individually housed LED or an LED chip.
  • Light-emitting diodes LD1, LD2, LD3 designed as LED chips can for example be arranged on a common substrate.
  • the LEDs LD1, LD2, LD3 can be, for example, inorganic LEDs, e.g. with InGAIP, or organic LEDs (OLEDs).
  • a signal output of the photodetector D is functionally connected to the control device T, where a sensor signal output via the signal output is evaluated can be.
  • the sensor signal of the photodetector D can be used, for example, to to regulate the currents that flow through the color channels Ch1, Ch2 and Ch3 in such a way that a setpoint value of a luminous flux can be maintained.
  • the photodetector D cannot be used in the operating phase BP1, BP2.
  • the measurement phase MP can be used for calibrating the LED lighting device L. For example, a correlation between a current through a color channel Ch1, Ch2 and Ch3 and the resulting light intensity or luminous flux of this color channel Ch1, Ch2 or Ch3 can be determined. In this way, in turn, a desired color location and / or a desired light intensity can be set or regulated more precisely during the operating phases BP1, BP2.
  • the control device T can functionally comprise a switching device for switching the LED lighting device from the operating phase BP1, BP2 into the measurement phase MP and back, as well as a measurement phase sequence control.
  • a current-level-modulated or current-intensity-modulated control of the color channels can also take place.
  • the color channels can then each be operated in continuous operation, with their light intensity being able to be set via a current level or current level of an operating current impressed on the respective color channel.
  • the color channels can be controlled one after the other with the same current strength or current level as in the operating phase, with different color channels can then preferably also be activated for the same length of time for a color impression that is uniform in relation to the operating phase. This also enables a particularly short measurement phase.
  • PWM control of the color channels with variable current levels is possible, i.e. PWM control in which the current level or current intensity can also be varied.
  • a current level can be set (with or without PWM control), it can also be varied during the measurement phase in order to optimize the sensor signal of the at least one photodetector.
  • the current level for this color channel can be increased until the sensor signal has a has lower noise error or a higher SNR.
  • the current level can also be reduced in the event that a light current incident on the at least one photodetector is comparatively high and is in particular in the saturation range of the at least one photodetector.
  • the luminous flux here is already so high that the photodetector is saturated and if the luminous flux is increased further, its sensor signal is no longer amplified.
  • An indication that the photosensor is being operated above its saturation limit is the presence of a maximum sensor signal, e.g. a maximum sensor voltage.
  • the current level of the color channel can be reduced until the associated sensor signal is in a range between a value just below the maximum sensor signal (as the upper limit) and above a value with an already favorable SNR. It has proven to be advantageous that the current level of the color channel is reduced until the associated sensor signal is in a range between 50% and below, in particular 99.5%, of the maximum sensor signal, in particular between 75% and below, in particular 99.5%, of the maximum sensor signal.
  • the search for a favorable sensor area can be carried out using any suitable search algorithm.
  • a linear search algorithm can be carried out in which the current level is increased step-by-step (linearly) (if the sensor signal is initially too weak) or decreased (if the sensor signal is initially too strong or saturated).
  • Such a search algorithm has (in Landau notation) a complexity class O (n).
  • An even faster adaptation e.g. with the complexity class O (log n)
  • can be achieved using other search algorithms e.g. a binary search algorithm or an interpolation search or an interval search.
  • the order of the color channels activated one after the other is basically not restricted.
  • the sequence can be the same for several measurement phases (eg always Ch1, Ch2, Ch3) or differ (eg Ch1, Ch2, Ch3 for one measurement phase and, for example, Ch3, Ch1, Ch2 for another measurement phase).
  • the sequence is preferably chosen so that the measurement phase is as short as possible.
  • the power sources that are commonly used, this is particularly the case when the color channels are controlled one after the other in the measuring phase in descending order of brightness, i.e. first the color channel with the greatest brightness, then the one with the second largest, etc. up to the channel with the lowest brightness , since the usual power sources require considerably more time for a power increase than for a power decrease.
  • the dark phase is advantageous if one is provided is. This results in a particularly fast measurement and thus a short measurement phase, which minimizes the risk of brightness fluctuations that are visible to the observer. If a power source is used that reacts faster when rising than when falling, a measurement in the reverse order, ie from the darkest to the lightest color channel, is of course advantageous.
  • each of the color channels can be activated once or several times in a measurement phase.
  • at least one of the channels can be activated twice in a measurement phase;
  • the red, green and blue color channels can be activated twice in a measurement phase, for example in the order Ch1, Ch2, Ch3, Ch1, Ch2, Ch3.
  • the control signals for the color channels can follow one another directly or be spaced apart in time.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Spectrometry And Color Measurement (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Betreiben einer LED-Leuchtvorrichtung und eine LED-Leuchtvorrichtung.The invention relates to a method for operating an LED lighting device and an LED lighting device.

WO 2006/063552 A1 betrifft ein Kfz-Scheinwerferelement, welches wenigstens eine Leuchtdiode (LED) und wenigstens eine Steuervorrichtung aufweist, die geeignet ist, ein von einer Messgröße abhängiges Signal zu verarbeiten und einen Strom entsprechend dem Signal in die Leuchtdiode einzuprägen, wobei die Steuervorrichtung und die Leuchtdiode auf einem gemeinsamen Träger angeordnet sind. WO 2006/063552 A1 relates to a motor vehicle headlight element which has at least one light-emitting diode (LED) and at least one control device which is suitable for processing a signal that is dependent on a measured variable and for impressing a current corresponding to the signal in the light-emitting diode, the control device and the light-emitting diode on one common carrier are arranged.

US 2004/0036418 A1 betrifft eine Schaltung und ein Verfahren zum Bereitstellen eines geschlossenen Regelkreises unter Verwendung von Dauerstromschalttechniken. Mittels Steuerns des Stroms, der Leuchtdioden (LEDs) zugeführt wird, können die LEDs mit oder nahe an ihrer maximalen Kapazität betrieben werden, ohne die Gefahr, die LEDs zu überlasten und ohne dass übermäßige Strommengen verwendet werden. Eine Schaltung weist mehrere High-Side-Schalter auf, von denen jeder mit einem LED-Array verbunden ist. Die LED-Arrays sind über eine Spule mit einer Stromschaltungsbedienstelle verbunden, welche Strom auf Masse schaltet oder den Strom wieder zurückführt, um einen LED-Stromfluss in einem gewünschten Bereich aufrechtzuerhalten. US 2004/0036418 A1 relates to a circuit and a method for providing a closed control loop using continuous current switching techniques. By controlling the current supplied to light emitting diodes (LEDs), the LEDs can be operated at or near their maximum capacity without the risk of overloading the LEDs and without using excessive amounts of current. A circuit has several high-side switches, each of which is connected to an LED array. The LED arrays are connected via a coil to a power switching control point, which switches power to ground or feeds the power back in order to maintain an LED current flow in a desired area.

US 2006/0006821 A1 betrifft ein System und Verfahren zum Implementieren einer LED-basierten Leuchte, welche einen oder mehrere Farbkanäle enthält. Die Leuchte umfasst eine Steuerung, die eine optische Abtastung und Rückkopplung verwendet, um LEDs in jedem Kanal so zu steuern, dass sie eine durchgängige Leuchtstärke und/oder Farbausgabe bereitstellen. Die optische Rückkopplungsschleife mag der Leuchtensteuerung eine gleichmäßige Leuchtstärke und/oder Farbe der Leuchtenausgabe bereitstellen. Die Steuerung mag dann einen Strom und/oder ein Pulsbreitenmodulations (PWM)-Tastverhältnis einstellen, welche separaten Farbkanälen der Leuchte zugeführt werden, um die gewünschte Leuchtstärke und/oder Farbe zu erhalten. US 2006/0006821 A1 relates to a system and method for implementing an LED-based luminaire that contains one or more color channels. The luminaire includes a controller that uses optical sensing and feedback to control LEDs in each channel to provide consistent luminosity and / or color output. The luminaire controller likes the optical feedback loop Provide uniform luminosity and / or color of the luminaire output. The controller may then set a current and / or a pulse width modulation (PWM) duty cycle, which separate color channels are fed to the luminaire in order to obtain the desired luminosity and / or color.

US 2002/0097000 A1 betrifft ein LED-Leuchtensystem zum Bereitstellen von Leistung für LED-Lichtquellen, um eine gewünschte Lichtfarbe bereitzustellen, das eine Stromversorgungsstufe aufweist, die dazu ausgestaltet ist, ein Gleichstromsignal bereitzustellen. Eine Lichtmischungsschaltung ist mit der Stromversorgungsstufe gekoppelt und umfasst eine Vielzahl von LED-Lichtquellen mit roter, grüner und blauer Farbe, um Licht mit verschiedenen gewünschten Farbtemperaturen zu erzeugen. Ein Steuersystem ist mit der Stromversorgungsstufe gekoppelt und dazu ausgestaltet, der Stromversorgungsstufe Steuersignale bereitzustellen, um das Gleichstromsignal auf einem gewünschten Pegel zu halten, um die gewünschte. Lichtausgabe aufrechtzuerhalten. Das Steuersystem ist ferner dazu ausgestaltet, zu den LED-Lichtquellen zugehörige Lumenausgabeanteile zu schätzen, und zwar beruhend auf einer Übergangstemperatur der LED-Lichtquellen und Chromatizitätskoordinaten des gewünschten, an der Lichtmischungsschaltung zu erzeugenden Lichts. Die Lichtmischungsschaltung weist ferner einen Temperatursensor zum Messen der den LED-Lichtquellen zugehörigen Temperatur und einen Lichtdetektor zum Messen eines Lumenausgabepegels von von den LED-Lichtquellen erzeugtem Licht auf. Beruhend auf den gemessenen Temperaturen bestimmt das Steuersystem die Menge an Ausgabelumen, die jede der LED-Lichtquellen erzeugen muss, um die gewünschte gemischte Lichtausgabe zu erreichen, und der Lichtdetektor in Verbindung mit einer Rückkopplungsschleife erhält die benötigte Lumenausgabe für jede der LED-Lichtquellen aufrecht. US 2002/0097000 A1 relates to an LED luminaire system for providing power for LED light sources in order to provide a desired light color, which system has a power supply stage which is configured to provide a direct current signal. A light mixing circuit is coupled to the power supply stage and includes a plurality of LED light sources of red, green and blue colors to produce light of various desired color temperatures. A control system is coupled to the power supply stage and is configured to provide the power supply stage with control signals to maintain the DC signal at a desired level to the desired. Maintain light output. The control system is further configured to estimate lumen output fractions associated with the LED light sources based on a transition temperature of the LED light sources and chromaticity coordinates of the desired light to be generated at the light mixing circuit. The light mixing circuit further includes a temperature sensor for measuring the temperature associated with the LED light sources and a light detector for measuring a lumen output level of light generated by the LED light sources. Based on the measured temperatures, the control system determines the amount of output lumens that each of the LED light sources must produce in order to achieve the desired mixed light output, and the light detector in conjunction with a feedback loop maintains the required lumen output for each of the LED light sources.

