EP2498919B1 - Application device for applying and irradiating a coating agent that can be cured by radiation - Google Patents

Application device for applying and irradiating a coating agent that can be cured by radiation Download PDF

Info

Publication number
EP2498919B1
EP2498919B1 EP10779713.6A EP10779713A EP2498919B1 EP 2498919 B1 EP2498919 B1 EP 2498919B1 EP 10779713 A EP10779713 A EP 10779713A EP 2498919 B1 EP2498919 B1 EP 2498919B1
Authority
EP
European Patent Office
Prior art keywords
radiation
coating agent
application device
permeable
application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10779713.6A
Other languages
German (de)
French (fr)
Other versions
EP2498919A1 (en
Inventor
Dietmar Wieland
Konrad Ortlieb
Wolfgang Tobisch
Hans-Georg Fritz
Frank Herre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duerr Systems AG
Original Assignee
Duerr Systems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Duerr Systems AG filed Critical Duerr Systems AG
Publication of EP2498919A1 publication Critical patent/EP2498919A1/en
Application granted granted Critical
Publication of EP2498919B1 publication Critical patent/EP2498919B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B16/00Spray booths
    • B05B16/40Construction elements specially adapted therefor, e.g. floors, walls or ceilings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B16/00Spray booths
    • B05B16/60Ventilation arrangements specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/10Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/10Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces
    • B05B3/1064Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces the liquid or other fluent material to be sprayed being axially supplied to the rotating member through a hollow rotating shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/04Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/08Plant for applying liquids or other fluent materials to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • B05B13/0431Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation with spray heads moved by robots or articulated arms, e.g. for applying liquid or other fluent material to 3D-surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • B05B13/0447Installation or apparatus for applying liquid or other fluent material to conveyed separate articles
    • B05B13/0452Installation or apparatus for applying liquid or other fluent material to conveyed separate articles the conveyed articles being vehicle bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • B05B13/0447Installation or apparatus for applying liquid or other fluent material to conveyed separate articles
    • B05B13/0457Installation or apparatus for applying liquid or other fluent material to conveyed separate articles specially designed for applying liquid or other fluent material to 3D-surfaces of the articles, e.g. by using several moving spray heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/10Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces
    • B05B3/1092Means for supplying shaping gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/04Discharge apparatus, e.g. electrostatic spray guns characterised by having rotary outlet or deflecting elements, i.e. spraying being also effected by centrifugal forces
    • B05B5/0426Means for supplying shaping gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/047Discharge apparatus, e.g. electrostatic spray guns using tribo-charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying

