EP2499343B1 - Thermodynamic machine and method for the operation thereof - Google Patents
Thermodynamic machine and method for the operation thereof Download PDFInfo
- Publication number
- EP2499343B1 EP2499343B1 EP10782537.4A EP10782537A EP2499343B1 EP 2499343 B1 EP2499343 B1 EP 2499343B1 EP 10782537 A EP10782537 A EP 10782537A EP 2499343 B1 EP2499343 B1 EP 2499343B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- working fluid
- machine
- auxiliary gas
- liquid
- pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 16
- 239000012530 fluid Substances 0.000 claims description 84
- 239000007789 gas Substances 0.000 claims description 78
- 239000007788 liquid Substances 0.000 claims description 44
- 239000007791 liquid phase Substances 0.000 claims description 11
- 239000002918 waste heat Substances 0.000 claims description 9
- 238000009835 boiling Methods 0.000 claims description 8
- 238000001704 evaporation Methods 0.000 claims description 8
- 238000006073 displacement reaction Methods 0.000 claims description 5
- 239000012071 phase Substances 0.000 claims description 5
- 238000005086 pumping Methods 0.000 claims description 4
- 125000004122 cyclic group Chemical group 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- 239000007792 gaseous phase Substances 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 239000000126 substance Substances 0.000 description 9
- 238000009833 condensation Methods 0.000 description 8
- 230000005494 condensation Effects 0.000 description 8
- 238000001816 cooling Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 239000002826 coolant Substances 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000004781 supercooling Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920001774 Perfluoroether Polymers 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- UHCBBWUQDAVSMS-UHFFFAOYSA-N fluoroethane Chemical compound CCF UHCBBWUQDAVSMS-UHFFFAOYSA-N 0.000 description 1
- 230000002631 hypothermal effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K21/00—Steam engine plants not otherwise provided for
- F01K21/04—Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K15/00—Adaptations of plants for special use
- F01K15/02—Adaptations of plants for special use for driving vehicles, e.g. locomotives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/065—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
Definitions
- the invention relates to a thermodynamic machine with a circulation system in which a particularly low-boiling working fluid circulates alternately in gas and liquid phase.
- the machine comprises a heat exchanger, a relaxation machine, a condenser and a liquid pump.
- the invention further relates to a method for operating such a thermodynamic machine, wherein the working fluid is heated in a circuit, relaxed, condensed and conveyed by pumping the liquid working fluid.
- thermodynamic machine Under such a thermodynamic machine is particularly understood a machine that operates on the thermodynamic Rankine cycle.
- the Rankine cycle is characterized by pumping the liquid working medium, evaporating the working medium at high pressure, depressurizing the gaseous working fluid to perform mechanical work, and condensing the gaseous working fluid at low pressure.
- today's conventional steam power plants operate according to the Rankine cycle.
- fossil-fired steam power plants produce water vapor at temperatures above 500 ° C at a pressure of over 200 bar.
- the condensation of the relaxed water vapor takes place at about 25 ° C and a pressure of about 30 mbar.
- thermodynamic machine A working according to the Rankine cycle thermodynamic machine and a method for their operation is for example from the WO 2005/021936 A2 known.
- the working fluid is water.
- ORC machines in which instead of the working fluid water, a low-boiling, in particular organic fluid is used.
- low-boiling is understood to mean that such a fluid boils at lower pressures relative to water or has a higher vapor pressure compared to water.
- An ORC machine operates according to the so-called Organic Rankine Cycle (ORC) cycle, ie essentially with a different, especially organic, low-boiling working fluid from water.
- ORC Organic Rankine Cycle
- working fluids for an ORC machine for example, hydrocarbons, aromatic hydrocarbons, fluorinated hydrocarbons, carbon compounds, especially alkanes, fluoroether, fluoroethane or synthesized silicone oils are known.
- ORC machines or systems for example, the heat sources available in geothermal or solar power plants can be used economically to generate electricity. Also, with an ORC engine so far unused waste heat of an internal combustion engine from exhaust air, cooling circuit, exhaust gas, etc. can be used to perform work or to generate electricity.
- the vapor pressure of a liquid which belongs to a particular temperature, evaporates.
- the undershooting of the vapor pressure can take place in quiescent or in moving liquids. For example, in a flowing liquid due to a sharp deflection or acceleration of the flow locally below the vapor pressure, so that a local evaporation takes place.
- the locally produced vapor bubbles condense at points of higher pressure and collapse. The whole process is called cavitation.
- cavitation occurring in the liquid phase of the working fluid represents a not inconsiderable problem. Because of the small size of the vapor bubbles, the condensation takes place very quickly. A sudden implosion of the vapor bubbles may form a microbeam. Is this directed to a surrounding wall, local pressure peaks of up to 10,000 bar can be achieved. In addition, due to the high pressures, local temperatures of well over 1000 ° C can be reached, which can lead to melting processes in the wall material. Destruction effects from cavitation can occur within hours.
- the occurrence of cavitation undesirably reduces the flow rate of fluid. Since the density of the vapor bubbles is generally clearly different from that of the liquid, even with a small mass fraction of the working fluid, the mass flow which can be conveyed is reduced as steam at a given volume flow. With a strong formation of steam, the mass flow possibly even breaks down. For example, if the work machine is used as a pump in an ORC system, the entire cycle process may possibly come to a standstill. Due to the lack of pump power it comes to the backflow of the liquid working fluid in the condenser, whereby its effect is significantly reduced. As a result, the heat dissipation comes to a standstill. This state of the overall system is difficult to leave. It is necessary to wait until the working fluid undercooled itself by cooling. Next breaks the flow in the evaporator together, so that no heat can be dissipated. If necessary, the working fluid used can then be damaged by exceeding its stability limit.
- the problem of the occurrence of cavitation is, for example, in EP 1 624 269 A2 described.
- a cavitation in the working fluid water within the condenser and the subsequent pump can be prevented by the fact that the condenser, a specific pressure and temperature control is provided.
- appropriate pressure and temperature sensors are included.
- the water level in the condenser is maintained at a predetermined level. This is supported by a drain valve, which discharges water or non-condensing gases to the outside.
- a complex fluid machine which operates according to the Rankine cycle.
- the fluid machine has a pump for pressurizing and pumping out a liquid-phase working fluid and an expansion device connected in series with the pump for generating a driving force by expanding the working fluid which is heated to become a gas-phase working fluid. It is provided to transfer the heat of the working fluid at an outlet side of the expansion device to the working fluid at an outlet side of the fluid pump.
- a transportable drive unit for converting heat is known, which is designed as a thermodynamic machine of the type mentioned and operates according to the Rankine cycle.
- thermodynamic machine of the type mentioned above known.
- a gas / liquid solution in particular an ammonia / water solution, circulates.
- the pressure of gas and liquid is lowered.
- the pressure is increased.
- the object of the invention is to develop a thermodynamic machine of the type mentioned in that the occurrence of cavitation in the liquid or in the liquid working fluid is avoided as possible. Furthermore, it is an object of the invention to provide a corresponding method for operating such a thermodynamic machine, cavitation in the liquid being avoided as far as possible.
- thermodynamic machine of the type mentioned that the liquid working fluid in the flow of the liquid pump by adding a non-condensing auxiliary gas, a system pressure-increasing partial pressure is impressed.
- the invention is based on the recognition that, especially in the design of an ORC machine, the possibility of an occurrence of cavitation in the liquid phase is underestimated. So it happens that in the overall design, for example, a specified for a pump flow height is not met. Such a flow height caused by the fluid column at the intake there is a necessary pressure increase. Because of the upstream condenser namely the fluid is without regard to the flow height of the pump with the saturation or condensation vapor pressure, assuming that no hypothermia takes place. When the pump is switched on, the saturation vapor pressure can then be exceeded without regard to the flow height due to the resulting suction power. It comes to cavitation.
- the flow height for a pump is typically given by the so-called NPSH value.
- the NPSH value (Net Positive Suction Head) is understood to mean the necessary minimum inlet height above the saturation vapor pressure. In other words, the necessary NPSH value expresses the suction power of the pump.
- the NPSH value is given in meters. It is typically a few meters for a pump suitable here. Therefore, if the NPSH value is not met for a given pump in advance, it will happen during the Operation to not insignificant cavitation problems. There is an undesirable formation of vapor bubbles.
- the pump has to be lowered relative to the system level, especially in the design of a small and compact ORC machine, which leads to an undesirable increase in installation space.
- the invention now recognizes that the problem of the formation of cavitations in a thermodynamic machine can be solved by the use of a noncondensing gas. While hitherto in the machines operating in the Rankine cycle, the non-condensing gas in circulation has been undesirably removed since the efficiency has been lowered, the invention now deliberately introduces it.
- the invention recognizes that, in the case of a non-condensing gas in circulation, its partial pressure in the gas phase adds to the condensation pressure.
- the resulting system pressure which has been raised in the desired manner, is impressed on the liquid working fluid, in particular in the supply line of the fluid pump.
- the disadvantages associated with the addition of a non-condensing gas to the circuit in particular an increase in the backpressure for the expansion machine, are eliminated in the case of a low-boiling working fluid by the advantages of avoiding cavitation.
- condensation is made with water at higher pressures. Typically, at room temperature be condensed above atmospheric pressure.
- the partial pressure necessarily generated by the auxiliary gas has less effect on the overall efficiency in the sense of the overall concept and negligible.
- the invention makes it possible to choose the added amount of substance of the auxiliary gas so that the flow height for the pump in the sense of the available space can be reduced accordingly.
- the counterpressure hindering the expansion machine remains at a generally acceptable level.
- the invention offers the distinct advantage that a compact thermodynamic machine for the utilization of low-temperature heat sources can be designed.
- the space is no longer mandatory given by the necessary flow height of the pump. Since, in principle, the non-condensing auxiliary gas can be introduced once during filling of the system, if necessary even no additional structural measures are required.
- the invention offers an extremely cost-effective option for further compaction of a thermodynamic machine.