Die EP 1 898 677 A2 zeigt eine Farbsteuerung für eine Leuchte, bei der während der Messung einer Lichtquelle nur die zu messende Lichtquelle und damit -farbe aktiv ist.the EP 1 898 677 A2 shows a color control for a luminaire in which only the light source to be measured and therefore the color to be measured is active during the measurement of a light source.

Die Veröffentlichung WO 02/23954 A1 offenbart eine Leuchte mit einer Anordnung von roten, grünen und blauen Leuchtdioden und einem Steuersystem. Das Steuersystem ist dazu eingerichtet die einzelnen Komponenten so zu betreiben, dass ein gewünschter Farbeindruck dauerhaft aufrechterhalten werden kann.The publication WO 02/23954 A1 discloses a lamp with an array of red, green and blue light emitting diodes and a control system. The control system is set up to operate the individual components in such a way that a desired color impression can be permanently maintained.

DE 10 2005 049 579 A1 betrifft eine Lichtquelle, die mischfarbiges Licht aussendet, das Licht mindestens zwei verschiedener Farben enthält, das von einer Mehrzahl primärer Lichtquelle ausgesendet wird, bei der: die primären Lichtquelle in Gruppen eingeteilt sind und die Helligkeitswerte der primären Lichtquellen innerhalb einer Gruppe nach Farben getrennt ermittelt und gesteuert sind, so dass der Farbort des mischfarbigen Lichtes in einem vorgegebenen Bereich der CIE-Normfarbtafel liegt. Weiterhin wird ein Verfahren zur Steuerung einer solchen Lichtquelle angegeben sowie eine Beleuchtungseinrichtung mit einer solchen Lichtquelle, beispielsweise zur Hinterleuchtung eines Displays. DE 10 2005 049 579 A1 relates to a light source that emits mixed-colored light that contains light at least two different colors that is emitted by a plurality of primary light sources, in which: the primary light sources are divided into groups and the brightness values of the primary light sources within a group are determined separately according to color and are controlled so that the color locus of the mixed-colored light lies in a predetermined range of the CIE standard color table. Furthermore, a method for controlling such a light source is specified, as well as a lighting device with such a light source, for example for backlighting a display.

Es ist die Aufgabe der vorliegenden Erfindung, eine besonders nutzerfreundliche und einfach realisierbare Möglichkeit einer Nachstellung einer LED-Leuchtvorrichtung mit mindestens zwei Farbkanälen bereitzustellen.It is the object of the present invention to provide a particularly user-friendly and easily realizable possibility of an adjustment of an LED lighting device with at least two color channels.

Diese Aufgabe wird gemäß den Merkmalen der unabhängigen Ansprüche gelöst. Bevorzugte Ausführungsformen sind insbesondere den abhängigen Ansprüchen entnehmbar.This object is achieved according to the features of the independent claims. Preferred embodiments can be inferred in particular from the dependent claims.

Die Aufgabe wird gelöst durch ein Verfahren zum Betreiben einer LED-Leuchtvorrichtung, wobei die LED-Leuchtvorrichtung mindestens aufweist:

  • mindestens zwei Farbkanäle, insbesondere unterschiedlicher Farbe, wobei jeder Farbkanal mindestens eine Leuchtdiode (LED) gleicher Farbe umfasst und wobei jeder Farbkanal getrennt oder individuell ansteuerbar ist, und
  • mindestens einen Photodetektor, welcher dazu eingerichtet und angeordnet ist, einen Anteil eines von den LEDs abgestrahlten Lichts zu detektieren,
wobei das Verfahren mindestens die folgenden Schritte aufweist:
  • Umschalten der LED-Leuchtvorrichtung von einer Betriebsphase in eine Messphase;
  • zeitlich nacheinander folgendes (sequenzielles) Ansteuern oder Aktivieren der Farbkanäle so, dass ein während der Messphase von den LEDs abgestrahltes Licht eine (integrale) Farbmischung aufweist, welche im Wesentlichen einer Farbmischung der Betriebsphase entspricht.
The object is achieved by a method for operating an LED lighting device, the LED lighting device having at least:
  • at least two color channels, in particular of different colors, each color channel comprising at least one light-emitting diode (LED) of the same color and each color channel being separately or individually controllable, and
  • at least one photodetector which is set up and arranged to detect a portion of a light emitted by the LEDs,
wherein the method comprises at least the following steps:
  • Switching the LED lighting device from an operating phase to a measuring phase;
  • Sequential control or activation of the color channels following one another in time so that a light emitted by the LEDs during the measurement phase has an (integral) color mixture which essentially corresponds to a color mixture of the operating phase.

Die mindestens zwei Farbkanäle können auch unterschiedliche Farbkanäle gleicher Farbe umfassen. Jeder Farbkanal umfasst eine oder mehrere LEDs gleicher Farbe, z.B. in Reihe geschaltet oder parallel geschaltet.The at least two color channels can also include different color channels of the same color. Each color channel comprises one or more LEDs of the same color, e.g. connected in series or connected in parallel.

Mittels des mindestens einen Photodetektors, insbesondere eines einzigen Photodetektors, wird ein Anteil oder Bruchteil des von den (insbesondere allen) LEDs abgestrahlten Lichts detektiert oder abgefühlt. Der Photodetektor kann z.B. eine Photodiode oder einen Phototransistor umfassen.A portion or fraction of the light emitted by the (in particular all) LEDs is detected or sensed by means of the at least one photodetector, in particular a single photodetector. The photodetector can comprise, for example, a photodiode or a phototransistor.

Die Betriebsphase entspricht einem normalen Betrieb der LED-Leuchtvorrichtung.The operating phase corresponds to normal operation of the LED lighting device.

Unter einer Farbmischung oder integralen Farbmischung der Messphase kann insbesondere eine Addition des während der Messphase abgestrahlten Lichts der Farbkanäle verstanden werden.Color mixing or integral color mixing of the measurement phase can in particular be understood to mean an addition of the light emitted from the color channels during the measurement phase.

Die Reihenfolge der zeitlich nacheinander folgend angesteuerten Farbkanäle ist grundsätzlich nicht beschränkt. Die Reihenfolge der zeitlich nacheinander folgend angesteuerten Farbkanäle kann für mehrere Messphasen gleich sein oder sich unterscheiden.The order of the successively controlled color channels is fundamentally not restricted. The order of the successively controlled color channels can be the same or different for several measurement phases.

Das obige Verfahren weist den Vorteil auf, dass durch das zeitlich nacheinander folgende (sequenzielle) Ansteuern der Farbkanäle der von dem Photodetektor detektierte Lichtstrom sich eindeutig und mit hoher Genauigkeit einem bestimmten Farbkanal zuordnen lässt. Dadurch entfällt ein Aufwand zum fehlerbehafteten Trennen oder Rekonstruieren der Lichtströme der einzelnen Farbkanäle. Dies kann beispielsweise dazu verwendet werden, eine Korrelation zwischen einem Strom durch einen Farbkanal und der sich daraus ergebenden Lichtstärke oder Lichtstrom dieses Farbkanals zu bestimmen. Damit wiederum kann beispielsweise während der Betriebsphasen ein gewünschter Farbort und/oder eine gewünschte Lichtstärke genauer eingestellt oder eingeregelt werden.The above method has the advantage that the luminous flux detected by the photodetector can be assigned unambiguously and with high accuracy to a specific color channel through the successive (sequential) control of the color channels. This eliminates the need for faulty separation or reconstruction of the luminous fluxes of the individual color channels. This can be used, for example, to determine a correlation between a current through a color channel and the luminous intensity or luminous flux of this color channel resulting therefrom. In this way, for example, a desired color location and / or a desired light intensity can be set or regulated more precisely during the operating phases.

Dadurch, dass ein während der Messphase von den LEDs abgestrahltes Licht eine Farbmischung aufweist, welche im Wesentlichen einer Farbmischung der Betriebsphase entspricht, wird gleichzeitig ein Farbeindruck der vorangegangenen Betriebsphase weitergeführt, so dass ein Betrachter die Messphase farblich nicht von der Betriebsphase unterscheiden kann und so die Messphase nicht als störend empfindet.Because a light emitted by the LEDs during the measurement phase has a color mixture which essentially corresponds to a color mixture of the operating phase, a color impression from the previous operating phase is continued at the same time, so that an observer cannot distinguish the measurement phase from the operating phase in terms of color and so the Measurement phase does not perceive as disturbing.

Es ist eine Ausgestaltung, dass während der Messphase jeder Farbkanal getrennt mittels einer Pulsweitenmodulation so angesteuert wird, dass ein Verhältnis von Pulsbreiten der Farbkanäle während der Messphase im Wesentlichen einem Verhältnis der Pulsbreiten der Farbkanäle während der Betriebsphase entspricht. Der zu der Betriebsphase gleiche Farbeindruck wird somit durch die Einstellung einer ähnlichen oder gleichen Pulsbreite erreicht, was besonders einfach zu bewerkstelligen ist.It is an embodiment that during the measurement phase each color channel is controlled separately by means of a pulse width modulation so that a ratio of pulse widths of the color channels during the measurement phase essentially corresponds to a ratio of the pulse widths of the color channels during the operating phase. The color impression that is the same as in the operating phase is thus achieved by setting a similar or the same pulse width, which is particularly easy to achieve.

Es ist eine für eine Erzeugung eines gleichen oder ähnlichen Farbeindrucks besonders vorteilhafte Ausgestaltung, dass eine Abweichung eines Verhältnisses der Pulsbreiten zweier Farbkanäle während der Messphase um nicht mehr als 10%, insbesondere nicht mehr als 1%, von dem Verhältnis der Pulsbreiten dieser beiden Farbkanäle während der Betriebsphase abweicht.It is a particularly advantageous embodiment for generating an identical or similar color impression that a deviation of a ratio of the pulse widths of two color channels during the measurement phase by no more than 10%, in particular does not deviate by more than 1% from the ratio of the pulse widths of these two color channels during the operating phase.

Es ist eine alternative oder zusätzliche Ausgestaltung, dass eine Strömhöhe für jeden der Farbkanäle getrennt so eingestellt wird, dass ein Verhältnis von Stromhöhen der Farbkanäle während der Messphase im Wesentlichen einem Verhältnis der Stromhöhen der Farbkanäle während der Betriebsphase entspricht. Dadurch kann ein gleicher oder ähnlicher Farbeindruck von Betriebsphase und Messphase durch ein Einhalten der Stromhöhenverhältnisse erreicht werden, z.B. wenn die Farbkanäle im Dauerbetrieb angesteuert werden.It is an alternative or additional embodiment that a flow level is set separately for each of the color channels so that a ratio of current levels of the color channels during the measurement phase essentially corresponds to a ratio of the current levels of the color channels during the operating phase. As a result, an identical or similar color impression can be achieved in the operating phase and measurement phase by maintaining the current level ratios, e.g. if the color channels are controlled in continuous operation.