Definitions

  • the invention relates to an apparatus and a method for applying a radiation-curable coating composition to a surface to be coated. Furthermore, the invention relates to associated coating agent application components.
  • an exposure space which can irradiate painted components with a plurality of UV lamps.
  • the exposure room includes a floor, a ceiling, two side walls, a front wall and a back wall, all of which are provided with multiple UV emitters.
  • a disadvantage of the exposure space is in particular that certain areas to be irradiated can not be optimally irradiated by means of the radiators. This is particularly problematic for geometrically complex objects, such as motor vehicle body components, the undercuts, depressions, curved sections, cavities, etc., which by means of the above-described exposure space often can not be sufficiently accurately irradiated. So it may be that certain areas too strong, others in turn are under-irradiated, which can lead to a reduced surface quality.
  • a further disadvantage is that separate application and irradiation components as well as separate paint application and exposure chambers are required from each other. Furthermore, two separate steps are required, namely the application of paint and subsequent curing by means of UV lamps. This is associated with a relatively high time, energy and cost.
  • EP 1 002 587 A2 discloses the production of cured lacquer layers using, for example, a paint robot for the automotive industry with an electrostatic rotary atomizer, wherein the paint is irradiated within the atomizer just before the nozzle for curing with UV light.
  • EP 1074307 A2 discloses a method for applying a UV curable liquid or pasty plastic strand to a substrate, for example for sealing bead seams on sheet metal parts in the automotive industry.
  • an optical waveguide with its light exit point can open into its flow path within a nozzle head, so that the material is activated before it exits the application nozzle.
  • a spray gun for applying an actinic radiation curable coating with a spray nozzle and positioned outside the spray gun outputs for actinic radiation, for example in the form of a UV LED array, with the coating material is irradiated after exiting the spray nozzle.
  • the object of the invention is to provide an improved application device and an improved method for applying a radiation-curable coating agent to a surface to be coated.
  • a radiation-curable coating agent for applying a radiation-curable coating agent to a surface to be coated.
  • the irradiation of the coating composition should be effective, homogeneous and / or uniform.
  • the time and cost for the application and curing of the coating composition should be reduced.
  • the invention encompasses the general technical teaching of a radiation-curable coating composition prior to impact To apply radiation to a surface to be coated in order to achieve an effective, homogeneous and / or uniform curing of the coating composition.
  • the application device for applying a radiation-curable coating composition to a surface to be coated is characterized in particular by an application unit for dispensing the coating agent and at least one radiation delivery section for emitting radiation, wherein the at least one radiation delivery section is configured and arranged such that the coating agent projects Impact on the surface to be coated with the radiation comes into contact.
  • an application unit for dispensing the coating agent and at least one radiation delivery section for emitting radiation, wherein the at least one radiation delivery section is configured and arranged such that the coating agent projects Impact on the surface to be coated with the radiation comes into contact.
  • the radiation used may comprise actinic radiation (photocatalytic radiation), corpuscular radiation (e.g., electron beam curing), wave radiation, radioactive radiation, ultraviolet radiation and other suitable radiation.
  • actinic radiation photocatalytic radiation
  • corpuscular radiation e.g., electron beam curing
  • wave radiation radioactive radiation
  • ultraviolet radiation and other suitable radiation.
  • radiation sources for generating radiation for example, gas discharge lamps, photodiodes, ultraviolet light emitting diodes and other commercially available radiation sources may be used, e.g. Mercury vapor high / medium pressure emitters, metal halide emitters, cross silver vapor top / low pressure lamps, microwave excited electrodeless lamps, capillary emitters, etc.
  • a further advantage is that the application and irradiation of coating agent can be carried out substantially simultaneously, without the requirement of the spatial separation of application and irradiation spaces or of application and irradiation components.
  • This technique of irradiating the lacquer before it has reached the substrate is preferably possible in conjunction with lacquer systems which preferably have a delayed cure after irradiation.
  • lacquer systems which preferably have a delayed cure after irradiation.
  • lacquer systems which include e.g. Lacquer systems based on cationic photoinitiators or photolatent bases.
  • this technique is applicable for radical Fotoinitiation, which usually runs very fast.
  • Reflective means may be provided to reflect the radiation onto the coating agent and / or to reflect back to the coating agent, resulting in more effective irradiation.
  • the reflector means preferably comprise aluminum.
  • the at least one radiation delivery section may be provided in the application device, in a metering device for metering the coating agent (for example a gear metering pump, a piston metering device, etc.) in the application unit, preferably in a paint tube of a rotary atomizer, for example a module (eg a mixer) for surface enlargement and / or mixing of the coating agent in the paint tube and / or at another suitable location in the application unit may be provided on the application unit, preferably on or in an end face of a rotary atomizer, which faces a surface to be coated during operation of the rotary atomizer , in particular on a steering gas ring and / or external charging means for external charging the coating agent, on a bell cup for a rotary atomizer, on a distributor disc for a rotary atomizer, on a steering gas ring of a rotary atomizer, in a coating agent line for supplying the coating agent to the application unit, and / or on or in a coating agent line
  • the at least one radiation delivery section comprises at least one radiation-transmissive section.
  • the radiation-transmissive section can emit radiation over a large area. It is particularly advantageous because the radiation coupling-in area for introducing radiation into the radiation-transmissive section can be many times smaller than the area for emitting radiation onto the coating agent.
  • the surface for emitting radiation is, for example, but not limited to, the surface of a mixer described below, the inner peripheral surface of a closed-walled portion through which coating agent flows, or the coating agent overflow surface of a bell cup.
  • the radiation-transmissive portion may surround a portion to be flowed through by coating means to emit radiation substantially uniformly inward over its preferably closed inner circumference.
  • the radiation-transmissive section is preferably closed-walled in cross-section in order to irradiate through-flowing coating agent over its substantially entire inner circumference.
  • the radiation-transmissive section thus preferably has a closed inner peripheral surface.
  • the radiation transmissive portion is a substantially tubular portion, annular portion, or any other closed-walled portion provided to uniformly emit radiation preferably radially inwardly over substantially its entire inner circumference.
  • the radiation-transmissive portion comprises a radiopaque outer region and a radiation-transmissive inner region.
  • the radiopaque outer portion and the radiopaque inner portion are preferably provided on the tubular portion so that the inner portion may be a radially inner portion and the outer portion may be a radially outer portion.
  • a radiation conductor such as a light pipe, glass fibers, etc.
  • the radiation-transmissive portion may be provided so that radiation may propagate in its longitudinal direction and circumferential direction.
  • the radiation-transmissive inner region is provided to allow transmission of a portion of the radiation inwardly toward the flowing coating agent, whereas the radiopaque outer region may preferentially reflect a portion of the radiation inwardly toward the radiation-transmissive inner region.
  • the radiation-transmissive section can deliver radiation to the coating medium flowing through it over its substantially entire inner circumference, and, on the other hand, that the radiation-transmissive section can have a sufficiently long extent in the direction of flow of the coating medium to ensure the homogeneity and / or uniformity of the coating Irradiation continues to improve.
  • the at least one radiation-permeable section is provided on or in a color tube in the application unit, for example in a rotary atomizer, but may also be provided in a coating agent line for supplying the coating agent to the application unit.
  • An advantage of positioning in the application unit is the short time and space between irradiation and application of the coating agent.
  • the at least one radiation delivery section has at least one radiation conductor, such as a light guide, glass fibers, etc., which projects into a section of the application device to be flowed through by coating means, for example into a color tube in the application unit and / or into a coating agent line for supplying the coating agent to the application unit.
  • coating means for example into a color tube in the application unit and / or into a coating agent line for supplying the coating agent to the application unit.
  • At least two radiation conductors are provided which protrude differently far into the section to be flowed through by the coating agent.
  • the radiation conductors can project into the section through which the coating agent flows so that they are distributed essentially uniformly over the flow cross section of the coating agent.
  • the application device comprises a mixer as a module for surface enlargement and / or mixing of the coating agent, which is arranged in a portion of the application device to be flowed through by coating agent, preferably in a coating medium line for supplying the coating agent to the application unit and / or in the Application unit, for example in a paint tube of a rotary atomizer.
  • the module is radiation-transmissive.
  • the module is thus a radiation-transmissive section.
  • the module is designed according to the invention to deliver radiation to the coating agent. It is possible to couple a radiation conductor, such as an optical fiber, glass fibers, etc., to the module to provide the module with radiation so that it can deliver the radiation to passing coating agent.
  • a radiation conductor such as an optical fiber, glass fibers, etc.
  • the advantage of this is that the module essentially over its entire surface Can irradiate coating agent, resulting in a particularly effective, homogeneous and / or uniform irradiation.
  • the module according to the invention is a mixer, in particular a static mixer, preferably a Kenics mixer (for example spiral, vortex or grid system).
  • a mixer in particular a static mixer, preferably a Kenics mixer (for example spiral, vortex or grid system).
  • the mixer must be correspondingly small in size, and still achieve sufficient mixer results, which conventional mixer are not able.
  • a mixer suitable for the invention could preferably be made by a generative process (for example, rapid prototyping, e.g., laser sintering, laser melting, etc.).
  • the application unit comprises an atomizer, preferably a rotary atomizer. It is preferred that the atomizer has an end face, which preferably has a steering gas ring and faces the surface to be coated during operation of the application device, a distributor disc, a bell cup, a color tube and / or external charging means.
  • the at least one radiation delivery section and / or the at least one radiation-transmissive section in the metering device, on or in the frontal surface, on the distributor disc, on the bell cup, in or on the color tube, and / or on the external charging means.
  • a radiation delivery to the coating agent is preferably carried out in the metering device, on or in the front side Surface, through the distributor disc, through the bell cup, preferably the Be Anlagenungsstoffsüberströmflache, through the paint tube, and / or by the external charging means.
  • the front surface, preferably the steering gas ring, the distributor disc, the bell cup, the external charging means, and / or the paint tube made of radiation-transparent material.
  • the radiation delivery section may be provided on or in the front surface such that the radiation is directed substantially at the bell cup, the radiation is directed substantially directly at a coating agent spray, and / or the radiation is substantially atop one already at coating surface applied coating agent is directed.
  • the radiation delivery section or sections may be arranged immovably on the end face or may be arranged to be movable relative to the application unit.
  • the radiation delivery sections are provided in an annular arrangement on the frontal surface.
  • photodiodes, UV light-emitting diodes, etc., or openings, to which radiation is brought by means of radiation conductors can be positioned distributed around a coating agent outlet opening of the application unit.
  • An advantage of an irradiation in the region of the distributor disk, the bell cup, above all on the coating agent overflow surface of the bell cup, by the external charging agent, and / or in flight (in the air) of the coating agent is that there the coating agent is present over a large area, so that irradiation is particularly effectively can act on the coating agent to achieve an effective, homogeneous and / or uniform irradiation.
  • the color tube preferably of a rotary atomizer, in such a way that radiation is directed from the color tube to the distributor plate and / or radially inward to the coating medium flowing through.
  • the steering gas ring comprises gas nozzles for the delivery of inert gas and / or air.
  • the gas nozzles are provided in an annular arrangement on the front surface.
  • the discharged inert gas serves, on the one hand, to prevent unwanted reactions with constituents of the normal atmosphere and, on the other hand, to form the jet of spray emitted by the bell cup.
  • the gas nozzles may be directed to the bell cup or to the spray jet. It is also possible to direct the gas nozzles on a spray edge of the bell cup, which would contribute to atomization of the coating composition.
  • the inert gas there may be used, for example, nitrogen, carbon dioxide, water vapor, a rare gas or a polymeric gas which may be provided in an inert gas reservoir.
  • means for cooling inert gas may be provided to ensure that the inert gas at a lower temperature than the surface to be coated meets the surface to be coated. This leads advantageously to a fogging of the surface to be coated with inert gas.
  • the application unit, the at least one radiation delivery section, and / or the metering device on or in a movable robot arm, preferably at the free end of the mobile robot arm.
  • the robot can position the application unit and / or the radiation delivery means exactly and predefined on the surface to be coated or on the surface to be coated, wherein preferably also the radiation dose, the radiation intensity, the radiation angle and other parameters are controllable for which appropriate control units can be provided.
  • This allows an exact, substantially precise and predefined irradiation and / or application of even complex three-dimensional objects, as are common, for example, in motor vehicle body construction.
  • the radiation delivery section (s) may be a radiation source for generating radiation, i. "active" generate radiation.
  • the radiation delivery section or sections can be provided with radiation, preferably by coupling the radiation delivery section (s) to at least one remotely positioned radiation source via at least one radiation conductor or, for example, by the radiation delivery section (s) of a radiation source Radiation source to be illuminated.
  • the radiation is thus generated “actively” from a remotely located radiation source, whereas the one or more Radiation delivery sections Although radiation, but not “active” generate.
  • a radiation source such that its heat output does not adversely affect the coating agent
  • to provide insulators to thermally separate the radiation unit from the coating agent to provide means for cooling the radiation source, to position the radiation source so that its heat dissipation occurs the coating agent may act to lower its viscosity or to accelerate its curing reaction, and / or to provide means for heating the coating agent to temper the coating agent to affect its curing reaction.
  • the application device may include a paint booth.
  • the paint booth can be operated in recirculation mode with inert gas or under vacuum.
  • the inner walls of the paint booth may be configured as area radiators to further irradiate pre-irradiated coating agent, and / or may further be provided in the paint booth a movable robot having a radiation source to further irradiate pre-irradiated coating agent.
  • coated and irradiated surfaces with an anti-stick and / or easy-to-clean coating. It is also possible to provide means to rinse surfaces contacted by coating agents and exposed to radiation with rinse and / or crosslinking-inhibiting components.
  • a radiation-conducting or radiation-permeable plastic can be used, such as PLEXIGLAS SUNACTIVE ® XT or PLEXIGLAS SUNACTIVE ® GS from Röhm, quartz, quartz glass, special UV-transparent glass, eg quartz glass GE 021Al from Momentive Performance Materials, etc .. Also plastics that are used in the production of the above-mentioned parts by means of stereolithography can be used.
  • the invention extends the field of application of radiation-curable coating compositions.
  • the invention finds application in pigmented paints as coating agents.
  • Pigmented paints usually have such a high layer thickness on the surface to be coated that adequate irradiation can not be achieved with conventional radiation methods (because of the pigmentation), since the irradiation does not reach to the bottom. Due to the irradiation according to the invention and optional subsequent irradiation, radiation curing can now also be used with pigmented paints.