- the invention is thus outstanding, to design small mobile machines that are used for example on motor vehicles for the use of engine, coolant or exhaust heat.
- auxiliary gas partial pressure is sufficiently large, so that the saturation vapor pressure is not exceeded in the flow during operation of the liquid pump.
- this is the case, for example, when the resulting partial pressure is at least equal to the NPSH value of the liquid pump.
- a flow height of the pump may possibly even be omitted altogether.
- the amount of auxiliary gas supplied must be such that the resulting partial pressure exceeds the suction pressure or the converted NPSH value.
- thermodynamic machine operating on the Rankine cycle.
- a machine which does not comprise any evaporation of the working fluid upstream of the expansion machine but in which a flash evaporation of the working fluid takes place in the expansion machine through a continuously increasing working space.
- continuous phase conversions can be made.
- mixtures of different working media can also be used as the working fluid so as to achieve an ideal mode of operation of the machine adapted to the given conditions.
- auxiliary gas By an added non-condensing auxiliary gas (right part of the image FIG. 2 ) results in a system pressure at the pump, which is added from the saturation vapor pressure p S and the partial pressure p part of the auxiliary gas. After switching on the pump, this system pressure is again reduced by the suction pressure p NPSH specified by the NPSH value. If the partial pressure p part of this noncondensing gas resulting from the introduced auxiliary gas is greater than or at least equal to the suction pressure p NPSH at the intake manifold of the pump, then the inlet pressure p E is at least equal to or greater than the saturation vapor pressure p s . Cavitation is thus prevented.
- the amount of substance x i of the auxiliary gas is then dimensioned such that sufficient auxiliary gas is present even under unfavorable conditions, that is to say with reduced condensation temperatures and thus reduced saturation vapor pressures. It should also be noted that part of the auxiliary gas goes into solution and thus is no longer available for generating a pressure difference. Also, different operating phases of the machine (partial load, full load) can be taken into account in the dimensioning of the supplied amount of material of the auxiliary gas.
- the height can be correspondingly reduced by the fact that the actual flow height of the liquid pump with respect to a necessary flow height, which takes into account the NPSH value and optionally a supercooling of the liquid working fluid is reduced.
- the necessary flow height will decrease due to the reduced vapor pressure.
- further reduction of the actual flow height is given by the partial pressure of the introduced auxiliary gas. In this case, to maintain certain reserves even a low flow height can be maintained despite appropriate supply of the auxiliary gas.
- a reduction of the flow height is compensated insofar by a corresponding amount of substance of the auxiliary gas.
- the introduction point for the auxiliary gas can in principle be provided at any point in the circulation system of the machine.
- the introduction point can be designed here for a single introduction or for a repeated introduction of the auxiliary gas.
- a preferred embodiment is a Einbringstelle provided for the auxiliary gas between the expansion machine and the liquid pump.
- the auxiliary gas is available directly at the required point in the circulation.
- the auxiliary gas is introduced into the liquid phase on the cold side of the cyclic process.
- the auxiliary gas can also be easily removed there, since it can be collected in the condenser.
- the machine can be "cold run", whereby the auxiliary gas flows slowly into the condenser.
- a compressor may be used to add the auxiliary gas.
- a pressure bottle can be connected.
- An addition of the auxiliary gas on the hot side of the cycle is associated with additional expense.
- the non-condensing auxiliary gas is such a gas which does not condense under the conditions prevailing or prevailing in the cycle of the thermodynamic machine.
- auxiliary gas for example, noble gases or nitrogen are suitable as such an auxiliary gas.
- suitable organic gases come into question.
- the non-condensing auxiliary gas will move to some extent with the working fluid in the cycle of the thermodynamic machine.
- water is provided for the condenser, so-called tube bundle heat exchangers.
- the tubes are flowed through by a cooling liquid inside.
- the gaseous working fluid flows along the outside of the tubes, condenses on their surface and drips off as condensate or liquid phase.
- the non-condensing auxiliary gas optionally accumulates in such a condenser depending on its orientation.
- the auxiliary gas remains as an insulating layer around the tubes, thereby reducing the efficiency of the condenser.
- the non-condensing auxiliary gas can only be reduced by a withdrawal against the flow direction of the condensate or by diffusion.
- the condenser is advantageously configured to entrain the auxiliary gas in the flow direction of the condensate or of the liquid working fluid.
- a capacitor is designed, for example, as an air condenser or by means of plate heat exchange elements.
- the gaseous working fluid flows through the interior of pipes, which are flowed around outside, for example, by air, but also by another coolant.
- the auxiliary gas is at least partially pushed by subsequent gaseous working fluid through the tubes in the flow direction.
- capacitors which are formed by means of plate heat exchange elements. Again, the gaseous working fluid flows through the interstices of the plate heat exchange elements and will take part of the auxiliary gas from the condenser. The given for a tube bundle heat exchanger undesirable effect of forming an insulating layer is thereby reduced.
- a sensor for detecting the auxiliary gas concentration is arranged in the reservoir.
- a sensor for detecting the auxiliary gas concentration is arranged in the reservoir.
- substance amount of the auxiliary gas can be measured and when falling below or exceeding a predetermined limit, a warning signal can be output. According to the warning signal then a certain amount of substance of the auxiliary gas can be supplied or withdrawn.
- thermodynamic machine is particularly suitable for a mobile system in a motor vehicle, wherein the heat exchanger is thermally coupled to a waste heat source of the vehicle.
- a waste heat source constitutes, for example, the coolant, other equipment such as e.g. Oil, the engine block itself or the exhaust gas.
- the expansion machine coupled to generate electricity with a corresponding generator is preferably designed as a positive displacement machine.
- a displacement machine is for example a screw or piston expansion machine or a scroll expansion machine.
- a vane machine can be used.
- the object directed to a method according to the invention is achieved by the feature combination according to claim 9. Accordingly, it is provided for a method for operating a thermodynamic machine that the fluid pressure in a pump flow by adding a non-condensing auxiliary gas, a system pressure-increasing partial pressure is impressed.
- FIG. 1 is schematically shown an ORC machine 1, as it is particularly suitable as a mobile system for utilizing the waste heat of internal combustion engines.
- the ORC machine 1 comprises, in a circulation system 2 as a heat exchanger 3, an evaporator, an expansion machine 5, a condenser 6 and a liquid pump 8.
- the illustrated ORC machine 1 operates according to the Rankine cycle, wherein the expansion machine 5 Work to drive a generator 9 is performed.
- the generator 9 is designed in particular for feeding in the recovered current into the vehicle's on-board electrical system or connected thereto.
- the working fluid 10 a hydrocarbon is used, which has a significantly higher vapor pressure compared to water.
- the working fluid 10 is in a closed circuit.
- liquid working fluid 10 is evaporated in the evaporator 3 at a high pressure.
- the expansion machine 5 which is designed as a positive displacement machine, the gaseous working fluid 10 relaxes while performing the work.
- the expanded gaseous working fluid 10 is condensed in the condenser 6 at low pressure.
- the saturation vapor pressure in the condenser 6 is about 1.2 bar.
- the condensate or the liquid working fluid 10 is collected in a storage tank 11 before it is again pumped by the pump 8 for evaporation.
- a waste heat removal 14 is provided for cooling the condenser 6, .
- this may be circulating air of a motor vehicle, wherein the heat of condensation of the working fluid of the circulating air is supplied for heating the passenger compartment, for example.
- the condenser 6 is designed as an air condenser in which the working fluid 10 to be cooled flows in the interior of flow-around tubes.
- the heat is supplied to the evaporator 3 via a waste heat supply 16.
- the evaporator 3 is supplied via a suitable heat exchange heat from the exhaust gas of the vehicle engine.
- heat can be supplied from the cooling circuit of the internal combustion engine.
- the waste heat of the internal combustion engine and the exhaust gas generated can be supplied to the evaporator 3 in total via a corresponding third medium.
- a supply point 18 for introducing a non-condensing auxiliary gas 20 into the circuit of the ORC machine 1 is provided on the condenser 6.
- a specific amount of substance x i of the auxiliary gas 20 can be introduced into the circulation of the ORC machine.
- the amount of substance x i is dimensioned so that in the flow of the pump 8, the partial pressure of the auxiliary gas 20 and the saturation vapor pressure of the working fluid 10 (resulting from the condensation in the condenser 6) added to a system pressure such that after switching on the pump, the saturation vapor pressure of Working fluid is not fallen below.
- the amount of substance x i is dimensioned such that the resulting partial pressure of the auxiliary gas is greater than the suction pressure corresponding to the NPSH value of the pump. In this respect, cavitation is prevented in the flow and in particular at the suction nozzle of the liquid pump. Since the saturation vapor pressure of the working fluid 10 does not fall below during operation, there are no vapor bubbles formed there.
- the flow height 21 (shown schematically here) is clearly lowered compared to the NPSH value of the liquid pump 8 to only a few tens of centimeters.
- a sensor 22 for measuring the concentration of the auxiliary gas 20 is arranged in the storage tank 11.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Description
Die Erfindung betrifft eine thermodynamische Maschine mit einem Kreislauf-System, in dem ein insbesondere niedrig siedendes Arbeitsfluid abwechselnd in Gas- und Flüssigphase zirkuliert. Dabei umfasst die Maschine einen Wärmeübertrager, eine Entspannungsmaschine, einen Kondensator und eine Flüssigkeitspumpe. Die Erfindung betrifft weiter ein Verfahren zum Betrieb einer derartigen thermodynamischen Maschine, wobei das Arbeitsfluid in einem Kreislauf erhitzt, entspannt, kondensiert und durch Pumpen des flüssigen Arbeitsfluids gefördert wird.The invention relates to a thermodynamic machine with a circulation system in which a particularly low-boiling working fluid circulates alternately in gas and liquid phase. The machine comprises a heat exchanger, a relaxation machine, a condenser and a liquid pump. The invention further relates to a method for operating such a thermodynamic machine, wherein the working fluid is heated in a circuit, relaxed, condensed and conveyed by pumping the liquid working fluid.