Es ist eine Weiterbildung, dass eine Lichtmenge während des Messzyklus' durch Einstellen einer Stromhöhe auf einen Wert gebracht wird, bei dem eine Signalhöhe oder Pegel eines Sensorsignals des mindestens einen Photodetektors in einem Bereich zwischen 75% und weniger als 100%, z.B. 99,5%, seiner maximalen Signalhöhe liegt. Dadurch kann einerseits ein ausreichend hoher Signalpegel mit einem hohen Signal-zu-Rausch-Verhältnis (SNR) erreicht werden und gleichzeitig eine Sättigung des Photodetektors vermieden werden.It is a further development that an amount of light during the measurement cycle is brought to a value by setting a current level at which a signal level or level of a sensor signal of the at least one photodetector is in a range between 75% and less than 100%, e.g. 99.5 %, of its maximum signal level. In this way, on the one hand, a sufficiently high signal level with a high signal-to-noise ratio (SNR) can be achieved and, at the same time, saturation of the photodetector can be avoided.

Es ist eine zum schnellen Einstellen des Pegels des Sensorsignals in dem Bereich zwischen 75% und weniger als 100% seiner maximalen Signalhöhe vorteilhafte Ausgestaltung, dass die Lichtmenge mittels eines Suchalgorithmus' auf den Wert oder in den Bereich gebracht wird. Der Suchalgorithmus kann z.B. ein linearer Suchalgorithmus sein. Zum schnellen Einstellen des Pegels kann ein Suchalgorithmus verwendet werden, welcher schneller als der lineare Suchalgorithmus arbeitet, insbesondere ein binärer Suchalgorithmus oder eine Intervallsuche.It is an advantageous embodiment for quickly setting the level of the sensor signal in the range between 75% and less than 100% of its maximum signal height that the amount of light is brought to the value or in the range by means of a search algorithm. The search algorithm can be, for example, a linear search algorithm. To set the level quickly, a search algorithm can be used which works faster than the linear search algorithm, in particular a binary search algorithm or an interval search.

Beispielsweise kann es gewünscht sein, den Pegel des Sensorsignals zu reduzieren, wenn viel Licht in den Photodetektor zurückreflektiert und/oder aus der Umgebung eingestrahlt wird. Dies kann z.B. der Fall sein, wenn der LED-Leuchtvorrichtung ein Lichtmischer wie beispielsweise ein Diffusor, eine strahlformende Optik usw nachgeschaltet ist, welcher vergleichsweise viel Licht zurückwirft. Dadurch kann der Photodetektor saturiert werden, so dass sich in der Messphase keine sinnvolle Korrelation zwischen einem Ansteuersignal eines Farbkanals und seinem Lichtstrom mehr ergibt.For example, it may be desirable to reduce the level of the sensor signal if a lot of light is reflected back into the photodetector and / or irradiated from the surroundings. This can be the case, for example, when the LED lighting device a light mixer such as a diffuser, beam-shaping optics, etc. is connected downstream, which reflects a comparatively large amount of light. As a result, the photodetector can be saturated, so that in the measurement phase there is no longer any meaningful correlation between a control signal of a color channel and its luminous flux.

Es ist noch eine Ausgestaltung, dass die Messphase zusätzlich zu dem Schritt des Ansteuerns der Farbkanäle einen Schritt eines Nichtansteuerns aller Farbkanäle aufweist. In dieser 'Dunkelphase' kann eine Auswirkung eines in die LED-Leuchtvorrichtung einfallenden Umgebungslichts auf das Sensorsignal bestimmt werden.In another embodiment, in addition to the step of activating the color channels, the measurement phase has a step of not activating all of the color channels. In this “dark phase”, an effect of ambient light incident on the LED lighting device on the sensor signal can be determined.

Es ist noch eine weitere Ausgestaltung, dass die Messphase zusätzlich Ausgleichsabschnitte aufweist, während derer die Farbkanäle wie während einer Betriebsphase angesteuert werden. So können die Farbkanäle während der Ausgleichsabschnitte auch gleichzeitig betrieben werden. Dadurch kann ein Helligkeitseindruck für einen Benutzer während der Messphase an einen Helligkeitseindruck während einer Betriebsphase angeglichen werden.It is still a further embodiment that the measurement phase additionally has compensation sections, during which the color channels are controlled as during an operating phase. In this way, the color channels can also be operated simultaneously during the compensation sections. As a result, an impression of brightness for a user during the measurement phase can be matched to an impression of brightness during an operating phase.

Wenn bedingt durch die unterschiedlich langen An-Zeiten oder Aktivierungsdauern der einzelnen Kanäle mehr Messungen durchgeführt werden können als für die Regelung notwendig, können in nachfolgenden Messphasen diese Messungen ausgelassen oder gezielt verkürzt werden, um den Zeitbedarf der Messphase zu reduzieren. In dieser Ausgestaltung kann der durch die ausgelassenen Messungen bedingte Fehler beispielsweise durch die Ausgleichsabschnitte korrigiert werden.If, due to the different on-times or activation times of the individual channels, more measurements can be carried out than are necessary for the control, these measurements can be omitted or specifically shortened in subsequent measurement phases in order to reduce the time required for the measurement phase. In this embodiment, the error caused by the omitted measurements can be corrected, for example, by the compensation sections.

Für eine integrale Farbmischung, bei der die sequenzielle Ansteuerung der Farbkanäle von einem Benutzer aufgrund einer Augenträgheit als eine gleichzeitige Lichtausstrahlung wahrgenommen wird, ist es eine vorteilhafte Ausgestaltung, dass eine Messphase nicht länger als ca. 40 ms dauert, insbesondere nicht länger als 20 ms, insbesondere nicht länger als 10 ms. Insbesondere kann eine Dauer der Messphase, bei der ein Farbkanal angesteuert wird, so lange dauern wie für die Messwerterfassung der einzelnen Kanäle notwendig ist, also z.B. auch ohne eine Dunkelphase.For integral color mixing, in which the sequential control of the color channels is perceived by a user as simultaneous light emission due to eye sluggishness, it is an advantageous embodiment that a measurement phase does not last longer than approx. 40 ms, in particular no longer than 20 ms, in particular no longer than 10 ms. In particular, the duration of the measurement phase in which a color channel is activated can last as long as is necessary for the measurement value acquisition of the individual channels, that is, for example, even without a dark phase.

Es ist ferner eine Ausgestaltung, dass eine Zeitdauer zwischen zwei Messphasen nicht konstant ist. Dadurch kann unterdrückt werden, dass sich mehrere LED-Leuchtvorrichtungen, insbesondere mehrfach hintereinander, gleichzeitig (kollektiv) in ihrer Messphase befinden und so für einen Betrachter einen Unterschied zu einem Eindruck aus einer Betriebsphase verstärken. Dieser Effekt kann besonders wirksam unterdrückt werden, falls eine Zeitdauer zwischen zwei Messphasen nicht-deterministisch, z.B. zufällig oder pseudo-zufällig bestimmt, ist.It is also an embodiment that a period of time between two measurement phases is not constant. As a result, it can be suppressed that a plurality of LED lighting devices, in particular several times one behind the other, are simultaneously (collectively) in their measurement phase and thus reinforce a difference to an impression from an operating phase for a viewer. This effect can be suppressed particularly effectively if a period of time between two measurement phases is non-deterministic, e.g. determined randomly or pseudo-randomly.

Es ist außerdem eine Ausgestaltung, dass ein während der Messphase von dem mindestens einen Photodetektor ausgegebenes Sensorsignal zumindest abschnittsweise dazu verwendet wird, eine Ansteuerung in einer folgenden Betriebsphase anzupassen. Dies kann z.B. in Form einer Rückkopplung geschehen. Beispielsweise kann das Ergebnis verwendet werden, um in einer Regelschleife die benötigte Lichtmenge zur Erreichung des Farbortes zu berechnen oder/und nachzuregeln.It is also an embodiment that a sensor signal output by the at least one photodetector during the measurement phase is used, at least in sections, to adapt a control in a subsequent operating phase. This can take the form of feedback, for example. For example, the result can be used to calculate and / or readjust the amount of light required to reach the color location in a control loop.

Es ist vorteilhaft, die Farbkanäle in der Messphase in Reihenfolge der Helligkeit der Farbkanäle, bevorzugt in absteigender Reihenfolge, anzusteuern. Wenn eine Anpassung der Helligkeit durch eine Ansteuerung der Stromquelle erfolgt, ist die Zeitdauer, die die Stromquelle benötigt, um den gewünschten Leistungswert zu erreichen, entscheidend für die Zeitdauer der Messung. Diese kann je nach Stromquelle im Anstieg oder im Absenken unterschiedlich sein. Es hat sich als vorteilhaft erwiesen, zu Anfang der Messung den "langsamen" Schritt zu wählen und dann für die Anpassungen in den einzelnen Schritten die "schnelle" Richtung zu verfolgen.It is advantageous to control the color channels in the measurement phase in the order of the brightness of the color channels, preferably in descending order. If the brightness is adjusted by activating the current source, the period of time that the current source needs to achieve the desired power value is decisive for the duration of the measurement. Depending on the power source, this can be different in terms of increase or decrease. It has proven to be advantageous to select the "slow" step at the beginning of the measurement and then to follow the "fast" direction for the adjustments in the individual steps.

Die meisten Stromquellen ermöglichen eine schnelle Leistungs- und damit Stromstärkenreduktion aber nur eine langsame Erhöhung. Daher ist es besonders vorteilhaft, die Farbkanäle in absteigender Reihenfolge der Helligkeit anzusteuern, d.h. zunächst den Farbkanal mit der größten Helligkeit, dann den mit der zweitgrößten usw. bis zum Kanal mit der niedrigsten Helligkeit. Als Abschluss ist dann die Dunkelphase vorteilhaft, wenn eine solche vorgesehen ist. Damit ergibt sich eine besonders schnelle Messung und damit eine kurze Messphase, die die Gefahr, dass beim Betrachter sichtbare Helligkeitsschwankungen entstehen, minimiert.Most power sources allow a rapid reduction in power and thus current strength, but only a slow increase. It is therefore particularly advantageous to control the color channels in descending order of brightness, i.e. first the color channel with the greatest brightness, then the one with the second largest, etc. up to the channel with the lowest brightness. As a conclusion, the dark phase is advantageous if one is provided. This results in a particularly fast measurement and thus a short measurement phase, which minimizes the risk of brightness fluctuations that are visible to the observer.