  • a first basecoat (BC1) and a second basecoat (BC2) can be applied without prior irradiation and the subsequent clearcoat (CC) is irradiated and applied according to the invention.
  • This also requires irradiation of the painted surface.
  • the invention also allows irradiation of coating agent in one, two or more stages or with a plurality of predefined parameters, such as radiation dose, radiation intensity, radiation angle, etc., whereby specifically different degrees of crosslinking can be generated.
  • a "light" irradiation preferably in or on the application unit, is usually sufficient for rather lightly loaded surfaces (for example, inner surfaces such as a door entry in a motor vehicle body component).
  • Particularly stressed areas e.g., exterior surfaces of an automotive body component
  • the painting of the interior of a body with a paint system based on latent bases could be done (these are not as high quality as acrylate systems, but require significantly less irradiation) and then cured according to the invention.
  • the subsequent higher-quality outer coating with acrylate systems can be conventional (without irradiation during painting) and can then be cured, for example, with conventional UV lamps.
  • the advantage of this is that the outdoor area, which is more stressed but can also be better achieved with UV lamps, are protected very well with the high-quality acrylate system and the interior area with the latent-base system is sufficiently protected and yet effective (also in poorly accessible areas) can be crosslinked with the application of the invention.
  • Another advantage of the invention is that due to the fact of irradiation of the coating composition before impacting on the surface to be coated, the process time can be reduced.
  • monocure systems can advantageously be used with the invention.
  • Monocure systems are those that are only (exclusively) cured by radiation. In conventional paint booths, including curing, such monocure systems could not be used satisfactorily on substrates with pronounced "shadow areas" (areas that are not sufficiently accessible with conventional UV lamps).
  • the use of monocure systems requires a particularly effective irradiation, which can be ensured by the invention.
  • the invention provides a universal applicator for applying and irradiating radiation-curable coating compositions, which can respond to a wide variety of requirements such as radiation dose, radiation intensity, complex objects to be coated, various coating agents, etc., which has hitherto not been possible with conventional application apparatus was.
  • VOC emissions volatile organic compounds
  • the invention finds particular application in the painting of motor vehicle body components (also module coatings).
  • the invention is also applicable to, for example, the rail, aircraft, marine and / or wind energy industries (e.g., rotor blades).
  • the invention can also be advantageously used in medical technology (for example germ-resistant UV coatings), in construction (for example facade elements made of polymers with UV coatings), in the field of organic photovoltaics (for example UV-curing individual layers).
  • the radiation can also be introduced into isolated (high-voltage) atomizers via suitable materials, for example with the aid of radiation and / or light guides, battery operation, potential-separated power supply similar to an electric turbine, etc.
  • the invention encompasses all radiation-curable coating compositions, preferably paints, as well as all suitable coating methods, preferably coating methods, sometimes also the flooding and the inkjet method.
  • the invention also includes an associated method for the application device described above.
  • the method is characterized in particular by the fact that at least one radiation delivery section brings the coating agent into contact with the radiation before impinging on the surface to be coated.
  • the invention also encompasses associated coating agent application components, in particular rotary atomizer components, preferably a bell cup, a distributor disk, a color tube, external charging means for external charging of the coating agent, a module for increasing the surface area and / or mixing of a coating agent, and / or a metering device.
  • the coating agent application component may be made of radiation-transmissive material or at least have radiation-transmissive material.
  • a radiation-permeable plastic can be used, such as PLEXIGLAS SUNACTIVE ® XT or PLEXIGLAS SUNACTIVE ® GS from Röhm, quartz, quartz glass, special UV-transparent glass, such as quartz glass GE 021A1 of Momentive performance materials, etc .. Also plastics that are at The production of the above-mentioned parts by means of stereolithography can be used.
  • the radiation delivery section, the at least one radiation-transmissive section, the coating agent application component, the bell cup, the distributor plate, the color tube, sections of the frontal surface, the external charging means, the module, and / or sections of the metering device are in particular radiation-transmissive to actinic radiation (photocatalytic radiation), ultraviolet Radiation, corpuscular radiation (eg electron beam curing), and / or radioactive radiation.
  • Fig. 1 shows a schematic representation of a longitudinal section of a radiation delivery section 10 for emitting radiation S, which is to be arranged in an application device according to a first embodiment of the invention.
  • the radiation delivery section 10 comprises a radiation-transmissive section 11.
  • the radiation delivery section 10 or the radiation-transmissive section 11 is provided substantially tubular or annular and comprises a radiopaque radial outer region 11A and a radiation-transmissive radially inner region 11B.
  • Arrow P1 shows the flow direction of the coating agent B.
  • the section A has an inlet for the coating agent B and an outlet for the coating agent B and is closed in cross-section closed-walled by the radiation-transmissive portion 11, on the one hand to allow flow through the coating agent B and on the other hand to completely enclose the coating agent B in the circumferential direction.
  • the portion A is circumferentially bounded by the radiation-transmissive inner portion 11B.
  • the radiation delivery section 10 can be positioned at any position between a coating agent reservoir and an outlet opening of an application unit, wherein a position close to the outlet opening is to be preferred in order to minimize the distance between the irradiation location and the outlet opening for the coating agent B or the surface to be coated.
  • a radiation conductor 12, preferably a light guide, is coupled on the one hand to the radiation-transmissive section 11, and on the other hand to a radiation source, preferably a light source.
  • the radiation delivery section 10, in particular the radiation-transmissive section 11 can be supplied with radiation S in order to deliver it to the coating agent B.
  • the radiation source and the radiation delivery section 10 are thus positioned away from each other.
  • Fig. 2 shows a schematic representation of a cross section of the radiation delivery section 10 along line L1-L1 in FIG Fig. 1 , There too, the section A, the radiation-transmissive section 11, the radiopaque radial outer region 11A and the radiation-permeable radially inner region 11B, through which the coating agent B flows, can be seen. As in Fig. 2 can be seen, the emission of radiation S takes place over the entire inner circumference of the radiation-permeable radially inner region 11B in the section A to be flowed through by the coating agent B.
  • the radiation-emitting portion 10 and the radiation-transmissive portion 11 is supplied via the radiation conductor 12 with radiation S to irradiate the coating agent B.
  • the supplied Radiation S propagates in the radiation-transmissive portion 11 in its longitudinal direction P2 and its circumferential direction P3 by being partially reflected between the radiopaque radial outer region 11A and the radiation-transmissive radially inner region 11B. In this case, part of the radiation S can escape from the radiation-permeable radially inner region 11B and act on the coating agent B.
  • the radiation-transmissive portion 11 is designed so that it can emit radiation S over its entire inner peripheral surface and over its entire longitudinal extent.
  • the through-flowing coating agent B can also be fully irradiated in the circumferential direction, and not only from one or two sides, whereby it is possible to effectively, homogeneously and / or uniformly irradiate the through-flowing coating agent B over the entire flow cross-section.
  • a in Fig. 1 shown radiation input surface 13 for introducing the radiation S into the radiation-transmissive portion 11 is many times smaller than the area for emitting the radiation to the coating agent B. That is, in the first embodiment, that the radiation injection surface 13 is many times smaller than the inner peripheral surface of the tubular radiation-transmissive portion 11.
  • Fig. 3 shows a schematic representation of a protruding into a to be flowed through by coating agent B section A radiation delivery section 20 according to a second embodiment of the invention.
  • Arrow P1 indicates the flow direction of the coating agent B.
  • the radiation delivery section 20 comprises a radiation conductor 20A, from which four further radiation conductors 20B, 20C, 20D and 20E protrude into the section A.
  • the radiation conductors 20B, 20C, 20D and 20E each have a radiation exit opening at their free end in order to irradiate the coating agent B. Similar to the first embodiment, the radiation delivery section 20 is connected to a radiation source via a radiation conductor 20A.
  • Radiation conductors 20B, 20C, 20D and 20E protrude at different distances into section A in order to ensure effective, homogeneous and / or uniform irradiation over the flow cross-section of coating agent B.
  • substantially point-like irradiations of the coating agent B take place, due to the arrangement of the radiation conductors 20B, 20C, 20D and 20E in the section A through which coating agent B flows, effective, homogeneous and / or uniform irradiation of the coating agent B can be achieved ,
  • the inner surface of the section to be flowed through by the coating agent B prefferably provided, at least in regions, with a reflector, e.g. a reflective coating, an aluminum layer, etc. to provide.
  • a reflector e.g. a reflective coating, an aluminum layer, etc.
  • Fig. 4 shows a cross-sectional view of a portion of an application unit 35, which is to be arranged in an application device according to a third embodiment of the invention.
  • the application unit 35 is preferably around a rotary atomizer.
  • the rotary atomizer 35 includes a plurality of radiation emitting portions 30, such as a bell cup 30A, a distributor disk 30B, a plurality of radiation means 30D and a paint tube 30C.
  • the radiation means 30D are provided on or in an end surface 31 and directed towards the bell cup 30A (in another embodiment, the radiation means may also be provided so as to be directed directly onto a coating agent spray and / or directly onto the surface to be coated), to provide this with radiation S for delivery to the coating agent B.
  • a steering gas ring 32 is further provided with gas nozzles 32A.
  • the bell cup 30A and / or the distributor disc 30B are at least partially radiation-permeable.
  • the color tube 30C is coupled to a radiation source to be supplied with radiation S.
  • the paint tube 30C is directed to the distributor disc 30B to provide it with radiation S for delivery to the coating agent B.
  • the emission of radiation to the coating agent B thus takes place through the bell cup 30A, preferably via the coating medium overflow surface of the bell cup 30A, and through the distributor disk 30B.
  • the radiation means 30D are arranged in an annular arrangement on the front face 31 around the bell cup 30A.
  • the radiation means 30D are supplied with radiation S via a respective radiation conductor in order to emit the radiation in the direction of the bell cup 30A.
  • the Radiation means 30D and the radiation sources are thus positioned away from each other. This is particularly advantageous when the application unit 35 is to be arranged at the free end of a robot arm, since the weight at the free end of the robot arm can be kept low, which is advantageous for the sensitive robot dynamics.
  • the radiation means 30D as radiation sources for generating radiation S directly on the application unit 35, preferably on or in the frontal area 31.
  • the radiation means 30D are in FIG. 4 directed to the bell cup 30A to irradiate it. Since the bell cup 30A is at least partially radiation-permeable, in particular the coating agent B located on the coating medium overflow surface of the bell cup 30A is irradiated over a large area in order to ensure effective, homogeneous and / or uniform irradiation.
  • the radiation means 30D disposed on or in the end face 31 such that radiation S is directed substantially directly onto a coating agent spray jet, and / or to provide the radiation means 30D arranged on or in the front face 31 such that the Radiation S is directed to a substantially already applied to the surface to be coated coating agent B.
  • the radiation means 30D should preferably be positioned radially outside the outer edge of the bell cup, as shown schematically in FIG. 4 by the arrow P ', the radiation means 30D' and the radiation S ', in which case the Radius R2 of the radiation means arrangement is greater than the radius R1 of the steering gas nozzle arrangement (see FIG. 5 ).
  • the steering gas ring 32 is further provided with the gas nozzles 32A for the release of inert gas G.
  • the application device may comprise an inert gas reservoir.
  • the inert gas G discharged from the steering gas nozzles 32A serves, on the one hand, to form the coating agent B and, on the other hand, to prevent undesired reactions with constituents in the normal atmosphere.
  • the steering gas nozzles 32A are arranged so that the inert gas G is directed to the outer surface of the bell cup 30A and / or the peripheral outer edge of the bell cup 30A.
  • further radiation delivery sections can be provided, whose emitted radiation is directed to the coating agent spray and / or to the surface to be coated.
  • the coating agent B in flight so between the outer edge of the bell cup 30A and the surface to be coated, are irradiated.
  • Fig. 5 which is a schematic representation of a plan view of the front surface 31 along line L2-L2 in Fig. 4 can be seen, the Lenkgäsdüsen 32 A and the radiation means 30 D are arranged annularly and concentrically with each other, wherein the radius R 1 of the steering gas nozzle arrangement is greater than the radius R2 of the Strahlungsstoffand eleven.
  • an arrangement may be chosen in which the radius R1 is smaller than the radius R2 or the radius R1 is the same size as the radius R2.
  • the application unit 35 is preferably arranged on or in a free end of a movable robot arm, so that the coating agent B and / or the radiation S can be directed onto the surface to be coated with sufficient accuracy.
  • external charging agents are usually used to externally charge the coating agent.
  • the external charging means (external charging fingers) usually have fixing means and electrodes for electrically charging the coating agent.
  • the fastening means usually project finger-like from the end face of an application unit, preferably a rotary atomizer, and are usually arranged at uniform angular intervals around a coating agent outlet opening of the application unit.
  • the electrodes are positioned at the free ends of the attachment means to electrically charge the coating agent.
  • Fig. 6 shows a schematic representation of a radiation delivery section 40, which is to be arranged in an application device according to a fourth embodiment.
  • the radiation delivery section 40 has a schematically indicated mixer 41 as a module for increasing the surface area and / or mixing of coating agent B, which is arranged in a section A to be flowed through by coating agent B.
  • the mixer 41 is preferably a Kenics mixer, which may for example be arranged in a paint tube of a rotary atomizer.
  • the mixer 41 is made of radiation-permeable material and thus constitutes a radiation-transmissive section.
  • a radiation conductor 42 preferably a light guide, which is coupled on the one hand to the mixer 41 and on the other hand is coupled to a radiation source, preferably a light source.
  • the mixer 41 can be supplied with radiation to deliver it to the coating agent B.
  • the mixer 41 is designed so that it can emit radiation over its substantially entire surface. It is advantageous that a radiation coupling surface 43 for introducing radiation into the mixer 41 is many times smaller than the surface for emitting the radiation to the coating agent B. That is, in the fourth embodiment, the light coupling surface 43 is many times smaller than the surface of the mixer 41.
  • the irradiation of the coating agent B on the one hand due to the surface enlargement and / or the mixing and on the other hand due to the large-scale release of radiation from the mixer 41 can be extremely effective, homogeneous and / or uniform.
  • FIG. 7 shows a cross-sectional view of a portion of an application unit 35 ', which is to be arranged in an application device according to a further embodiment of the invention.
  • the application unit 35 ' is preferably a rotary atomizer.
  • FIG. 7 a portion of a bell cup 30A '.
  • At least one radiation delivery section 30 ' is provided on the bell cup 30A', in particular in the region of the coating medium overflow surface of the bell cup 30A ', in order to apply the radiation S to the coating agent B before it strikes the surface to be coated.
  • the radiation delivery section 30 ' may extend substantially throughout the coating agent overflow area. However, the radiation delivery section 30 'can also be provided only in sections at the coating agent overflow surface.
  • the radiation delivery section (s) 30 'provided in the area of the coating agent overflow area may be provided to self-generate radiation ("active"). It is also possible for the radiation delivery section or sections 30 'to be supplied with radiation by a radiation source positioned remotely in order to apply the coating agent B to it.
  • the bell cup 30A 'except for the radiation delivery portions 30' is made of a non-transparent material.
  • the radiation delivery section 30 ' may also be constructed as shown in FIGS FIG. 7 to be seen dashed line on the bell cup 30A 'are provided, so penetrate the bell cup at least in sections.

