EP2498947A1 - Procédé de soudage de pièces en superalliages résistants aux températures élevées avec un débit massique d'apport de métal particulier - Google Patents

Procédé de soudage de pièces en superalliages résistants aux températures élevées avec un débit massique d'apport de métal particulier

Info

Publication number
EP2498947A1
EP2498947A1 EP10776679A EP10776679A EP2498947A1 EP 2498947 A1 EP2498947 A1 EP 2498947A1 EP 10776679 A EP10776679 A EP 10776679A EP 10776679 A EP10776679 A EP 10776679A EP 2498947 A1 EP2498947 A1 EP 2498947A1
Authority
EP
European Patent Office
Prior art keywords
welding
zone
heat
heat input
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10776679A
Other languages
German (de)
English (en)
Inventor
Bernd Burbaum
Andres Gasser
Torsten Jambor
Stefanie Linnenbrink
Norbert Pirch
Nikolai Arjakine
Georg Bostanjoglo
Torsten Melzer-Jokisch
Selim Mokadem
Michael Ott
Rolf WILKENHÖNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Siemens AG
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, Siemens AG filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to EP10776679A priority Critical patent/EP2498947A1/fr
Publication of EP2498947A1 publication Critical patent/EP2498947A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • B05B7/228Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using electromagnetic radiation, e.g. laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/007Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of copper or another noble metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/002Repairing turbine components, e.g. moving or stationary blades, rotors
    • B23P6/007Repairing turbine components, e.g. moving or stationary blades, rotors using only additive methods, e.g. build-up welding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/20Manufacture essentially without removing material
    • F05B2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05B2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/30Manufacture with deposition of material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/80Repairing, retrofitting or upgrading methods