Die Aufgabe wird auch gelöst durch eine LED-Leuchtvorrichtung, wobei die LED-Leuchtvorrichtung mindestens aufweist:

  • mindestens zwei Farbkanäle, insbesondere unterschiedlicher Farbe, wobei jeder Farbkanal mindestens eine LED gleicher Farbe umfasst und wobei jeder Farbkanal getrennt ansteuerbar ist,
  • mindestens einen Photodetektor, welcher dazu eingerichtet und angeordnet ist, einen Anteil eines von den LEDs abgestrahlten Lichts zu detektieren,
  • eine Umschalteinrichtung zum Umschalten der LED-Leuchtvorrichtung von einer Betriebsphase in eine Messphase und
  • eine Messphasenablaufsteuerung, die dazu eingerichtet ist, die Farbkanäle nacheinander so anzusteuern, dass ein während der Messphase von den LEDs abgestrahltes Licht eine integrale Farbmischung aufweist, welche im Wesentlichen einer Farbmischung der Betriebsphase entspricht.
The object is also achieved by an LED lighting device, the LED lighting device having at least:
  • at least two color channels, in particular of different colors, each color channel comprising at least one LED of the same color and each color channel being separately controllable,
  • at least one photodetector which is set up and arranged to detect a portion of a light emitted by the LEDs,
  • a switching device for switching the LED lighting device from an operating phase to a measuring phase and
  • a measurement phase sequence control which is set up to control the color channels one after the other in such a way that a light emitted by the LEDs during the measurement phase has an integral color mixture, which essentially corresponds to a color mixture of the operating phase.

Die Umschalteinrichtung kann z.B. ein funktionaler Teil einer allgemeinen Steuereinrichtung der LED-Leuchtvorrichtung sein.The switching device can, for example, be a functional part of a general control device of the LED lighting device.

Es ist eine Weiterbildung, dass die LED-Leuchtvorrichtung dazu eingerichtet ist, ein Verfahren wie oben beschrieben auszuführen.It is a further development that the LED lighting device is set up to carry out a method as described above.

In den folgenden Figuren wird die Erfindung anhand eines Ausführungsbeispiels schematisch genauer beschrieben.

Fig.1
zeigt in drei Reihen jeweils einen Ausschnitt aus einem ersten, einem zweiten bzw. einem dritten Ansteuersignal für einen jeweils zugehörigen Farbkanal einer LED-Leuchtvorrichtung. Das Ansteuersignal ist als eine Auftragung eines Strompegels eines in den jeweiligen Farbkanal eingeprägten Stroms I gegen die Zeit T dargestellt;
Fig.2
skizziert eine möglich Ausgestaltung einer LEDLeuchtvorrichtung zur Durchführung der in Fig.1 gezeigten Abläufe.
In the following figures, the invention is described schematically in more detail using an exemplary embodiment.
Fig. 1
shows, in three rows, a section of a first, a second or a third control signal for a respective associated color channel of an LED lighting device. The control signal is shown as a plot of a current level of a current I impressed in the respective color channel against time T;
Fig. 2
outlines a possible configuration of an LED lighting device for carrying out the in Fig. 1 shown processes.

Die erste Reihe aus Fig.1 zeigt einen Ausschnitt aus einem ersten Ansteuersignal S1 für einen ersten Farbkanal Ch1 einer LED-Leuchtvorrichtung. Der erste Farbkanal Ch1 beinhaltet alle Leuchtdioden (LEDs) einer ersten Farbe, z.B. rot, welche gemeinsam mittels des gemeinsamen Ansteuersignals S1 angesteuert werden. Die roten Leuchtdioden des ersten, roten Farbkanals Ch1 können z.B. in Reihe geschaltet sein.The first row off Fig. 1 shows an excerpt from a first control signal S1 for a first color channel Ch1 of an LED lighting device. The first color channel Ch1 contains all light emitting diodes (LEDs) of a first color, for example red, which are controlled jointly by means of the common control signal S1. The red light-emitting diodes of the first, red color channel Ch1 can be connected in series, for example.

Die zweite Reihe zeigt einen Ausschnitt aus einem zweiten Ansteuersignal S2 für einen zweiten Farbkanal Ch2 einer LED-Leuchtvorrichtung. Der zweite Farbkanal Ch2 beinhaltet alle Leuchtdioden (LEDs) einer zweiten Farbe, z.B. grün, welche mittels des gemeinsamen Ansteuersignals S2 angesteuert werden. Die grünen Leuchtdioden des zweiten, grünen Farbkanals Ch2 können z.B. in Reihe geschaltet sein.The second row shows an excerpt from a second control signal S2 for a second color channel Ch2 of an LED lighting device. The second color channel Ch2 contains all light emitting diodes (LEDs) of a second color, e.g. green, which are controlled by means of the common control signal S2. The green light-emitting diodes of the second, green color channel Ch2 can be connected in series, for example.

Die dritte Reihe zeigt einen Ausschnitt aus einem dritten Ansteuersignal S3 für einen dritten Farbkanal Ch3 einer LED-Leuchtvorrichtung. Der dritte Farbkanal Ch3 beinhaltet alle Leuchtdioden (LEDs) einer dritten Farbe, z.B. blau, welche gemeinsam mittels des gemeinsamen Ansteuersignals S3 angesteuert werden. Die blauen Leuchtdioden des dritten, blauen Farbkanals Ch3 können z.B. in Reihe geschaltet sein.The third row shows a section from a third control signal S3 for a third color channel Ch3 of an LED lighting device. The third color channel Ch3 contains all light-emitting diodes (LEDs) of a third color, for example blue, which are controlled jointly by means of the common control signal S3. The blue light-emitting diodes of the third, blue color channel Ch3 can be connected in series, for example.

Fig.1 zeigt jeweils zeitgleiche Ausschnitte der Ansteuersignale S1, S2 bzw. S3. Die Ausschnitte zeigen jeweils eine erste Betriebsphase BP1, auf welche eine Messphase MP folgt, auf welche eine zweite Betriebsphase BP2 folgt. Fig. 1 each shows simultaneous excerpts of the control signals S1, S2 and S3. The sections each show a first operating phase BP1, which is followed by a measurement phase MP, which is followed by a second operating phase BP2.

In den Betriebsphasen BP1, BP2 wird die LED-Leuchtvorrichtung normal betrieben. Die Betriebsphasen BP1, BP2 bestehen aus einer Abfolge von Aktivierungszyklen der Zeitdauer tba, von denen ein Aktivierungszyklus beispielhaft in der ersten Betriebsphase BP1 zwischen einem Zeitpunkt tb0 = 0 und einem Zeitpunkt tba dargestellt ist.In the operating phases BP1, BP2, the LED lighting device is operated normally. The operating phases BP1, BP2 consist of a sequence of activation cycles of duration tba, of which an activation cycle is shown by way of example in the first operating phase BP1 between a point in time tb0 = 0 and a point in time tba.

In dem gezeigten Aktivierungszyklus werden zunächst ab dem Zeitpunkt tb0 alle drei Farbkanäle Ch1, Ch2, Ch3 gleichzeitig angesteuert bzw. aktiviert, jedoch innerhalb des Aktivie-. rungszyklus' meist für eine unterschiedliche Dauer. In anderen Worten wird in einem Aktivierungszyklus auf alle drei Farbkanäle Ch1, Ch2, Ch3 ein Puls, insbesondere Strompuls, aufgegeben, wobei sich eine Pulsbreite PB1, PB2, PB3 der Farbkanäle Ch1, Ch2, Ch3 unterscheiden kann. Die Pulsbreite PB1, PB2, PB3 ist durch die LED-Leuchtvorrichtung einstellbar und kann sich beispielsweise nach einer gewünschten Farbtemperatur richten. So kann einer bestimmten Farbe oder Farbort des von der LED-Leuchtvorrichtung abgestrahlten Lichts, z.B. warm-weiß oder kalt-weiß, ein bestimmtes Verhältnis der Pulsbreiten PB1, PB2, PB3 und damit Ansteuerungsdauern der Farbkanäle Ch1, Ch2, Ch3 zugeordnet sein. Dabei wird ausgenutzt, dass die Zeitdauer tba eines Aktivierungszyklus so kurz ist, dass aufgrund einer Augenträgheit das von allen Farbkanälen Ch1, Ch2, Ch3 abgestrahlte Licht von einem Betrachter als praktisch gleichzeitig abgestrahltes Licht, also als Mischlicht aus den drei Farbkanälen Ch1, Ch2, Ch3, wahrgenommen wird.In the activation cycle shown, all three color channels Ch1, Ch2, Ch3 are initially controlled or activated from time tb0, but within the activation cycle. ration cycle 'mostly for a different duration. In other words, a pulse, in particular a current pulse, is applied to all three color channels Ch1, Ch2, Ch3 in an activation cycle, wherein a pulse width PB1, PB2, PB3 of the color channels Ch1, Ch2, Ch3 can differ. The pulse width PB1, PB2, PB3 can be set by the LED lighting device and can, for example, be based on a desired color temperature. For example, a specific color or color location of the light emitted by the LED lighting device, e.g. warm-white or cold-white, can be assigned a specific ratio of the pulse widths PB1, PB2, PB3 and thus activation times of the color channels Ch1, Ch2, Ch3. This makes use of the fact that the duration tba of an activation cycle is so short that, due to eye sluggishness, the light emitted by all color channels Ch1, Ch2, Ch3 is seen by an observer as light emitted practically at the same time, i.e. as mixed light from the three color channels Ch1, Ch2, Ch3 , is perceived.

In dem gezeigten beispielhaften Aktivierungszyklus werden die LEDs des ersten Farbkanals Ch1 dauernd bestromt, was einer Pulsbreite PB1 von 100% des Aktivierungszyklus' entspricht, also PB1 = tba. Die LEDs des zweiten Farbkanals Ch2 werden 55% der Zeit des Aktivierungszyklus' bestromt (PB2 = 55% tba), und die LEDs des dritten Farbkanals Ch3 werden 18% der Zeit des Aktivierungszyklus' bestromt (PB3 = 18% tba). Die Pulsbreiten PB1, PB2 bzw. PB3 können beispielsweise von dem gewünschten Farbort der LED-Leuchtvorrichtung, der Leuchtstärke, der Farbe und der Zahl der LED(s) pro Farbkanal usw. abhängen. Die Pulsbreiten PB1, PB2, PB3 können variiert werden, z.B. um einen Farbort und/oder eine Lichtstärke des Mischlichts zu ändern.In the exemplary activation cycle shown, the LEDs of the first color channel Ch1 are continuously energized, which is a Pulse width PB1 corresponds to 100% of the activation cycle, i.e. PB1 = tba. The LEDs of the second color channel Ch2 are energized 55% of the time of the activation cycle (PB2 = 55% tba), and the LEDs of the third color channel Ch3 are energized 18% of the time of the activation cycle (PB3 = 18% tba). The pulse widths PB1, PB2 or PB3 can depend, for example, on the desired color location of the LED lighting device, the luminosity, the color and the number of LED (s) per color channel, etc. The pulse widths PB1, PB2, PB3 can be varied, for example in order to change a color location and / or a light intensity of the mixed light.

