JP2008231981A - Waste heat recovery apparatus for internal combustion engine - Google Patents

Waste heat recovery apparatus for internal combustion engine Download PDF

Info

Publication number
JP2008231981A
JP2008231981A JP2007070450A JP2007070450A JP2008231981A JP 2008231981 A JP2008231981 A JP 2008231981A JP 2007070450 A JP2007070450 A JP 2007070450A JP 2007070450 A JP2007070450 A JP 2007070450A JP 2008231981 A JP2008231981 A JP 2008231981A
Authority
JP
Japan
Prior art keywords
pressure
circuit
valve
tank
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007070450A
Other languages
Japanese (ja)
Inventor
Yasuaki Kano
Junichiro Kasuya
靖明 狩野
潤一郎 粕谷
Original Assignee
Sanden Corp
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp, サンデン株式会社 filed Critical Sanden Corp
Priority to JP2007070450A priority Critical patent/JP2008231981A/en
Publication of JP2008231981A publication Critical patent/JP2008231981A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste heat recovery apparatus capable of surely enhancing cycle efficiency by implementing properly circulation flow rate control of Rankine cycle circuit. <P>SOLUTION: A waste heat recovery apparatus includes a Rankine cycle circuit (8) including a closed circuit (9) having an evaporator (10), an expander (12), a condenser (14), a pump (16); a bypass circuit (20) having a recovery valve (32) for recovering liquid working-fluid from a high pressure circuit portion (9d), and a supply valve (36) for supplying liquid working-fluid to a low pressure circuit portion (9b); and a circulation flow volume control means for opening/closing the recovery valve and the supply valve, depending on the supercooling degree of working-fluid by way of the condenser, and controlling the volume of the working-fluid that circulates through a closed circuit. A bypass flow path is disposed with a deceleration mechanism (34, 38) for reducing the flow velocity of working-fluid that outflows from the recovery valve and the supply valve. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関の廃熱利用装置に係り、詳しくは、車両に好適な内燃機関の廃熱利用装置に関する。   The present invention relates to an internal combustion engine waste heat utilization device, and more particularly to an internal combustion engine waste heat utilization device suitable for a vehicle.
内燃機関の廃熱利用装置としては、例えば車両用のエンジンの廃熱で作動流体(以下、冷媒という)を加熱する蒸発器、冷媒を膨張させて駆動力を発生する膨張機、冷媒を凝縮させる凝縮器、冷媒を圧送して循環させるポンプを順次接続した閉回路から構成されたランキンサイクル回路が知られている。
そして、このようなランキンサイクル回路において、上記凝縮器及びポンプをバイパスするバイパス路を設け、凝縮器を経由して凝縮された冷媒の過冷却度に応じてバイパス路に冷媒を出し入れすることにより、上記閉回路を循環する冷媒量を制御し、ポンプのキャビテーションを防止しながらランキンサイクル回路のサイクル効率を向上する技術が知られている(例えば、特許文献1参照)。
特開昭60−192809号公報
As an internal combustion engine waste heat utilization device, for example, an evaporator that heats a working fluid (hereinafter referred to as a refrigerant) with waste heat from a vehicle engine, an expander that expands the refrigerant to generate a driving force, and condenses the refrigerant There is known a Rankine cycle circuit composed of a closed circuit in which a condenser and a pump for pumping and circulating a refrigerant are sequentially connected.
And in such a Rankine cycle circuit, by providing a bypass path that bypasses the condenser and the pump, by taking the refrigerant into and out of the bypass path according to the degree of supercooling of the refrigerant condensed via the condenser, A technique for improving the cycle efficiency of a Rankine cycle circuit while controlling the amount of refrigerant circulating in the closed circuit and preventing pump cavitation is known (see, for example, Patent Document 1).
JP-A-60-192809
ところで、上記従来技術では、バイパス路の入口及び出口にそれぞれ電磁弁を設け、これら電磁弁を過冷却度に応じて全開、全閉するオンオフ制御を実施することにより、冷媒をバイパス路に段階的に出し入れしている。
しかしながら、上記電磁弁のオンオフ制御のみでは、たとえ電磁弁の数を増やしたり、電磁弁のオンオフのタイミングを細かく設定したとしても、電磁弁を全開、全閉して制御している以上、エンジンの作動状況や気候条件等により都度変動する過冷却度に応じて、バイパス路に出し入れされる冷媒量、ひいてはランキンサイクル回路の循環冷媒量を適切に制御するのは困難であり、所望のサイクル効率を得られないとの問題がある。
By the way, in the above prior art, solenoid valves are provided at the inlet and outlet of the bypass passage, respectively, and on-off control is performed such that these solenoid valves are fully opened and closed according to the degree of supercooling, whereby the refrigerant is stepped into the bypass passage. Has been put in and out.
However, with only on / off control of the solenoid valve, even if the number of solenoid valves is increased or the on / off timing of the solenoid valves is set finely, as long as the solenoid valve is fully opened and fully controlled, It is difficult to properly control the amount of refrigerant that is taken in and out of the bypass path, and thus the amount of refrigerant that is circulated in the Rankine cycle circuit, according to the degree of supercooling that varies depending on the operating conditions and climatic conditions. There is a problem that cannot be obtained.
また、各電磁弁を段階的に全開、全閉するオンオフ制御を実施するため、バイパス路内における冷媒が一時的に液封状態となり、この液封冷媒が温度上昇によって膨張すると、バイパス路、ひいてはランキンサイクル回路全体が破損するとの問題もある。
本発明は、このような課題に鑑みてなされたもので、ランキンサイクル回路の循環流量制御を適切に実施することにより、サイクル効率を確実に向上することができる内燃機関の廃熱利用装置を提供することを目的とする。
In addition, since the on-off control for fully opening and closing each solenoid valve stepwise is performed, the refrigerant in the bypass passage is temporarily in a liquid-sealed state, and when this liquid-sealed refrigerant expands due to a temperature rise, the bypass passage, and thus There is also a problem that the entire Rankine cycle circuit is damaged.
The present invention has been made in view of such problems, and provides a waste heat utilization device for an internal combustion engine that can reliably improve cycle efficiency by appropriately performing circulation flow control of a Rankine cycle circuit. The purpose is to do.
上記の目的を達成するべく、請求項1記載の内燃機関の廃熱利用装置は、内燃機関の廃熱を熱媒体から熱回収する廃熱利用装置であって、熱媒体と熱交換して作動流体を加熱する蒸発器、該蒸発器を経由した作動流体を膨張させて駆動力を発生する膨張機、該膨張機を経由した作動流体を凝縮させる凝縮器、該凝縮器を経由した作動流体を蒸発器に向けて圧送するポンプを含み、該ポンプの出口側から膨張機の入口側にかけて作動流体が高圧を呈する高圧回路部を形成し、膨張機の出口側から凝縮器の入口側にかけて作動流体が低圧を呈する低圧回路部を形成する閉回路と、高圧回路部と低圧回路部とを連通し、凝縮器及びポンプをバイパスするバイパス路と、該バイパス路の高圧回路部近傍に設けられ、開弁により該バイパス路内へ高圧回路部からの液状の作動流体を回収する回収弁と、該バイパス路の低圧回路部近傍に設けられ、開弁により該バイパス路内から低圧回路部へ液状の作動流体を供給する供給弁と、凝縮器を経由した作動流体の過冷却度に応じて、回収弁及び供給弁を開閉し、閉回路を循環する作動流体量を制御する循環流量制御手段とを有するランキンサイクル回路を備え、バイパス路には、回収弁及び供給弁から流出する作動流体の流速を低減する減速機構が配されることを特徴としている。   In order to achieve the above object, the waste heat utilization apparatus for an internal combustion engine according to claim 1 is a waste heat utilization apparatus for recovering heat from the heat medium of the internal combustion engine, and operates by exchanging heat with the heat medium. An evaporator that heats the fluid, an expander that generates a driving force by expanding the working fluid that passes through the evaporator, a condenser that condenses the working fluid that passes through the expander, and a working fluid that passes through the condenser Including a pump for pumping toward the evaporator, forming a high-pressure circuit section in which the working fluid exhibits a high pressure from the outlet side of the pump to the inlet side of the expander, and working fluid from the outlet side of the expander to the inlet side of the condenser Are provided in the vicinity of the high-pressure circuit portion of the bypass path, the closed circuit that forms a low-pressure circuit section that exhibits a low pressure, the high-pressure circuit section and the low-pressure circuit section that communicate with each other and bypass the condenser and the pump. High pressure circuited into the bypass by a valve A recovery valve that recovers the liquid working fluid from the section, a supply valve that is provided near the low-pressure circuit section of the bypass passage, and that supplies the liquid working fluid from the bypass passage to the low-pressure circuit section by opening the valve, and a condenser A Rankine cycle circuit having a circulation flow rate control means for opening and closing the recovery valve and the supply valve and controlling the amount of the working fluid circulating in the closed circuit in accordance with the degree of supercooling of the working fluid that has passed through the vessel. Is characterized in that a speed reduction mechanism for reducing the flow velocity of the working fluid flowing out from the recovery valve and the supply valve is arranged.
また、請求項2記載の発明では、請求項1において、バイパス路は、回収弁の開弁によって回収される作動流体を一旦貯留するタンクを有することを特徴としている。
更に、請求項3記載の発明では、請求項2において、タンクは、該タンクから高圧回路部に向けて貯留された作動流体の脱圧を実施する脱圧手段を有することを特徴としている。
The invention according to claim 2 is characterized in that, in claim 1, the bypass passage has a tank for temporarily storing the working fluid recovered by opening the recovery valve.
Further, the invention according to claim 3 is characterized in that, in claim 2, the tank has a depressurization means for depressurizing the working fluid stored from the tank toward the high pressure circuit section.