Definitions

  • the present invention relates to a method for
  • Gas turbine workpieces for example of gas turbine show ⁇ feln.
  • Blades of gas turbines are exposed to high temperatures and heavy mechanical loads during operation.
  • nickel-based superalloys are therefore preferably used, which can be strengthened by precipitation of a ⁇ 'phase.
  • cracks can occur in the blades that continue to expand over time.
  • Such cracks eg due to the extreme mechanical stress during operation of a gas turbine, but they can also already occur during the manufacturing process ⁇ . Since the production of turbine blades and other workpieces from such superalloys is complex and costly, it is endeavored to produce as little waste as possible in the production and to ensure a long life of the products produced.
  • gas turbine blades are regularly maintained and replaced if necessary, due to be ⁇ drive-related stress proper functioning can not be readily ensured.
  • they are worked up again as far as possible. They can then be used again in a gas turbine.
  • a build-up welding in damaged areas may be necessary to restore the original wall thickness.
  • Turbine blades that have already cracked during the manufacturing process can, for example, with build-up welding be made ready for use, so that the committee can be reduced in the production.
  • a welding process with preceding overaging is described for example in US 6,120,624, a welding process, which is performed on a preheated workpiece, for example in US 5,319,179.
  • this method can not be performed on all areas of the workpiece due to lack of accessibility of befindli ⁇ in a protective gas container workpiece.
  • an alternative welding method for build-up welding which is suitable in particular for ⁇ '-hardened nickel-based superalloys and does not have the abovementioned disadvantages or only to a reduced extent.
  • the object is achieved by a method for build-up welding according to claim 1.
  • Embodiments of the invention and can be advantageously combined with each other as desired.
  • a Aufbrin- occurs gene of welding material on the workpiece surface by means of a heat transfer zone and a feed zone to ⁇ drove the welding filler material in the heat transfer zone.
  • the heat input zone and the feed zone are moved over the workpiece surface during welding. The movement can take place along a welding direction, for example on a linear path or in a path oscillating around the welding direction.
  • the mass feed rate according to the invention is -S 350 mg / min.
  • the welding ⁇ parameters are selected so that the cooling rate is at least 8000 K / s during the solidification of the material.
  • the main parameters available for setting the cooling rate of at least 8000 K / s during the solidification of the material are the process parameters with respect to the welding power and the diameter of the heat input zone, for example in the form of a laser power and a diameter of the laser beam, the feed (the process speed ) and, if necessary, the flow of supplied filler metal.
  • the required cooling rate for the material to be welded can be adjusted by suitable adaptation of these parameters.
  • the process speed in this case may be at least 250 mm / min, in particular more than 500 mm / min.
  • the welding power and the diameter of the heat input zone can at a process speed of more than 500 mm / min, the procedural ⁇ rensparameter respect. Be set so that the cool down ⁇ rate during the solidification of the material is at least 8000 K / s be ⁇ carries.
  • the melt in the weld he ⁇ stares dendritic, that is, in a tree-like structure, wherein the growth directions of the dendrites along the welding track vary as the orientation of the possible directions of growth of the dendrites varied to the temperature gradient in the solidification front. That the direction of growth with the ge ⁇ slightest tendency to temperature gradients or with the lowest growth rate prevails.
  • bacteria form in front of the solidification front, the currency ⁇ rend caught the solidification of the solidification front ⁇ to. These germs initiate dendrite growth directions that are statistically distributed. .
  • the novel process is suitable for example for welding ⁇ SEN of workpieces from a ⁇ '-containing nickel-base super alloy by means of a welding material having a ⁇ ' - is forming nickel-based superalloy material. It can then be a high strength in the weld metal due to the use of similar filler material and an acceptable
  • Welding quality ie a very low number of cracks and a very low average crack length can be achieved.
  • ⁇ welding method has a high efficiency.
  • the method can be designed, in particular, as a build-up welding method in which the deposition of welding filler metal takes place in layers.
  • the welding directions of successive layers can be rotated relative to one another, in particular by 90 °.
  • Welding direction are moved in a direction about the welding direction oscillating path over the workpiece surface.
  • the irregularly distributed dendrite orientation is found mainly in the upper half of the welding track.
  • a previously applied layer in less than half of their
  • Diameters are very small on average. Grain boundaries generally provide a weak point with respect to the cracking of transient voltages during the welding process or a subsequent heat treatment. Due to the small extension of a grain boundary in the plane and the irregular ⁇ uniform orientation in the welded with the inventive method, the weld, the weld with respect to the cracking insensitive so that the welding process can be performed at room temperature.
  • the inventive method can be applied to both polykristalli ⁇ nen as well as directionally solidified or single-crystal substrates.
  • a ⁇ '-containing nickel-based superalloy can be used as a welding additive.
  • a heat treatment can be carried out on the application of the filler metal . With a matched to the weld heat treatment so the desired ⁇ 'morphology can be adjusted. This serves to further improve the strength of the weld metal.
  • a welding device to welding of high temperature superalloys, which is suitable for performing the ER inventive method, comprises a heat ⁇ source for generating a heat input zone on the work ⁇ piece surface, a supply means for supplying welding filler material comprising a heat source and a transmembrane ⁇ port device for Generating a relative movement between the heat input zone and the supply device on the one hand and the workpiece surface on the other.
  • the transport device is advantageously connected to the heat source and the feed direction for the filler metal in order to move the heat source and the supply device in order to bring about the relative movement. This is usually less expensive than moving the workpiece.
  • a laser can be used as the heat source in the welding device according to the invention.
  • the welding device further comprises ⁇ erprogramm a control unit with a tax, which adjusts the welding parameters, that the cooling rate is at least 8000 Kelvin per second during the solidification of the material.
  • the Steuerein ⁇ standardize the welding parameters related to.
  • the welding performance as well as the diameter of the heat introduction zone set so that the cooling rate is at least 8000 Kelvin per second during the solidification of the material.