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Description

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum Applizieren eines durch Strahlung härtbaren Beschichtungsmittels auf eine zu beschichtende Oberfläche. Ferner betrifft die Erfindung zugehörige Beschichtungsmittelapplizierkomponenten.The invention relates to an apparatus and a method for applying a radiation-curable coating composition to a surface to be coated. Furthermore, the invention relates to associated coating agent application components.

In jüngster Zeit gewinnen zunehmend Lacke an Bedeutung, die mittels UV-Strahlern in Belichtungsräumen ausgehärtet werden können. Aus der DE 10 2007 012 897 A1 ist beispielsweise ein Belichtungsraum bekannt, der lackierte Bauteile mit mehreren UV-Strahlern bestrahlen kann. Der Belichtungsraum umfasst einen Boden, eine Decke, zwei Seitenwände, eine Vorderwand und eine Rückwand, die allesamt mit mehreren UV-Strahlern versehen sind. Mittels einer Fördereinrichtung werden zu belichtendende Objekte in den Belichtungsraum transportiert, um dann vom Boden, der Decke, den zwei Seitenwänden, der Vorderwand und der Rückwand aus belichtet zu werden.In recent times, increasing importance is being attached to lacquers which can be cured by means of UV radiators in exposure chambers. From the DE 10 2007 012 897 A1 For example, an exposure space is known which can irradiate painted components with a plurality of UV lamps. The exposure room includes a floor, a ceiling, two side walls, a front wall and a back wall, all of which are provided with multiple UV emitters. By means of a conveyor to be exposed objects are transported into the exposure room, to then be exposed from the floor, the ceiling, the two side walls, the front wall and the rear wall.

Nachteilig an dem Belichtungsraum ist insbesondere, dass bestimmte zu bestrahlende Bereiche nicht optimal mittels den Strahlern bestrahlt werden können. Problematisch ist dies vor allem bei geometrisch komplexen Objekten, wie beispielsweise Kraftfahrzeugkarosseriebauteilen, die Hinterschneidungen, Vertiefungen, gekrümmte Abschnitte, Hohlräume, etc. aufweisen, die mittels dem vorstehend beschriebenen Belichtungsraum oftmals nicht ausreichend genau bestrahlt werden können. So kann es sein, dass bestimmte Bereiche zu stark, andere wiederum zu wenig bestrahlt werden, was zu einer verminderten Oberflächenqualität führen kann. Nachteilig ist ferner, dass voneinander separate Applikations- und Bestrahlungskomponenten sowie voneinander separate Lackapplizier- und Belichtungsräume erforderlich sind. Ferner sind zwei separate Arbeitsschritte erforderlich, nämlich das Applizieren von Lack und ein anschließendes Aushärten mittels UV-Strahlern. Dies geht mit einem relativ hohen Zeit-, Energie- und Kostenaufwand einher.A disadvantage of the exposure space is in particular that certain areas to be irradiated can not be optimally irradiated by means of the radiators. This is particularly problematic for geometrically complex objects, such as motor vehicle body components, the undercuts, depressions, curved sections, cavities, etc., which by means of the above-described exposure space often can not be sufficiently accurately irradiated. So it may be that certain areas too strong, others in turn are under-irradiated, which can lead to a reduced surface quality. A further disadvantage is that separate application and irradiation components as well as separate paint application and exposure chambers are required from each other. Furthermore, two separate steps are required, namely the application of paint and subsequent curing by means of UV lamps. This is associated with a relatively high time, energy and cost.

EP 1 002 587 A2 offenbart die Herstellung von gehärteten Lackschichten unter Verwendung beispielsweise eines Lackierroboters für die Autoindustrie mit einem elektrostatischen Rotationszerstäuber, wobei der Lack innerhalb des Zerstäubers kurz vor dessen Düse zur Aushärtung mit UV-Licht bestrahlt wird. EP 1 002 587 A2 discloses the production of cured lacquer layers using, for example, a paint robot for the automotive industry with an electrostatic rotary atomizer, wherein the paint is irradiated within the atomizer just before the nozzle for curing with UV light.

EP 1074307 A2 offenbart ein Verfahren zum Aufbringen eines mit UV-Licht aushärtbaren flüssigen oder pastösen Kunststoffstrangs auf eine Unterlage, beispielsweise zum Versiegeln von Bördelnahten an Blechteilen in der Autoindustrie. Zum Aushärten des Kunststoffmaterials kann hierbei in dessen Strömungsweg innerhalb eines Düsenkopfes ein Lichtwellenleiter mit seiner Lichtaustrittsstelle münden, so dass das Material bereits vor dem Austritt aus der Auftragsdüse aktiviert wird. EP 1074307 A2 discloses a method for applying a UV curable liquid or pasty plastic strand to a substrate, for example for sealing bead seams on sheet metal parts in the automotive industry. To harden the plastic material, an optical waveguide with its light exit point can open into its flow path within a nozzle head, so that the material is activated before it exits the application nozzle.

Ferner offenbart DE 60 2004 001 336 T2 eine Spritzpistole zum Auftragen einer durch aktinische Strahlung härtbaren Beschichtung mit einer Sprühdüse und außerhalb der Spritzpistole positionierten Ausgängen für aktinische Strahlung, beispielsweise in Form eines UV-LED-Arrays, mit der das Beschichtungsmaterial nach dem Austreten aus der Sprühdüse bestrahlt wird.Further disclosed DE 60 2004 001 336 T2 a spray gun for applying an actinic radiation curable coating with a spray nozzle and positioned outside the spray gun outputs for actinic radiation, for example in the form of a UV LED array, with the coating material is irradiated after exiting the spray nozzle.

Die Dokumente JP 06065523 A und DE 94 19 641 U1 beschreiben weiteren technologischen Hintergrund betreffend die Erfindung.The documents JP 06065523 A and DE 94 19 641 U1 describe further technological background concerning the invention.

Aufgabe der Erfindung ist es, eine verbesserte Applikationsvorrichtung und ein verbessertes Verfahren zum Applizieren eines durch Strahlung härtbaren Beschichtungsmittels auf eine zu beschichtende Oberfläche zu schaffen. Insbesondere soll es möglich sein, auch bei komplexen Objekten eine ausreichend genaue Bestrahlung ohne über- und/oder unterbestrahlte Bereiche zu gewährleisten. Darüber hinaus soll die Bestrahlung des Beschichtungsmittels effektiv, homogen und/oder gleichmäßig erfolgen können. Ferner soll der Zeit- und Kostenaufwand für das Applizieren und das Härten des Beschichtungsmittels verringert werden.The object of the invention is to provide an improved application device and an improved method for applying a radiation-curable coating agent to a surface to be coated. In particular, it should be possible, even with complex objects to ensure a sufficiently accurate irradiation without over- and / or under-irradiated areas. In addition, the irradiation of the coating composition should be effective, homogeneous and / or uniform. Furthermore, the time and cost for the application and curing of the coating composition should be reduced.

Diese und andere Aufgaben werden mit den Merkmalen der unabhängigen Ansprüche gelöst.These and other objects are achieved with the features of the independent claims.

Die Erfindung umfasst die allgemeine technische Lehre, ein mittels Strahlung härtbares Beschichtungsmittel vor Auftreffen auf eine zu beschichtende Oberfläche mit Strahlung zu beaufschlagen, um eine effektive, homogene und/oder gleichmäßige Aushärtung des Beschichtungsmittels zu erzielen.The invention encompasses the general technical teaching of a radiation-curable coating composition prior to impact To apply radiation to a surface to be coated in order to achieve an effective, homogeneous and / or uniform curing of the coating composition.

Die erfindungsgemäße Applikationsvorrichtung zum Applizieren eines durch Strahlung härtbaren Beschichtungsmittels auf eine zu beschichtende Oberfläche zeichnet sich insbesondere durch eine Applikationseinheit zur Abgabe des Beschichtungsmittels und zumindest einen Strahlungsabgabeabschnitt zur Abgabe von Strahlung aus, wobei der zumindest eine Strahlungsabgabeabschnitt so konfiguriert und angeordnet ist, dass das Beschichtungsmittel vor Auftreffen auf die zu beschichtende Oberfläche mit der Strahlung in Kontakt kommt. Es kann ein einziger oder eine Vielzahl von Strahlungsabgabeabschnitten vorgesehen sein.The application device according to the invention for applying a radiation-curable coating composition to a surface to be coated is characterized in particular by an application unit for dispensing the coating agent and at least one radiation delivery section for emitting radiation, wherein the at least one radiation delivery section is configured and arranged such that the coating agent projects Impact on the surface to be coated with the radiation comes into contact. There may be a single or a plurality of radiation delivery sections.

Als Beschichtungsmittel werden vorzugsweise Lacke verwendet. Die verwendete Strahlung kann aktinische Strahlung (photokatalytisch wirksame Strahlung), Korpuskularstrahlung (z.B. Elektronenstrahl-Härtung), Wellenstrahlung, radioaktive Strahlung, ultraviolette Strahlung und andere geeignete Strahlungen umfassen. Als Strahlungsquellen zur Erzeugung von Strahlung können beispielsweise Gasentladungslampen, Photodioden, ultraviolettes Licht emittierende Dioden und andere kommerziell erhältliche Strahlungsquellen verwendet werden, z.B. Quecksilberdampf-Hoch/Mittel-Druckstrahler, Metallhalogenidstrahler, Quersilberdampf-Höchst/Nieder-Drucklampen, mikrowellenangeregte elektrodenlose Lampen, Kapillarstrahler, etc.As coating materials, preferably lacquers are used. The radiation used may comprise actinic radiation (photocatalytic radiation), corpuscular radiation (e.g., electron beam curing), wave radiation, radioactive radiation, ultraviolet radiation and other suitable radiation. As radiation sources for generating radiation, for example, gas discharge lamps, photodiodes, ultraviolet light emitting diodes and other commercially available radiation sources may be used, e.g. Mercury vapor high / medium pressure emitters, metal halide emitters, cross silver vapor top / low pressure lamps, microwave excited electrodeless lamps, capillary emitters, etc.