更にまた、請求項4記載の発明では、請求項1から3のいずれかにおいて、循環流量制御手段は、ポンプのキャビテーションを回避できる範囲内で、過冷却度を所定の最小値に略一定に保持すべく、回収弁及び供給弁を開閉し、閉回路を循環する作動流体量を制御することを特徴としている。
また、請求項5記載の発明では、請求項2から4のいずれかにおいて、ランキンサイクル回路は、タンクの内圧を高圧回路部より低圧で且つ低圧回路部より高圧となる中間圧とするタンク内圧制御手段を具備することを特徴としている。
Furthermore, in the invention according to claim 4, in any one of claims 1 to 3, the circulating flow rate control means keeps the degree of supercooling at a predetermined minimum value within a range in which pump cavitation can be avoided. Therefore, the recovery valve and the supply valve are opened and closed, and the amount of working fluid circulating in the closed circuit is controlled.
According to a fifth aspect of the present invention, in any one of the second to fourth aspects, the Rankine cycle circuit controls the tank internal pressure so that the internal pressure of the tank is an intermediate pressure that is lower than the high pressure circuit and higher than the low pressure circuit. It is characterized by having a means.
更に、請求項6記載の発明では、請求項5において、ランキンサイクル回路は、タンクと高圧回路部とを連通する高圧路と、タンクと低圧回路部とを連通する低圧路と、開弁により高圧回路部からタンクへガス状の作動流体を流入させる高圧弁と、開弁によりタンクから低圧回路部へガス状の作動流体を流出させる低圧弁とを更に含み、タンク内圧制御手段は、タンクの内圧を検出する内圧検出手段を含み、該内圧検出手段により検出されるタンクの内圧に応じて、高圧弁及び低圧弁を開閉し、タンクの内圧を中間圧にするものであって、高圧路及び低圧路には、それぞれ高圧弁及び低圧弁から流出する作動流体の流速を低減する第2減速機構が配されることを特徴としている。   Further, in the invention described in claim 6, in claim 5, the Rankine cycle circuit includes a high-pressure path that communicates between the tank and the high-pressure circuit section, a low-pressure path that communicates between the tank and the low-pressure circuit section, and valve opening to increase the pressure. The tank internal pressure control means further includes a high pressure valve that allows the gaseous working fluid to flow into the tank from the circuit section, and a low pressure valve that causes the gaseous working fluid to flow out from the tank to the low pressure circuit section when the valve is opened. The internal pressure of the tank is detected by the internal pressure detected by the internal pressure detection means, and the high pressure valve and the low pressure valve are opened and closed to set the internal pressure of the tank to an intermediate pressure. The passage is characterized by a second speed reduction mechanism for reducing the flow velocity of the working fluid flowing out from the high pressure valve and the low pressure valve, respectively.
更にまた、請求項7記載の発明では、請求項1から6のいずれかにおいて、減速機構及び第2減速機構は、キャピラリチューブであることを特徴としている。   Furthermore, in the invention described in claim 7, in any one of claims 1 to 6, the speed reduction mechanism and the second speed reduction mechanism are capillary tubes.
請求項1記載の本発明の内燃機関の廃熱利用装置によれば、ランキンサイクル回路は、高圧回路部と低圧回路部とからなる閉回路とバイパス路とから構成され、バイパス路へ液状の作動流体を回収する回収弁とバイパス路から低圧回路部へ液状の作動流体を供給する供給弁とを開閉することにより、閉回路を循環する作動流体量を制御する循環流量制御手段を実施する。そして、バイパス路には、回収弁及び供給弁から流出する作動流体の流速を低減する減速機構が配される。これにより、回収弁及び供給弁を単に開閉する場合に比して、バイパス路に回収され、バイパス路から供給される作動流体の流速を低速にできるため、バイパス路に流出入する作動流体を連続的に且つ円滑に制御でき、循環流量制御手段の制御安定性、ひいてはランキンサイクル回路のサイクル効率を確実に向上できる。   According to the waste heat utilization apparatus for an internal combustion engine of the first aspect of the present invention, the Rankine cycle circuit includes a closed circuit including a high-pressure circuit unit and a low-pressure circuit unit, and a bypass path, and the liquid operation to the bypass path is performed. Circulating flow rate control means for controlling the amount of working fluid circulating in the closed circuit is implemented by opening and closing a recovery valve for recovering fluid and a supply valve for supplying liquid working fluid from the bypass passage to the low pressure circuit section. A speed reduction mechanism that reduces the flow rate of the working fluid flowing out from the recovery valve and the supply valve is disposed in the bypass path. As a result, the flow rate of the working fluid collected in the bypass passage and supplied from the bypass passage can be reduced as compared with the case where the recovery valve and the supply valve are simply opened and closed. Can be controlled smoothly and smoothly, and the control stability of the circulating flow rate control means, and consequently the cycle efficiency of the Rankine cycle circuit, can be reliably improved.
また、請求項2記載の発明によれば、バイパス路が回収弁で回収される作動流体を一旦貯留するタンクを有することにより、バイパス路から閉回路に出し入れ可能な作動流体量を多くとることができる。これにより、過冷却度の変動幅に合わせて循環冷媒制御手段の制御範囲を極力広く設定可能となり、循環流量制御手段の制御性を更に向上できる。
更に、請求項3記載の発明によれば、タンクは貯留された作動流体の脱圧手段を有ており、タンク内が液封状態となるときに、タンクに貯留された作動流体が昇温して膨張したとしても、バイパス路、ひいてはランキンサイクル回路が破壊されるのが確実に防止され、循環流量制御手段を更に適切に実施できる。
According to the second aspect of the present invention, since the bypass passage has the tank that temporarily stores the working fluid recovered by the recovery valve, the amount of the working fluid that can be taken in and out of the closed circuit from the bypass passage can be increased. it can. Thereby, the control range of the circulating refrigerant control means can be set as wide as possible in accordance with the fluctuation range of the degree of supercooling, and the controllability of the circulating flow rate control means can be further improved.
Furthermore, according to the invention of claim 3, the tank has a depressurizing means for the stored working fluid, and when the inside of the tank is in a liquid-sealed state, the temperature of the working fluid stored in the tank rises. Even if it expands, the bypass passage and thus the Rankine cycle circuit can be reliably prevented from being destroyed, and the circulation flow rate control means can be more appropriately implemented.
更にまた、請求項4記載の発明によれば、ポンプのキャビテーションが生じない範囲でランキンサイクル回路の過冷却度を最小に保持できるため、ランキンサイクル回路のサイクル効率を大幅に向上できる。
また、請求項5記載の発明によれば、ランキンサイクル回路がタンクの内圧を高圧回路部より低圧で且つ低圧回路部より高圧となる中間圧とするタンク内圧制御手段を有することにより、タンク内とそれぞれ高圧回路部、低圧回路部との圧力差が適切になって高圧回路部からの作動流体の回収と低圧回路部への作動流体の供給とを更に円滑に実施でき、循環流量制御手段の制御安定性をより一層向上できる。
Furthermore, according to the fourth aspect of the present invention, since the degree of supercooling of the Rankine cycle circuit can be kept to a minimum as long as cavitation of the pump does not occur, the cycle efficiency of the Rankine cycle circuit can be greatly improved.
According to the invention described in claim 5, the Rankine cycle circuit has tank internal pressure control means for setting the internal pressure of the tank to an intermediate pressure that is lower than the high pressure circuit and higher than the low pressure circuit. The pressure difference between the high-pressure circuit and the low-pressure circuit is appropriate, and the recovery of the working fluid from the high-pressure circuit and the supply of the working fluid to the low-pressure circuit can be performed more smoothly. Stability can be further improved.
更に、請求項6記載の発明によれば、タンク内圧制御手段は、検出されるタンクの内圧に応じて、高圧弁及び低圧弁を開閉して中間圧とし、高圧路及び低圧路には、それぞれ前記高圧弁及び前記低圧弁から流出するガス状の作動流体の流速を低減する第2減速機構が配される。これにより、高圧弁及び低圧弁を単に開閉する場合に比して、高圧路に流入し、低圧路から流出するガス状の作動流体の流速を低速にできるため、タンクに流出入する作動流体を連続的に且つ円滑に制御でき、タンク内圧制御手段の制御安定性、ひいては循環流量制御手段の制御安定性が更に向上し、ランキンサイクル回路のサイクル効率をより一層向上できる。   Further, according to the invention of claim 6, the tank internal pressure control means opens and closes the high pressure valve and the low pressure valve to the intermediate pressure according to the detected internal pressure of the tank. A second reduction mechanism that reduces the flow rate of the gaseous working fluid flowing out from the high pressure valve and the low pressure valve is arranged. As a result, the flow rate of the gaseous working fluid flowing into the high pressure path and flowing out from the low pressure path can be reduced compared to when the high pressure valve and the low pressure valve are simply opened and closed. Control can be performed continuously and smoothly, the control stability of the tank internal pressure control means, and further the control stability of the circulation flow rate control means, can be further improved, and the cycle efficiency of the Rankine cycle circuit can be further improved.
更にまた、請求項7記載の発明によれば、開閉する弁の2次側にキャピラリチューブを設けるだけの簡単な構成で、上記各格別な作用効果を得ることができる。   Furthermore, according to the seventh aspect of the present invention, the above-mentioned special effects can be obtained with a simple configuration in which a capillary tube is simply provided on the secondary side of the valve to be opened and closed.
以下、図面により本発明の実施形態について説明する。
先ず、第1実施形態について説明する。
図1は本実施形態の内燃機関の廃熱利用装置2の構成を示す模式図であり、廃熱利用装置2は、冷却水が循環して例えば車両のエンジン(内燃機関)4を冷却する冷却水回路6と、冷媒が循環してエンジン4の廃熱を回収するランキンサイクル回路8(以下、サイクル8という)とから構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, the first embodiment will be described.