In dem gezeigten Beispiel können die drei Farbkanäle Ch1, Ch2, Ch3 unabhängig voneinander angesteuert werden, so dass sich z.B. eine gleichzeitige Ansteuerung, insbesondere Bestromung, der drei Farbkanäle Ch1, Ch2, Ch3 besonders einfach erreichen lässt. Jedoch kann auch eine sequenzielle Ansteuerung verwendet werden, bei der keine zwei Farbkanäle Ch1, Ch2, Ch3 gleichzeitig angesteuert werden.In the example shown, the three color channels Ch1, Ch2, Ch3 can be controlled independently of one another, so that, for example, simultaneous control, in particular energization, of the three color channels Ch1, Ch2, Ch3 can be achieved particularly easily. However, a sequential control can also be used in which no two color channels Ch1, Ch2, Ch3 are controlled at the same time.

Auch mögen nur zwei Farbkanäle eingesetzt werden, z.B. mit roten LED(S) bzw. mintgrünen LED(s) zur Erzeugung eines weißen Mischlichts. Auch können mehr als drei Farbkanäle eingesetzt werden, z.B. zusätzlich mit bernsteinfarbenen LED(s) ('amber') zur Erzeugung eines warm-weißen Mischlichts.Also, only two color channels may be used, e.g. with red LED (S) or mint green LED (s) to generate a white mixed light. More than three color channels can also be used, e.g. additionally with amber-colored LED (s) ('amber') to generate a warm-white mixed light.

Ein Anteil des von den LEDs der Farbkanäle Ch1, Ch2, Ch3 abgestrahlten Lichts wird mittels mindestens eines Photodetektors aufgefangen. Der mindestens eine Photodetektor ist zumindest in der Lage, einen Lichtstrom der LEDs zu detektieren und ein entsprechendes Sensorsignal auszugeben, z.B. zu einer Auswertelogik der LED-Steuervorrichtung.A portion of the light emitted by the LEDs of the color channels Ch1, Ch2, Ch3 is captured by means of at least one photodetector. The at least one photodetector is at least able to detect a luminous flux of the LEDs and output a corresponding sensor signal, e.g. to an evaluation logic of the LED control device.

Die Betriebsphase BP1 geht zu einem Zeitpunkt tm0 für alle drei Farbkanäle Ch1, Ch2, Ch3 in die Messphase MP über. In der Messphase MP werden die drei Farbkanäle Ch1, Ch2, Ch3 zeitlich nacheinander oder sequentiell angesteuert und nicht zeitgleich. Dadurch kann ein Sensorsignal des mindestens einen Photodetektors einfach und eindeutig einem bestimmten Farbkanal Ch1, Ch2, Ch3 zugeordnet und ausgewertet werden, z.B. für eine Bestimmung und/oder Einstellung der Lichtstärke oder des Farborts des Mischlichts.The operating phase BP1 changes to the measurement phase MP at a point in time tm0 for all three color channels Ch1, Ch2, Ch3. In the measurement phase MP, the three color channels Ch1, Ch2, Ch3 are controlled one after the other or sequentially and not contemporaneous. As a result, a sensor signal of the at least one photodetector can be easily and unambiguously assigned to a specific color channel Ch1, Ch2, Ch3 and evaluated, for example for determining and / or setting the light intensity or the color location of the mixed light.

Damit die Messphase MP für einen Betrachter nicht auffällt, dauert eine Zeit zur Ansteuerung der Farbkanäle Ch1, Ch2, Ch3 vorzugsweise nicht mehr als 40 ms, insbesondere nicht mehr als 20 ms, insbesondere nicht mehr als 10 ms. Es wird besonders bevorzugt, wenn die Gesamtdauer tm der Messphase MP nicht mehr als 40 ms, insbesondere nicht mehr als 20 ms, insbesondere nicht mehr als 10 ms dauert.So that the measurement phase MP is not noticeable to an observer, a time for activating the color channels Ch1, Ch2, Ch3 preferably does not last more than 40 ms, in particular not more than 20 ms, in particular not more than 10 ms. It is particularly preferred if the total duration tm of the measurement phase MP does not last more than 40 ms, in particular not more than 20 ms, in particular not more than 10 ms.

Um einen Farbeindruck für einen Betrachter während der Messphase MP im Vergleich zu der vorangegangenen Betriebsphase BP1 nicht zu verändern, werden die Farbkanäle Ch1, Ch2, Ch3 so angesteuert, dass während der Messphase von den LEDs abgestrahltes Licht eine integrale Farbmischung aufweist, welche im Wesentlichen einer Farbmischung der Betriebsphase entspricht. Dabei kann unter einer integralen Farbmischung insbesondere eine Akkumulation, insbesondere Addition, des von den LEDs während der Messphase abgestrahlten Lichts verstanden werden. Hierzu entspricht in diesem Ausführungsbeispiel ein Verhältnis der Pulsbreiten PM1, PM2, PM3 der Farbkanäle Ch1, Ch2, Ch3 während der Messphase MP im Wesentlichen einem Verhältnis der Pulsbreiten PB1, PB2, PB3 der Farbkanäle Ch1, Ch2, Ch3 während der Betriebsphase BP1, auch wenn deren absolute Breite bzw. Zeitdauer in der Messphase MP und der vorangegangenen Betriebsphase BP1 nicht übereinzustimmen braucht. Aufgrund der Augenträgheit nimmt ein Betrachter dann in der Messphase MP den gleichen Farbeindruck wahr wie in der Betriebsphase BP1.In order not to change a color impression for a viewer during the measurement phase MP in comparison to the previous operating phase BP1, the color channels Ch1, Ch2, Ch3 are controlled in such a way that light emitted by the LEDs during the measurement phase has an integral color mixture, which is essentially one Color mix corresponds to the operating phase. An integral color mixture can be understood to mean, in particular, an accumulation, in particular addition, of the light emitted by the LEDs during the measurement phase. For this purpose, in this exemplary embodiment, a ratio of the pulse widths PM1, PM2, PM3 of the color channels Ch1, Ch2, Ch3 during the measurement phase MP essentially corresponds to a ratio of the pulse widths PB1, PB2, PB3 of the color channels Ch1, Ch2, Ch3 during the operating phase BP1, even if whose absolute width or duration in the measurement phase MP and the previous operating phase BP1 need not match. Because of the inertia of the eyes, an observer then perceives the same color impression in the measurement phase MP as in the operating phase BP1.

Die LED-Leuchtvorrichtung kann aus den Sensorsignalen beispielsweise für jeden der Farbkanäle Ch1, Ch2, Ch3 eine Korrelation zwischen einem zugehörigen Ansteuersignal S1, S2, S3, z.B. einem Strom, und einer farbspezifischen Lichtstärke herstellen und bei einer Abweichung von einem Sollwert, z.B. der Lichtstärke, das Ansteuersignal entsprechend modifizieren. So kann beispielsweise dann, wenn festgestellt wird, dass eine Lichtstärke für einen bestimmten Farbkanal Ch1, Ch2, Ch3 niedriger ist als ein für die verwendete Pulsbreite PM1, PM2 bzw. PM3 abgespeicherter Wert der Lichtstärke, die Pulsbreite PB1, PB2, PB3 für diesen Farbkanal Ch1, Ch2, Ch3 in einer folgenden Betriebsphase BP2 erhöht werden. Eine niedrigere Lichtstärke kann beispielsweise durch eine Alterung der LEDs, Temperatureffekte oder durch einen Ausfall einer LED zustande kommen.The LED lighting device can use the sensor signals, for example for each of the color channels Ch1, Ch2, Ch3, to create a correlation between an associated control signal S1, S2, S3, for example a current, and a color-specific light intensity and if there is a deviation from a setpoint value, for example the light intensity, modify the control signal accordingly. For example, if it is determined that a light intensity for a specific color channel Ch1, Ch2, Ch3 is lower than a value of the light intensity stored for the pulse width PM1, PM2 or PM3 used, the pulse width PB1, PB2, PB3 for this color channel Ch1, Ch2, Ch3 are increased in a subsequent operating phase BP2. A lower luminous intensity can be caused, for example, by aging of the LEDs, temperature effects or by failure of an LED.

In der gezeigten Messphase MP schließt sich an den Abschnitt, zu dem die Farbkanäle Ch1, Ch2, Ch3 sequenziell angesteuert oder aktiviert werden, ein optionaler Abschnitt an, während dessen keiner der Farbkanäle angesteuert oder aktiviert ist, eine sog. Dunkelphase DP. In der Dunkelphase DP kann ein Schwarzwert ausgemessen werden, welcher beispielsweise in die LED-Vorrichtung, insbesondere den Photodetektor, eingestrahltes Umgebungslicht berücksichtigt.In the measurement phase MP shown, the section for which the color channels Ch1, Ch2, Ch3 are sequentially controlled or activated is followed by an optional section during which none of the color channels is controlled or activated, a so-called dark phase DP. In the dark phase DP, a black value can be measured which, for example, takes into account ambient light radiated into the LED device, in particular the photodetector.

Nach der Messphase MP wird in eine zweite Betriebsphase BP2 geschaltet, bei der die Ansteuersignale S1, S2, S3 im Vergleich zu den Ansteuersignalen S1, S2, S3 der ersten Betriebsphase BP1 auf der Grundlage von aus der Messphase MP gewonnenen Erkenntnissen modifiziert sein können.After the measurement phase MP, a switch is made to a second operating phase BP2, in which the control signals S1, S2, S3 can be modified in comparison to the control signals S1, S2, S3 of the first operating phase BP1 on the basis of knowledge gained from the measurement phase MP.

Der zeitliche Abstand zwischen zwei Messphasen MP kann vorbestimmt sein, z.B. kann eine Messphase MP alle n Aktivierungszyklen durchgeführt werden. Jedoch kann es bei einem Einsatz mehrerer LED-Leuchtvorrichtungen, die z.B. gleichzeitig angeschaltet werden, vorkommen, dass die Messphasen MP der mehreren LED-Leuchtvorrichtungen im Wesentlichen zeitgleich oder zeitlich nur gering versetzt auftreten. Dann kann ein Betrachter diese Messphasen MP möglicherweise kollektiv wahrnehmen. Um eine Wahrnehmung der Messphasen MP mehrerer LED-Leuchtvorrichtungen zu unterdrücken, kann der zeitliche Abstand (Zeitdauer) zweier Messphasen MP einer LED-Leuchtvorrichtung nicht-deterministisch, beispielsweise zufällig oder pseudo-zufällig, sein, insbesondere innerhalb eines vorbestimmten Zeitintervalls.The time interval between two measurement phases MP can be predetermined, for example a measurement phase MP can be carried out every n activation cycles. However, when several LED lighting devices are used, which are switched on at the same time, for example, the measurement phases MP of the several LED lighting devices occur essentially at the same time or only slightly offset in time. A viewer can then possibly perceive these measurement phases MP collectively. To a perception of the measuring phases MP of several LED lighting devices To suppress, the time interval (duration) of two measurement phases MP of an LED lighting device can be non-deterministic, for example random or pseudo-random, in particular within a predetermined time interval.