Unter einer solchen thermodynamischen Maschine wird insbesondere eine Maschine verstanden, die nach dem thermodynamischen Rankine-Kreisprozess arbeitet. Der Rankine-Kreisprozess ist hierbei durch ein Pumpen des flüssigen Arbeitsmediums, durch ein Verdampfen des Arbeitsmediums bei hohem Druck, durch ein Entspannen des gasförmigen Arbeitsfluids unter Verrichtung von mechanischer Arbeit sowie durch ein Kondensieren des gasförmigen Arbeitsfluids bei niedrigem Druck gekennzeichnet. Nach dem Rankine-Kreisprozess arbeiten beispielsweise heutige konventionelle Dampfkraftwerke. Typischerweise wird bei fossil beheizten Dampfkraftwerken bei einem Druck von über 200 bar Wasserdampf mit Temperaturen von über 500°C erzeugt. Die Kondensation des entspannten Wasserdampfes findet bei etwa 25°C und einem Druck von ca. 30 mbar statt.Under such a thermodynamic machine is particularly understood a machine that operates on the thermodynamic Rankine cycle. The Rankine cycle is characterized by pumping the liquid working medium, evaporating the working medium at high pressure, depressurizing the gaseous working fluid to perform mechanical work, and condensing the gaseous working fluid at low pressure. For example, today's conventional steam power plants operate according to the Rankine cycle. Typically, fossil-fired steam power plants produce water vapor at temperatures above 500 ° C at a pressure of over 200 bar. The condensation of the relaxed water vapor takes place at about 25 ° C and a pressure of about 30 mbar.
Eine nach dem Rankine-Kreisprozess arbeitende thermodynamische Maschine sowie ein Verfahren zu deren Betrieb ist beispielsweise aus der
Sollen Wärmequellen zur Verdampfung des Arbeitsfluids genutzt werden, die zur Wärmesenke nur einen relativ niedrigen Temperaturunterschied aufweisen, so genügt der mit dem Arbeitsfluid Wasser erreichbare Wirkungsgrad nicht mehr zu einer wirtschaftlichen Arbeitsweise. Solche Wärmequellen können jedoch mit Hilfe von sogenannten ORC-Maschinen erschlossen werden, in denen statt dem Arbeitsfluid Wasser ein niedrig siedendes, insbesondere organisches Fluid eingesetzt ist. Unter dem Begriff "niedrig- siedend" wird insofern verstanden, dass ein solches Fluid gegenüber Wasser bei niedrigeren Drücken siedet bzw. im Vergleich zu Wasser einen höheren Dampfdruck aufweist. Eine ORC-Maschine arbeitet entsprechend dem so genannten Organic-Rankine-Cycle(ORC)-Kreisprozess, d.h. im Wesentlichen mit einem von Wasser verschiedenen, insbesondere organischen, niedrig-siedenden Arbeitsfluid. Als Arbeitsfluide für eine ORC-Maschine sind beispielsweise Kohlenwasserstoffe, aromatische Kohlenwasserstoffe, fluorierte Kohlenwasserstoffe, Kohlenstoffverbindungen, insbesondere Alkane, Fluorether, Fluorethan oder auch synthetisierte Silikonöle bekannt.If heat sources for the evaporation of the working fluid to be used, which only have a relatively low temperature difference to the heat sink, the achievable with the working fluid water efficiency is no longer sufficient an economic way of working. However, such heat sources can be developed with the help of so-called ORC machines, in which instead of the working fluid water, a low-boiling, in particular organic fluid is used. The term "low-boiling" is understood to mean that such a fluid boils at lower pressures relative to water or has a higher vapor pressure compared to water. An ORC machine operates according to the so-called Organic Rankine Cycle (ORC) cycle, ie essentially with a different, especially organic, low-boiling working fluid from water. As working fluids for an ORC machine, for example, hydrocarbons, aromatic hydrocarbons, fluorinated hydrocarbons, carbon compounds, especially alkanes, fluoroether, fluoroethane or synthesized silicone oils are known.
Mittels ORC-Maschinen bzw. -Anlagen können beispielsweise die in Geothermie-oder Solarkraftwerken zur Verfügung stehenden Wärmequellen wirtschaftlich zur Stromerzeugung genutzt werden. Auch kann mit einer ORC-Maschine bislang ungenutzte Abwärme eines Verbrennungsmotors aus Abluft, Kühlkreislauf, Abgas etc. zur Verrichtung von Arbeit oder zur Stromerzeugung genutzt werden.By means of ORC machines or systems, for example, the heat sources available in geothermal or solar power plants can be used economically to generate electricity. Also, with an ORC engine so far unused waste heat of an internal combustion engine from exhaust air, cooling circuit, exhaust gas, etc. can be used to perform work or to generate electricity.
Wenn der zu einer jeweiligen Temperatur gehörende Dampfdruck einer Flüssigkeit unterschritten wird, verdampft diese. Die Unterschreitung des Dampfdrucks kann in ruhenden oder in sich bewegenden Flüssigkeiten stattfinden. Beispielsweise kann bei einer strömenden Flüssigkeit aufgrund einer scharfen Umlenkung oder Beschleunigung der Strömung lokal der Dampfdruck unterschritten werden, so dass ein örtliches Verdampfen stattfindet. Die lokal entstehenden Dampfblasen kondensieren an Stellen höheren Druckes wieder und fallen in sich zusammen. Der Gesamtvorgang wird als Kavitation bezeichnet.If the vapor pressure of a liquid, which belongs to a particular temperature, is reached, it evaporates. The undershooting of the vapor pressure can take place in quiescent or in moving liquids. For example, in a flowing liquid due to a sharp deflection or acceleration of the flow locally below the vapor pressure, so that a local evaporation takes place. The locally produced vapor bubbles condense at points of higher pressure and collapse. The whole process is called cavitation.
Bei einer thermodynamischen Maschine der eingangs genannten Art stellt eine in der flüssigen Phase des Arbeitsfluids auftretende Kavitation ein nicht unerhebliches Problem dar. Aufgrund der geringen Größe der Dampfblasen findet das Kondensieren dieser nämlich sehr schnell statt. Durch eine plötzliche Implosion der Dampfblasen bildet sich hierbei gegebenenfalls ein Mikrostrahl aus. Ist dieser auf eine umgebende Wand gerichtet, so können lokal Druckspitzen bis zu 10.000 bar erreicht werden. Zusätzlich können durch die hohen Drücke lokale Temperaturen von weit über 1000 °C erreicht werden, was zu Schmelzvorgängen im Wand-material führen kann. Zerstörungseffekte durch Kavitationen können innerhalb von Stunden auftreten.In a thermodynamic machine of the type mentioned above, cavitation occurring in the liquid phase of the working fluid represents a not inconsiderable problem. Because of the small size of the vapor bubbles, the condensation takes place very quickly. A sudden implosion of the vapor bubbles may form a microbeam. Is this directed to a surrounding wall, local pressure peaks of up to 10,000 bar can be achieved. In addition, due to the high pressures, local temperatures of well over 1000 ° C can be reached, which can lead to melting processes in the wall material. Destruction effects from cavitation can occur within hours.
Bei einer Pumpe verringert das Auftreten von Kavitation zudem unerwünschterweise den Durchsatz an Fluid. Da sich die Dampfblasen in ihrer Dichte in aller Regel deutlich von der Flüssigkeit unterscheiden, reduziert sich selbst bei einem geringen Massenanteil des Arbeitsfluids als Dampf bei einem gegebenen Volumenstrom der förderbare Massenstrom. Bei einer starken Dampfentstehung bricht der Massenstrom gegebenenfalls sogar zusammen. Ist die Arbeitsmaschine beispielsweise als Pumpe in einer ORC-Anlage eingesetzt, so kann unter Umständen der gesamte Kreislauf-Prozess zum Erliegen kommen. Durch die mangelnde Pumpleistung kommt es zum Rückstau des flüssigen Arbeitsfluids im Kondensator, wodurch dessen Wirkung erheblich verringert ist. Hierdurch kommt die Wärmeabfuhr zum Erliegen. Dieser Zustand des Gesamtsystems kann nur schwer verlassen werden. Es muss abgewartet werden, bis das Arbeitsfluid durch Abkühlung selbst unterkühlt. Weiter bricht die Durchströmung im Verdampfer zusammen, so dass auch keine Wärme mehr abgeführt werden kann. Gegebenenfalls kann dann das verwendete Arbeitsfluid durch Überschreiten seiner Stabilitätsgrenze Schaden nehmen.In addition, in a pump, the occurrence of cavitation undesirably reduces the flow rate of fluid. Since the density of the vapor bubbles is generally clearly different from that of the liquid, even with a small mass fraction of the working fluid, the mass flow which can be conveyed is reduced as steam at a given volume flow. With a strong formation of steam, the mass flow possibly even breaks down. For example, if the work machine is used as a pump in an ORC system, the entire cycle process may possibly come to a standstill. Due to the lack of pump power it comes to the backflow of the liquid working fluid in the condenser, whereby its effect is significantly reduced. As a result, the heat dissipation comes to a standstill. This state of the overall system is difficult to leave. It is necessary to wait until the working fluid undercooled itself by cooling. Next breaks the flow in the evaporator together, so that no heat can be dissipated. If necessary, the working fluid used can then be damaged by exceeding its stability limit.
Für eine nach dem Rankine-Kreisprozess arbeitende Maschine ist das Problem des Auftretens von Kavitation beispielsweise in der
Auch in der
Aus der
Aus der
Aus der
Auch aus der
Weiter ist aus der
Aufgabe der Erfindung ist es, eine thermodynamische Maschine der eingangs genannten Art dahingehend weiterzubilden, dass das Auftreten von Kavitation in der Flüssigkeit bzw. im flüssigen Arbeitsfluid möglichst vermieden ist. Weiter ist es eine Aufgabe der Erfindung, ein entsprechendes Verfahren zum Betrieb einer solchen thermodynamischen Maschine anzugeben, wobei Kavitation in der Flüssigkeit möglichst vermieden ist.The object of the invention is to develop a thermodynamic machine of the type mentioned in that the occurrence of cavitation in the liquid or in the liquid working fluid is avoided as possible. Furthermore, it is an object of the invention to provide a corresponding method for operating such a thermodynamic machine, cavitation in the liquid being avoided as far as possible.