  • the welding can be carried out here with a process speed of at least 250 mm per minute, in particular with a process speed of more than 500 mm per minute.
  • the relative movement can in particular be controlled so that the heat input zone and the feed zone along a
  • control unit can perform the relative movement with or without oscillation so that the welding directions are rotated in successive layers against each other, for example. around 90 °.
  • Figure 1 shows an example of a gas turbine in a longitudinal ⁇ partial section.
  • FIG. 2 shows a turbine blade in a perspective view.
  • Figure 3 shows a gas turbine combustor in a partially sectioned perspective view.
  • FIG. 4 shows a schematic representation of the welding device according to the invention.
  • FIG. 5 shows the welding path for a first layer of welding filler material.
  • FIG. 6 shows the welding path for a second layer
  • FIG. 1 shows by way of example a gas turbine 100 in a longitudinal partial section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103 with a shaft 101, which is also referred to as a turbine runner.
  • an intake housing 104 a compressor 105, for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example.
  • Each turbine stage 112 is formed, for example, from two blade rings . As seen in the direction of flow of a working medium 113, in the hot gas channel 111 of a row of guide vanes 115, a series 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example.
  • the working medium 113 expands in a pulse-transmitting manner, so that the blades 120 drive the rotor 103 and this drives the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the flow direction of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield elements lining the annular combustion chamber 110. To withstand the prevailing temperatures, they can be cooled by means of a coolant.
  • substrates of the components can have a directional structure, ie they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • Iron, nickel or cobalt-based superalloys are used as material for the components, in particular for the turbine blades 120, 130 and components of the combustion chamber 110.
  • Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949.
  • the blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and is yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earth or hafnium).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and is yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earth or hafnium.
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1.
  • a thermal barrier coating On the MCrAlX may still be present a thermal barrier coating, and consists for example of Zr02, Y203-Zr02, ie it is not, partially or completely stabilized by Ytt ⁇ riumoxid and / or calcium oxide and / or magnesium oxide.
  • Suitable coating processes such as electron beam evaporation (EB-PVD), produce stalk-shaped grains in the thermal barrier coating.
  • EB-PVD electron beam evaporation
  • the guide vane 130 has an inner housing 138 of the turbine 108 facing guide vane root (not Darge here provides ⁇ ) and a side opposite the guide-blade root vane root.
  • the vane head is the rotor 103 facing and fixed to a mounting ring 140 of the stator 143.
  • FIG. 2 shows a perspective view of a rotor blade 120 or guide vane show ⁇ 130 of a turbomachine, which extends along a longitudinal axis of the 121st
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 to each other, a securing region 400, an adjoining blade or vane platform 403 and a blade 406 and a blade tip 415.
  • the blade 130 may have at its blade tip ⁇ 415 another platform (not shown).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is, for example, as a hammerhead out staltet ⁇ . Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has for a medium which flows past the scene ⁇ felblatt 406 on a leading edge 409 and a trailing edge 412th
  • blades 120, 130 in all areas 400, 403, 406 of the blade 120, 130, for example, massive metallic materials, in particular superalloys, are used.
  • superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949.
  • the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof. Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
  • Such monocrystalline workpieces takes place e.g. by directed solidification from the melt.
  • These are casting processes in which the liquid metallic alloy is transformed into a monocrystalline structure, i. to the single-crystal workpiece, or directionally solidified.
  • dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, ie grains that run the entire length of the workpiece and here, in common parlance, referred to as directionally solidified) or a monocrystalline structure, ie the whole workpiece be ⁇ is made of a single crystal.
  • a columnar grain structure columnar, ie grains that run the entire length of the workpiece and here, in common parlance, referred to as directionally solidified
  • a monocrystalline structure ie the whole workpiece be ⁇ is made of a single crystal.
  • directionally solidified structures means both single crystals which have no grain boundaries or at most small-angle grain boundaries, as well as columnar crystal structures which are probably grain boundaries running in the longitudinal direction but no transverse grain boundaries. have boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures.
  • the blades 120, 130 may have coatings against corrosion or oxidation, e.g. B. (MCrAlX, M is at least one element of the group iron (Fe), cobalt (Co),
  • Nickel (Ni) is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf)).
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1.
  • the density is preferably 95% of the theoretical
  • the layer composition comprises Co-30Ni-28Cr-8A1-0, 6Y-0, 7Si or Co-28Ni-24Cr-10Al-0, 6Y.
  • nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-IIAl-O, 4Y-2Re or Ni-25Co-17Cr-10A1-0, 4Y-1 are also preferably used , 5Re.
  • a thermal barrier coating which is preferably the outermost layer, and consists for example of Zr0 2 , Y2Ü3-Zr02, ie it is not, partially ⁇ or fully stabilized by yttria
  • the thermal barrier coating covers the entire MCrAlX layer. Suitable coating processes, such as electron beam evaporation (EB-PVD), produce stalk-shaped grains in the thermal barrier coating. Other coating methods are conceivable, for example atmospheric plasma spraying (APS), LPPS, VPS or CVD.
  • APS atmospheric plasma spraying
  • LPPS LPPS
  • VPS VPS
  • CVD chemical vapor deposition
  • the heat insulation layer may have ⁇ porous, micro- or macro-cracked compatible grains for better thermal shock resistance.
  • the thermal barrier coating is therefore preferably more porous than the
  • Refurbishment means that components 120, 130 may have to be freed of protective layers after use (eg by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. Thereafter, a ⁇ As the coating of the component 120, 130, after which the component 120, the 130th
  • the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and also has, if necessary, film cooling holes 418 (indicated by dashed lines) on.
  • FIG. 3 shows a combustion chamber 110 of a gas turbine.
  • the combustion chamber 110 is configured, for example, as so-called an annular combustion chamber, in which are arranged a plurality of in the circumferential direction about an axis of rotation 102