FIG. 1 is a schematic diagram showing the configuration of a waste heat utilization device 2 for an internal combustion engine according to the present embodiment. The waste heat utilization device 2 is a cooling system that circulates cooling water and cools, for example, a vehicle engine (internal combustion engine) 4. A water circuit 6 and a Rankine cycle circuit 8 (hereinafter referred to as a cycle 8) that recovers waste heat of the engine 4 through circulation of the refrigerant are configured.
冷却水回路6は、エンジン4から蒸発器10が接続される閉回路を構成し、例えばエンジン4の回転数に応じて図示しない水ポンプを駆動することによって冷却水が循環する。
蒸発器10は、冷却水回路6を循環する冷却水とサイクル8を循環する冷媒とを熱交換させる熱交換器であって、エンジン4で加熱された冷却水、すなわち温水を熱媒体としてサイクル8側にエンジン4の廃熱を回収させる。一方、蒸発器10を通過し、冷媒に吸熱されて温度低下した冷却水は、エンジン4を冷却することにより再び加熱された温水となる。なお、エンジン4の本体温度を略一定に保持すべく図示しないサーモスタット等を設置しても良い。
The cooling water circuit 6 constitutes a closed circuit to which the evaporator 10 is connected from the engine 4. For example, the cooling water circulates by driving a water pump (not shown) according to the rotational speed of the engine 4.
The evaporator 10 is a heat exchanger that exchanges heat between the cooling water that circulates in the cooling water circuit 6 and the refrigerant that circulates in the cycle 8. The evaporator 10 uses the cooling water heated by the engine 4, that is, hot water as a heat medium. The waste heat of the engine 4 is collected on the side. On the other hand, the cooling water that has passed through the evaporator 10 and has been absorbed by the refrigerant and has fallen in temperature becomes warm water that has been heated again by cooling the engine 4. Note that a thermostat (not shown) or the like may be installed so as to keep the temperature of the main body of the engine 4 substantially constant.
これに対しサイクル8は、蒸発器10から膨張機12、凝縮器14、冷媒ポンプ(ポンプ)16を順に接続した閉回路9を構成し、この閉回路9の流路は、冷媒の流れ方向でみて、蒸発器10から膨張機12まで延設される流路(高圧回路部)9a、膨張機12から凝縮器14まで延設される流路(低圧回路部)9b、凝縮器14から冷媒ポンプ16まで延設される流路9c、冷媒ポンプ16から蒸発器10に帰還する流路(高圧回路部)9dから構成されている。   On the other hand, the cycle 8 constitutes a closed circuit 9 in which the evaporator 10, the expander 12, the condenser 14, and the refrigerant pump (pump) 16 are connected in order, and the flow path of the closed circuit 9 is in the flow direction of the refrigerant. Thus, a flow path (high pressure circuit section) 9 a extending from the evaporator 10 to the expander 12, a flow path (low pressure circuit section) 9 b extending from the expander 12 to the condenser 14, and the refrigerant pump from the condenser 14 16 includes a flow path 9 c extending to 16 and a flow path (high-pressure circuit section) 9 d returning from the refrigerant pump 16 to the evaporator 10.
膨張機12は、蒸発器10で加熱され過熱蒸気の状態となった冷媒の膨張によって回転等に係る駆動力を発生させる流体機器である。また、膨張機12には発電機18が接続され、この発電機18を介して膨張機12で発生した駆動力を廃熱利用装置2の外部等で使用可能である。
凝縮器14は、膨張機12から吐出される冷媒を外気との熱交換により凝縮液化する熱交換器であり、凝縮器14で凝縮された液冷媒が冷媒ポンプ16で蒸発器10に圧送される。
The expander 12 is a fluid device that generates a driving force related to rotation or the like by the expansion of the refrigerant heated by the evaporator 10 and in a superheated vapor state. Further, a generator 18 is connected to the expander 12, and the driving force generated by the expander 12 via the generator 18 can be used outside the waste heat utilization device 2.
The condenser 14 is a heat exchanger that condenses and liquefies the refrigerant discharged from the expander 12 by heat exchange with the outside air, and the liquid refrigerant condensed by the condenser 14 is pumped to the evaporator 10 by the refrigerant pump 16. .
冷媒ポンプ16は、このポンプ16の駆動部に入力される信号に応じて可動部を駆動する電動ポンプであり、サイクル8全体において冷媒を好適に循環させる。
そして、閉回路9の上記構成機器により、流路9aには蒸発器10で過熱状態にされた高圧ガス冷媒が流れるとともに、流路9bには膨張機12を駆動した後の低圧ガス冷媒が流れる。また、流路9cには凝縮器14で凝縮された低圧液冷媒が流れるとともに、流路9dにはポンプ16で加圧された高圧液冷媒が流れる。
The refrigerant pump 16 is an electric pump that drives the movable part in accordance with a signal input to the drive part of the pump 16, and suitably circulates the refrigerant in the entire cycle 8.
And by the said structural apparatus of the closed circuit 9, the high pressure gas refrigerant | coolant heated by the evaporator 10 flows into the flow path 9a, and the low pressure gas refrigerant after driving the expander 12 flows into the flow path 9b. . The low-pressure liquid refrigerant condensed by the condenser 14 flows through the flow path 9c, and the high-pressure liquid refrigerant pressurized by the pump 16 flows through the flow path 9d.
このように、サイクル8は、エンジン4の作動状況に応じてエンジン4の廃熱を回収し、更に回収された廃熱を動力変換して外部等で利用可能に回収する。
ところで、サイクル8には、上記した構成機器及び流路9a〜9dからなる閉回路9の他、凝縮器14及びポンプ16をバイパスするバイパス路20が設けられている。
詳しくは、バイパス路20は、流路9dから分岐する回収路22、流路9bに合流する供給路24、回収路22及び供給路24の間に位置づけられるレシーバタンク(タンク)26から構成されている。
As described above, in the cycle 8, the waste heat of the engine 4 is recovered according to the operating state of the engine 4, and the recovered waste heat is further converted to power and recovered to be usable outside.
By the way, the cycle 8 is provided with a bypass circuit 20 that bypasses the condenser 14 and the pump 16 in addition to the above-described components and the closed circuit 9 including the flow paths 9a to 9d.
Specifically, the bypass path 20 includes a recovery path 22 that branches from the flow path 9d, a supply path 24 that merges with the flow path 9b, a receiver tank (tank) 26 that is positioned between the recovery path 22 and the supply path 24. Yes.
レシーバタンク26は、バイパス路20に流入する冷媒を気液二層に分離して貯留する密閉タンクであり、このタンク26の側面の適宜位置には回収路22、供給路24が貫通して接続され、これら回収路22、供給路24はともにタンク26内における冷媒の液層部まで延設されている。
また、タンク26の側面の適宜位置には、タンク26内における冷媒の気層部から延び、流路9dに合流するタンク26の脱圧路(脱圧手段)28が貫通して接続され、この脱圧路28には流路9dからタンク26への冷媒の流れを遮断する逆止弁30が介挿されている。
The receiver tank 26 is a sealed tank that separates and stores the refrigerant flowing into the bypass path 20 in two layers of gas and liquid, and a recovery path 22 and a supply path 24 penetrate through and connect to appropriate positions on the side surface of the tank 26. The recovery path 22 and the supply path 24 are both extended to the liquid layer portion of the refrigerant in the tank 26.
In addition, a decompression path (decompression means) 28 of the tank 26 that extends from the gas layer portion of the refrigerant in the tank 26 and joins the flow path 9d is connected to and penetrated at an appropriate position on the side surface of the tank 26. A check valve 30 for interrupting the flow of the refrigerant from the flow path 9d to the tank 26 is inserted in the pressure release path 28.
より詳しくは、回収路22には、流路9d側から順に回収側電磁弁(回収弁)32、回収側キャピラリチューブ(減速機構)34が介挿される一方、供給路24には、タンク26側から順に供給側電磁弁(供給弁)36、供給側キャピラリチューブ(減速機構)38が介挿されている。
キャピラリチューブ34,38は、銅製等の毛細管であって、この管路の前後の圧力差に応じて、冷媒が管路内を所定の低速で流れるように管路断面積が予め設定されている。すなわち、キャピラリ34,38は、冷媒が通過する際の管路抵抗と管路前後の圧力差とを利用して冷媒を安定した低速で通過させるものであり、キャピラリ34,38内では冷媒の凝縮や蒸発等は行われない。
More specifically, a recovery side solenoid valve (recovery valve) 32 and a recovery side capillary tube (deceleration mechanism) 34 are inserted in the recovery path 22 in order from the flow path 9d side, while the supply path 24 is connected to the tank 26 side. A supply-side solenoid valve (supply valve) 36 and a supply-side capillary tube (deceleration mechanism) 38 are inserted in order.
The capillary tubes 34 and 38 are capillaries made of copper or the like, and the pipe cross-sectional area is set in advance so that the refrigerant flows in the pipe at a predetermined low speed according to the pressure difference between the pipes before and after the pipe. . In other words, the capillaries 34 and 38 allow the refrigerant to pass at a stable low speed by utilizing the pipe resistance when the refrigerant passes and the pressure difference before and after the pipe, and in the capillaries 34 and 38, the refrigerant condenses. There is no evaporation.
電磁弁32,36は、それぞれ駆動部に入力される接点信号に応じて全開、全閉するオンオフ弁であって、ポンプ16とともに車両及び廃熱利用装置2の総合的な制御を行う電子コントロールユニット(ECU)40に電気的に接続されている。
加えてECU40には、凝縮器14を経由して凝縮された低圧液冷媒の圧力を検出する圧力センサ42、この低圧液冷媒の温度を検出する温度センサ44も電気的に接続されており、これらセンサ42,44は流路9cに設置されている。
The electromagnetic valves 32 and 36 are on / off valves that are fully opened and closed in response to contact signals input to the drive unit, respectively, and are electronic control units that perform comprehensive control of the vehicle and the waste heat utilization device 2 together with the pump 16. (ECU) 40 is electrically connected.