Bezüglich der Maschine wird die gestellte Aufgabe erfindungsgemäß durch die Merkmalskombination gemäß Anspruch 1 gelöst. Demnach ist für eine thermodynamische Maschine der eingangs genannten Art vorgesehen, dass dem flüssigen Arbeitsfluid im Vorlauf der Flüssigkeitspumpe durch Zugabe eines nicht-kondensierenden Hilfsgases ein den Systemdruck erhöhender Partialdruck aufgeprägt ist.With regard to the machine, the object is achieved according to the invention by the feature combination according to
Die Erfindung geht dabei von der Erkenntnis aus, dass insbesondere bei der Konzeption einer ORC-Maschine die Möglichkeit eines Auftretens von Kavitation in der flüssigen Phase unterschätzt wird. So kommt es vor, dass bei der Gesamtkonzeption beispielsweise eine für eine Pumpe angegebene Vorlaufhöhe nicht eingehalten wird. Eine solche Vorlaufhöhe bewirkt durch die Fluidsäule am Ansaugstutzen dort eine notwendige Druckerhöhung. Aufgrund des vorgeschalteten Kondensators liegt nämlich das Fluid ohne Beachtung der Vorlaufhöhe an der Pumpe mit dem Sättigungs- oder Kondensationsdampfdruck an, sofern man davon ausgeht, dass kein Unterkühlung stattfindet. Bei Einschalten der Pumpe kann dann ohne Beachtung der Vorlaufhöhe durch die entstehenden Saugleistung der Sättigungsdampfdruck unterschritten werden. Es kommt zur Kavitation.The invention is based on the recognition that, especially in the design of an ORC machine, the possibility of an occurrence of cavitation in the liquid phase is underestimated. So it happens that in the overall design, for example, a specified for a pump flow height is not met. Such a flow height caused by the fluid column at the intake there is a necessary pressure increase. Because of the upstream condenser namely the fluid is without regard to the flow height of the pump with the saturation or condensation vapor pressure, assuming that no hypothermia takes place. When the pump is switched on, the saturation vapor pressure can then be exceeded without regard to the flow height due to the resulting suction power. It comes to cavitation.
Die Vorlaufhöhe für eine Pumpe ist typischerweise durch den so genannten NPSH-Wert gegeben. Unter dem NPSH-Wert (Net Positive Suction Head) wird hierbei die notwendige Mindestzulaufhöhe über dem Sättigungsdampfdruck verstanden. Mit anderen Worten drückt der notwendige NPSH-Wert die Saugleistung der Pumpe aus. Der NPSH-Wert wird in Meter angegeben. Er beträgt für eine hier geeignete Pumpe typischerweise einige Meter. Wird für eine gegebene Pumpe im Vorlauf demnach der NPSH-Wert nicht eingehalten, so kommt es während des Betriebs zu nicht unerheblichen Kavitationsproblemen. Es kommt zu einer unerwünschten Bildung von Dampfblasen.The flow height for a pump is typically given by the so-called NPSH value. The NPSH value (Net Positive Suction Head) is understood to mean the necessary minimum inlet height above the saturation vapor pressure. In other words, the necessary NPSH value expresses the suction power of the pump. The NPSH value is given in meters. It is typically a few meters for a pump suitable here. Therefore, if the NPSH value is not met for a given pump in advance, it will happen during the Operation to not insignificant cavitation problems. There is an undesirable formation of vapor bubbles.
Nachteiligerweise muss insofern gerade bei der Konzeption einer kleinen und kompakten ORC-Maschine die Pumpe bezüglich des Anlagenniveaus abgesenkt angeordnet werden, was zu einer unerwünschten Bauraumvergrößerung führt.Disadvantageously, the pump has to be lowered relative to the system level, especially in the design of a small and compact ORC machine, which leads to an undesirable increase in installation space.
Alternativen zur Vermeidung von Kavitation in der flüssigen Phase des Arbeitsfluids, wie beispielsweise eine Unterkühlung des Arbeitsfluids zur Absenkung des Dampfdrucks, sind wegen des zusätzlichen Aufwands teuer. Auch resultiert ein zusätzlicher Flächenbedarf. Zudem muss mehr Energie zur Aufheizung des unterkühlten Arbeitsfluids aufgebracht werden. In gleichem Maße ist der Einsatz einer Vorpumpe zum Erzeugen eines Zusatzdruckes am Saugstutzen nicht wirtschaftlich. Im Übrigen wird auch durch eine Zusatzpumpe zusätzlicher Bauraum benötigt.Alternatives to avoid cavitation in the liquid phase of the working fluid, such as subcooling the working fluid to lower the vapor pressure, are expensive because of the added expense. Also results in an additional space requirement. In addition, more energy must be applied to heat the supercooled working fluid. To the same extent the use of a backing pump for generating an additional pressure at the suction is not economical. Incidentally, additional space is required by an additional pump.
In überraschender Weise erkennt die Erfindung nun, dass sich das Problem der Entstehung von Kavitationen in einer thermodynamischen Maschine durch den Einsatz eines nicht-kondensierenden Gases lösen lässt. Während bislang in nach dem Rankine-Kreisprozess arbeitenden Maschinen im Kreislauf befindliches nicht-kondensierendes Gas als unerwünscht, da den Wirkungsgrad absenkend, aufwändig entfernt wurde, sieht die Erfindung nun ein bewusstes Einbringen vor.Surprisingly, the invention now recognizes that the problem of the formation of cavitations in a thermodynamic machine can be solved by the use of a noncondensing gas. While hitherto in the machines operating in the Rankine cycle, the non-condensing gas in circulation has been undesirably removed since the efficiency has been lowered, the invention now deliberately introduces it.
Die Erfindung erkennt nämlich, dass sich im Falle eines im Kreislauf befindlichen nicht-kondensierenden Gases dessen Partialdruck in der Gasphase zum Kondensationsdruck addiert. Der hieraus resultierende, in der gewünschten Art und Weise angehobene Systemdruck prägt sich dem flüssigen Arbeitsfluid insbesondere im Vorlauf der Flüssigkeitspumpe auf. Die mit der Zugabe eines nicht-kondensierenden Gases in den Kreislauf verbundenen Nachteile wie insbesondere eine Erhöhung des Gegendrucks für die Entspannungsmaschine wird im Falle eines niedrig-siedenden Arbeitsfluids durch die Vorteile einer Vermeidung von Kavitation aufgehoben. Im Falle eines niedrig-siedenden Arbeitsfluids wird gegenüber Wasser bei höheren Drücken kondensiert. Typischerweise kann bei Raumtemperatur über Atmosphärendruck kondensiert werden. Der durch das Hilfsgas notwendig erzeugte Partialdruck wirkt sich insofern weniger und im Sinne des Gesamtkonzeptes vernachlässigbar auf den Gesamtwirkungsgrad aus.The invention recognizes that, in the case of a non-condensing gas in circulation, its partial pressure in the gas phase adds to the condensation pressure. The resulting system pressure, which has been raised in the desired manner, is impressed on the liquid working fluid, in particular in the supply line of the fluid pump. The disadvantages associated with the addition of a non-condensing gas to the circuit, in particular an increase in the backpressure for the expansion machine, are eliminated in the case of a low-boiling working fluid by the advantages of avoiding cavitation. In the case of a low-boiling working fluid, condensation is made with water at higher pressures. Typically, at room temperature be condensed above atmospheric pressure. The partial pressure necessarily generated by the auxiliary gas has less effect on the overall efficiency in the sense of the overall concept and negligible.
Im Detail erlaubt es die Erfindung, die zugegebene Stoffmenge des Hilfsgases so zu wählen, dass die Vorlaufhöhe für die Pumpe im Sinne des zur Verfügung stehenden Bauraums entsprechend verringert werden kann. Zugleich kann hierbei beachtet werden, dass der für die Entspannungsmaschine hinderliche Gegendruck in einem insgesamt akzeptablen Niveau verbleibt.In detail, the invention makes it possible to choose the added amount of substance of the auxiliary gas so that the flow height for the pump in the sense of the available space can be reduced accordingly. At the same time, it can be noted that the counterpressure hindering the expansion machine remains at a generally acceptable level.
Die Erfindung bietet insofern den deutlichen Vorteil, dass eine kompakte thermodynamische Maschine zur Ausnutzung von Niedertemperatur-Wärmequellen konzeptioniert werden kann. Der Bauraum ist dabei durch die notwendige Vorlaufhöhe der Pumpe nicht mehr zwingend vorgegeben. Da grundsätzlich das nicht-kondensierende Hilfsgas beim Befüllen der Anlage einmalig mit eingebracht werden kann, sind gegebenenfalls sogar keinerlei baulichen Zusatzmaßnahmen erforderlich. Insofern bietet die Erfindung eine äußerst kostengünstige Möglichkeit zu einer weiteren Kompaktierung einer thermodynamischen Maschine. Die Erfindung eignet sich insofern hervorragend, um kleine mobile Maschinen zu konzeptionieren, die beispielsweise auf Kraftfahrzeugen zur Nutzung der Motoren-, Kühlmittel- oder Abgaswärme eingesetzt werden.The invention offers the distinct advantage that a compact thermodynamic machine for the utilization of low-temperature heat sources can be designed. The space is no longer mandatory given by the necessary flow height of the pump. Since, in principle, the non-condensing auxiliary gas can be introduced once during filling of the system, if necessary even no additional structural measures are required. In this respect, the invention offers an extremely cost-effective option for further compaction of a thermodynamic machine. The invention is thus outstanding, to design small mobile machines that are used for example on motor vehicles for the use of engine, coolant or exhaust heat.