Besonders vorteilhaft daran ist, dass eine bessere und/oder vordefinierbare Bestrahlung und Vernetzung des Beschichtungsmittels erzielt werden kann, insbesondere bei geometrisch komplexen Objekten, was zu einer besseren Oberflächenqualität führt. Ein weiterer Vorteil ist, dass das Applizieren und Bestrahlen von Beschichtungsmittel im Wesentlichen gleichzeitig erfolgen kann, ohne das Erfordernis der räumlichen Trennung von Applizier- und Bestrahlungsräumen bzw. von Applizier- und Bestrahlungskomponenten.It is particularly advantageous because a better and / or predefinable irradiation and crosslinking of the coating composition can be achieved, in particular for geometrically complex objects, resulting in a better surface quality leads. A further advantage is that the application and irradiation of coating agent can be carried out substantially simultaneously, without the requirement of the spatial separation of application and irradiation spaces or of application and irradiation components.

Diese Technik der Bestrahlung des Lackes, ehe dieser das Substrat erreicht hat, ist vorzugsweise in Verbindung mit Lacksystemen möglich, welche bevorzugt eine verzögerte Aushärtung nach der Bestrahlung aufweisen. Dazu gehören z.B. Lacksysteme auf Basis kationischer Fotoinitiatoren oder auch fotolatente Basen. Ferner anwendbar ist diese Technik bei radikalischer Fotoinitiation, die üblicherweise sehr schnell abläuft.This technique of irradiating the lacquer before it has reached the substrate is preferably possible in conjunction with lacquer systems which preferably have a delayed cure after irradiation. These include e.g. Lacquer systems based on cationic photoinitiators or photolatent bases. Furthermore, this technique is applicable for radical Fotoinitiation, which usually runs very fast.

Es können Reflektormittel vorgesehen werden, um die Strahlung auf das Beschichtungsmittel zu reflektieren und/oder auf das Beschichtungsmittel zurück zu reflektieren, was zu einer effektiveren Bestrahlung führt. Die Reflektormittel umfassen vorzugsweise Aluminium.Reflective means may be provided to reflect the radiation onto the coating agent and / or to reflect back to the coating agent, resulting in more effective irradiation. The reflector means preferably comprise aluminum.

Der zumindest eine Strahlungsabgabeabschnitt kann bereitgestellt sein in der Applikationsvorrichtung, in einer Dosiereinrichtung zum Dosieren des Beschichtungsmittels (beispielsweise eine Zahnraddosierpumpe, eine Kolbendosiereinrichtung, etc.), in der Applikationseinheit, vorzugsweise in einem Farbrohr eines Rotationszerstäubers, wobei beispielsweise ein Modul (z.B. ein Mischer) zur Oberflächenvergrößerung und/oder Durchmischung des Beschichtungsmittels in dem Farbrohr und/ oder an anderer geeigneter Stelle in der Applikationseinheit vorgesehen sein kann, an der Applikationseinheit, vorzugsweise an oder in einer stirnseitigen Fläche eines Rotationszerstäubers, die im Betrieb des Rotationszerstäubers einer zu beschichtenden Oberfläche zugewandt ist, insbesondere an einem Lenkgasring und/oder an Außenaufladungsmitteln zur Außenaufladung des Beschichtungsmittels, an einem Glockenteller für einen Rotationszerstäuber, an einer Verteilerscheibe für einen Rotationszerstäuber, an einem Lenkgasring eines Rotationszerstäubers, in einer Beschichtungsmittelleitung zum Zuführen des Beschichtungsmittels zu der Applikationseinheit, und/oder an oder in einer Beschichtungsmittelleitung zum Zuführen des Beschichtungsmittels zu der Applikationseinheit.The at least one radiation delivery section may be provided in the application device, in a metering device for metering the coating agent (for example a gear metering pump, a piston metering device, etc.) in the application unit, preferably in a paint tube of a rotary atomizer, for example a module (eg a mixer) for surface enlargement and / or mixing of the coating agent in the paint tube and / or at another suitable location in the application unit may be provided on the application unit, preferably on or in an end face of a rotary atomizer, which faces a surface to be coated during operation of the rotary atomizer , in particular on a steering gas ring and / or external charging means for external charging the coating agent, on a bell cup for a rotary atomizer, on a distributor disc for a rotary atomizer, on a steering gas ring of a rotary atomizer, in a coating agent line for supplying the coating agent to the application unit, and / or on or in a coating agent line for supplying the coating agent to the application unit.

Aufbau und Funktion von Rotationszerstäubern, Dosiereinrichtungen, Außenaufladungsmittel und Mischer sind als solche im Stand der Technik allgemein bekannt, so dass im Rahmen dieser Beschreibung nicht im Detail auf deren Aufbau eingegangen wird.The structure and function of rotary atomizers, metering devices, external charging agents and mixers are generally known as such in the prior art, so that their structure will not be discussed in detail in the context of this description.

Vorzugsweise umfasst der zumindest eine Strahlungsabgabeabschnitt zumindest einen strahlungsdurchlässigen Abschnitt. Ein besonderer Vorteil der Erfindung liegt darin, dass der strahlungsdurchlässige Abschnitt großflächig Strahlung abgeben kann. Besonders vorteilhaft daran ist, dass die Strahlungseinkopplungsfläche zum Einleiten von Strahlung in den strahlungsdurchlässigen Abschnitt um ein Vielfaches kleiner sein kann als die Fläche zur Abgabe von Strahlung auf das Beschichtungsmittel. Die Fläche zur Abgabe von Strahlung ist beispielsweise, ohne jedoch darauf beschränkt zu sein, die Oberfläche eines unten beschriebenen Mischers, die Innenumfangsfläche eines geschlossenwandigen Abschnitts, der von Beschichtungsmittel durchströmt wird, oder die Beschichtungsmittelüberströmfläche eines Glockentellers.Preferably, the at least one radiation delivery section comprises at least one radiation-transmissive section. A particular advantage of the invention is that the radiation-transmissive section can emit radiation over a large area. It is particularly advantageous because the radiation coupling-in area for introducing radiation into the radiation-transmissive section can be many times smaller than the area for emitting radiation onto the coating agent. The surface for emitting radiation is, for example, but not limited to, the surface of a mixer described below, the inner peripheral surface of a closed-walled portion through which coating agent flows, or the coating agent overflow surface of a bell cup.

Es ist möglich, einen oder mehrere Strahlungsleiter an den zumindest einen Strahlungsabgabeabschnitt und/oder den zumindest einen strahlungsdurchlässigen Abschnitt zu koppeln.It is possible to couple one or more radiation conductors to the at least one radiation delivery section and / or the at least one radiation-transmissive section.

Der strahlungsdurchlässige Abschnitt kann einen von Beschichtungsmittel zu durchströmenden Abschnitt umgeben, um Strahlung über seinen vorzugsweise geschlossenen Innenumfang im Wesentlichen gleichmäßig nach innen abzugeben. Der strahlungsdurchlässige Abschnitt ist im Querschnitt vorzugsweise geschlossenwandig, um durchströmendes Beschichtungsmittel über seinen im Wesentlichen gesamten Innenumfang zu bestrahlen. Der strahlungsdurchlässige Abschnitt hat somit vorzugsweise eine geschlossene Innenumfangsfläche. Vorteilhaft daran ist, dass das Beschichtungsmittel somit nicht nur von einer oder zwei Seiten aus bestrahlt werden kann, sondern um den gesamten Außenumfang des Beschichtungsmittels herum. Dies ermöglicht eine effektive, homogene und/oder gleichmäßige Bestrahlung des Beschichtungsmittels.The radiation-transmissive portion may surround a portion to be flowed through by coating means to emit radiation substantially uniformly inward over its preferably closed inner circumference. The radiation-transmissive section is preferably closed-walled in cross-section in order to irradiate through-flowing coating agent over its substantially entire inner circumference. The radiation-transmissive section thus preferably has a closed inner peripheral surface. The advantage of this is that the coating agent can thus be irradiated not only from one or two sides, but around the entire outer circumference of the coating agent. This enables effective, homogeneous and / or uniform irradiation of the coating composition.

Bevorzugt ist der strahlungsdurchlässige Abschnitt ein im Wesentlichen rohrförmiger Abschnitt, ringförmiger Abschnitt oder irgend ein anderer geschlossenwandiger Abschnitt, der vorgesehen ist, um Strahlung über seinen im Wesentlichen gesamten Innenumfang gleichmäßig vorzugsweise radial nach innen abzugeben.Preferably, the radiation transmissive portion is a substantially tubular portion, annular portion, or any other closed-walled portion provided to uniformly emit radiation preferably radially inwardly over substantially its entire inner circumference.

Bei einem bevorzugten Ausführungsbeispiel umfasst der strahlungsdurchlässige Abschnitt einen strahlungsundurchlässigen äußeren Bereich und einen strahlungsdurchlässigen inneren Bereich. Der strahlungsundurchlässige äußere Bereich und der strahlungsdurchlässige innere Bereich sind vorzugsweise an dem rohrförmigen Abschnitt vorgesehen, so dass der innere Bereich ein radial innerer Bereich und der äußere Bereich ein radial äußerer Bereich sein kann.In a preferred embodiment, the radiation-transmissive portion comprises a radiopaque outer region and a radiation-transmissive inner region. The radiopaque outer portion and the radiopaque inner portion are preferably provided on the tubular portion so that the inner portion may be a radially inner portion and the outer portion may be a radially outer portion.