In addition, the ECU 40 is also electrically connected with a pressure sensor 42 for detecting the pressure of the low-pressure liquid refrigerant condensed via the condenser 14 and a temperature sensor 44 for detecting the temperature of the low-pressure liquid refrigerant. The sensors 42 and 44 are installed in the flow path 9c.
ここで、ECU40は、センサ42,44の検出結果に基づいて凝縮器14を経由した後の低圧液冷媒の過冷却度SD(Supercooling Degree)を演算している。そして、この演算された過冷却度SDに応じて電磁弁32,36をそれぞれ開閉駆動することにより、閉回路9から回収路22を介しタンク26で回収する冷媒回収量と、タンク26から供給路24を介し閉回路9へ向けて供給される冷媒供給量とを調整し、閉回路9を循環する冷媒量を制御する、いわゆる循環流量制御を実施している(循環流量制御手段)。   Here, the ECU 40 calculates the degree of supercooling SD (Supercooling Degree) of the low-pressure liquid refrigerant after passing through the condenser 14 based on the detection results of the sensors 42 and 44. Then, by opening and closing the solenoid valves 32 and 36 according to the calculated degree of supercooling SD, the refrigerant recovery amount recovered in the tank 26 from the closed circuit 9 through the recovery path 22, and the supply path from the tank 26, respectively. So-called circulation flow rate control is performed (circulation flow rate control means) for adjusting the refrigerant supply amount supplied toward the closed circuit 9 via 24 and controlling the refrigerant amount circulating in the closed circuit 9.
通常、エンジン4の作動状況によってエンジン4の廃熱量が変化する他、外気温や凝縮器風量によって冷媒の凝縮温度、凝縮圧力が変化するため、閉回路9における最適な冷媒循環量も都度変化する。例えば、エンジン4の廃熱量が多い場合や、夏季において凝縮温度が高くなる場合には、閉回路9における冷媒循環量が増大するため、必然的に閉回路9で必要とされる冷媒量も多くなる。   Normally, the amount of waste heat of the engine 4 changes depending on the operating state of the engine 4, and the refrigerant condensing temperature and condensing pressure change depending on the outside air temperature and the condenser air volume, so that the optimum refrigerant circulation amount in the closed circuit 9 also changes each time. . For example, when the amount of waste heat of the engine 4 is large or when the condensation temperature becomes high in the summer, the amount of refrigerant circulating in the closed circuit 9 increases, so that the amount of refrigerant necessary in the closed circuit 9 is inevitably large. Become.
しかしながら、閉回路9での要求冷媒量が多いにも拘わらず、実際の冷媒量が少ないままであると、過冷却度SDが小さくなってポンプ16のキャビテーションを引き起こし、ポンプ16において冷媒を昇圧できなくなる。
一方、閉回路9の要求冷媒量に比して実際の冷媒量が多すぎると、過冷却度SDが大きくなり、その分、蒸発器10での冷媒の加熱に要する熱量が多くなって蒸発器10の負荷が増大し、閉回路9のサイクル効率が低下してしまう。
However, if the amount of refrigerant required in the closed circuit 9 is large but the actual amount of refrigerant remains small, the degree of supercooling SD becomes small, causing cavitation of the pump 16, and the pump 16 can boost the refrigerant. Disappear.
On the other hand, if the actual amount of refrigerant is too large compared to the required amount of refrigerant in the closed circuit 9, the degree of supercooling SD increases, and the amount of heat required for heating the refrigerant in the evaporator 10 increases accordingly, and the evaporator The load of 10 increases, and the cycle efficiency of the closed circuit 9 decreases.
そこで、ここでは、過冷却度SDに応じて電磁弁32,36をそれぞれ開閉駆動することにより、上記不都合を解消するようにしている。
以下、図2に示されるフローチャートを参照して循環流量制御に係る制御ルーチンについて詳しく説明する。
先ず、S0(以下、Sはステップを表す)における初期状態では、電磁弁32,36は閉弁されており、循環流量制御が開始されるとS1に移行する。なお、本制御ルーチンは、以下のステップ実行中でも、循環流量制御が停止されるとS0の初期状態に戻るリセット機能を有している。
Therefore, here, the above-mentioned inconvenience is solved by opening and closing the solenoid valves 32 and 36 according to the degree of supercooling SD.
Hereinafter, the control routine related to the circulation flow rate control will be described in detail with reference to the flowchart shown in FIG.
First, in an initial state in S0 (hereinafter, S represents a step), the solenoid valves 32 and 36 are closed, and when the circulation flow control is started, the process proceeds to S1. This control routine has a reset function for returning to the initial state of S0 when the circulation flow rate control is stopped even during execution of the following steps.
S1では、過冷却度SDが所定の過冷却度上限設定値SDH以上か否かを判定する。判定結果が真(Yes)で過冷却度SDが上限設定値SDH以上と判定された場合にはS2に移行し、判定結果が偽(No)で過冷却度SDが上限設定値SDHより小さいと判定された場合にはS3に移行する。
S2に移行した場合には、電磁弁32を開弁し、流路9dを流れる液冷媒をタンク26に回収する。そして、電磁弁32を開弁したままS4に移行する。
In S1, it is determined whether or not the supercooling degree SD is equal to or higher than a predetermined supercooling degree upper limit set value SDH. If the determination result is true (Yes) and the degree of supercooling SD is determined to be greater than or equal to the upper limit set value SDH, the process proceeds to S2, and if the determination result is false (No) and the degree of supercooling SD is less than the upper limit set value SDH. If it is determined, the process proceeds to S3.
When the process proceeds to S2, the electromagnetic valve 32 is opened, and the liquid refrigerant flowing through the flow path 9d is collected in the tank 26. Then, the process proceeds to S4 with the solenoid valve 32 opened.
一方、S3に移行した場合には、電磁弁32を閉弁してS4に移行する。
S4では、過冷却度SDが所定の過冷却度下限設定値SDL以下か否かを判定する。判定結果が真(Yes)で過冷却度SDが下限設定値SDL以下と判定された場合にはS5に移行し、判定結果が偽(No)で過冷却度SDが下限設定値SDLより大きいと判定された場合にはS6に移行する。
On the other hand, when it transfers to S3, the solenoid valve 32 is closed and it transfers to S4.
In S4, it is determined whether or not the supercooling degree SD is equal to or lower than a predetermined supercooling degree lower limit set value SDL. If the determination result is true (Yes) and the degree of supercooling SD is determined to be equal to or lower than the lower limit set value SDL, the process proceeds to S5, and if the determination result is false (No) and the degree of supercooling SD is greater than the lower limit set value SDL. If it is determined, the process proceeds to S6.
S5に移行した場合には、電磁弁36を開弁し、タンク26に貯留される液冷媒を流路9bに供給する。そして、電磁弁36を開弁したままS1に移行する。
一方、S6に移行した場合には、電磁弁36を閉弁してS1に移行する。
このようにして、S0において循環流量制御に係る制御ルーチンが開始されると、上記一連のステップが繰り返し実行される。
When the process proceeds to S5, the electromagnetic valve 36 is opened, and the liquid refrigerant stored in the tank 26 is supplied to the flow path 9b. And it transfers to S1 with the solenoid valve 36 opened.
On the other hand, when it transfers to S6, the solenoid valve 36 is closed and it transfers to S1.
Thus, when the control routine related to the circulation flow rate control is started in S0, the above series of steps is repeatedly executed.
ここで、上限設定値SDH及び下限設定値SDLは、エンジン4の作動状況や、外気温等を検出する図示しないセンサからの信号により、ECU40において適宜演算されて設定される。そして、上限設定値SDHと下限設定値SDLとの差を極力小さく設定することにより、例えばポンプ26のキャビテーションが生じない範囲内で最小となる過冷却度SDに略一定に保持することができる。   Here, the upper limit set value SDH and the lower limit set value SDL are appropriately calculated and set in the ECU 40 by a signal from a sensor (not shown) that detects the operating state of the engine 4 and the outside air temperature. Then, by setting the difference between the upper limit set value SDH and the lower limit set value SDL as small as possible, for example, it is possible to maintain the supercooling degree SD that is minimum within a range in which cavitation of the pump 26 does not occur, substantially constant.
なお、キャピラリ34,38の管路断面積、管路抵抗等の固有条件、及びキャピラリ34,38の前後の圧力差から、それぞれキャピラリ34,38を通過する冷媒の流速がほぼ一義に決定される。よって、S1における過冷却度SDと上限設定値SDHとの差、及びS4における過冷却度SDと下限設定値SDLとの差を埋めるべく、それぞれS2,S5における電磁弁32,36の開弁時間を演算し、これら演算された開弁時間の経過後にS2からS4、S5からS1にそれぞれ移行して、所望の冷媒回収量及び冷媒供給量が得られるように循環流量制御を実施しても良い。   The flow rate of the refrigerant passing through the capillaries 34 and 38 is determined almost uniquely from the inherent conditions such as the pipe cross-sectional areas of the capillaries 34 and 38, the pipe resistance, and the pressure difference before and after the capillaries 34 and 38, respectively. . Therefore, the valve opening times of the solenoid valves 32 and 36 in S2 and S5, respectively, to fill the difference between the supercooling degree SD and the upper limit set value SDH in S1 and the difference between the supercooling degree SD and the lower limit set value SDL in S4. , And after the calculated valve opening time has elapsed, the flow from S2 to S4 and from S5 to S1 may be respectively performed, and the circulation flow rate control may be performed so that a desired refrigerant recovery amount and refrigerant supply amount can be obtained. .