Fig.2 skizziert eine LED-Leuchtvorrichtung L, welche unter anderem eine Steuereinrichtung T, insbesondere Treiber, zum Betreiben von Leuchtdioden LD1, LD2 und LD3 aufweist. Die Leuchtdioden sind in drei Stränge aufgeteilt, welche einem jeweiligen Farbkanal Ch1, Ch2 bzw. Ch3 entsprechen. Jeder Farbkanal enthält eine oder mehrere Leuchtdioden LD1, LD2 bzw. LD3 gleicher Farbe, z.B. der Farbkanal Ch1 die roten Leuchtdioden LD1, der Farbkanal Ch2 die grünen Leuchtdioden LD1 und der Farbkanal Ch3 die blauen Leuchtdioden LD3. Die Farbkanäle Ch1, Ch2 und Ch3 sind mittels der Steuereinrichtung T separat oder individuell ansteuerbar. Die Farbkanäle Ch1, Ch2 und Ch3 können beispielsweise die Leuchtdioden LD1, LD2 bzw. LD3 in einer Reihenschaltung enthalten. Die Zahl der Leuchtdioden LD1, LD2 und LD3 kann sich unterscheiden. Fig. 2 outlines an LED lighting device L which, among other things, has a control device T, in particular a driver, for operating light-emitting diodes LD1, LD2 and LD3. The light-emitting diodes are divided into three strings, which correspond to a respective color channel Ch1, Ch2 or Ch3. Each color channel contains one or more light-emitting diodes LD1, LD2 or LD3 of the same color, for example the color channel Ch1 the red light-emitting diodes LD1, the color channel Ch2 the green light-emitting diodes LD1 and the color channel Ch3 the blue light-emitting diodes LD3. The color channels Ch1, Ch2 and Ch3 can be controlled separately or individually by means of the control device T. The color channels Ch1, Ch2 and Ch3 can, for example, contain the light-emitting diodes LD1, LD2 and LD3 in a series connection. The number of LEDs LD1, LD2 and LD3 can differ.

Unter einer LED LD1, LD2, LD3 kann eine einzeln gehäuste LED oder ein LED-Chip verstanden werden. Als LED-Chips ausgebildete Leuchtdioden LD1, LD2, LD3 können beispielsweise auf einem gemeinsamen Substrat angeordnet sein. Die LEDs LD1, LD2, LD3 können beispielsweise anorganische LEDs, z.B. mit InGAlP, oder organische LEDs (OLEDs) sein.An LED LD1, LD2, LD3 can be understood as an individually housed LED or an LED chip. Light-emitting diodes LD1, LD2, LD3 designed as LED chips can for example be arranged on a common substrate. The LEDs LD1, LD2, LD3 can be, for example, inorganic LEDs, e.g. with InGAIP, or organic LEDs (OLEDs).

Während ein größter Anteil des von den LEDs LD1, LD2 und LD3 abgestrahlten Lichts nach Außen abgegeben wird, fällt ein geringerer Anteil auf einen Photodetektor D. Ein Signalausgang des Photodetektors D ist funktional mit der Steuereinrichtung T verbunden, wo ein über den Signalausgang ausgegebenes Sensorsignal ausgewertet werden kann.While a large proportion of the light emitted by the LEDs LD1, LD2 and LD3 is emitted to the outside, a smaller proportion falls on a photodetector D. A signal output of the photodetector D is functionally connected to the control device T, where a sensor signal output via the signal output is evaluated can be.

Während einer Betriebsphase BP1, BP2 kann das Sensorsignal des Photodetektors D beispielsweise dazu verwendet werden, die Ströme, welche durch die Farbkanäle Ch1, Ch2 und Ch3 fließen, so zu regeln, dass ein Sollwert- eines Lichtstroms eingehalten werden kann. Alternativ kann in der Betriebsphase BP1, BP2 der Photodetektor D nicht verwendet werden.During an operating phase BP1, BP2, the sensor signal of the photodetector D can be used, for example, to to regulate the currents that flow through the color channels Ch1, Ch2 and Ch3 in such a way that a setpoint value of a luminous flux can be maintained. Alternatively, the photodetector D cannot be used in the operating phase BP1, BP2.

Insbesondere für eine Kalibrierung der LED-Leuchtvorrichtung L kann die Messphase MP verwendet werden. So kann beispielsweise eine Korrelation zwischen einem Strom durch einen Farbkanal Ch1, Ch2 und Ch3 und der sich daraus ergebenden Lichtstärke oder Lichtstrom dieses Farbkanals Ch1, Ch2 bzw. Ch3 bestimmt werden. Damit wiederum kann während der Betriebsphasen BP1, BP2 z.B. ein gewünschter Farbort und/oder eine gewünschte Lichtstärke genauer eingestellt oder eingeregelt werden.In particular, the measurement phase MP can be used for calibrating the LED lighting device L. For example, a correlation between a current through a color channel Ch1, Ch2 and Ch3 and the resulting light intensity or luminous flux of this color channel Ch1, Ch2 or Ch3 can be determined. In this way, in turn, a desired color location and / or a desired light intensity can be set or regulated more precisely during the operating phases BP1, BP2.

Die Steuereinrichtung T kann funktional eine Umschalteinrichtung zum Umschalten der LED-Leuchtvorrichtung von der Betriebsphase BP1, BP2 in die Messphase MP und zurück als auch eine Messphasenablaufsteuerung umfassen.The control device T can functionally comprise a switching device for switching the LED lighting device from the operating phase BP1, BP2 into the measurement phase MP and back, as well as a measurement phase sequence control.

Selbstverständlich ist die vorliegende Erfindung nicht auf das gezeigte Ausführungsbeispiel beschränkt.Of course, the present invention is not restricted to the exemplary embodiment shown.

So kann anstelle oder zusätzlich zu einer pulsweitenmodulierten Ansteuerung der Farbkanäle auch eine stromhöhenmodulierte oder stromstärkenmodulierte Ansteuerung der Farbkanäle erfolgen.Thus, instead of or in addition to a pulse-width-modulated control of the color channels, a current-level-modulated or current-intensity-modulated control of the color channels can also take place.

In einer möglichen Variante können die Farbkanäle dann jeweils im Dauerbetrieb betrieben werden, wobei deren Lichtstärke über eine Stromhöhe oder Stromstärke eines dem jeweiligen Farbkanal eingeprägten Betriebsstroms eingestellt werden kann.In one possible variant, the color channels can then each be operated in continuous operation, with their light intensity being able to be set via a current level or current level of an operating current impressed on the respective color channel.

Dann können in der Messphase die Farbkanäle hintereinander jeweils mit der gleichen Stromstärke oder Stromhöhe angesteuert werden wie in der Betriebsphase, wobei verschiedene Farbkanäle dann für einen zu der Betriebsphase einheitlichen farblichen Eindruck vorzugsweise auch gleich lang angesteuert werden können. Dies ermöglicht auch eine besonders kurze Messphase.Then, in the measurement phase, the color channels can be controlled one after the other with the same current strength or current level as in the operating phase, with different color channels can then preferably also be activated for the same length of time for a color impression that is uniform in relation to the operating phase. This also enables a particularly short measurement phase.

Es ist ferner eine stromhöhenvariable PWM-Ansteuerung der Farbkanäle möglich, d.h., eine PWM-Ansteuerung, bei der zusätzlich die Stromhöhe oder Stromstärke variiert werden kann.Furthermore, PWM control of the color channels with variable current levels is possible, i.e. PWM control in which the current level or current intensity can also be varied.

Falls eine Stromhöhe einstellbar ist (mit oder ohne PWM-Ansteuerung), kann diese während der Messphase auch variiert werden, um das Sensorsignal des mindestens einen Photodetektors zu optimieren.If a current level can be set (with or without PWM control), it can also be varied during the measurement phase in order to optimize the sensor signal of the at least one photodetector.

So kann für den Fall, dass ein auf den mindestens einen Photodetektor einfallender Lichtstrom vergleichsweise gering ist und damit häufig auch ein Signal-zu-Rausch-Verhältnis (SNR) des Sensorsignals gering ist, die Stromhöhe für diesen Farbkanal erhöht werden, bis das Sensorsignal einen geringeren Rauschfehler bzw. ein höheres SNR aufweist.In the event that a luminous flux incident on the at least one photodetector is comparatively low and therefore the signal-to-noise ratio (SNR) of the sensor signal is often low, the current level for this color channel can be increased until the sensor signal has a has lower noise error or a higher SNR.

Auch kann die Stromhöhe für den Fall reduziert werden, dass ein auf den mindestens einen Photodetektor einfallender Lichtstrom vergleichsweise hoch ist und sich insbesondere im Sättigungsbereich des mindestens einen Photodetektors befindet. In anderen Worten ist hier der Lichtstrom bereits so hoch, dass der Photodetektor gesättigt ist und bei einer weiteren Erhöhung des Lichtstroms sein Sensorsignal nicht mehr verstärkt. Ein Hinweis darauf, dass der Photosensor über seiner Sättigungsgrenze betrieben wird, ist ein Vorliegen eines maximalen Sensorsignals, z.B. einer maximalen Sensorspannung.The current level can also be reduced in the event that a light current incident on the at least one photodetector is comparatively high and is in particular in the saturation range of the at least one photodetector. In other words, the luminous flux here is already so high that the photodetector is saturated and if the luminous flux is increased further, its sensor signal is no longer amplified. An indication that the photosensor is being operated above its saturation limit is the presence of a maximum sensor signal, e.g. a maximum sensor voltage.

In dem Fall eines zu hohen Lichtstroms kann die Stromhöhe des Farbkanals so lange reduziert werden, bis das zugehörige Sensorsignal sich in einem Bereich zwischen einem Wert knapp unterhalb des maximalen Sensorsignals (als oberer Grenze) und oberhalb eines Werts mit einem bereits günstigen SNR befindet. Es hat sich als vorteilhaft erwiesen, dass die Stromhöhe des Farbkanals so lange reduziert wird, bis das zugehörige Sensorsignal sich in einem Bereich zwischen 50% und unterhalb, insbesondere 99,5%, des maximalen Sensorsignals befindet, insbesondere zwischen 75% und unterhalb, insbesondere 99,5%, des maximalen Sensorsignals befindet.If the luminous flux is too high, the current level of the color channel can be reduced until the associated sensor signal is in a range between a value just below the maximum sensor signal (as the upper limit) and above a value with an already favorable SNR. It has proven to be advantageous that the current level of the color channel is reduced until the associated sensor signal is in a range between 50% and below, in particular 99.5%, of the maximum sensor signal, in particular between 75% and below, in particular 99.5%, of the maximum sensor signal.