Vorzugsweise kann ein Strahlungsleiter, wie beispielsweise ein Lichtleiter, Glasfasern, etc., an den strahlungsdurchlässigen Abschnitt gekoppelt werden, um den strahlungsdurchlässigen Abschnitt mit Strahlung zu versorgen. Der strahlungsdurchlässige Abschnitt kann so bereitgestellt werden, dass sich Strahlung in dessen Längsrichtung und Umfangsrichtung ausbreiten kann. Vorzugsweise ist der strahlungsdurchlässige innere Bereich so vorgesehen, dass er eine Transmission eines Teils der Strahlung einwärts auf das durchströmende Beschichtungsmittel ermöglicht, wohingegen der strahlungsundurchlässige äußere Bereich vorzugsweise einen Teil der Strahlung einwärts zu dem strahlungsdurchlässigen inneren Bereich reflektieren kann. Vorteilhaft daran ist einerseits, dass der strahlungsdurchlässige Abschnitt über seinen im Wesentlichen gesamten Innenumfang Strahlung auf durchströmendes Beschichtungsmittel abgeben kann, und andererseits, dass der strahlungsdurchlässige Abschnitt eine ausreichend lange Erstreckung in der Strömungsrichtung des Beschichtungsmittels.aufweisen kann, um die Homogenität und/oder Gleichmäßigkeit der Bestrahlung weiter zu verbessern.Preferably, a radiation conductor, such as a light pipe, glass fibers, etc., can be coupled to the radiation-transmissive portion to the radiation-transmissive Supply section with radiation. The radiation-transmissive portion may be provided so that radiation may propagate in its longitudinal direction and circumferential direction. Preferably, the radiation-transmissive inner region is provided to allow transmission of a portion of the radiation inwardly toward the flowing coating agent, whereas the radiopaque outer region may preferentially reflect a portion of the radiation inwardly toward the radiation-transmissive inner region. On the one hand, it is advantageous that the radiation-transmissive section can deliver radiation to the coating medium flowing through it over its substantially entire inner circumference, and, on the other hand, that the radiation-transmissive section can have a sufficiently long extent in the direction of flow of the coating medium to ensure the homogeneity and / or uniformity of the coating Irradiation continues to improve.

Bevorzugt ist der zumindest eine strahlungsdurchlässige Abschnitt an oder in einem Farbrohr in der Applikationseinheit, beispielsweise in einem Rotationszerstäuber, vorgesehen, kann aber auch in einer Beschichtungsmittelleitung zum Zuführen des Beschichtungsmittels zu der Applikationseinheit bereitgestellt sein. Vorteilhaft an einer Positionierung in der Applikationseinheit ist die zeitlich und räumlich kurze Distanz zwischen Bestrahlung und Applizierung des Beschichtungsmittels.Preferably, the at least one radiation-permeable section is provided on or in a color tube in the application unit, for example in a rotary atomizer, but may also be provided in a coating agent line for supplying the coating agent to the application unit. An advantage of positioning in the application unit is the short time and space between irradiation and application of the coating agent.

Erfindungsgemäß weist der zumindest eine Strahlungsabgabeabschnitt zumindest einen Strahlungsleiter auf, wie beispielsweise einen Lichtleiter, Glasfasern, etc., der in einen von Beschichtungsmittel zu durchströmenden Abschnitt der Applikationsvorrichtung hineinragt, beispielsweise in ein Farbrohr in der Applikationseinheit und/oder in eine Beschichtungsmittelleitung zum Zuführen des Beschichtungsmittels zu der Applikationseinheit. Vorteilhaft daran ist, dass das Beschichtungsmittel nicht nur von außen bestrahlt werden kann, sondern auch von innerhalb eines von Beschichtungsmittel zu durchströmenden Abschnitts.According to the invention, the at least one radiation delivery section has at least one radiation conductor, such as a light guide, glass fibers, etc., which projects into a section of the application device to be flowed through by coating means, for example into a color tube in the application unit and / or into a coating agent line for supplying the coating agent to the application unit. The advantage of this is that the coating composition can be irradiated not only from the outside but also from within a portion to be flowed through by coating.

Vorzugsweise sind zumindest zwei Strahlungsleiter vorgesehen, die unterschiedlich weit in den von Beschichtungsmittel zu durchströmenden Abschnitt ragen. Somit kann die Effektivität, die Homogenität und/oder die Gleichmäßigkeit der Bestrahlung weiter verbessert werden. Die Strahlungsleiter können so in den von Beschichtungsmittel zu durchströmenden Abschnitt ragen, dass sie im Wesentlichen gleichmäßig über den Strömungsquerschnitt des Beschichtungsmittels verteilt sind.Preferably, at least two radiation conductors are provided which protrude differently far into the section to be flowed through by the coating agent. Thus, the effectiveness, the homogeneity and / or the uniformity of the irradiation can be further improved. The radiation conductors can project into the section through which the coating agent flows so that they are distributed essentially uniformly over the flow cross section of the coating agent.

Alternativ weist die Applikationsvorrichtung erfindungsgemäß einen Mischer als ein Modul zur Oberflächenvergrößerung und/oder zur Durchmischung des Beschichtungsmittels auf, das in einem von Beschichtungsmittel zu durchströmenden Abschnitt der Applikationsvorrichtung angeordnet ist, vorzugsweise in einer Beschichtungsmittelleitung zum Zuführen des Beschichtungsmittels zu der Applikationseinheit und/oder in der Applikationseinheit, beispielsweise in einem Farbrohr eines Rotationszerstäubers.Alternatively, the application device according to the invention comprises a mixer as a module for surface enlargement and / or mixing of the coating agent, which is arranged in a portion of the application device to be flowed through by coating agent, preferably in a coating medium line for supplying the coating agent to the application unit and / or in the Application unit, for example in a paint tube of a rotary atomizer.

Bevorzugt ist, dass das Modul strahlungsdurchlässig ist. Das Modul ist also ein strahlungsdurchlässiger Abschnitt. Das Modul ist erfindungsgemäß ausgelegt, um Strahlung auf das Beschichtungsmittel abzugeben. Es ist möglich, einen Strahlungsleiter, wie beispielsweise einen Lichtleiter, Glasfasern, etc. an das Modul zu koppeln, um das Modul mit Strahlung zu versorgen, so dass es die Strahlung auf durch- bzw. vorbeiströmendes Beschichtungsmittel abgeben kann. Vorteilhaft daran ist, dass das Modul im Wesentlichen über seine gesamte Oberfläche das Beschichtungsmittel bestrahlen kann, was zu einer besonders effektiven, homogenen und/oder gleichmäßigen Bestrahlung führt.It is preferred that the module is radiation-transmissive. The module is thus a radiation-transmissive section. The module is designed according to the invention to deliver radiation to the coating agent. It is possible to couple a radiation conductor, such as an optical fiber, glass fibers, etc., to the module to provide the module with radiation so that it can deliver the radiation to passing coating agent. The advantage of this is that the module essentially over its entire surface Can irradiate coating agent, resulting in a particularly effective, homogeneous and / or uniform irradiation.

Das Modul ist erfindungsgemäß ein Mischer, insbesondere ein statischer Mischer, vorzugsweise ein Kenics-Mischer (z.B. Wendel-, Vortex- oder Gittersystem). Um den Mischer in räumlich begrenzten Abschnitten in der Applikationsvorrichtung unterzubringen, muss der Mischer entsprechend kleine Ausmaße aufweisen, und dennoch ausreichende Mischerergebnisse erzielen, wozu herkömmliche Mischer nicht in der Lage sind. Ein für die Erfindung geeigneter Mischer könnte vorzugsweise hergestellt werden mittels einem generativen Verfahren (beispielsweise Rapid-Prototyping, z.B. Lasersintern, Laserschmelzen, etc.).The module according to the invention is a mixer, in particular a static mixer, preferably a Kenics mixer (for example spiral, vortex or grid system). To accommodate the mixer in confined spaces in the application device, the mixer must be correspondingly small in size, and still achieve sufficient mixer results, which conventional mixer are not able. A mixer suitable for the invention could preferably be made by a generative process (for example, rapid prototyping, e.g., laser sintering, laser melting, etc.).

Es ist möglich, dass eine Dosiereinrichtung zum Dosieren des Beschichtungsmittels bereitgestellt wird. Es ist auch möglich, dass die Applikationseinheit einen Zerstäuber, vorzugsweise einen Rotationszerstäuber umfasst. Bevorzugt ist, dass der Zerstäuber eine stirnseitige Fläche, die vorzugsweise einen Lenkgasring aufweist und im Betrieb der Applikationsvorrichtung der zu beschichtenden Oberfläche zugewandt ist, eine Verteilerscheibe, einen Glockenteller, ein Farbrohr und/oder Außenaufladungsmittel aufweist.It is possible that a metering device for metering the coating agent is provided. It is also possible that the application unit comprises an atomizer, preferably a rotary atomizer. It is preferred that the atomizer has an end face, which preferably has a steering gas ring and faces the surface to be coated during operation of the application device, a distributor disc, a bell cup, a color tube and / or external charging means.

Es ist möglich, den zumindest einen Strahlungsabgabeabschnitt und/oder den zumindest einen strahlungsdurchlässigen Abschnitt anzuordnen in der Dosiereinrichtung, an oder in der stirnseitigen Fläche, an der Verteilerscheibe, an dem Glockenteller, in oder an dem Farbrohr, und/oder an den Außenaufladungsmitteln.It is possible to arrange the at least one radiation delivery section and / or the at least one radiation-transmissive section in the metering device, on or in the frontal surface, on the distributor disc, on the bell cup, in or on the color tube, and / or on the external charging means.

Eine Strahlungsabgabe auf das Beschichtungsmittel erfolgt vorzugsweise in der Dosiereinrichtung, an oder in der stirnseitigen Fläche, durch die Verteilerscheibe, durch den Glockenteller, vorzugsweise die Beschichtungsmittelüberströmflache, durch das Farbrohr, und/oder durch die Außenaufladungsmittel. Vorzugsweise sind die stirnseitige Fläche, vorzugsweise der Lenkgasring, die Verteilerscheibe, der Glockenteller, die Außenaufladungsmittel, und/oder das Farbrohr aus strahlungsdurchlässigem Material hergestellt.A radiation delivery to the coating agent is preferably carried out in the metering device, on or in the front side Surface, through the distributor disc, through the bell cup, preferably the Beschichtungsmittelsüberströmflache, through the paint tube, and / or by the external charging means. Preferably, the front surface, preferably the steering gas ring, the distributor disc, the bell cup, the external charging means, and / or the paint tube made of radiation-transparent material.