以上のように、本実施形態では、過冷却度SDに応じて閉回路9を循環する冷媒量を適切に制御している。
更に、本願発明では、閉回路9とバイパス路20との間で出し入れする冷媒の速度に着目し、バイパス路20の回収路22、供給路24にそれぞれキャピラリ34,38を設けて電磁弁32,36から流出する冷媒の流速を低減し、これらキャピラリ34,38を介して閉回路9を循環する冷媒の出し入れを実施するようにしている。これにより、バイパス路20に回収され、バイパス路20から供給される作動流体の流速を低速にできるため、既存の電磁弁32,36を利用し、バイパス路20にキャピラリ34,38を介挿させるだけの簡単な構成で、バイパス路20に流出入する冷媒を連続的に且つ円滑に制御でき、循環流量制御を適切に実施し、冷媒量の過大、過少により生ずる問題を解決しつつ循環流量制御の制御安定性、ひいてはサイクル8のサイクル効率を確実に向上することができる。
As described above, in the present embodiment, the amount of refrigerant circulating in the closed circuit 9 is appropriately controlled according to the degree of supercooling SD.
Further, in the present invention, paying attention to the speed of the refrigerant to be taken in and out between the closed circuit 9 and the bypass passage 20, capillaries 34 and 38 are provided in the recovery passage 22 and the supply passage 24 of the bypass passage 20, respectively, and the electromagnetic valves 32, The flow rate of the refrigerant flowing out from 36 is reduced, and the refrigerant circulating through the closed circuit 9 through these capillaries 34 and 38 is taken in and out. As a result, the flow rate of the working fluid collected in the bypass passage 20 and supplied from the bypass passage 20 can be reduced, so that the existing solenoid valves 32 and 36 are used and the capillaries 34 and 38 are inserted into the bypass passage 20. With this simple configuration, the refrigerant flowing into and out of the bypass passage 20 can be controlled continuously and smoothly, the circulation flow control is appropriately performed, and the circulation flow control is performed while solving the problems caused by excessive and insufficient refrigerant amounts. Thus, the control stability and thus the cycle efficiency of the cycle 8 can be reliably improved.
特に、循環流量制御において、過冷却度SDをポンプ16のキャビテーションが生じない範囲で必要最小値に略一定に保持すべく上限設定値SDH及び下限設定値SDLを設定することにより、サイクル効率を大幅に向上することができる。
また、バイパス路20に流入する冷媒を一旦貯留するタンク26を有することにより、このタンク26は余剰冷媒のバッファタンクとして機能し、閉回路9に対して出し入れ可能な冷媒量を多くとることができる。これにより、過冷却度SDの変動幅に合わせて循環流量制御の制御範囲が極力広く設定可能となり、循環流量制御の制御性を更に向上できる。
In particular, in the circulation flow rate control, by setting the upper limit set value SDH and the lower limit set value SDL so as to keep the supercooling degree SD substantially constant at the required minimum value within a range where cavitation of the pump 16 does not occur, cycle efficiency is greatly increased. Can be improved.
Further, by having the tank 26 that temporarily stores the refrigerant flowing into the bypass passage 20, the tank 26 functions as a buffer tank for surplus refrigerant, and a large amount of refrigerant that can be taken in and out of the closed circuit 9 can be obtained. . Thereby, the control range of the circulation flow rate control can be set as wide as possible according to the fluctuation range of the degree of supercooling SD, and the controllability of the circulation flow rate control can be further improved.
しかも、タンク26が脱圧路28を有することにより、タンク26内が液封状態となるときにタンク26に貯留された冷媒が昇温されて膨張したとしても、タンク26から脱圧路28を介して閉回路9側に脱圧されるため、タンク26、バイパス路20、ひいてはサイクル8全体の破損を確実に防止でき、循環流量制御を適切に実施できる。
次に、第2実施形態について説明する。
In addition, since the tank 26 has the decompression path 28, even if the refrigerant stored in the tank 26 is heated and expanded when the inside of the tank 26 is in a liquid-sealed state, the decompression path 28 is removed from the tank 26. Therefore, the tank 26, the bypass 20, and thus the entire cycle 8 can be reliably prevented from being damaged, and the circulation flow rate can be appropriately controlled.
Next, a second embodiment will be described.
図3に示すように、当該第2実施形態の廃熱利用装置46は、上記第1実施形態の廃熱利用装置2に対してタンク26のタンク内圧制御を実施するものであり、他は上記第1実施形態と同一の構成をなしているため、主としてこの相違点について説明する。
当該廃熱利用装置46は、流路9aから分岐する高圧路48、流路9bに合流する低圧路50を有し、これら高圧路48及び低圧路50は、タンク26の側面の適宜位置に貫通して接続され、タンク26内における冷媒の気層部まで延設されている。
As shown in FIG. 3, the waste heat utilization apparatus 46 of the second embodiment performs tank internal pressure control of the tank 26 on the waste heat utilization apparatus 2 of the first embodiment, and the others are the above. Since the configuration is the same as that of the first embodiment, this difference will be mainly described.
The waste heat utilization device 46 has a high-pressure path 48 branched from the flow path 9 a and a low-pressure path 50 joined to the flow path 9 b, and the high-pressure path 48 and the low-pressure path 50 penetrate at appropriate positions on the side surface of the tank 26. Are connected to each other, and extend to the refrigerant layer in the tank 26.
高圧路48には、流路9a側から順に高圧側電磁弁(高圧弁)52、高圧側キャピラリチューブ(第2減速機構)54が介挿される一方、低圧路50には、タンク26側から順に低圧側電磁弁(低圧弁)56、低圧側キャピラリチューブ(第2減速機構)58が介挿されている。これらキャピラリ54,58、及び電磁弁52,56は、それぞれキャピラリ34,38、及び電磁弁32,36と同様に構成され、電磁弁52,56もECU40に電気的に接続されている。   A high pressure side solenoid valve (high pressure valve) 52 and a high pressure side capillary tube (second deceleration mechanism) 54 are inserted into the high pressure path 48 in order from the flow path 9a side, while the low pressure path 50 is sequentially inserted from the tank 26 side. A low-pressure side solenoid valve (low-pressure valve) 56 and a low-pressure side capillary tube (second reduction mechanism) 58 are inserted. The capillaries 54 and 58 and the electromagnetic valves 52 and 56 are configured in the same manner as the capillaries 34 and 38 and the electromagnetic valves 32 and 36, respectively, and the electromagnetic valves 52 and 56 are also electrically connected to the ECU 40.
また、タンク26の上蓋部の適宜位置には、タンク26内に貯留される冷媒の気層部圧力を検出する圧力センサ(内圧検出手段)60が設置され、このセンサ60もECU40に電気的に接続されている。
そして、ECU40は、センサ60の検出結果に応じて電磁弁52,56をそれぞれ開閉駆動することにより、タンク26の内圧が流路9aを流れる高圧ガス冷媒より低圧で且つ流路9bを流れる低圧ガス冷媒より高圧の中間圧とすべくタンク内圧制御を実施している(タンク内圧制御手段)。
In addition, a pressure sensor (internal pressure detecting means) 60 for detecting a gas layer pressure of the refrigerant stored in the tank 26 is installed at an appropriate position of the upper lid portion of the tank 26. The sensor 60 is also electrically connected to the ECU 40. It is connected.
Then, the ECU 40 opens and closes the electromagnetic valves 52 and 56 according to the detection result of the sensor 60, whereby the internal pressure of the tank 26 is lower than the high-pressure gas refrigerant flowing through the flow path 9a and the low-pressure gas flowing through the flow path 9b. Tank internal pressure control is performed so that the intermediate pressure is higher than that of the refrigerant (tank internal pressure control means).
以下、図4に示されるフローチャートを参照してタンク内圧制御に係る制御ルーチンについて詳しく説明する。
先ず、S00における初期状態では、電磁弁52,56は閉弁されており、タンク内圧制御が開始されるとS10に移行する。なお、本制御ルーチンは、以下のステップ実行中でも、タンク内圧制御が停止されるとS00の初期状態に戻るリセット機能を有している。
Hereinafter, the control routine relating to the tank internal pressure control will be described in detail with reference to the flowchart shown in FIG.
First, in the initial state in S00, the solenoid valves 52 and 56 are closed, and when tank internal pressure control is started, the process proceeds to S10. This control routine has a reset function to return to the initial state of S00 when the tank internal pressure control is stopped even during the following steps.
S10では、センサ60で検出されたタンク内圧Pが所定のタンク内圧上限設定値PH以上か否かを判定する。判定結果が真(Yes)でタンク内圧Pが上限設定値PH以上と判定された場合にはS20に移行し、判定結果が偽(No)でタンク内圧Pが上限設定値PHより小さいと判定された場合にはS30に移行する。
S20に移行した場合には、電磁弁56を開弁し、タンク26に貯留される冷媒の気層部を流路9bと連通させ、タンク26内の脱圧を実施する。そして、電磁弁56を開弁したままS40に移行する。
In S10, it is determined whether or not the tank internal pressure P detected by the sensor 60 is greater than or equal to a predetermined tank internal pressure upper limit set value PH. If the determination result is true (Yes) and the tank internal pressure P is determined to be equal to or higher than the upper limit set value PH, the process proceeds to S20, and the determination result is false (No) and the tank internal pressure P is determined to be smaller than the upper limit set value PH. If yes, the process proceeds to S30.
When the process proceeds to S20, the solenoid valve 56 is opened, the gas layer portion of the refrigerant stored in the tank 26 is communicated with the flow path 9b, and the pressure in the tank 26 is released. Then, the process proceeds to S40 with the solenoid valve 56 open.