  • Burners 107 open into a common combustion chamber space 154, the flames 156 produce.
  • the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the axis of rotation 102 around.
  • the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C.
  • the combustion chamber wall 153 is provided on its the Häme ⁇ medium M side facing with an inner lining formed of heat shield elements 155.
  • Each heat shield element 155 made of an alloy is equipped on the working fluid side with a particularly heat-resistant protective layer (MCrAlX layer and / or ceramic coating) or is made of high-temperature-resistant material (solid ceramic blocks).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
  • MCrAlX means: M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1.
  • a ceramic Wär ⁇ medämm Anlagen be present and consists for example of ZrÜ2, Y203 ⁇ Zr02, ie it is not, partially or completely stabilized by yttrium and / or calcium oxide and / or magnesium oxide.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • the heat insulating layer can ⁇ ner to have better thermal shock resistance porous, micro- or macro-cracked pERSonal.
  • Reprocessing means that heat shield elements 155, after being used, where appropriate, Protective layers must be freed (eg by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. If necessary, cracks in the heat shield element 155 are also repaired.
  • the heat shield elements 155 are then, for example, hollow and possibly still have cooling holes (not shown) which open into the combustion chamber space 154.
  • FIG. 4 shows a highly schematic representation of a welding device 1.
  • This comprises a laser 3 and a powder feed device 5 with which a powdered welding filler can be applied to the region of a workpiece 9 to be welded.
  • a heat input zone 11 is formed on the workpiece surface, in which also the powder 13 is introduced from the powder feed device 5.
  • the laser power is between 100W and 300W, and preferably between 100W and 200W, more particularly between 100W and 150W.
  • the welding material is melted well and also melted the ground, thus resulting in a tight weld.
  • the laser 3 and the powder feeder 5 are arranged on a scanning device 15, which is a displacement of the
  • the Process speed is at least 250mm / min
  • the scanning device 15 of the present embodiment allows a displacement of the laser 3 and the powder feeder 5 perpendicular to the component surface (z direction in Figure 4). With the aid of the scanning device 15, the heat input zone and the impact zone of the powder can thus be displaced along a predetermined path.
  • Scanning device can, for example, find a robotic arm use.
  • the diameter of the laser beam is in particular 500 ⁇ to 700 ⁇ , especially 600 ⁇ .
  • the supplied welding material can be heated advantageously.
  • the control of the movement mediated by the scanning device 15 is effected by a control unit 17, which also controls the other parameters of the welding process.
  • the control of other parameters of the welding process but also by an additional control, that is separated from the STEU ⁇ augmentation of the movement sequence take place.
  • a movable component holder instead of the scanning device 15 for moving the laser 3 and the powder feed device 5, a movable component holder can also be used. In the context of the invention, only the relative movement between the laser 3 and the powder feeder 5 on the one hand and the workpiece 9 is important.
  • the method according to the invention for build-up welding of a workpiece surface can be used for material application, in particular for multilayer material application, on the region 7 of a component 9 to be welded.
  • the component 9 does not need to be preheated or over-aged by means of a heat treatment.
  • the turbine blade of the present embodiment is made of a ⁇ '-reinforced nickel base superalloy, for example, IN738LC, IN939, Rene80, IN6203DS, PWA1483SX, Alloy 247, etc.
  • the area to be welded 7 in the surface 10 of the turbine blade 9 is electrodeposited in layers , wherein the heat input zone to ⁇ together with the impact area for the powder 13 along a welding direction over the area to be welded 7 of the turbine blade 9 are moved.
  • the powder 13 in the present case is a powder of a ⁇ '-containing nickel-base superalloy, for example from IN 738LC, IN 939, Rene 80, IN
  • FIG. 1 The path PI traveled by the heat input zone 11 and the impact area of the powder 13 during buildup welding of the first layer on the region 7 to be welded is shown schematically in FIG.
  • the figure shows the turbine blade 9 with the region to be welded 7 and the welding direction Sl during deposition welding of the first layer 19.
  • the laser 3 and the powder feed device 5 are displaced slightly along the z-direction of the scanning device 15.
  • the welding direction S2 is rotated by 90 ° with respect to the welding direction S1 for the first layer.
  • the path P2 of the heat input zone 11 and the impingement area for the powder 13 during buildup welding of the second layer 21 is shown in FIG. Even when on ⁇ up welding of the second layer 21 11 oscillates the heat input zone together with the impingement of the powder 13 in a direction perpendicular to the welding direction S2. Overall, therefore, a meander-shaped path P2 of the heat input zone 11 and the impact area for the powder 13 results over the region 7 to be welded.
  • the tracks (paths) of the 2nd layer can be parallel offset or welded perpendicular to the tracks (paths) of the first layer. All of these variants can be used in the context of the method according to the invention.
  • the oscillation can be selected such that the entire area to be welded 7 is swept with a single path along the welding direction, as shown in FIG. 5, or so that only a part of the area to be welded 7 is swept over and for cladding the entire area several adjacent paths P2 in
  • Welding direction S2 are traversed, as shown in Figure 6.
  • the method of the heat input zone 11 and the Auf Economicsbe ⁇ realm of the powder 13 along the path PI or P2 is performed in the present embodiment with a process con ⁇ speed of at least 500 mm / min.
  • the mass feed rate is -S 350 mg / min, preferably
  • Remelting depth is indicated by dashed lines in FIG. Basically, other than those in the present
  • the growth directions of the dendrites vary along a path PI, P2. The reason for this is that the orientation of the possible growth directions of the dendrites to the temperature gradient varies, with the
  • the turbine blade 9 may be a dressedbe ⁇ act are subjected to the leads to the desired ⁇ 'morphology is established. This serves to further improve the strength of the welded portion of the turbine blade 9.
  • a build-up welding can take place at room temperature and without prior aging of the component to be welded, the formation of solidification cracks and re-melting cracks being suppressed.
  • there is only a very slight influence of the base material since Because of the small heat-affected zone (there is no Vorhei ⁇ zen) and the suppression of reflow cracks in the heat affected zone, only a very low heat input into the substrate occurs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Laser Beam Processing (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