In einer vorteilhaften Ausgestaltung ist der durch die Zugabe des Hilfsgases resultierende Partialdruck ausreichend groß, damit im Vorlauf bei Betrieb der Flüssigkeitspumpe der Sättigungsdampfdruck nicht unterschritten ist. Wie im Folgenden dargelegt wird, ist dies unter gewissen Vereinfachungsannahmen (keine zusätzliche Unterkühlung der Flüssigkeit) beispielsweise dann der Fall, wenn der resultierende Partialdruck wenigstens dem NPSH-Wert der Flüssigkeitspumpe entspricht. Eine Vorlaufhöhe der Pumpe kann gegebenenfalls sogar ganz entfallen. Unter realen Bedingungen muss die Menge des zugeführten Hilfsgases so bemessen werden, dass der resultierende Partialdruck den Saugdruck bzw. den umgerechneten NPSH-Wert übersteigt.In an advantageous embodiment of the resulting by the addition of the auxiliary gas partial pressure is sufficiently large, so that the saturation vapor pressure is not exceeded in the flow during operation of the liquid pump. As will be explained below, under certain simplification assumptions (no additional supercooling of the liquid) this is the case, for example, when the resulting partial pressure is at least equal to the NPSH value of the liquid pump. A flow height of the pump may possibly even be omitted altogether. Under real conditions, the amount of auxiliary gas supplied must be such that the resulting partial pressure exceeds the suction pressure or the converted NPSH value.
Die Erfindung ist nicht zwingend auf eine thermodynamische Maschine eingeschränkt, die nach dem Rankine-Kreisprozess arbeitet. Beispielsweise kann auch eine Maschine umfasst sein, die keine Verdampfung des Arbeitsfluids vor der Entspannungsmaschine umfasst, sondern bei welcher in der Entspannungsmaschine durch einen sich kontinuierlich vergrößernden Arbeitsraum eine Flash-Verdampfung des Arbeitsfluids erfolgt. Insbesondere können kontinuierliche Phasenumwandlungen vorgenommen werden.The invention is not necessarily limited to a thermodynamic machine operating on the Rankine cycle. By way of example, it is also possible to include a machine which does not comprise any evaporation of the working fluid upstream of the expansion machine but in which a flash evaporation of the working fluid takes place in the expansion machine through a continuously increasing working space. In particular, continuous phase conversions can be made.
Im Sinne einer ORC-Maschine können als Arbeitsfluid auch Mischungen verschiedener Arbeitsmedien eingesetzt werden, um so eine an die gegebenen Bedingungen angepasste ideale Arbeitsweise der Maschine zu erzielen.In the sense of an ORC machine, mixtures of different working media can also be used as the working fluid so as to achieve an ideal mode of operation of the machine adapted to the given conditions.
Unter Bezugnahme auf
Durch ein zugegebenes nicht-kondensierendes Hilfsgas (rechtes Teilbild der
Für eine gewünschte, durch das Hilfsgas aufzubringende Druckdifferenz Δp zwischen dem Systemdruck und dem Sättigungsdampfdruck, vorteilhafterweise ist dies wenigstens pNPSH , berechnet sich die notwendige Stoffmenge xi des Hilfsgases nach
Für ein reales System wird dann die Stoffmenge xi des Hilfsgases so bemessen, dass auch bei ungünstigen Bedingungen, also bei verringerten Kondensationstemperaturen und damit verringerten Sättigungsdampfdrücken, ausreichend Hilfsgas vorhanden ist. Auch ist zu berücksichtigen, dass ein Teil des Hilfsgases in Lösung geht und somit nicht mehr zur Erzeugung einer Druckdifferenz zur Verfügung steht. Auch können bei der Bemessung der zugeführten Stoffmenge des Hilfsgases unterschiedliche Betriebsphasen der Maschine (Teillast, Volllast) berücksichtigt werden.For a real system, the amount of substance x i of the auxiliary gas is then dimensioned such that sufficient auxiliary gas is present even under unfavorable conditions, that is to say with reduced condensation temperatures and thus reduced saturation vapor pressures. It should also be noted that part of the auxiliary gas goes into solution and thus is no longer available for generating a pressure difference. Also, different operating phases of the machine (partial load, full load) can be taken into account in the dimensioning of the supplied amount of material of the auxiliary gas.
In einer bevorzugten Ausgestaltung der Maschine kann gemäß den vorgenannten Ausführungen die Bauhöhe entsprechend dadurch verringert werden, dass die tatsächliche Vorlaufhöhe der Flüssigkeitspumpe gegenüber einer notwendigen Vorlaufhöhe, die den NPSH-Wert und gegebenenfalls eine Unterkühlung des flüssigen Arbeitsfluids berücksichtigt, verringert ist. Durch eine zusätzliche Unterkühlung der Flüssigkeit wird sich die notwendige Vorlaufhöhe aufgrund des herabgesetzten Dampfdrucks verringern.Die mögliche, weitere Verringerung der tatsächlichen Vorlaufhöhe ist durch den Partialdruck des eingebrachten Hilfsgases gegeben. Dabei kann zur Einhaltung gewisser Reserven auch eine geringe Vorlaufhöhe trotz entsprechender Einspeisung des Hilfsgases beibehalten werden. Eine Reduzierung der Vorlaufhöhe wird insofern durch eine entsprechende Stoffmenge des Hilfsgases kompensiert.In a preferred embodiment of the machine according to the aforementioned embodiments, the height can be correspondingly reduced by the fact that the actual flow height of the liquid pump with respect to a necessary flow height, which takes into account the NPSH value and optionally a supercooling of the liquid working fluid is reduced. By an additional subcooling of the liquid, the necessary flow height will decrease due to the reduced vapor pressure. The possible, further reduction of the actual flow height is given by the partial pressure of the introduced auxiliary gas. In this case, to maintain certain reserves even a low flow height can be maintained despite appropriate supply of the auxiliary gas. A reduction of the flow height is compensated insofar by a corresponding amount of substance of the auxiliary gas.
Die Einbringstelle für das Hilfsgas kann grundsätzlich an einer beliebigen Stelle des Kreislaufsystems der Maschine vorgesehen sein. Die Einbringstelle kann hierbei für ein einmaliges Einbringen oder für ein wiederholtes Einbringen des Hilfsgases ausgelegt sein. In einer bevorzugten Ausgestaltung ist eine Einbringstelle für das Hilfsgases zwischen der Entspannungsmaschine und der Flüssigkeitspumpe vorgesehen. Damit steht das Hilfsgas unmittelbar an der benötigten Stelle im Kreislauf zur Verfügung. Das Hilfsgas ist auf der kalten Seite des Kreisprozesses in die flüssige Phase eingebracht. Insbesondere kann das Hilfsgas dort auch leicht abgezogen werden, da es sich im Kondensator sammeln lässt. Dazu kann beispielsweise die Maschine "kaltgefahren" werden, wodurch das Hilfsgas langsam in den Kondensator strömt. Zur Zugabe des Hilfsgases kann beispielsweise ein Kompressor verwendet werden. Alternativ kann eine Druckflasche angeschlossen sein. Eine Zugabe des Hilfsgases auf der heißen Seite des Kreisprozesses ist mit Mehraufwand verbunden.The introduction point for the auxiliary gas can in principle be provided at any point in the circulation system of the machine. The introduction point can be designed here for a single introduction or for a repeated introduction of the auxiliary gas. In a preferred embodiment is a Einbringstelle provided for the auxiliary gas between the expansion machine and the liquid pump. Thus, the auxiliary gas is available directly at the required point in the circulation. The auxiliary gas is introduced into the liquid phase on the cold side of the cyclic process. In particular, the auxiliary gas can also be easily removed there, since it can be collected in the condenser. For this example, the machine can be "cold run", whereby the auxiliary gas flows slowly into the condenser. For example, a compressor may be used to add the auxiliary gas. Alternatively, a pressure bottle can be connected. An addition of the auxiliary gas on the hot side of the cycle is associated with additional expense.
Das nicht-kondensierende Hilfsgas ist ein solches Gas, welches unter den im Kreislauf der thermodynamischen Maschine herrschenden oder gegebenen Bedingungen nicht kondensiert. Als ein solches Hilfsgas eignen sich beispielsweise Edelgase oder Stickstoff. Auch kommen geeignete organische Gase in Frage.The non-condensing auxiliary gas is such a gas which does not condense under the conditions prevailing or prevailing in the cycle of the thermodynamic machine. For example, noble gases or nitrogen are suitable as such an auxiliary gas. Also suitable organic gases come into question.
Das nicht-kondensierende Hilfsgas wird sich in gewissem Umfang mit dem Arbeitsfluid im Kreislauf der thermodynamischen Maschine bewegen. Üblicherweise sind in nach dem Rankine-Kreisprozess arbeitenden Maschinen mit dem Arbeitsfluid Wasser für den Kondensator so genannte Rohrbündel-Wärmetauscher vorgesehen. Dabei werden die Rohre innen von einer Kühlflüssigkeit durchströmt.The non-condensing auxiliary gas will move to some extent with the working fluid in the cycle of the thermodynamic machine. Usually, in machines operating according to the Rankine cycle with the working fluid, water is provided for the condenser, so-called tube bundle heat exchangers. The tubes are flowed through by a cooling liquid inside.
Das gasförmige Arbeitsfluid strömt außen an den Rohren entlang, kondensiert auf deren Oberfläche und tropft als Kondensat oder flüssige Phase ab.The gaseous working fluid flows along the outside of the tubes, condenses on their surface and drips off as condensate or liquid phase.
Nachteiligerweise reichert sich in einem solchen Kondensator abhängig von seiner Ausrichtung jedoch gegebenenfalls das nicht-kondensierenden Hilfsgas an. In diesem Fall verbleibt das Hilfsgas als eine isolierende Schicht um die Rohre, wodurch der Wirkungsgrad des Kondensators reduziert wird. Das nicht-kondensierende Hilfsgas kann nur abgebaut werden durch einen Abzug entgegen der Strömungsrichtung des Kondensats oder durch Diffusion.However, disadvantageously, the non-condensing auxiliary gas optionally accumulates in such a condenser depending on its orientation. In this case, the auxiliary gas remains as an insulating layer around the tubes, thereby reducing the efficiency of the condenser. The non-condensing auxiliary gas can only be reduced by a withdrawal against the flow direction of the condensate or by diffusion.