Es ist möglich, eine Vielzahl von Strahlungsabgabeabschnitten bereitzustellen. Der oder die Strahlungsabgabeabschnitte können an oder in der stirnseitigen Fläche so bereitgestellt sein, dass die Strahlung im Wesentlichen auf den Glockenteller gerichtet ist, die Strahlung im Wesentlichen direkt auf einen Beschichtungsmittelsprühstrahl gerichtet ist, und/oder die Strahlung im Wesentlichen auf ein bereits auf die zu beschichtende Oberfläche appliziertes Beschichtungsmittel gerichtet ist. Der oder die Strahlungsabgabeabschnitte können an der stirnseitigen Fläche unbeweglich angeordnet sein oder relativ zu der Applikationseinheit beweglich angeordnet sein. Vorzugsweise sind die Strahlungsabgabeabschnitte in einer ringförmigen Anordnung an der stirnseitigen Fläche vorgesehen. Beispielsweise können Photodioden, UV-Licht emittierende Dioden, etc. oder Öffnungen, zu denen Strahlung mittels Strahlungsleitern gebracht werden, ringförmig verteilt um eine Beschichtungsmittelaustrittsöffnung der Applikationseinheit positioniert werden.It is possible to provide a plurality of radiation emitting sections. The radiation delivery section (s) may be provided on or in the front surface such that the radiation is directed substantially at the bell cup, the radiation is directed substantially directly at a coating agent spray, and / or the radiation is substantially atop one already at coating surface applied coating agent is directed. The radiation delivery section or sections may be arranged immovably on the end face or may be arranged to be movable relative to the application unit. Preferably, the radiation delivery sections are provided in an annular arrangement on the frontal surface. For example, photodiodes, UV light-emitting diodes, etc., or openings, to which radiation is brought by means of radiation conductors, can be positioned distributed around a coating agent outlet opening of the application unit.

Vorteilhaft an einer Bestrahlung im Bereich der Verteilerscheibe, des Glockentellers, vor allem an der Beschichtungsmittelüberströmfläche des Glockentellers, durch die Außenaufladungsmittel, und/oder im Flug (in der Luft) des Beschichtungsmittels ist, dass dort das Beschichtungsmittel großflächig vorliegt, so dass eine Bestrahlung besonders effektiv auf das Beschichtungsmittel einwirken kann, um eine effektive, homogene und/oder gleichmäßige Bestrahlung zu erzielen.An advantage of an irradiation in the region of the distributor disk, the bell cup, above all on the coating agent overflow surface of the bell cup, by the external charging agent, and / or in flight (in the air) of the coating agent is that there the coating agent is present over a large area, so that irradiation is particularly effectively can act on the coating agent to achieve an effective, homogeneous and / or uniform irradiation.

Es ist möglich, das Farbrohr vorzugsweise eines Rotationszerstäubers so auszubilden, dass Strahlung von dem Farbrohr auf die Verteilerscheibe gerichtet wird und/oder radial nach innen auf durchströmendes Beschichtungsmittel.It is possible to form the color tube, preferably of a rotary atomizer, in such a way that radiation is directed from the color tube to the distributor plate and / or radially inward to the coating medium flowing through.

Bei einem weiteren Ausführungsbeispiel umfasst der Lenkgasring Lenkgasdüsen zur Abgabe von Inertgas und/oder Luft. Vorzugsweise sind die Lenkgasdüsen in einer ringförmigen Anordnung an der stirnseitigen Fläche vorgesehen. Das abgegebene Inertgas dient einerseits dazu, unerwünschte Reaktionen mit Bestandteilen der normalen Atmosphäre zu verhindern, und andererseits dazu, den von dem Glockenteller abgegebenen Sprühstrahl zu formen. Die Lenkgasdüsen können auf den Glockenteller oder auf den Sprühstrahl gerichtet sein. Es ist auch möglich, die Lenkgasdüsen auf eine Absprühkante des Glockentellers zu richten, was zu einer Zerstäubung des Beschichtungsmittels beitragen würde. Als Inertgas kann beispielsweise Stickstoff, Kohlendioxid, Wasserdampf, ein Edelgas oder ein polymeres Gas verwendet werden, das in einem Inertgasreservoir bereitgestellt sein kann.In a further embodiment, the steering gas ring comprises gas nozzles for the delivery of inert gas and / or air. Preferably, the gas nozzles are provided in an annular arrangement on the front surface. The discharged inert gas serves, on the one hand, to prevent unwanted reactions with constituents of the normal atmosphere and, on the other hand, to form the jet of spray emitted by the bell cup. The gas nozzles may be directed to the bell cup or to the spray jet. It is also possible to direct the gas nozzles on a spray edge of the bell cup, which would contribute to atomization of the coating composition. As the inert gas, there may be used, for example, nitrogen, carbon dioxide, water vapor, a rare gas or a polymeric gas which may be provided in an inert gas reservoir.

Ferner können Mittel zum Kühlen von Inertgas vorgesehen werden, um zu gewährleisten, dass das Inertgas mit geringerer Temperatur als die zu beschichtende Oberfläche auf die zu beschichtende Oberfläche trifft. Dies führt vorteilhaft zu einer Beschleierung der zu beschichtenden Oberfläche mit Inertgas.Further, means for cooling inert gas may be provided to ensure that the inert gas at a lower temperature than the surface to be coated meets the surface to be coated. This leads advantageously to a fogging of the surface to be coated with inert gas.

Es ist möglich, die Applikationseinheit, den zumindest einen Strahlungsabgabeabschnitt, und/oder die Dosiereinrichtung an oder in einem beweglichen Roboterarm anzuordnen, vorzugsweise am freien Ende des beweglichen Roboterarms. Vorteilhaft daran ist, dass der Roboter die Applikationseinheit und/oder das Strahlungsabgabemittel exakt und vordefiniert an der zu beschichtenden Oberfläche positionieren kann bzw. über die zu beschichtende Oberfläche führen kann, wobei vorzugsweise auch die Strahlungsdosis, die Strahlungsintensität, der Strahlungswinkel und andere Parameter steuerbar sind, wozu entsprechende Steuereinheiten bereitgestellt werden können. Dies ermöglicht eine exakte, im Wesentlichen punktgenaue und vordefinierte Bestrahlung und/oder Applizierung auch komplexer dreidimensionaler Objekte, wie sie beispielsweise im Kraftfahrzeugkarosseriebau üblich sind. Somit kann die Gefahr von Über- und Unterbestrahlung mit einhergehenden Oberflächenqualitätsverlusten vermindert werden (z.B. kann zu intensive Bestrahlung zu Versprödung oder Vergilbung durch Abbaureaktionen führen und eine Unterbestrahlung zu einer Untervernetzung). Ein weiterer Vorteil der Positionierung am freien Ende des Roboterarms ist die kurze Distanz zwischen der Bestrahlung des Beschichtungsmittels und der zu beschichtenden Oberfläche.It is possible to arrange the application unit, the at least one radiation delivery section, and / or the metering device on or in a movable robot arm, preferably at the free end of the mobile robot arm. The advantage of this is that the robot can position the application unit and / or the radiation delivery means exactly and predefined on the surface to be coated or on the surface to be coated, wherein preferably also the radiation dose, the radiation intensity, the radiation angle and other parameters are controllable for which appropriate control units can be provided. This allows an exact, substantially precise and predefined irradiation and / or application of even complex three-dimensional objects, as are common, for example, in motor vehicle body construction. Thus, the risk of over- and under-irradiation with associated surface quality losses can be reduced (eg too intensive irradiation can lead to embrittlement or yellowing by degradation reactions and under-irradiation to a sub-crosslinking). Another advantage of the positioning at the free end of the robot arm is the short distance between the irradiation of the coating agent and the surface to be coated.

Beispielsweise kann der oder die Strahlungsabgabeabschnitte eine Strahlungsquelle zur Erzeugung von Strahlung sein, d.h. "aktiv" Strahlung erzeugen.For example, the radiation delivery section (s) may be a radiation source for generating radiation, i. "active" generate radiation.

Es ist auch möglich, dass der oder die Strahlungsabgabeabschnitte vorgesehen sind, um mit Strahlung versorgt zu werden, vorzugsweise, indem der oder die Strahlungsabgabeabschnitte über zumindest einen Strahlungsleiter an zumindest eine entfernt positionierte Strahlungsquelle gekoppelt werden, oder beispielsweise, indem der oder die Strahlungsabgabeabschnitte von einer Strahlungsquelle angestrahlt werden. Die Strahlung wird also "aktiv" von einer entfernt positionierten Strahlungsquelle erzeugt, wohingegen der oder die Strahlungsabgabeabschnitte zwar Strahlung abgeben, aber nicht "aktiv" erzeugen.It is also possible for the radiation delivery section or sections to be provided with radiation, preferably by coupling the radiation delivery section (s) to at least one remotely positioned radiation source via at least one radiation conductor or, for example, by the radiation delivery section (s) of a radiation source Radiation source to be illuminated. The radiation is thus generated "actively" from a remotely located radiation source, whereas the one or more Radiation delivery sections Although radiation, but not "active" generate.

Es ist möglich, eine Strahlungsquelle so anzuordnen, dass sich deren Wärmeabgabe nicht negativ auf das Beschichtungsmittel auswirkt, Isolatoren bereitzustellen, um die Strahlungseinheit thermisch von dem Beschichtungsmittel zu trennen, Mittel zum Kühlen der Strahlungsquelle vorzusehen, die Strahlungsquelle so zu positionieren, dass deren Wärmeabgabe auf das Beschichtungsmittel wirken kann, um dessen Viskosität zu erniedrigen oder dessen Härtungsreaktion zu beschleunigen, und/oder Mittel zum Wärmen des Beschichtungsmittels bereitzustellen, um das Beschichtungsmittel zur Beeinflussung dessen Härtungsreaktion zu temperieren.It is possible to arrange a radiation source such that its heat output does not adversely affect the coating agent, to provide insulators to thermally separate the radiation unit from the coating agent, to provide means for cooling the radiation source, to position the radiation source so that its heat dissipation occurs the coating agent may act to lower its viscosity or to accelerate its curing reaction, and / or to provide means for heating the coating agent to temper the coating agent to affect its curing reaction.

In einem Ausführungsbeispiel kann die Applikationsvorrichtung eine Lackierkabine umfassen.In one embodiment, the application device may include a paint booth.

Die Lackierkabine kann im Umluftbetrieb mit Inertgäs oder unter Vakuum betrieben werden.The paint booth can be operated in recirculation mode with inert gas or under vacuum.