Das Aufsuchen eines günstigen Sensorbereichs kann mittels jedes geeigneten Suchalgorithmus' durchgeführt werden. So kann ein linearer Suchalgorithmus durchgeführt werden, bei dem die Stromhöhe schrittweise (linear) erhöht wird (bei einem anfänglich zu schwachen Sensorsignal) oder erniedrigt wird (bei einem anfänglich zu starken oder gesättigten Sensorsignal). Ein solcher Suchalgorithmus weist (in Landau-Notation) eine Komplexitätsklasse O(n) auf.The search for a favorable sensor area can be carried out using any suitable search algorithm. A linear search algorithm can be carried out in which the current level is increased step-by-step (linearly) (if the sensor signal is initially too weak) or decreased (if the sensor signal is initially too strong or saturated). Such a search algorithm has (in Landau notation) a complexity class O (n).

Eine noch schnellere Anpassung, z.B. mit der Komplexitätsklasse O(log n), lässt sich durch andere Suchalgorithmen erreichen, z.B. einen binären Suchalgorithmus oder eine Interpolationssuche oder Intervallsuche.An even faster adaptation, e.g. with the complexity class O (log n), can be achieved using other search algorithms, e.g. a binary search algorithm or an interpolation search or an interval search.

Zudem ist die Reihenfolge der zeitlich nacheinander folgend angesteuerten Farbkanäle grundsätzlich nicht beschränkt. Die Reihenfolge kann für mehrere Messphasen gleich sein (z.B. immer Ch1, Ch2, Ch3) oder sich unterscheiden (z.B. Ch1, Ch2, Ch3 für eine Messphase und beispielsweise Ch3, Ch1, Ch2 für eine andere Messphase). Dabei wird generell die Reihenfolge bevorzugt so gewählt werden, dass die Messphase möglichst kurz ist. Bei den üblicherweise verwendeten Stromquellen ist dies insbesondere dann der Fall, wenn die Farbkanäle in der Messphase in absteigender Reihenfolge der Helligkeit nacheinander angesteuert werden, d.h. zunächst der Farbkanal mit der größten Helligkeit, dann der mit der zweitgrößten usw. bis zum Kanal mit der niedrigsten Helligkeit, da die üblichen Stromquellen wesentlich mehr Zeit für einen Leistungsanstieg als für einen Leistungsabfall benötigen. Als Abschluss ist dann die Dunkelphase vorteilhaft, wenn eine solche vorgesehen ist. Damit ergibt sich eine besonders schnelle Messung und damit eine kurze Messphase, die die Gefahr, dass beim Betrachter sichtbare Helligkeitsschwankungen entstehen, minimiert. Sollte eine Stromquelle Verwendung finden, die im Anstieg schneller als im Abfall reagiert, ist selbstverständlich eine Messung in umgekehrter Reihenfolge, d.h. vom dunkelsten zum hellsten Farbkanal vorteilhaft.In addition, the order of the color channels activated one after the other is basically not restricted. The sequence can be the same for several measurement phases (eg always Ch1, Ch2, Ch3) or differ (eg Ch1, Ch2, Ch3 for one measurement phase and, for example, Ch3, Ch1, Ch2 for another measurement phase). In general, the sequence is preferably chosen so that the measurement phase is as short as possible. With the power sources that are commonly used, this is particularly the case when the color channels are controlled one after the other in the measuring phase in descending order of brightness, i.e. first the color channel with the greatest brightness, then the one with the second largest, etc. up to the channel with the lowest brightness , since the usual power sources require considerably more time for a power increase than for a power decrease. As a conclusion, the dark phase is advantageous if one is provided is. This results in a particularly fast measurement and thus a short measurement phase, which minimizes the risk of brightness fluctuations that are visible to the observer. If a power source is used that reacts faster when rising than when falling, a measurement in the reverse order, ie from the darkest to the lightest color channel, is of course advantageous.

Allgemein kann in einer Messphase jeder der Farbkanäle einmal oder mehrmals angesteuert werden. So kann in einer Messphase zumindest einer der Kanäle zweimal angesteuert werden; z.B. können in einer Messphasen der rote, der grüne und der blaue Farbkanal jeweils zweimal angesteuert werden, z.B. in der Reihenfolge Ch1, Ch2, Ch3, Ch1, Ch2, Ch3. Die Ansteuerungssignal für die Farbkanäle können direkt aufeinander folgen oder zeitlich beabstandet sein.In general, each of the color channels can be activated once or several times in a measurement phase. In this way, at least one of the channels can be activated twice in a measurement phase; For example, the red, green and blue color channels can be activated twice in a measurement phase, for example in the order Ch1, Ch2, Ch3, Ch1, Ch2, Ch3. The control signals for the color channels can follow one another directly or be spaced apart in time.

BezugszeichenlisteList of reference symbols

BP1BP1
erste Betriebsphasefirst phase of operation
BP2BP2
zweite Betriebsphasesecond operating phase
Ch1Ch1
erster Farbkanalfirst color channel
Ch2Ch2
zweiter Farbkanalsecond color channel
Ch3Ch3
dritter Farbkanalthird color channel
DD.
PhotodetektorPhotodetector
DPDP
DunkelphaseDark phase
II.
Stromcurrent
LL.
LED-LeuchtvorrichtungLED lighting device
LD1LD1
Leuchtdiode des ersten FarbkanalsLight emitting diode of the first color channel
LD2LD2
Leuchtdiode des zweiten FarbkanalsLight-emitting diode of the second color channel
LD3LD3
Leuchtdiode des dritten FarbkanalsLight-emitting diode of the third color channel
MPMP
MessphaseMeasurement phase
PB1PB1
Pulsbreite eines Signalpulses des ersten Farbkanals während eines Aktivierungszyklus' in einer Betriebsphase;Pulse width of a signal pulse of the first color channel during an activation cycle in an operating phase;
PB2PB2
Pulsbreite eines Signalpulses des zweiten Farbkanals während eines Aktivierungszyklus' in einer Betriebsphase;Pulse width of a signal pulse of the second color channel during an activation cycle in an operating phase;
PB3PB3
Pulsbreite eines Signalpulses des dritten Farbkanals während eines Aktivierungszyklus' in einer Betriebsphase;Pulse width of a signal pulse of the third color channel during an activation cycle in an operating phase;
PM1PM1
Pulsbreite eines Signalpulses des ersten Farbkanals während einer MessphasePulse width of a signal pulse of the first color channel during a measurement phase
PM2PM2
Pulsbreite eines Signalpulses des zweiten Farbkanals während einer MessphasePulse width of a signal pulse of the second color channel during a measurement phase
PM3PM3
Pulsbreite eines Signalpulses des dritten Farbkanals während einer MessphasePulse width of a signal pulse of the third color channel during a measurement phase
S1S1
Ansteuersignal des ersten FarbkanalsControl signal of the first color channel
S2S2
Ansteuersignal des zweiten FarbkanalsControl signal of the second color channel
S3S3
Ansteuersignal des dritten FarbkanalsControl signal of the third color channel
tt
ZeitTime
TT
SteuereinrichtungControl device
tb0tb0
Beginn eines Aktivierungszyklus'Start of an activation cycle
tbatba
Dauer eines Aktivierungszyklus'Duration of an activation cycle
tm0tm0
Beginn der MessphaseBeginning of the measurement phase

Claims (12)

  1. Method of operating an LED lighting device (L), wherein the LED lighting device (L) comprises at least:
    - at least two color channels (Ch1, Ch2, Ch3), wherein each color channel (Ch1, Ch2, Ch3) comprises at least one LED (LD1, LD2, LD3), wherein the LEDs (LD1, LD2, LD3) of a color channel (CH1, CH2, CH3) each include the same color, and wherein each color channel (CH1, CH2, CH3) can be separately energized, and
    - at least one photodetector (D) configured and arranged to detect a portion of a light irradiated from the LEDs (LD1, LD2, LD3),
    wherein the method comprises at least the following steps:
    - switching the LED lighting device (L) from an operation phase (BP1) into a measurement phase (MP), wherein an amount of light from the respective LEDs (LD1, LD2, LD3) during the measurement phase (MP) is brought to a value by adjusting a current level of the color channels, at which value a signal level of a signal of the at least one photodetector (D) ranges between 75% and below its maximum signal level;
    - sequential and non-simultaneous energizing channels (CH1, CH2, CH3) such that light irradiated during the measurement phase (MP) includes an integral color mixture, which substantially corresponds to a color mixture of the operation phase (BP1), characterized in that
    - during the measurement phase (MP) each color channel is separately energized by means of a pulse width modulation, such that a ratio of pulse widths of the color channels during the measurement phase (MP) substantially corresponds to a ratio of the pulse widths of the color channels during the operation phase.
  2. Method according to claim 1, wherein a deviation of the ratio of the pulse widths of two color channels during the measurement phase (MP) deviates not more than 10%, in particular not more than 1%, from the ratio of pulse widths of these two color channels during the operation phase.
  3. Method according to 1 of the preceding claims, wherein the current level is adjusted separately for each of the color channels, such that the ratio of current levels of the color channels during the measurement phase (MP) corresponds to a ratio of current levels of the color channels during the operation phase.
  4. Method according to claim 3, wherein the amount of light is brought to the value by means of a search algorithm, in particular by means of a binary search algorithm.
  5. Method according to one of the preceding claims, wherein the measurement phase (MP) includes a step of non-energizing all color channels in addition to the step of energizing the color channels.
  6. Method according to one of the preceding claims, wherein the measurement phase (MP) additionally includes compensation sections, during which the color channels are energized like during the operation phase..
  7. Method according to one of the preceding claims, wherein a measurement phase (MP) has a duration of no longer than about 40 ms, in particular no longer than 20 ms, more particular no longer than 10 ms.
  8. Method according to one of the preceding claims, wherein a duration in time between two measurement phases is not constant, in particular non-deterministic.
  9. Method according to one of the preceding claims, wherein a sensor signal output during the measurement phase (MP) from the at least one photodetector is used at least in sections to adjust and an energization in a subsequent operation phase.
  10. Method according to one of the preceding claims, wherein the color channels are energized during the measurement phase in the sequence of brightness of the color channels, preferably in descending order.
  11. LED lighting device, wherein the LED lighting device (L) at least includes:
    - at least two color channels, wherein each color channel comprises at least one LED of the same color, and wherein each color channel can be separately energized,
    - at least one photodetector configured and arranged to detect a portion of a light irradiated from the LEDs,
    - a switching device for switching the LED-lighting device (L) from an operation phase into a measurement phase (MP), wherein during the measurement phase (MP) an amount of light is brought to a value by adjusting a current level of the color channels, at which value a signal level of a signal of the at least one photodetector (D) ranges between 75% and below its maximum signal level, and
    - a measurement flow control configured to energize the color channels sequentially and non-simultaneously such that light irradiated during the measurement phase (MP) includes an integral color mixture, which substantially corresponds to a color mixture of the operation phase,
    - characterized in that
    - the measurement flow control is configured to energize each color channel separately during the measurement phase (MP) by means of a pulse width modulation, such that a ratio of pulse widths of the color channels during the measurement phase (MP) substantially corresponds to a ratio of the pulse widths of the color channels during the operation phase.
  12. LED lighting device (L) according to claim 11, wherein the LED lighting device (L) is configured to execute the method according to one of claims 1 through 10.
EP11701785.5A 2010-02-12 2011-01-20 Led lighting device and method for operating an led lighting device Active EP2499883B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010001889 2010-02-12
DE102010028406A DE102010028406A1 (en) 2010-02-12 2010-04-30 LED lighting device and method for operating an LED lighting device
PCT/EP2011/050781 WO2011098334A1 (en) 2010-02-12 2011-01-20 Led lighting device and method for operating an led lighting device