L'invention concerne un procédé de soudage de pièces (9) en superalliages résistants aux températures élevées. Ce procédé consiste à produire une zone d'application de chaleur (11) sur la surface (10) de la pièce au moyen d'une source de chaleur (3), à amener un métal d'apport (13) dans la zone d'application de chaleur au moyen d'un dispositif d'amenée (5) et à produire un mouvement relatif entre la source de chaleur (3) et le dispositif d'amenée (5) d'une part et la surface (10) de la pièce d'autre part au moyen d'un dispositif de transport (15). De plus, selon le procédé de soudage, le débit massique d'apport est inférieur ou égal à 350 mg/min.
EP10776679A 2009-11-13 2010-11-10 Procédé de soudage de pièces en superalliages résistants aux températures élevées avec un débit massique d'apport de métal particulier Withdrawn EP2498947A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10776679A EP2498947A1 (fr) 2009-11-13 2010-11-10 Procédé de soudage de pièces en superalliages résistants aux températures élevées avec un débit massique d'apport de métal particulier

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09014234A EP2322313A1 (fr) 2009-11-13 2009-11-13 Procédé de soudure de pièces usinées en superalliages résistant aux températures avec un débit particulier du matériau d'apport de soudage
EP10776679A EP2498947A1 (fr) 2009-11-13 2010-11-10 Procédé de soudage de pièces en superalliages résistants aux températures élevées avec un débit massique d'apport de métal particulier
PCT/EP2010/067188 WO2011058045A1 (fr) 2009-11-13 2010-11-10 Procédé de soudage de pièces en superalliages résistants aux températures élevées avec un débit massique d'apport de métal particulier

Publications (1)

Publication Number Publication Date
EP2498947A1 true EP2498947A1 (fr) 2012-09-19

Family

ID=42102635

Family Applications (2)

Application Number Title Priority Date Filing Date
EP09014234A Ceased EP2322313A1 (fr) 2009-11-13 2009-11-13 Procédé de soudure de pièces usinées en superalliages résistant aux températures avec un débit particulier du matériau d'apport de soudage
EP10776679A Withdrawn EP2498947A1 (fr) 2009-11-13 2010-11-10 Procédé de soudage de pièces en superalliages résistants aux températures élevées avec un débit massique d'apport de métal particulier

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP09014234A Ceased EP2322313A1 (fr) 2009-11-13 2009-11-13 Procédé de soudure de pièces usinées en superalliages résistant aux températures avec un débit particulier du matériau d'apport de soudage

Country Status (5)