一方、S30に移行した場合には、電磁弁56を閉弁してS40に移行する。
S40では、タンク内圧Pが所定のタンク内圧下限設定値PL以下か否かを判定する。判定結果が真(Yes)でタンク内圧Pが下限設定値PL以下と判定された場合にはS50に移行し、判定結果が偽(No)でタンク内圧Pが下限設定値PLより大きいと判定された場合にはS60に移行する。
On the other hand, when it transfers to S30, the solenoid valve 56 is closed and it transfers to S40.
In S40, it is determined whether or not the tank internal pressure P is equal to or lower than a predetermined tank internal pressure lower limit set value PL. If the determination result is true (Yes) and the tank internal pressure P is determined to be equal to or lower than the lower limit set value PL, the process proceeds to S50, and the determination result is false (No) and the tank internal pressure P is determined to be greater than the lower limit set value PL. If yes, the process proceeds to S60.
S50に移行した場合には、電磁弁52を開弁し、タンク26に貯留される冷媒の気層部を流路9aと連通させ、タンク26内の昇圧を実施する。そして、電磁弁52を開弁したままS10に移行する。
一方、S60に移行した場合には、電磁弁52を閉弁してS10に移行する。
このようにして、S00においてタンク内圧制御に係る制御ルーチンが開始されると、上記一連のステップが繰り返し実行される。
When the process proceeds to S50, the electromagnetic valve 52 is opened, the gas layer portion of the refrigerant stored in the tank 26 is communicated with the flow path 9a, and the pressure in the tank 26 is increased. Then, the process proceeds to S10 with the solenoid valve 52 open.
On the other hand, when it transfers to S60, the solenoid valve 52 is closed and it transfers to S10.
Thus, when the control routine related to the tank internal pressure control is started in S00, the above series of steps are repeatedly executed.
ここで、上限設定値PHを流路9aにおける高圧ガス冷媒の平均圧力に設定し、下限設定値PLを流路9bにおける低圧ガス冷媒の平均圧力に設定することにより、タンク内圧Pを閉回路9における高圧側の冷媒と低圧側の冷媒との間の中間圧にすることができ、特に上限設定値PHと下限設定値PLとの差を極力小さく設定することにより、タンク内圧Pを所定の中間圧に略一定に保持することもできる。   Here, the upper limit set value PH is set to the average pressure of the high-pressure gas refrigerant in the flow path 9a, and the lower limit set value PL is set to the average pressure of the low-pressure gas refrigerant in the flow path 9b, whereby the tank internal pressure P is closed. The intermediate pressure between the high-pressure side refrigerant and the low-pressure side refrigerant can be set to a predetermined intermediate pressure by setting the difference between the upper limit set value PH and the lower limit set value PL as small as possible. The pressure can also be kept substantially constant.
なお、循環流量制御と同様にタンク内圧制御においても、タンク内圧Pと上限設定値PHとの差、及びタンク内圧Pと下限設定値PLとの差から、それぞれS20,S50における電磁弁56,52の開弁時間を演算し、これら演算された開弁時間の経過後にS20からS40、S50からS10に移行して、タンク内圧が中間圧となるように制御しても良い。   In the tank internal pressure control as well as the circulation flow rate control, the electromagnetic valves 56 and 52 in S20 and S50 are respectively determined from the difference between the tank internal pressure P and the upper limit set value PH and the difference between the tank internal pressure P and the lower limit set value PL. The valve opening time may be calculated, and after the calculated valve opening time has elapsed, the process proceeds from S20 to S40, and from S50 to S10, and the tank internal pressure may be controlled to be an intermediate pressure.
このように、上記第1実施形態と同様、第2実施形態に係る廃熱利用装置46においても、循環流量制御の制御安定性を簡易にして向上でき、過冷却度SDが必要最小値に保持されてサイクル効率を確実に且つ大幅に向上できる。
特に当該第2実施形態の場合には、タンク内圧制御を実施することにより、タンク内圧Pが高圧冷媒と低圧冷媒との間の中間圧になり、タンク26内と高圧冷媒が流れる回収弁32側との圧力差、タンク26内と低圧冷媒が流れる供給弁36側との圧力差が適切になって、循環流量制御における冷媒回収と冷媒供給とを更に円滑に実施でき、循環流量制御の制御安定性をより一層向上できる。
As described above, in the waste heat utilization apparatus 46 according to the second embodiment, the control stability of the circulation flow rate control can be simplified and improved, and the degree of supercooling SD is kept at the necessary minimum value, as in the first embodiment. Thus, the cycle efficiency can be improved reliably and significantly.
In particular, in the case of the second embodiment, by performing tank internal pressure control, the tank internal pressure P becomes an intermediate pressure between the high-pressure refrigerant and the low-pressure refrigerant, and the recovery valve 32 side in which the high-pressure refrigerant flows in the tank 26. And the pressure difference between the tank 26 and the supply valve 36 side through which the low-pressure refrigerant flows can be made appropriate, so that the refrigerant recovery and the refrigerant supply in the circulation flow control can be performed more smoothly. The property can be further improved.
しかも、キャピラリ54,58を介するタンク内圧制御を実施することにより、キャピラリ34,38を介して実施する循環流量制御の場合と同様に、電磁弁52,56を単に開閉する場合に比して、高圧路48から流入し、低圧路50から流出する作動流体の流速を低速にできるため、タンク26に流出入する冷媒を連続的に且つ円滑に制御でき、タンク内圧制御の制御安定性、ひいては循環流量制御の制御安定性が更に向上し、サイクル効率をより一層向上できる。   Moreover, by performing the tank internal pressure control via the capillaries 54 and 58, as in the case of the circulation flow rate control performed via the capillaries 34 and 38, compared with the case where the electromagnetic valves 52 and 56 are simply opened and closed, Since the flow rate of the working fluid flowing in from the high-pressure path 48 and flowing out from the low-pressure path 50 can be reduced, the refrigerant flowing into and out of the tank 26 can be controlled continuously and smoothly, and the control stability of the tank internal pressure control, and hence the circulation The control stability of the flow rate control is further improved, and the cycle efficiency can be further improved.
以上で本発明の一実施形態についての説明を終えるが、本発明は上記各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
例えば、上記各実施形態では、冷媒の流量制限にキャピラリチューブを用いているが、閉回路9から回収、供給される冷媒の流速が低減されれば良く、キャピラリチューブの代わりにレギュレータや制限オリフィス等を用いても、循環流量制御の制御安定性が向上し、サイクル効率を確実に向上できるという効果を奏する。
Although the description of one embodiment of the present invention has been completed above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.
For example, in each of the above embodiments, a capillary tube is used to restrict the flow rate of the refrigerant. However, it is sufficient that the flow rate of the refrigerant collected and supplied from the closed circuit 9 is reduced. Even if is used, the control stability of the circulation flow rate control is improved, and the cycle efficiency can be reliably improved.
また、上記各実施形態では、タンク26への冷媒の流出入を電磁弁で制御しているが、流出入する冷媒の流速を低減させ且つリニアに冷媒量を制御できるのであれば、流路断面積を絞ってあるリニア調節弁等を用いても、少なくとも循環流量制御の制御安定性向上、サイクル効率向上という効果が得られる。
更に、上記第2実施形態では、循環流量制御とタンク内圧制御とを独立した制御ルーチンとして実施しているが、これら各制御を連動させて実施しても良く、例えば電磁弁32の開弁に連動して電磁弁56を開弁し、電磁弁36の開弁に連動して電磁弁52を開弁するようにしても、タンク26に対して冷媒を円滑に出し入れでき、この場合には、圧力センサ60が不要となるため、より簡素な構成で循環流量制御の制御安定性及びサイクル効率を向上できる。
In each of the above embodiments, the flow of the refrigerant into and out of the tank 26 is controlled by the solenoid valve. However, if the flow rate of the refrigerant flowing in and out can be reduced and the amount of the refrigerant can be controlled linearly, the flow passage is interrupted. Even if a linear control valve or the like having a reduced area is used, at least the effects of improving the control stability of the circulation flow rate control and improving the cycle efficiency can be obtained.
Furthermore, in the second embodiment, the circulation flow rate control and the tank internal pressure control are performed as independent control routines. However, these controls may be performed in conjunction with each other. For example, the solenoid valve 32 may be opened. Even if the solenoid valve 56 is opened in conjunction with the solenoid valve 36 and the solenoid valve 52 is opened in conjunction with the opening of the solenoid valve 36, the refrigerant can be smoothly taken in and out of the tank 26. Since the pressure sensor 60 is not required, the control stability and cycle efficiency of the circulation flow rate control can be improved with a simpler configuration.
本発明の第1実施形態に係る内燃機関の廃熱利用装置を示した模式図である。It is the schematic diagram which showed the waste-heat utilization apparatus of the internal combustion engine which concerns on 1st Embodiment of this invention. 図1のECUで実行される循環流量制御の制御ルーチンを示したフローチャートである。3 is a flowchart showing a control routine of circulation flow rate control executed by the ECU of FIG. 1. 本発明の第2実施形態に係る内燃機関の廃熱利用装置を示した模式図である。It is the schematic diagram which showed the waste-heat utilization apparatus of the internal combustion engine which concerns on 2nd Embodiment of this invention. 図3のECUで実行されるタンク内圧制御の制御ルーチンを示したフローチャートである。It is the flowchart which showed the control routine of the tank internal pressure control performed with ECU of FIG.