Um bei-Zugabe eines nicht-kondensierenden Hilfsgases diesen Nachteil zu vermeiden, ist der Kondensator vorteilhafterweise zu einer Mitnahme des Hilfsgases in Strömungsrichtung des Kondensats bzw. des flüssigen Arbeitsfluids ausgestaltet. Ein solcher Kondensator ist beispielsweise als ein Luftkondensator oder mittels Plattenwärmetauschelementen ausgebildet. Bei einem Luftkondensator strömt das gasförmige Arbeitsfluid durch das Innere von Rohren, die außen beispielsweise von Luft, aber auch von einem sonstigen Kühlmittel umströmt werden. In diesem Fall wird das Hilfsgas in Strömungsrichtung zumindest teilweise von nachfolgendem gasförmigen Arbeitsfluid durch die Rohre geschoben. Ebenfalls gilt dies für Kondensatoren, die mittels Plattenwärmetauschelementen gebildet sind. Auch hier strömt das gasförmige Arbeitsfluid durch die Zwischenräume der Plattenwärmetauschelemente und wird ein Teil des Hilfsgases mit aus dem Kondensator nehmen. Der für einen Rohrbündel-Wärmetauscher gegebene unerwünschte Effekt der Ausbildung einer Isolierschicht wird hierdurch verringert.In order to avoid this disadvantage when adding a non-condensing auxiliary gas, the condenser is advantageously configured to entrain the auxiliary gas in the flow direction of the condensate or of the liquid working fluid. Such a capacitor is designed, for example, as an air condenser or by means of plate heat exchange elements. In an air condenser, the gaseous working fluid flows through the interior of pipes, which are flowed around outside, for example, by air, but also by another coolant. In this case, the auxiliary gas is at least partially pushed by subsequent gaseous working fluid through the tubes in the flow direction. This also applies to capacitors which are formed by means of plate heat exchange elements. Again, the gaseous working fluid flows through the interstices of the plate heat exchange elements and will take part of the auxiliary gas from the condenser. The given for a tube bundle heat exchanger undesirable effect of forming an insulating layer is thereby reduced.
Weiter bevorzugt ist im Vorlagebehälter ein Sensor zur Erfassung der Hilfsgaskonzentration angeordnet. Mittels eines derartigen Sensors, der im Gasraum oberhalb der gesammelten Flüssigkeit des Arbeitsfluids angeordnet sein wird, kann beispielsweise die sich im Kreislaufssystem befindliche Stoffmenge des Hilfsgases gemessen und bei Unterschreiten oder Überschreiten eines vorgegebenen Grenzwertes ein Warnsignal ausgegeben werden. Entsprechend dem Warnsignal kann dann eine bestimmte Stoffmenge des Hilfsgases zugeführt oder abgezogen werden.More preferably, a sensor for detecting the auxiliary gas concentration is arranged in the reservoir. By means of such a sensor, which will be arranged in the gas space above the collected liquid of the working fluid, for example, located in the circulatory system substance amount of the auxiliary gas can be measured and when falling below or exceeding a predetermined limit, a warning signal can be output. According to the warning signal then a certain amount of substance of the auxiliary gas can be supplied or withdrawn.
Wie vorbeschrieben eignet sich die angegebene thermodynamische Maschine insbesondere für eine mobile Anlage in einem Kraftfahrzeug, wobei der Wärmeübertrager wärmetechnisch an eine Abwärmequelle des Fahrzeugs gekoppelt ist. Eine solche Abwärmequelle stellt beispielsweise das Kühlmittel, ein sonstiges Betriebsmittel wie z.B. Öl, der Motorblock selbst oder das Abgas dar.As described above, the specified thermodynamic machine is particularly suitable for a mobile system in a motor vehicle, wherein the heat exchanger is thermally coupled to a waste heat source of the vehicle. Such a waste heat source constitutes, for example, the coolant, other equipment such as e.g. Oil, the engine block itself or the exhaust gas.
Die zur Stromerzeugung mit einem entsprechenden Generator gekoppelte Entspannungsmaschine ist bevorzugt als eine Verdrängermaschine ausgebildet. Eine derartige Verdrängermaschine ist beispielsweise eine Schrauben- oder Kolbenexpansionsmaschine oder eine Scrollexpansionsmaschine. Auch kann eine Flügelzellenmaschine eingesetzt sein.The expansion machine coupled to generate electricity with a corresponding generator is preferably designed as a positive displacement machine. Such a displacement machine is for example a screw or piston expansion machine or a scroll expansion machine. Also, a vane machine can be used.
Die auf ein Verfahren gerichtete Aufgabe wird erfindungsgemäß durch die Merkmalskombination gemäß Anspruch 9 gelöst. Demnach ist für ein Verfahren zum Betrieb einer thermodynamischen Maschine vorgesehen, dass dem flüssigen Arbeitsfluid in einem Pumpenvorlauf durch Zugabe eines nicht-kondensierenden Hilfsgases ein den Systemdruck erhöhender Partialdruck aufgeprägt wird.The object directed to a method according to the invention is achieved by the feature combination according to
Weitere bevorzugte Ausgestaltungen können den auf ein Verfahren gerichteten Unteransprüchen entnommen werden. Dabei können die für die Maschine genannten Vorteile sinngemäß entsprechend übertragen werden.Further preferred embodiments can be taken from the subclaims directed to a method. The advantages mentioned for the machine can be correspondingly transferred accordingly.
Ausführungsbeispiele der Erfindung werden anhand einer Zeichnung näher erläutert. Dabei zeigen:
- Fig. 1
- schematisch eine ORC-Maschine mit einem im Pumpenvorlauf aufgeprägten Partialdruck eines Hilfsgases und
- Fig. 2
- eine schematische Darstellung verschiedener Druckverhältnisse.
- Fig. 1
- schematically an ORC machine with an imprinted in the pump flow partial pressure of an auxiliary gas and
- Fig. 2
- a schematic representation of various pressure conditions.
In
Das über die Flüssigkeitspumpe 8 geförderte flüssige Arbeitsfluid 10 wird in dem Verdampfer 3 bei einem hohen Druck verdampft. An der Entspannungsmaschine 5, die als eine Verdrängermaschine ausgebildet ist, entspannt sich das gasförmige Arbeitsfluid 10 unter Verrichtung der Arbeit. Das entspannte gasförmige Arbeitsfluid 10 wird in dem Kondensator 6 bei niedrigem Druck kondensiert. Der sich im Kondensator 6 einstellende Sättigungsdampfdruck beträgt etwa 1,2 bar. Das Kondensat bzw. das flüssige Arbeitsfluid 10 wird in einem Vorlagebehälter 11 gesammelt, bevor es durch die Pumpe 8 erneut zur Verdampfung gefördert wird.The conveyed via the
Zur Kühlung des Kondensators 6 ist eine Abwärmeabfuhr 14 vorgesehen. Beispielsweise kann dies Umluft eines Kraftfahrzeugs sein, wobei die Kondensationswärme des Arbeitsfluids der Umluft beispielsweise zur Aufheizung des Fahrgastinnenraumes zugeführt wird. Der Kondensator 6 ist als ein Luftkondensator ausgebildet, in dem das zu kühlende Arbeitsfluid 10 im Inneren von umströmten Rohren entlang strömt.For cooling the
Zur Verdampfung des von der Pumpe 8 geförderten Arbeitsfluids 10 wird dem Verdampfer 3 über eine Abwärmezufuhr 16 Wärme zugeführt. Dazu wird dem Verdampfer 3 über eine geeignete Wärmetauschung Wärme vom Abgas des Fahrzeugmotors zugeführt. Alternativ kann Wärme aus dem Kühlkreislauf des Verbrennungsmotors zugeführt werden. Auch kann die Abwärme des Verbrennungsmotors sowie des erzeugten Abgases insgesamt über ein entsprechendes Drittmedium dem Verdampfer 3 zugeführt werden.For the evaporation of the funded by the
Zwischen der Entspannungsmaschine 5 und der Flüssigkeitspumpe 8 ist am Kondensator 6 eine Einbringstelle 18 zur Einbringung eines nicht-kondensierenden Hilfsgases 20 in den Kreislauf der ORC-Maschine 1 vorgesehen. Über ein entsprechendes Ventil kann ein- oder mehrmalig eine spezifische Stoffmenge xi des Hilfsgases 20 in den Kreislauf der ORC-Maschine eingebracht werden. Die Stoffmenge xi ist hierbei so bemessen, dass sich im Vorlauf der Pumpe 8 der Partialdruck des Hilfsgases 20 und der Sättigungsdampfdruck des Arbeitsfluids 10 (resultierend aus der Kondensation im Kondensator 6) zu einem Systemdruck derart addiert, dass nach Einschalten der Pumpe der Sättigungsdampfdruck des Arbeitsfluids nicht unterschritten wird. Es wird hierdurch auch ein Unterschreiten des Sättigungsdampfdruckes an Umlenkungen des strömenden Arbeitsfluids in flüssiger Phase verhindert. Insbesondere ist die Stoffmenge xi derart bemessen, dass der resultierende Partialdruck des Hilfsgases größer ist als der dem NPSH-Wert der Pumpe entsprechende Saugdruck. Insofern wird im Vorlauf und insbesondere am Saugstutzen der Flüssigkeitspumpe 8 Kavitation verhindert. Da der Sättigungsdampfdruck des Arbeitsfluids 10 während des Betriebes nicht unterschritten wird, bilden sich dort keine Dampfblasen aus.Between the
Die Vorlaufhöhe 21 (hier schematisch eingezeichnet) ist gegenüber dem NPSH-Wert der Flüssigkeitspumpe 8 deutlich auf nur wenige zehn Zentimeter abgesenkt. Im Vorlagebehälter 11 ist ein Sensor 22 zur Messung der Konzentration des Hilfsgases 20 angeordnet.The flow height 21 (shown schematically here) is clearly lowered compared to the NPSH value of the
- 11
- ORC-MaschineORC machine
- 22
- KreislaufsystemCirculatory system
- 33
- WärmeübertragerHeat exchanger
- 55
- Entspannungsmaschineexpansion machine
- 66
- Kondensatorcapacitor
- 88th
- Flüssigkeitspumpeliquid pump
- 99
- Generatorgenerator
- 1010
- Arbeitsfluidworking fluid
- 1111
- Vorlagebehälterstorage container
- 1414
- Abwärmeabfuhrheat dissipation
- 1616
- Abwärmezufuhrheat supply
- 1818
- Einbringstelleconcrete placement
- 2020
- Hilfsgasauxiliary gas
- 2121
- Vorlaufhöheforward height
- 2222
- Sensorsensor
Claims (14)
- A thermodynamic machine (1) with a cyclic system (2), in which a particularly low-boiling working fluid (10) circulates alternately in a gaseous phase and liquid phase, with a heat exchanger (3), with an expansion machine (5), with a condenser (6), and with a liquid pump (8),
characterized in that
a partial pressure, which increases the system pressure, is applied to the liquid working fluid (10) in the head of the liquid pump (8) by the addition of a non-condensing auxiliary gas (20). - The thermodynamic machine (1) as claimed in claim 1,
characterized in that
the partial pressure which results by the addition of the auxiliary gas (20) is sufficiently high so that the saturation vapor pressure is not fallen short of in the head during operation of the liquid pump (8). - The thermodynamic machine (1) as claimed in claim 1 or 2,
characterized in that
the actual head height (21) of the liquid pump (8) is reduced compared with a necessary head height which takes into consideration the NPSH value and possibly a subcooling of the liquid working fluid (10). - The thermodynamic machine (1) as claimed in one of the preceding claims,
characterized in that
a point of introduction (18) for the auxiliary gas (20) is provided between the expansion machine (5) and the liquid pump (8). - The thermodynamic machine (1) as claimed in one of the preceding claims,
characterized in that
the condenser (6) is designed for entrainment of the auxiliary gas (20) in the flow direction of the working fluid (10), especially as an air condenser or by means of plate-type heat exchange elements. - The thermodynamic machine (1) as claimed in one of the preceding claims,
characterized in that
the expansion machine (5) is a positive displacement machine. - The thermodynamic machine (1) as claimed in one of the preceding claims,
characterized in that
a sensor (22) for detecting the auxiliary gas concentration is arranged in a header tank (11) of the liquid working fluid (10). - The use of a thermodynamic machine (1), as claimed in one of the preceding claims, as a mobile plant for a motor vehicle, wherein the heat exchanger (3) is thermically connected to a waste heat source (16) of the motor vehicle.