Country Link
US (1) US9035213B2 (fr)
EP (2) EP2322313A1 (fr)
CN (1) CN102639283B (fr)
RU (1) RU2510994C2 (fr)
WO (1) WO2011058045A1 (fr)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1251809C (zh) * 2000-10-17 2006-04-19 尼奥弗托尼克斯公司 通过反应沉积形成涂覆的装置及方法
DE102010034337A1 (de) * 2010-08-14 2012-02-16 Mtu Aero Engines Gmbh Verfahren zum Verbinden einer Turbinenschaufel mit einer Turbinenscheibe oder einem Turbinenring
US9352419B2 (en) 2011-01-13 2016-05-31 Siemens Energy, Inc. Laser re-melt repair of superalloys using flux
US20150275687A1 (en) * 2011-01-13 2015-10-01 Siemens Energy, Inc. Localized repair of superalloy component
US9511447B2 (en) * 2013-12-12 2016-12-06 General Electric Company Process for making a turbulator by additive manufacturing
CH705662A1 (de) * 2011-11-04 2013-05-15 Alstom Technology Ltd Prozess zur Herstellung von Gegenständen aus einer durch Gamma-Prime-Ausscheidung verfestigten Superlegierung auf Nickelbasis durch selektives Laserschmelzen (SLM).
EP2614917A1 (fr) * 2012-01-10 2013-07-17 Siemens Aktiengesellschaft Soudage laser de superalliages à base de nickel
US9095923B2 (en) * 2012-07-16 2015-08-04 General Electric Company Method of welding alloy articles
EP2754530B1 (fr) * 2013-01-11 2017-03-29 Siemens Aktiengesellschaft Mode de fonctionnement lors de la refonte de fissures
EP2754527A1 (fr) * 2013-01-11 2014-07-16 Siemens Aktiengesellschaft Production de grains fins lors du soudage par rechargement
EP2756915A1 (fr) * 2013-01-18 2014-07-23 Siemens Aktiengesellschaft Soudage par beurrage avec refonte préalable
US10190220B2 (en) 2013-01-31 2019-01-29 Siemens Energy, Inc. Functional based repair of superalloy components
EP2950973A1 (fr) * 2013-01-31 2015-12-09 Siemens Energy, Inc. Procédé de réparation par re-fusion par laser des superalliages à l'aide d'un flux
KR20150113149A (ko) * 2013-01-31 2015-10-07 지멘스 에너지, 인코포레이티드 분말형 용제를 사용하는 선택적 레이저 용융 및 소결
WO2014131444A1 (fr) * 2013-02-27 2014-09-04 Slm Solutions Gmbh Appareil et méthode de production de pièces de fabrication avec une microstructure sur mesure
EP2774712A1 (fr) * 2013-03-07 2014-09-10 Siemens Aktiengesellschaft Procédé laser avec des plages de rayonnement laser différentes au sein d'un rayon
DE102013008396B4 (de) 2013-05-17 2015-04-02 G. Rau Gmbh & Co. Kg Verfahren und Vorrichtung zum Umschmelzen und/oder Umschmelzlegieren metallischer Werkstoffe, insbesondere von Nitinol
WO2015017093A1 (fr) * 2013-08-01 2015-02-05 Siemens Energy, Inc. Réparation de composants de super-alliage par ajout d'alliage en poudre et de matériau de flux
ES2710226T3 (es) * 2013-10-30 2019-04-23 United Technologies Corp Reprocesamiento por soldadura por deposición láser de polvo para piezas fundidas de níquel soldables sin fusión del metal base pertenecientes a motores de turbina de gas
EP2893994B1 (fr) * 2014-01-14 2020-07-15 General Electric Technology GmbH Procédé de fabrication d'un composant métallique ou céramique par fusion laser sélective
DE102014200834A1 (de) * 2014-01-17 2015-07-23 Siemens Aktiengesellschaft Pendelndes Schweißverfahren
DE102014208435A1 (de) * 2014-05-06 2015-11-12 Siemens Aktiengesellschaft Anordnung und Verfahren zum schichtweisen Erstellen einer Auftragschicht
KR101795994B1 (ko) 2014-06-20 2017-12-01 벨로3디, 인크. 3차원 프린팅 장치, 시스템 및 방법
KR20170033893A (ko) * 2014-07-28 2017-03-27 지멘스 에너지, 인코포레이티드 플럭스를 이용한 반사성 금속들의 레이저 금속 가공
US20160045983A1 (en) * 2014-08-14 2016-02-18 Siemens Energy, Inc. Method of laser processing of volatile alloys
US20160096234A1 (en) * 2014-10-07 2016-04-07 Siemens Energy, Inc. Laser deposition and repair of reactive metals
CN104526171B (zh) * 2014-11-04 2016-10-12 南方增材科技有限公司 金属构件电熔成形方法
CN104526115B (zh) * 2014-11-04 2017-01-18 南方增材科技有限公司 核电站压力容器筒体电熔成形方法
JP6840540B2 (ja) 2014-11-14 2021-03-10 株式会社ニコン 造形装置
EP3766608A1 (fr) 2014-11-14 2021-01-20 Nikon Corporation Appareil et procédé de formage
JP6935355B2 (ja) * 2014-11-14 2021-09-15 株式会社ニコン 造形装置及び造形方法
US10113531B2 (en) * 2015-08-26 2018-10-30 General Electric Company Methods for repairing wind turbine rotor blades
EP3370948A4 (fr) 2015-11-06 2019-07-24 Velo3d Inc. Impression en trois dimensions au moyen du système adept
DE102015222084A1 (de) * 2015-11-10 2017-05-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Parameter beim Auftragschweißen bei oszillierender Erstarrungsfront
JP6437419B2 (ja) * 2015-11-11 2018-12-12 日鐵住金溶接工業株式会社 炭酸ガスシールドアーク溶接用フラックス入りワイヤ
JP2017094360A (ja) 2015-11-25 2017-06-01 日鐵住金溶接工業株式会社 Ar−CO2混合ガスシールドアーク溶接用フラックス入りワイヤ
DE102015224091A1 (de) * 2015-12-02 2017-06-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Reparaturschweißverfahren mit manueller und maschineller Vorgehensweise
US10183330B2 (en) 2015-12-10 2019-01-22 Vel03D, Inc. Skillful three-dimensional printing
US9919360B2 (en) 2016-02-18 2018-03-20 Velo3D, Inc. Accurate three-dimensional printing
EP3216554B1 (fr) * 2016-03-09 2020-05-06 MTU Aero Engines GmbH Composant comprenant des ouvertures et des evidements proteges contre l'usure et son procede de fabrication
EP3263316B1 (fr) 2016-06-29 2019-02-13 VELO3D, Inc. Impression et imprimantes tridimensionnelles
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US10661341B2 (en) 2016-11-07 2020-05-26 Velo3D, Inc. Gas flow in three-dimensional printing
WO2018129089A1 (fr) 2017-01-05 2018-07-12 Velo3D, Inc. Optique dans l'impression en trois dimensions
US20180250771A1 (en) 2017-03-02 2018-09-06 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US20180281283A1 (en) 2017-03-28 2018-10-04 Velo3D, Inc. Material manipulation in three-dimensional printing
DE102017213043A1 (de) * 2017-07-28 2019-01-31 Siemens Aktiengesellschaft Schweißen von Nickelbasis-Legierungen unter Verwendung von Sauerstoff als Prozessgas
US20190091802A1 (en) * 2017-09-25 2019-03-28 General Electric Company Method for forming article, method for forming turbine bucket, and turbine bucket
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10144176B1 (en) 2018-01-15 2018-12-04 Velo3D, Inc. Three-dimensional printing systems and methods of their use
WO2019212529A1 (fr) * 2018-05-01 2019-11-07 Siemens Energy, Inc. Apport de brasure en superalliage à base de nickel
JP7402601B2 (ja) * 2018-05-09 2023-12-21 リンテック株式会社 個片体形成装置および個片体形成方法
DE102018215609A1 (de) * 2018-09-13 2020-03-19 Thyssenkrupp Ag Herstellungsverfahren für Wälzlagerkäfige, insbesondere Großwälzlagerkäfige, und Wälzlagerkäfige
CN114340876A (zh) 2019-07-26 2022-04-12 维勒3D股份有限公司 三维物体形成的质量保证