Publications (2)

Publication Number Publication Date
EP2499883A1 EP2499883A1 (en) 2012-09-19
EP2499883B1 true EP2499883B1 (en) 2021-10-06

Family

ID=44317384

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11701785.5A Active EP2499883B1 (en) 2010-02-12 2011-01-20 Led lighting device and method for operating an led lighting device

Country Status (6)

Country Link
US (1) US9392664B2 (en)
EP (1) EP2499883B1 (en)
JP (1) JP2013519970A (en)
CN (1) CN102754526B (en)
DE (1) DE102010028406A1 (en)
WO (1) WO2011098334A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010028406A1 (en) * 2010-02-12 2011-08-18 Osram Gesellschaft mit beschränkter Haftung, 81543 LED lighting device and method for operating an LED lighting device
US8878443B2 (en) 2012-04-11 2014-11-04 Osram Sylvania Inc. Color correlated temperature correction for LED strings
EP2677387A1 (en) * 2012-06-18 2013-12-25 Thales Deutschland GmbH Traffic light luminaire with colour stabilization
US9226369B2 (en) * 2012-11-12 2015-12-29 Adafruit Industries Coordinated wearable lighting system
US20140304110A1 (en) * 2013-03-15 2014-10-09 W.W. Grainger, Inc. Procurement process utilizing a light sensor
DE102013104274A1 (en) * 2013-04-26 2014-10-30 Hella Kgaa Hueck & Co. Method for the determination of the proportion of own light in reflected light
TW201635865A (en) * 2015-03-18 2016-10-01 Hep Tech Co Ltd Dimming method
CN107726177B (en) * 2016-08-10 2020-10-30 安钛医疗设备股份有限公司 Operating lamp with light intensity fine-tuning function
DE102017220013A1 (en) * 2017-11-10 2019-05-16 HELLA GmbH & Co. KGaA Method and lighting system for protection against glare and working machine with the lighting system
JP7122628B2 (en) * 2018-09-28 2022-08-22 パナソニックIpマネジメント株式会社 Illumination lighting device, lighting device, and lighting fixture
JP2022051077A (en) * 2020-09-18 2022-03-31 東芝ライテック株式会社 Automatic drive vehicle illuminating device and automatic drive vehicle illuminating system

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL118873A0 (en) * 1996-07-16 1996-10-31 I R Lan Ltd Optical detector system and optical communication apparatus including same
US6127783A (en) * 1998-12-18 2000-10-03 Philips Electronics North America Corp. LED luminaire with electronically adjusted color balance
US6445139B1 (en) * 1998-12-18 2002-09-03 Koninklijke Philips Electronics N.V. Led luminaire with electrically adjusted color balance
US6498440B2 (en) * 2000-03-27 2002-12-24 Gentex Corporation Lamp assembly incorporating optical feedback
US6441558B1 (en) 2000-12-07 2002-08-27 Koninklijke Philips Electronics N.V. White LED luminary light control system
WO2003002959A1 (en) * 2001-06-15 2003-01-09 Mj Research, Inc. Controller for a fluorometer
US6630801B2 (en) * 2001-10-22 2003-10-07 Lümileds USA Method and apparatus for sensing the color point of an RGB LED white luminary using photodiodes
US6798152B2 (en) 2002-08-21 2004-09-28 Freescale Semiconductor, Inc. Closed loop current control circuit and method thereof
US7615939B2 (en) * 2003-03-17 2009-11-10 C&D Zodiac, Inc. Spectrally calibratable multi-element RGB LED light source
US7333011B2 (en) 2004-07-06 2008-02-19 Honeywell International Inc. LED-based luminaire utilizing optical feedback color and intensity control scheme
CA2576099C (en) * 2004-08-06 2015-02-10 Tir Systems Ltd. Lighting system including photonic emission and detection using light-emitting elements
DE102004060890A1 (en) 2004-12-17 2006-06-29 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Motor vehicle headlight element
WO2006122425A1 (en) * 2005-05-20 2006-11-23 Tir Systems Ltd. Multicolour chromaticity sensor
DE102005049579A1 (en) 2005-10-17 2007-04-19 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Light source that emits mixed-color light, and methods for controlling the color location of such a light source
JP2009519579A (en) * 2005-12-16 2009-05-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Illumination device and method for controlling the illumination device
JP2007286359A (en) * 2006-04-17 2007-11-01 Sony Corp Lighting system, display and lighting method
ATE536732T1 (en) * 2006-09-06 2011-12-15 Sharp Kk LIGHTING DEVICE AND LIQUID CRYSTAL DISPLAY ARRANGEMENT
US8175841B2 (en) * 2006-09-11 2012-05-08 Barco N.V. Colour feedback with single optical sensor
JP4888077B2 (en) * 2006-11-17 2012-02-29 パナソニック電工株式会社 LED lighting circuit and lighting apparatus using the same
JP4264558B2 (en) 2006-11-10 2009-05-20 ソニー株式会社 Backlight device, backlight driving method, and color image display device
JP5016322B2 (en) * 2007-02-23 2012-09-05 パナソニック株式会社 LED control system
DE602008004225D1 (en) * 2007-02-28 2011-02-10 Medtronic Inc
US8540369B2 (en) * 2007-08-16 2013-09-24 The Research Foundation Of State University Of New York Led variable light source
US20110059016A1 (en) * 2007-09-27 2011-03-10 Nirmala Ramanujam Optical assay system with a multi-probe imaging array
JP4988525B2 (en) * 2007-11-22 2012-08-01 パナソニック株式会社 Light-emitting diode luminaire
US8520054B2 (en) * 2008-01-23 2013-08-27 Techtol Holdings, Llc System and method to quickly acquire images
US8521035B2 (en) * 2008-09-05 2013-08-27 Ketra, Inc. Systems and methods for visible light communication
US20100277711A1 (en) * 2009-05-04 2010-11-04 Capella Microsystems, Corp. Optical quantized distance measuring apparatus and method thereof
US9930751B2 (en) * 2009-08-05 2018-03-27 Philips Lighting Holding B.V. Adjustable lighting unit with controllable orientation and intensity of light beam
US8598809B2 (en) * 2009-08-19 2013-12-03 Cree, Inc. White light color changing solid state lighting and methods
DE102010028406A1 (en) * 2010-02-12 2011-08-18 Osram Gesellschaft mit beschränkter Haftung, 81543 LED lighting device and method for operating an LED lighting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2013519970A (en) 2013-05-30
US9392664B2 (en) 2016-07-12
EP2499883A1 (en) 2012-09-19
WO2011098334A1 (en) 2011-08-18
CN102754526B (en) 2015-09-30
US20120306379A1 (en) 2012-12-06
CN102754526A (en) 2012-10-24
DE102010028406A1 (en) 2011-08-18

Similar Documents

Publication Publication Date Title
EP2499883B1 (en) Led lighting device and method for operating an led lighting device
EP2177078B1 (en) Device and method for controlling light emission
DE112009002294B4 (en) LED lighting power source and LED lighting system
WO2015051963A1 (en) Method and control device for operating at least one light source
EP2474200B1 (en) Operation of a pulse-width-modulated led
EP2901815B1 (en) Method and arrangement for the temperature-corrected control of leds using look-up tables
DE102006037342B4 (en) Circuit for a motor vehicle, in particular for controlling a lighting device
EP3427543A1 (en) Method and device for brightness compensation in an led
DE102010008275B4 (en) Device for powering several LED units
DE102013113053A1 (en) Driver circuit with a semiconductor light source and method for operating a driver circuit
EP2102846A1 (en) Led module with dedicated colour regulation and corresponding method
WO2010015277A1 (en) Multi-led lighting device
WO2013090956A1 (en) Method and circuit arrangement for generating white light by means of leds
DE102012013039B4 (en) Lighting device and method for operating the lighting device in a dimming mode
DE102010039827A1 (en) Method for operating at least one light emitting diode and lighting device for carrying out the method
EP3707967B1 (en) Method and system for adjusting a constant wavelength
EP2796001A1 (en) Dimmable converter and dimming method for leds
DE102006009551A1 (en) Lamp for generating light, has photodiode for separately detecting intensities of light emitting diodes of different colors, and prism to direct light from light emitting diodes to photodiode
DE102015205808A1 (en) Circuit arrangement for operating at least a first and exactly a second cascade of LEDs
DE102010001798B4 (en) Method for operating a light-emitting diode arrangement and switching arrangement
EP3666042B1 (en) Device and method for dynamic overload limitation in color- temperature-dimmable multichannel led systems
DE10066459B4 (en) Drive circuit for light emitting diodes has LED current regulating device that detects LED brightness and/or current and compares it with desired value that can be set by controller
EP2428098B1 (en) Device for operating leds
DE102013200407A1 (en) Operating circuit for light emitting diode line of light emitting diode module, has two types of light emitting diode for light emitting diode line with different spectrum, where operating circuit is adapted to compensation branch
DE102011016867B4 (en) Method for driving a lamp and luminaire

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120615

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FROST, TOBIAS

Inventor name: LANCHAVA, BAKURI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GMBH

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170120

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM BETEILUNGSVERWALTUNG GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM BETEILIGUNGSVERWALTUNG GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502011017249

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0045220000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 45/22 20200101AFI20210507BHEP

INTG Intention to grant announced

Effective date: 20210602

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1437414

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011017249

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220206

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220207

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220106

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220107

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011017249

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20220707

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220120

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220120

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220120

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220120

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1437414

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211006

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 14