符号の説明Explanation of symbols
2 廃熱利用装置
4 エンジン(内燃機関)
8 ランキンサイクル回路
9 閉回路
9a,9d 流路(高圧回路部)
9b 流路(低圧回路部)
10 蒸発器
12 膨張機
14 凝縮器
16 冷媒ポンプ(ポンプ)
20 バイパス路
26 レシーバタンク(タンク)
28 脱圧路(脱圧手段)
32 回収側電磁弁(回収弁)
34 回収側キャピラリチューブ(減速機構、キャピラリチューブ)
36 供給側電磁弁(供給弁)
38 供給側キャピラリチューブ(減速機構、キャピラリチューブ)
48 高圧路
50 低圧路
52 高圧側電磁弁(高圧弁)
54 高圧側キャピラリチューブ(第2減速機構、キャピラリチューブ)
56 低圧側電磁弁(低圧弁)
58 低圧側キャピラリチューブ(第2減速機構、キャピラリチューブ)
60 圧力センサ(内圧検出手段)
2 Waste heat utilization device 4 Engine (internal combustion engine)
8 Rankine cycle circuit 9 Closed circuit 9a, 9d Flow path (High voltage circuit)
9b Flow path (low pressure circuit)
10 Evaporator 12 Expander 14 Condenser 16 Refrigerant Pump (Pump)
20 Bypass 26 Receiver tank (tank)
28 Pressure release path (pressure release means)
32 Recovery side solenoid valve (recovery valve)
34 Collection-side capillary tube (deceleration mechanism, capillary tube)
36 Supply side solenoid valve (supply valve)
38 Supply side capillary tube (deceleration mechanism, capillary tube)
48 High pressure path 50 Low pressure path 52 High pressure side solenoid valve (high pressure valve)
54 High-pressure side capillary tube (second reduction mechanism, capillary tube)
56 Low pressure side solenoid valve (low pressure valve)
58 Low pressure side capillary tube (second reduction mechanism, capillary tube)
60 Pressure sensor (internal pressure detection means)

Claims (7)

  1. 内燃機関の廃熱を熱媒体から熱回収する廃熱利用装置であって、
    前記熱媒体と熱交換して作動流体を加熱する蒸発器、該蒸発器を経由した作動流体を膨張させて駆動力を発生する膨張機、該膨張機を経由した作動流体を凝縮させる凝縮器、該凝縮器を経由した作動流体を前記蒸発器に向けて圧送するポンプを含み、該ポンプの出口側から前記膨張機の入口側にかけて作動流体が高圧を呈する高圧回路部を形成し、前記膨張機の出口側から前記凝縮器の入口側にかけて作動流体が低圧を呈する低圧回路部を形成する閉回路と、
    前記高圧回路部と前記低圧回路部とを連通し、前記凝縮器及び前記ポンプをバイパスするバイパス路と、
    該バイパス路の前記高圧回路部近傍に設けられ、開弁により該バイパス路内へ前記高圧回路部からの液状の作動流体を回収する回収弁と、
    該バイパス路の前記低圧回路部近傍に設けられ、開弁により該バイパス路内から前記低圧回路部へ液状の作動流体を供給する供給弁と、
    前記凝縮器を経由した作動流体の過冷却度に応じて、前記回収弁及び前記供給弁を開閉し、前記閉回路を循環する作動流体量を制御する循環流量制御手段とを有するランキンサイクル回路を備え、
    前記バイパス路には、前記回収弁及び前記供給弁から流出する作動流体の流速を低減する減速機構が配されることを特徴とする内燃機関の廃熱利用装置。
    A waste heat utilization device for recovering heat from a heat medium of waste heat of an internal combustion engine,
    An evaporator that heats the working fluid by exchanging heat with the heat medium, an expander that expands the working fluid via the evaporator to generate a driving force, a condenser that condenses the working fluid via the expander, A pump that pumps the working fluid that has passed through the condenser toward the evaporator, and forms a high-pressure circuit section in which the working fluid exhibits a high pressure from an outlet side of the pump to an inlet side of the expander; A closed circuit that forms a low-pressure circuit part in which the working fluid exhibits a low pressure from the outlet side of the condenser to the inlet side of the condenser;
    A bypass path communicating the high pressure circuit section and the low pressure circuit section, bypassing the condenser and the pump;
    A recovery valve that is provided in the vicinity of the high-pressure circuit portion of the bypass passage, and that recovers the liquid working fluid from the high-pressure circuit portion into the bypass passage by opening the valve;
    A supply valve that is provided in the vicinity of the low-pressure circuit portion of the bypass passage, and supplies a liquid working fluid from the bypass passage to the low-pressure circuit portion by opening the valve;
    A Rankine cycle circuit having a circulation flow rate control means for opening and closing the recovery valve and the supply valve according to the degree of supercooling of the working fluid passing through the condenser and controlling the amount of the working fluid circulating in the closed circuit. Prepared,
    A waste heat utilization apparatus for an internal combustion engine, wherein a speed reduction mechanism for reducing a flow rate of the working fluid flowing out from the recovery valve and the supply valve is disposed in the bypass passage.
  2. 前記バイパス路は、前記回収弁の開弁によって回収される作動流体を一旦貯留するタンクを有することを特徴とする請求項1に記載の内燃機関の廃熱利用装置。   2. The waste heat utilization apparatus for an internal combustion engine according to claim 1, wherein the bypass passage includes a tank that temporarily stores the working fluid recovered by opening the recovery valve.
  3. 前記タンクは、該タンクから前記高圧回路部に向けて前記貯留された作動流体の脱圧を実施する脱圧手段を有することを特徴とする請求項2に記載の内燃機関の廃熱利用装置。   The waste heat utilization apparatus for an internal combustion engine according to claim 2, wherein the tank includes a depressurization unit that depressurizes the stored working fluid from the tank toward the high-pressure circuit unit.
  4. 前記循環流量制御手段は、前記ポンプのキャビテーションを回避できる範囲内で、前記過冷却度を所定の最小値に略一定に保持すべく、前記回収弁及び前記供給弁を開閉し、前記閉回路を循環する作動流体量を制御することを特徴とする請求項1から3のいずれか一項に記載の内燃機関の廃熱利用装置。   The circulating flow rate control means opens and closes the recovery valve and the supply valve in order to keep the degree of supercooling at a predetermined minimum value within a range where cavitation of the pump can be avoided, and opens the closed circuit. The waste heat utilization apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein the amount of circulating working fluid is controlled.
  5. 前記ランキンサイクル回路は、前記タンクの内圧を前記高圧回路部より低圧で且つ前記低圧回路部より高圧となる中間圧とするタンク内圧制御手段を具備することを特徴とする請求項2から4のいずれか一項に記載の内燃機関の廃熱利用装置。   5. The Rankine cycle circuit comprises tank internal pressure control means for setting the internal pressure of the tank to an intermediate pressure that is lower than the high pressure circuit and higher than the low pressure circuit. A waste heat utilization apparatus for an internal combustion engine according to claim 1.
  6. 前記ランキンサイクル回路は、前記タンクと前記高圧回路部とを連通する高圧路と、前記タンクと前記低圧回路部とを連通する低圧路と、開弁により前記高圧回路部から前記タンクへガス状の作動流体を流入させる高圧弁と、開弁により前記タンクから前記低圧回路部へガス状の作動流体を流出させる低圧弁とを更に含み、
    前記タンク内圧制御手段は、前記タンクの内圧を検出する内圧検出手段を含み、該内圧検出手段により検出される前記タンクの内圧に応じて、前記高圧弁及び前記低圧弁を開閉し、前記タンクの内圧を前記中間圧にするものであって、
    前記高圧路及び前記低圧路には、それぞれ前記高圧弁及び前記低圧弁から流出する作動流体の流速を低減する第2減速機構が配されることを特徴とする請求項5に記載の内燃機関の廃熱利用装置。
    The Rankine cycle circuit includes a high-pressure path that communicates the tank and the high-pressure circuit section, a low-pressure path that communicates the tank and the low-pressure circuit section, and a valve that opens the gaseous state from the high-pressure circuit section to the tank. A high-pressure valve for flowing the working fluid; and a low-pressure valve for opening the gaseous working fluid from the tank to the low-pressure circuit by opening the valve;
    The tank internal pressure control means includes internal pressure detection means for detecting the internal pressure of the tank, and opens and closes the high pressure valve and the low pressure valve according to the internal pressure of the tank detected by the internal pressure detection means, The internal pressure is the intermediate pressure,
    6. The internal combustion engine according to claim 5, wherein a second speed reduction mechanism for reducing a flow rate of the working fluid flowing out from the high pressure valve and the low pressure valve is disposed in the high pressure path and the low pressure path, respectively. Waste heat utilization equipment.
  7. 前記減速機構及び前記第2減速機構は、キャピラリチューブであることを特徴とする請求項1から6のいずれか一項に記載の内燃機関の廃熱利用装置。   The waste heat utilization apparatus for an internal combustion engine according to any one of claims 1 to 6, wherein the speed reduction mechanism and the second speed reduction mechanism are capillary tubes.