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3156968A (en) * 1962-03-22 1964-11-17 Jr William D White Pressure roller and method of manufacture
US4804815A (en) * 1987-06-01 1989-02-14 Quantum Laser Corporation Process for welding nickel-based superalloys
DE3926479A1 (de) 1989-08-10 1991-02-14 Siemens Ag Rheniumhaltige schutzbeschichtung, mit grosser korrosions- und/oder oxidationsbestaendigkeit
WO1991002108A1 (fr) 1989-08-10 1991-02-21 Siemens Aktiengesellschaft Revetement anticorrosion resistant aux temperatures elevees, notamment pour elements de turbines a gaz
US5401307A (en) 1990-08-10 1995-03-28 Siemens Aktiengesellschaft High temperature-resistant corrosion protection coating on a component, in particular a gas turbine component
JPH04120259A (ja) * 1990-09-10 1992-04-21 Agency Of Ind Science & Technol レーザ溶射法による機器・部材の製造方法および装置
US5160822A (en) * 1991-05-14 1992-11-03 General Electric Company Method for depositing material on the tip of a gas turbine engine airfoil using linear translational welding
DE4141927C2 (de) 1991-12-19 1995-06-14 Mtu Maintenance Gmbh Verfahren und Vorrichtung zum Schweißen von Werkstücken
US5453329A (en) * 1992-06-08 1995-09-26 Quantum Laser Corporation Method for laser cladding thermally insulated abrasive particles to a substrate, and clad substrate formed thereby
US5395584A (en) * 1992-06-17 1995-03-07 Avco Corporation Nickel-base superalloy compositions
JP3370676B2 (ja) 1994-10-14 2003-01-27 シーメンス アクチエンゲゼルシヤフト 腐食・酸化及び熱的過負荷に対して部材を保護するための保護層並びにその製造方法
EP0892090B1 (fr) 1997-02-24 2008-04-23 Sulzer Innotec Ag Procédé de fabrication de structure monocristallines
EP0861927A1 (fr) 1997-02-24 1998-09-02 Sulzer Innotec Ag Procédé de fabrication de structures monocristallines
EP1306454B1 (fr) 2001-10-24 2004-10-06 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium pour la protection d'un élément contre l'oxydation et la corrosion aux températures élevées
EP1082216B1 (fr) 1998-04-29 2001-11-21 Siemens Aktiengesellschaft Produit pourvu d'une couche de protection anticorrosion, et procede de realisation d'une couche de protection anticorrosion
WO1999067435A1 (fr) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Alliage a solidification directionnelle a resistance transversale a la rupture amelioree
US6120624A (en) 1998-06-30 2000-09-19 Howmet Research Corporation Nickel base superalloy preweld heat treatment
US6054672A (en) * 1998-09-15 2000-04-25 Chromalloy Gas Turbine Corporation Laser welding superalloy articles
US6231692B1 (en) 1999-01-28 2001-05-15 Howmet Research Corporation Nickel base superalloy with improved machinability and method of making thereof
US6811744B2 (en) * 1999-07-07 2004-11-02 Optomec Design Company Forming structures from CAD solid models
JP2003529677A (ja) 1999-07-29 2003-10-07 シーメンス アクチエンゲゼルシヤフト 耐熱性の構造部材及びその製造方法
US6676892B2 (en) * 2000-06-01 2004-01-13 Board Of Regents, University Texas System Direct selective laser sintering of metals
US6495793B2 (en) * 2001-04-12 2002-12-17 General Electric Company Laser repair method for nickel base superalloys with high gamma prime content
EP1312437A1 (fr) * 2001-11-19 2003-05-21 ALSTOM (Switzerland) Ltd Procédé pour réparer une fissure
EP1319729B1 (fr) 2001-12-13 2007-04-11 Siemens Aktiengesellschaft Pièce résistante à des températures élevées réalisé en superalliage polycristallin ou monocristallin à base de nickel
US20030010809A1 (en) * 2002-02-15 2003-01-16 Lewandowski Thongkhank P Low resistance electrical & thermal bond and method of making same
US7009137B2 (en) * 2003-03-27 2006-03-07 Honeywell International, Inc. Laser powder fusion repair of Z-notches with nickel based superalloy powder
US6994920B2 (en) * 2003-10-31 2006-02-07 General Electric Company Fusion welding method and welded article
JP4551082B2 (ja) 2003-11-21 2010-09-22 三菱重工業株式会社 溶接方法
WO2008015795A1 (fr) * 2006-08-02 2008-02-07 Kabushiki Kaisha Toshiba Procédé de prévention de l'érosion et élément avec section de prévention de l'érosion
CN101480756B (zh) * 2009-02-06 2011-06-08 沈阳大陆激光技术有限公司 航空发动机轮盘叶片一体的高温合金涡轮盘坯料的制备方法
US8726501B2 (en) * 2009-08-31 2014-05-20 General Electric Company Method of welding single crystal turbine blade tips with an oxidation-resistant filler material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011058045A1 *