- A method for the operation of a thermodynamic machine (1), wherein in a cyclic system (2) an especially low-boiling working fluid (10) circulates alternately in a gas phase and a liquid phase, and wherein the working fluid (10) is heated, expanded, condensed, and delivered by pumping of the liquid,
characterized in that
a partial pressure, which increases the system pressure, is applied to the liquid working fluid (10) in a pump head by the addition of a non-condensing auxiliary gas (20). - The method as claimed in claim 9,
characterized in that
the auxiliary gas (20) is introduced in such volume that the resulting partial pressure is sufficiently high so as not to fall short of the saturation vapor pressure in the pump head during delivery of the liquid working fluid (10). - The method as claimed in claim 9 or 10,
characterized in that
the auxiliary gas (20) is added to the expanded, gaseous working fluid (10). - The method as claimed in one of claims 9 to 11,
characterized in that
the auxiliary gas (20) is further transported, principally in the flow direction, during the condensing of the working fluid (10). - The method as claimed in one of claims 9 to 12,
characterized in that
the working fluid (10) is expanded in a positive displacement machine. - The method as claimed in one of claims 9 to 13,
characterized in that
waste heat (16) of a motor vehicle is used for heating and/or evaporating the working fluid (10).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL10782537T PL2499343T3 (en) | 2009-11-14 | 2010-10-30 | Thermodynamic machine and method for the operation thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009053390A DE102009053390B3 (en) | 2009-11-14 | 2009-11-14 | Thermodynamic machine and method for its operation |
PCT/EP2010/006640 WO2011057724A2 (en) | 2009-11-14 | 2010-10-30 | Thermodynamic machine and method for the operation thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2499343A2 EP2499343A2 (en) | 2012-09-19 |
EP2499343B1 true EP2499343B1 (en) | 2013-12-11 |
Family
ID=43927322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10782537.4A Active EP2499343B1 (en) | 2009-11-14 | 2010-10-30 | Thermodynamic machine and method for the operation thereof |
Country Status (14)
Country | Link |
---|---|
US (1) | US8646273B2 (en) |
EP (1) | EP2499343B1 (en) |
JP (1) | JP5608755B2 (en) |
KR (1) | KR101752160B1 (en) |
CN (1) | CN102639818B (en) |
BR (1) | BR112012011409B1 (en) |
CA (1) | CA2780791C (en) |
DE (1) | DE102009053390B3 (en) |
ES (1) | ES2447827T3 (en) |
IL (1) | IL219426A (en) |
MX (1) | MX2012005586A (en) |
PL (1) | PL2499343T3 (en) |
RU (1) | RU2534330C2 (en) |
WO (1) | WO2011057724A2 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012000100A1 (en) * | 2011-01-06 | 2012-07-12 | Cummins Intellectual Property, Inc. | Rankine cycle-HEAT USE SYSTEM |
DE202012101448U1 (en) * | 2012-04-19 | 2013-07-22 | Gunter Krauss | Nitrogen propulsion system |
US9284857B2 (en) * | 2012-06-26 | 2016-03-15 | The Regents Of The University Of California | Organic flash cycles for efficient power production |
DE102012024017B4 (en) * | 2012-12-08 | 2016-03-10 | Pegasus Energietechnik AG | Device for converting thermal energy with a pressure booster |
DE202013100814U1 (en) * | 2013-01-11 | 2014-04-14 | Becker Marine Systems Gmbh & Co. Kg | Device for generating energy |
DE102013202285A1 (en) * | 2013-02-13 | 2014-08-14 | Andrews Nawar | Method for generating electrical energy in power plants, involves relaxing light emerging from drive unit of gas at secondary pressure lower than primary pressure and liquefying and supplying liquid gas to circuit |
EP2865854B1 (en) * | 2013-10-23 | 2021-08-18 | Orcan Energy AG | Device and method for reliable starting of ORC systems |
WO2015099417A1 (en) * | 2013-12-23 | 2015-07-02 | 김영선 | Electric vehicle power generation system |
DE102014002336A1 (en) * | 2014-02-12 | 2015-08-13 | Nawar Andrews | Method and device for generating energy, in particular electrical energy |
EP2933442B1 (en) | 2014-04-16 | 2016-11-02 | Orcan Energy AG | Device and method for detecting leaks in closed cycle processes |
FR3020090B1 (en) * | 2014-04-16 | 2019-04-12 | IFP Energies Nouvelles | DEVICE FOR CONTROLLING A CLOSED CIRCUIT OPERATING ACCORDING TO A RANKINE CYCLE AND METHOD USING SUCH A DEVICE |
JP6423614B2 (en) * | 2014-05-13 | 2018-11-14 | 株式会社神戸製鋼所 | Thermal energy recovery device |
US20170130612A1 (en) * | 2014-06-26 | 2017-05-11 | Volvo Truck Corporation | System for a heat energy recovery |
DK3006682T3 (en) * | 2014-10-07 | 2022-09-12 | Orcan Energy Ag | Arrangement and procedure for operating a heat transfer station |
EP3015660B1 (en) | 2014-10-31 | 2018-12-05 | Orcan Energy AG | Method for operating a thermodynamic cycle process |
ES2586425B1 (en) * | 2015-02-19 | 2018-06-08 | Expander Tech, S.L. | EFFICIENT PUMP ANTI-CAVITATION SYSTEM FOR ORGANIC RANKINE POWER CYCLES |
FR3084913B1 (en) | 2018-08-09 | 2020-07-31 | Faurecia Systemes Dechappement | RANKINE CIRCUIT THERMAL SYSTEM |
DE102019003744A1 (en) * | 2019-05-23 | 2020-11-26 | Madalin Vinersar | Device and method for generating energy, in particular for generating electricity |
JP2023044396A (en) | 2021-09-17 | 2023-03-30 | 三菱重工マリンマシナリ株式会社 | power recovery system |
SE2350127A1 (en) | 2023-02-10 | 2024-08-11 | Climeon Ab | Thermodynamic system comprising a pump assembly |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE7225314U (en) * | 1971-07-06 | 1973-11-15 | Sundstrand Corp | Heater-economizer device for a steam power plant with organic working medium |
US4291232A (en) * | 1979-07-09 | 1981-09-22 | Cardone Joseph T | Liquid powered, closed loop power generating system and process for using same |
JPS58144613A (en) * | 1982-02-22 | 1983-08-29 | Mitsubishi Heavy Ind Ltd | Hot well tank in power plant |
JPS5951109A (en) * | 1982-09-17 | 1984-03-24 | Hitachi Ltd | Condenser vacuum holder of steam power plant |
JPS6020093A (en) * | 1983-07-14 | 1985-02-01 | Mitsubishi Heavy Ind Ltd | Heat recovery circuit |
US4738111A (en) | 1985-12-04 | 1988-04-19 | Edwards Thomas C | Power unit for converting heat to power |
JPS62210391A (en) * | 1986-03-10 | 1987-09-16 | Toshiba Corp | Device to remove gas in condenser in geothermal electricity generating system |
IL101002A (en) * | 1991-02-20 | 2001-01-28 | Ormat Turbines 1965 Ltd | Method of and means for using a two phase fluid for generating power in a rankine cycle power plant |
RU2148722C1 (en) * | 1998-09-24 | 2000-05-10 | Научно-исследовательская фирма "Эн-Ал" | Energy cycle with use of mixture |
DE19853206C1 (en) * | 1998-11-18 | 2000-03-23 | Siemens Ag | Feed-water vessel condensate warm-up device e.g. for steam electric power station |
JP2004353517A (en) * | 2003-05-28 | 2004-12-16 | Ebara Corp | Power generating device |
US6986251B2 (en) * | 2003-06-17 | 2006-01-17 | Utc Power, Llc | Organic rankine cycle system for use with a reciprocating engine |
PT1668226E (en) | 2003-08-27 | 2008-04-18 | Ttl Dynamics Ltd | Energy recovery system |
EP1624269A3 (en) | 2003-10-02 | 2006-03-08 | HONDA MOTOR CO., Ltd. | Cooling control device for condenser |
US7131290B2 (en) | 2003-10-02 | 2006-11-07 | Honda Motor Co., Ltd. | Non-condensing gas discharge device of condenser |
US7225621B2 (en) * | 2005-03-01 | 2007-06-05 | Ormat Technologies, Inc. | Organic working fluids |
JP4493531B2 (en) * | 2005-03-25 | 2010-06-30 | 株式会社デンソー | Fluid pump with expander and Rankine cycle using the same |
GB0513463D0 (en) * | 2005-07-01 | 2005-08-10 | Highview Entpr Ltd | Injection apparatus for cryogenic engines |
US20090320478A1 (en) * | 2006-01-04 | 2009-12-31 | General Electric Company | Reduced boundary layer separation steam jet air ejector assembly and method |
RU2304722C1 (en) * | 2006-05-11 | 2007-08-20 | Общество с ограниченной ответственностью "Теплофизика-2Т" | Energy cycle |
GB2442743A (en) * | 2006-10-12 | 2008-04-16 | Energetix Group Ltd | A Closed Cycle Heat Transfer Device |
SE530868C2 (en) * | 2007-02-09 | 2008-09-30 | Volvo Lastvagnar Ab | Cooling |
JP2008231981A (en) * | 2007-03-19 | 2008-10-02 | Sanden Corp | Waste heat recovery apparatus for internal combustion engine |
DE102008013545B4 (en) * | 2008-03-11 | 2015-11-05 | Alfred Becker Gmbh | Apparatus and method for waste heat recovery by means of an ORC process |
US8297355B2 (en) * | 2008-08-22 | 2012-10-30 | Texaco Inc. | Using heat from produced fluids of oil and gas operations to produce energy |
CN101408115B (en) * | 2008-11-11 | 2011-04-06 | 西安交通大学 | Thermodynamic cycle system suitable for waste heat recovery of engine for automobile |
-
2009
- 2009-11-14 DE DE102009053390A patent/DE102009053390B3/en not_active Expired - Fee Related
-
2010