JP2007070450A 2007-03-19 2007-03-19 Waste heat recovery apparatus for internal combustion engine Pending JP2008231981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007070450A JP2008231981A (en) 2007-03-19 2007-03-19 Waste heat recovery apparatus for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007070450A JP2008231981A (en) 2007-03-19 2007-03-19 Waste heat recovery apparatus for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008231981A true JP2008231981A (en) 2008-10-02

Family

ID=39905095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007070450A Pending JP2008231981A (en) 2007-03-19 2007-03-19 Waste heat recovery apparatus for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2008231981A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070786A1 (en) * 2008-12-18 2010-06-24 三菱電機株式会社 Exhaust heat regeneration system
JP2010265899A (en) * 2009-05-13 2010-11-25 IFP Energies Nouvelles Device for controlling working fluid circulating in closed circuit operating according to rankine cycle and method of using the same
US20100307155A1 (en) * 2008-02-14 2010-12-09 Junichiro Kasuya Waste Heat Utilization Device for Internal Combustion Engine
CN102022221A (en) * 2010-12-03 2011-04-20 北京工业大学 Organic Rankine cycle diesel engine tail gas and waste heat utilization system using two-stage single-screw expanding machine
JP2011080688A (en) * 2009-10-07 2011-04-21 Mitsubishi Electric Corp Waste heat regenerative system
JP2011196338A (en) * 2010-03-23 2011-10-06 Toyota Industries Corp Waste heat regeneration system
JP2012067945A (en) * 2010-09-22 2012-04-05 Ntt Facilities Inc Operation control method of air conditioner
WO2012074457A1 (en) * 2010-12-01 2012-06-07 Scania Cv Ab Arrangement and method for converting thermal energy to mechanical energy
US20120210713A1 (en) * 2011-01-06 2012-08-23 Cummins Intellectual Property, Inc. Rankine cycle waste heat recovery system
JP2013510984A (en) * 2009-11-14 2013-03-28 オルカン エネルギー ゲゼルシャフト ミット ベシュレンクテル ハフツング Thermodynamic device and method of operating the same
CN103228899A (en) * 2010-12-01 2013-07-31 斯堪尼亚商用车有限公司 Arrangement and method for converting thermal energy to mechanical energy
JP2013545930A (en) * 2010-12-16 2013-12-26 ダイムラー・アクチェンゲゼルシャフトDaimler AG Waste heat recovery device, operating method
WO2014098843A1 (en) 2012-12-19 2014-06-26 Mack Trucks, Inc. Apparatus and method of disabling a waste heat recovery apparatus working fluid flow
WO2014129909A1 (en) 2013-02-19 2014-08-28 Viking Heat Engines As Device and method for operational and safety control of a heat engine
JP2014196866A (en) * 2013-03-29 2014-10-16 サンデン株式会社 Combined cycle device
US20160201520A1 (en) * 2015-01-14 2016-07-14 Ford Global Technologies, Llc Method and system of controlling a thermodynamic system in a vehicle
CN107013270A (en) * 2017-05-12 2017-08-04 同济大学 A kind of dynamic adjustable organic rankine cycle system of working medium charging amount
WO2019117794A1 (en) * 2017-12-11 2019-06-20 Scania Cv Ab An arrangement and a method for controlling a whr-system
DE102011122099B4 (en) * 2010-12-23 2020-02-13 Cummins Intellectual Properties, Inc. Rankine cycle system and method

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100307155A1 (en) * 2008-02-14 2010-12-09 Junichiro Kasuya Waste Heat Utilization Device for Internal Combustion Engine
US9441576B2 (en) * 2008-02-14 2016-09-13 Sanden Holdings Corporation Waste heat utilization device for internal combustion engine
US20110167818A1 (en) * 2008-12-18 2011-07-14 Mitsubishi Electric Corporation Exhaust heat recovery system
WO2010070786A1 (en) * 2008-12-18 2010-06-24 三菱電機株式会社 Exhaust heat regeneration system
CN102099560A (en) * 2008-12-18 2011-06-15 三菱电机株式会社 Exhaust heat regeneration system
JP4935935B2 (en) * 2008-12-18 2012-05-23 三菱電機株式会社 Waste heat regeneration system
US8713939B2 (en) 2008-12-18 2014-05-06 Mitsubishi Electric Corporation Exhaust heat recovery system
JP2010265899A (en) * 2009-05-13 2010-11-25 IFP Energies Nouvelles Device for controlling working fluid circulating in closed circuit operating according to rankine cycle and method of using the same
JP2011080688A (en) * 2009-10-07 2011-04-21 Mitsubishi Electric Corp Waste heat regenerative system
JP2013510984A (en) * 2009-11-14 2013-03-28 オルカン エネルギー ゲゼルシャフト ミット ベシュレンクテル ハフツング Thermodynamic device and method of operating the same
JP2011196338A (en) * 2010-03-23 2011-10-06 Toyota Industries Corp Waste heat regeneration system
JP2012067945A (en) * 2010-09-22 2012-04-05 Ntt Facilities Inc Operation control method of air conditioner
US9127573B2 (en) 2010-12-01 2015-09-08 Scania Cv Ab Arrangement and method for converting thermal energy to mechanical energy
CN103228899A (en) * 2010-12-01 2013-07-31 斯堪尼亚商用车有限公司 Arrangement and method for converting thermal energy to mechanical energy
CN103249938A (en) * 2010-12-01 2013-08-14 斯堪尼亚商用车有限公司 Arrangement and method for converting thermal energy to mechanical energy
US20130263594A1 (en) * 2010-12-01 2013-10-10 Ola Hall Arrangement and method for converting thermal energy to mechanical energy
US9341087B2 (en) * 2010-12-01 2016-05-17 Scania Cv Ab Arrangement and method for converting thermal energy to mechanical energy
JP2014501874A (en) * 2010-12-01 2014-01-23 スカニア シーブイ アクチボラグ Apparatus and method for converting thermal energy into mechanical energy
KR101785015B1 (en) * 2010-12-01 2017-10-12 스카니아 씨브이 악티에볼라그 Arrangement and method for converting thermal energy to mechanical energy
WO2012074457A1 (en) * 2010-12-01 2012-06-07 Scania Cv Ab Arrangement and method for converting thermal energy to mechanical energy
KR101782075B1 (en) * 2010-12-01 2017-09-26 스카니아 씨브이 악티에볼라그 Arrangement and method for converting thermal energy to mechanical energy
CN103249938B (en) * 2010-12-01 2015-02-11 斯堪尼亚商用车有限公司 Arrangement and method for converting thermal energy to mechanical energy
RU2544621C2 (en) * 2010-12-01 2015-03-20 Сканиа Св Аб Design and method of heat energy conversion to mechanical energy
CN102022221A (en) * 2010-12-03 2011-04-20 北京工业大学 Organic Rankine cycle diesel engine tail gas and waste heat utilization system using two-stage single-screw expanding machine
JP2013545930A (en) * 2010-12-16 2013-12-26 ダイムラー・アクチェンゲゼルシャフトDaimler AG Waste heat recovery device, operating method
DE102011122099B4 (en) * 2010-12-23 2020-02-13 Cummins Intellectual Properties, Inc. Rankine cycle system and method
US9334760B2 (en) 2011-01-06 2016-05-10 Cummins Intellectual Property, Inc. Rankine cycle waste heat recovery system
US20120210713A1 (en) * 2011-01-06 2012-08-23 Cummins Intellectual Property, Inc. Rankine cycle waste heat recovery system
US8800285B2 (en) * 2011-01-06 2014-08-12 Cummins Intellectual Property, Inc. Rankine cycle waste heat recovery system
US20150308318A1 (en) * 2012-12-19 2015-10-29 Mack Trucks, Inc. Apparatus and method of disabling a waste heat recovery apparatus working fluid flow
EP2935818A4 (en) * 2012-12-19 2016-07-27 Mack Trucks Apparatus and method of disabling a waste heat recovery apparatus working fluid flow
WO2014098843A1 (en) 2012-12-19 2014-06-26 Mack Trucks, Inc. Apparatus and method of disabling a waste heat recovery apparatus working fluid flow
WO2014129909A1 (en) 2013-02-19 2014-08-28 Viking Heat Engines As Device and method for operational and safety control of a heat engine
EP2959144A4 (en) * 2013-02-19 2016-12-07 Viking Heat Engines As Device and method for operational and safety control of a heat engine
JP2014196866A (en) * 2013-03-29 2014-10-16 サンデン株式会社 Combined cycle device
US20160201520A1 (en) * 2015-01-14 2016-07-14 Ford Global Technologies, Llc Method and system of controlling a thermodynamic system in a vehicle
US9784141B2 (en) * 2015-01-14 2017-10-10 Ford Global Technologies, Llc Method and system of controlling a thermodynamic system in a vehicle
CN107013270A (en) * 2017-05-12 2017-08-04 同济大学 A kind of dynamic adjustable organic rankine cycle system of working medium charging amount
WO2019117794A1 (en) * 2017-12-11 2019-06-20 Scania Cv Ab An arrangement and a method for controlling a whr-system

Similar Documents

Publication Publication Date Title
CN102588053B (en) Wasteheat recovery system for internal combustion engine
JP4059616B2 (en) Heat pump water heater
JP4140544B2 (en) Waste heat utilization equipment
EP2204902B1 (en) Waste heat utilization device for internal combustion engine
US7530390B2 (en) Air conditioner for a motor vehicle
JP5661044B2 (en) Automotive Clausius Rankine Cycle System, Control Method for Automotive Clausius Rankine Cycle System, and Automotive
JP5597597B2 (en) Power generator
EP2336537B1 (en) Waste heat recovery system of internal combustion engine
EP2420767B1 (en) Heat-pump hot water supply and air conditioning apparatus
US6748762B2 (en) Absorption-refrigerator
JP4974714B2 (en) Water heater
US7950230B2 (en) Waste heat recovery apparatus
WO2012043335A1 (en) Apparatus for utilizing waste heat from internal combustion engine
US7131290B2 (en) Non-condensing gas discharge device of condenser
JP5163620B2 (en) Waste heat regeneration system
CN102042119B (en) Waste heat regeneration system
CN101059084B (en) Waste heat utilization device and control method thereof
JP4781390B2 (en) Refrigeration cycle equipment
CN101387241B (en) Waste heat recovery apparatus
KR101222331B1 (en) Heat-pump hot water apparatus
KR100522650B1 (en) Absorption Type Refrigerator and Controlling Method Therefor
JP2007263401A (en) Heat storage device
JP5201227B2 (en) Rankine cycle system abnormality detection device
WO2010070786A1 (en) Exhaust heat regeneration system
JP4676284B2 (en) Waste heat recovery equipment for steam turbine plant