Also Published As

Publication number Publication date
RU2510994C2 (ru) 2014-04-10
WO2011058045A1 (fr) 2011-05-19
US20120267347A1 (en) 2012-10-25
CN102639283A (zh) 2012-08-15
CN102639283B (zh) 2015-12-09
US9035213B2 (en) 2015-05-19
EP2322313A1 (fr) 2011-05-18
RU2012124077A (ru) 2013-12-20

Similar Documents

Publication Publication Date Title
EP2311597B1 (fr) Procédé de soudage laser de pièces en superalliages haute température avec contrôle de certains paramètres du soudage laser pour obtenir une vitesse de refroidissement particulière
EP2280801B1 (fr) Procédé de soudage de pièces d'usinage en alliages superréfractaires
EP2498947A1 (fr) Procédé de soudage de pièces en superalliages résistants aux températures élevées avec un débit massique d'apport de métal particulier
EP1957685B1 (fr) Procede de reparation de fissures dans des composants
EP1954844B1 (fr) Procede de reparation de fissures dans des composants et materiau d'apport destine au soudage de composants
WO2011054864A1 (fr) Soudage monocristallin de matériaux à solidification directionnelle
EP1931498A1 (fr) Procede de reparation d'un composant ayant une microstructure orientee
WO2009144077A1 (fr) Procédé pour souder en fonction d’une orientation préférentielle du substrat
WO2008107282A1 (fr) Procédé pour réparer par brasage une pièce, sous vide et pression partielle d'oxygène réglée
WO2009124802A1 (fr) Procédé de soudage à courbe de température régulée et dispositif utilisé à cette fin
WO2009127504A1 (fr) Composant avec cordon de soudure et procédé de fabrication d'un cordon de soudure
EP2254726A2 (fr) Élément à soudures superposées et procédé de production correspondant
EP2186594A1 (fr) Procédé et dispositif de préchauffage lors du soudage utilisant un deuxième faisceau laser
WO2009100794A1 (fr) Procédé et dispositif pour fondre des surfaces incurvées
EP2501516A1 (fr) Soudure monocristalline de matériaux à solidification directionnelle
EP2226149A1 (fr) Procédé de soudure en deux étapes
EP1595633B1 (fr) utilisation d'un mélange gazeux en soudage.
EP2583784A1 (fr) Préparation d'au moins un poste à souder avant le soudage et composant
WO2018114766A1 (fr) Procédé d'assemblage de segments de composants à gaz chaud par brasage et composant à gaz chaud correspondant
WO2012152524A1 (fr) Soudage monocristallin de matières à solidification directionnelle
WO2009118213A1 (fr) Dispositif de soudage à chambre de soudage et procédé de soudage correspondant
WO2011057661A1 (fr) Composant comportant des zones de ductilité différente et procédé de fabrication d'un composant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120416

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20130705

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160419

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160830