- 2010-10-30 MX MX2012005586A patent/MX2012005586A/en active IP Right Grant
- 2010-10-30 KR KR1020127012300A patent/KR101752160B1/en active IP Right Grant
- 2010-10-30 CA CA2780791A patent/CA2780791C/en active Active
- 2010-10-30 ES ES10782537.4T patent/ES2447827T3/en active Active
- 2010-10-30 PL PL10782537T patent/PL2499343T3/en unknown
- 2010-10-30 JP JP2012538221A patent/JP5608755B2/en active Active
- 2010-10-30 WO PCT/EP2010/006640 patent/WO2011057724A2/en active Application Filing
- 2010-10-30 US US13/508,422 patent/US8646273B2/en active Active
- 2010-10-30 CN CN201080051437.8A patent/CN102639818B/en active Active
- 2010-10-30 BR BR112012011409-3A patent/BR112012011409B1/en active IP Right Grant
- 2010-10-30 EP EP10782537.4A patent/EP2499343B1/en active Active
- 2010-10-30 RU RU2012124416/06A patent/RU2534330C2/en active
-
2012
- 2012-04-25 IL IL219426A patent/IL219426A/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
DE102009053390B3 (en) | 2011-06-01 |
RU2534330C2 (en) | 2014-11-27 |
JP5608755B2 (en) | 2014-10-15 |
CN102639818A (en) | 2012-08-15 |
IL219426A (en) | 2016-10-31 |
ES2447827T3 (en) | 2014-03-13 |
PL2499343T3 (en) | 2014-05-30 |
US8646273B2 (en) | 2014-02-11 |
EP2499343A2 (en) | 2012-09-19 |
KR20120115225A (en) | 2012-10-17 |
MX2012005586A (en) | 2012-05-29 |
CA2780791C (en) | 2015-06-02 |
KR101752160B1 (en) | 2017-06-29 |
RU2012124416A (en) | 2013-12-20 |
JP2013510984A (en) | 2013-03-28 |
US20120227404A1 (en) | 2012-09-13 |
CN102639818B (en) | 2015-03-25 |
CA2780791A1 (en) | 2011-05-19 |
IL219426A0 (en) | 2012-06-28 |
BR112012011409A2 (en) | 2016-05-03 |
WO2011057724A3 (en) | 2011-10-13 |
WO2011057724A2 (en) | 2011-05-19 |
BR112012011409B1 (en) | 2020-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2499343B1 (en) | Thermodynamic machine and method for the operation thereof | |
DE68926220T2 (en) | Process and device for generating steam power | |
DE102006043139B4 (en) | Apparatus for obtaining mechanical or electrical energy from the waste heat of an internal combustion engine of a motor vehicle | |
EP2357349B1 (en) | System for using the waste heat of a combustion engine with anti-freeze device | |
EP2900943B1 (en) | Cogeneration power plant and method for operating a cogeneration power plant | |
DE102014223626A1 (en) | Apparatus and method for recovering waste heat energy and a utility vehicle | |
EP2574740A1 (en) | Assembly for storing thermal energy | |
DE102011117054A1 (en) | Device for energy recovery from waste heat flow of internal combustion engine in vehicle, comprises working medium-circuit, in which Clausius-Rankine circulation process is carried out | |
DE3022284A1 (en) | METHOD AND DEVICE FOR STORING AND HIGH TRANSFORMING THE TEMPERATURE OF HEAT | |
EP3186506B1 (en) | Device and method for storing energy | |
EP2653668A1 (en) | Method for loading and discharging a heat exchanger and assembly for storing and discharging thermal energy suitable for this method | |
DE102014212019A1 (en) | Cooling and energy recovery system | |
DE102009042584A1 (en) | Heat exchanger and system for using waste heat from an internal combustion engine | |
EP2653670A1 (en) | Assembly for storing and emitting thermal energy with a heat storage device and a cold air reservoir and method for its operation | |
DE102010054667B3 (en) | Frost-resistant steam cycle process device and method of operation thereof | |
DE102013210425A1 (en) | Plant and process for treating water | |
DE102016215836A1 (en) | Apparatus and method for energy recovery | |
WO2012152602A1 (en) | Line circuit and method for operating a line circuit for waste-heat utilization of an internal combustion engine | |
WO2017081248A1 (en) | Arrangement and method for recovering energy from the waste heat of at least one internal combustion engine | |
DE102011101665A1 (en) | Heat-driven power generating unit for producing power from heat, has electrical intermediate storage unit connected with electric machine, and storage tank receiving portion of liquid phase of process fluid from process chamber | |
WO2014117924A2 (en) | Method for operating a low-temperature power plant, and low-temperature power plant itself | |
DE102013016461A1 (en) | Method for operating a low-temperature power plant, and low-temperature power plant itself | |
DE102022125604B4 (en) | System and method for energy conversion and energy storage | |
EP4036382B1 (en) | Use of a heat source for power generation and aircraft with cooling system | |
DE10247387A1 (en) | Power station has turbine or piston engine, and pressure build-up devices with heat exchangers filled with carbon dioxide for converting thermal to electrical energy with generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120502 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20130620 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 644736 Country of ref document: AT Kind code of ref document: T Effective date: 20140115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010005668 Country of ref document: DE Effective date: 20140206 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2447827 Country of ref document: ES Kind code of ref document: T3 Effective date: 20140313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140311 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131211 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131211 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131211 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131211 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131211 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131211 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131211 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131211 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131211 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131211 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140411 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010005668 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131211 |
|
26N | No opposition filed |
Effective date: 20140912 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010005668 Country of ref document: DE Effective date: 20140912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131211 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141030 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141030 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131211 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: ORCAN ENERGY AG, DE Free format text: FORMER OWNER: ORCAN ENERGY GMBH, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502010005668 Country of ref document: DE Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502010005668 Country of ref document: DE Owner name: ORCAN ENERGY AG, DE Free format text: FORMER OWNER: ORCAN ENERGY GMBH, 81379 MUENCHEN, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140312 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131211 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: ORCAN ENERGY AG Effective date: 20160630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131211 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20101030 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131211 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: ORCAN ENERGY AG, DE Effective date: 20160805 Ref country code: FR Ref legal event code: CJ Effective date: 20160805 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: PD Owner name: ORCAN ENERGY AG; DE Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), VERANDERING VAN DE JURIDISCHE ENTITEIT; FORMER OWNER NAME: ORCAN ENERGY GMBH Effective date: 20160617 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: PC Ref document number: 644736 Country of ref document: AT Kind code of ref document: T Owner name: ORCAN ENERGY AG, DE Effective date: 20160803 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131211 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131211 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20231004 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231016 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231117 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20231025 Year of fee payment: 14 Ref country code: IT Payment date: 20231031 Year of fee payment: 14 Ref country code: FR Payment date: 20231023 Year of fee payment: 14 Ref country code: DE Payment date: 20231018 Year of fee payment: 14 Ref country code: CH Payment date: 20231102 Year of fee payment: 14 Ref country code: AT Payment date: 20231019 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20231017 Year of fee payment: 14 Ref country code: BE Payment date: 20231023 Year of fee payment: 14 |