In einem Ausführungsbeispiel können die Innenwände der Lackierkabine als Flächenstrahler ausgebildet sein, um vorbestrahltes Beschichtungsmittel weiter zu bestrahlen, und/oder kann in der Lackierkabine ferner ein beweglicher Roboter vorgesehen sein, der eine Strahlungsquelle aufweist, um vorbestrahltes Beschichtungsmittel weiter zu bestrahlen.In one embodiment, the inner walls of the paint booth may be configured as area radiators to further irradiate pre-irradiated coating agent, and / or may further be provided in the paint booth a movable robot having a radiation source to further irradiate pre-irradiated coating agent.

Es ist möglich, von Beschichtungsmittel berührte und Strahlung ausgesetzte Oberflächen mit einer Anti-Haft- und/oder einer Easy-To-Clean-Beschichtung zu versehen. Es ist auch möglich, Mittel bereitzustellen, um von Beschichtungsmittel berührte und Strahlung ausgesetzte Oberflächen mit Spülmittel und/öder vernetzungsreaktionshemmenden Komponenten zu spülen.It is possible to provide coated and irradiated surfaces with an anti-stick and / or easy-to-clean coating. It is also possible to provide means to rinse surfaces contacted by coating agents and exposed to radiation with rinse and / or crosslinking-inhibiting components.

Als Material für den zumindest einen Strahlungsabgabeabschnitt, vorzugsweise den strählungsdurchlässigen Abschnitt, den Glockenteller, die Verteilerscheibe, das Farbrohr, die Außenaufladungsmittel und/oder das Modul, kann beispielsweise ein strahlungsleitender bzw. strahlungsdurchlässiger Kunststoff verwendet werden, wie z.B. PLEXIGLAS SUNACTIVE® XT oder PLEXIGLAS SUNACTIVE® GS von Röhm, Quarz, Quarzglas, spezielles UV durchlässiges Glas, z.B. Quarzglas GE 021Al von Momentive performance Materials, etc.. Auch Kunststoffe, die bei der Herstellung oben genannter Teile mittels Stereolithografie eingesetzt werden, können verwendet werden.As a material for the at least one radiation delivery section, preferably the strählungsdurchlässigen section, the bell cup, the distributor disc, the color tube, the external charging and / or the module, for example, a radiation-conducting or radiation-permeable plastic can be used, such as PLEXIGLAS SUNACTIVE ® XT or PLEXIGLAS SUNACTIVE ® GS from Röhm, quartz, quartz glass, special UV-transparent glass, eg quartz glass GE 021Al from Momentive Performance Materials, etc .. Also plastics that are used in the production of the above-mentioned parts by means of stereolithography can be used.

Die Erfindung erweitert den Einsatzbereich strahlungshärtbarer Beschichtungsmittel. So findet die Erfindung beispielsweise Anwendung bei pigmentierten Lacken als Beschichtungsmittel. Pigmentierte Lacke haben auf der zu beschichtenden Oberfläche meist eine so hohe Schichtdicke, dass mit üblichen Strahlungsverfahren (wegen der Pigmentierung) eine ausreichende Bestrahlung nicht erzielt werden kann, da die Bestrahlung nicht bis zum Grund reicht. Durch die erfindungsgemäße Bestrahlung und optional erfolgender Nachbestrahlung kann eine Strahlungshärtung nun auch bei pigmentierten Lacken verwendet werden.The invention extends the field of application of radiation-curable coating compositions. For example, the invention finds application in pigmented paints as coating agents. Pigmented paints usually have such a high layer thickness on the surface to be coated that adequate irradiation can not be achieved with conventional radiation methods (because of the pigmentation), since the irradiation does not reach to the bottom. Due to the irradiation according to the invention and optional subsequent irradiation, radiation curing can now also be used with pigmented paints.

Vorteilhaft ist auch die Vernetzung von zwei oder mehr Lackschichten möglich. So kann beispielsweise ein erster Basislack (BC1) und ein zweiter Basislack (BC2) ohne vorherige Bestrahlung appliziert werden und der darauffolgende Klarlack (CC) wird erfindungsgemäß bestrahlt und appliziert. Dies erfordert auch eine Bestrahlung der lackierten Oberfläche. Man kann aber auch jede Basislackschicht einzeln erfindungsgemäß bestrahlen.Advantageously, the crosslinking of two or more layers of paint is possible. Thus, for example, a first basecoat (BC1) and a second basecoat (BC2) can be applied without prior irradiation and the subsequent clearcoat (CC) is irradiated and applied according to the invention. This also requires irradiation of the painted surface. However, it is also possible to irradiate each basecoat layer individually according to the invention.

Vorteilhaft ermöglicht die Erfindung auch eine Bestrahlung von Beschichtungsmittel in einer, zwei oder mehr Stufen bzw. mit einer Vielzahl vordefinierter Parameter, wie beispielsweise Strahlungsdosis, Strahlungsintensität, Strahlungswinkel, etc., wodurch gezielt unterschiedliche Vernetzungsgrade erzeugt werden können. So ist beispielsweise eine "leichte" Bestrahlung vorzugsweise in oder an der Applikationseinheit für eher wenig belastete Flächen (z.B. Innenflächen wie ein Türeinstieg bei einem Kraftfahrzeugkarosseriebauteil) meist ausreichend. Besonders belastete Flächen (z.B. Außenflächen eines Kraftfahrzeugkarosseriebauteils) können einer weiteren Bestrahlung unterzogen werden. Es ist auch möglich, für die unterschiedlich stark belasteten Flächen unterschiedliche Beischichtungsmittel einzusetzen, um einer ausreichenden Vernetzung gerecht zu werden.Advantageously, the invention also allows irradiation of coating agent in one, two or more stages or with a plurality of predefined parameters, such as radiation dose, radiation intensity, radiation angle, etc., whereby specifically different degrees of crosslinking can be generated. For example, a "light" irradiation, preferably in or on the application unit, is usually sufficient for rather lightly loaded surfaces (for example, inner surfaces such as a door entry in a motor vehicle body component). Particularly stressed areas (e.g., exterior surfaces of an automotive body component) may be subjected to further irradiation. It is also possible to use different coating agents for the areas exposed to different levels of stress in order to be able to cope with adequate crosslinking.

So könnte z.B. die Lackierung des Innenraums einer Karosse mit einem Lacksystem auf Basis latenter Basen erfolgen (diese sind qualitativ nicht so hochwertig wie Acrylat-Systeme, benötigen aber deutlich weniger Bestrahlung) und anschließend erfindungsgemäß gehärtet werden. Die darauffolgende höherwertige Außenbeschichtung mit Acrylat-Systemen kann konventionell erfolgen (ohne Bestrahlung während der Lackierung) und kann anschließend beispielsweise mit konventionellen UV-Lampen gehärtet werden. Vorteilhaft daran ist, dass der Außenbereich, der stärker beansprucht wird aber auch mit UV-Lampen besser erreicht werden kann, mit dem hochwertigen Acrylat-System sehr gut geschützt werden und der Innenbereich mit dem latente-Basen-System ausreichend geschützt und doch effektiv (auch in schlecht zugänglichen Bereichen) mit der erfindungsgemäßen Applikation vernetzt werden kann.Thus, for example, the painting of the interior of a body with a paint system based on latent bases could be done (these are not as high quality as acrylate systems, but require significantly less irradiation) and then cured according to the invention. The subsequent higher-quality outer coating with acrylate systems can be conventional (without irradiation during painting) and can then be cured, for example, with conventional UV lamps. The advantage of this is that the outdoor area, which is more stressed but can also be better achieved with UV lamps, are protected very well with the high-quality acrylate system and the interior area with the latent-base system is sufficiently protected and yet effective (also in poorly accessible areas) can be crosslinked with the application of the invention.

Besonders vorteilhaft ist weiter, dass mittels der Erfindung eine Applizierung und Bestrahlung des Beschichtungsmittels auch bei komplexen dreidimensionalen zu beschichtenden Oberflächen ohne Oberflächenqualitätsverluste möglich ist. Da die Führung der Applikationseinheit entlang der zu beschichtenden Oberfläche, die Applizierung und Bestrahlung des Beschichtungsmittels steuerbar sind, kann eine besonders hohe Oberflächenqualität erzielt werden.It is furthermore particularly advantageous that, by means of the invention, it is possible to apply and irradiate the coating composition, even in the case of complex three-dimensional surfaces to be coated, without surface quality losses. Since the guidance of the application unit along the surface to be coated, the application and irradiation of the coating agent can be controlled, a particularly high surface quality can be achieved.

Ein weiterer Vorteil der Erfindung ist, dass aufgrund der Tatsache der Bestrahlung des Beschichtungsmittels vor Auftreffen auf der zu beschichtenden Oberfläche, die Prozesszeit verringert werden kann.Another advantage of the invention is that due to the fact of irradiation of the coating composition before impacting on the surface to be coated, the process time can be reduced.

Auch können vorteilhaft sogenannte Monocure-Systeme mit der Erfindung verwendet werden. Monocure-Systeme sind solche, die nur (ausschließlich) mittels Strahlung gehärtet werden. In herkömmlichen Lackierkabinen inklusive Härtungsbereich konnten solche Monocure-Systeme bei Substraten mit ausgeprägten "Schattenbereichen" (Bereiche, die mit konventionellen UV-Lampen nicht ausreichend erreichbar sind) nicht zufriedenstellend eingesetzt werden. Der Einsatz von Monocure-Systemen erfordert eine besonders effektive Bestrahlung, was durch die Erfindung gewährleistet werden kann.Also, so-called monocure systems can advantageously be used with the invention. Monocure systems are those that are only (exclusively) cured by radiation. In conventional paint booths, including curing, such monocure systems could not be used satisfactorily on substrates with pronounced "shadow areas" (areas that are not sufficiently accessible with conventional UV lamps). The use of monocure systems requires a particularly effective irradiation, which can be ensured by the invention.

Als weiterer Vorteil ist hervorzuheben, dass die Erfindung eine Universalappliziervorrichtung zum Applizieren und Bestrahlen strahlungshärtbarer Beschichtungsmittel schafft, die auf die unterschiedlichsten Anforderungen wie beispielsweise Strahlungsdosis, Strahlungsintensität, komplexe zu beschichtende Objekte, unterschiedlichste Beschichtungsmittel, etc. reagieren kann, was mit üblichen Applikationsvorrichtung bisher nicht möglich war.As a further advantage, it should be emphasized that the invention provides a universal applicator for applying and irradiating radiation-curable coating compositions, which can respond to a wide variety of requirements such as radiation dose, radiation intensity, complex objects to be coated, various coating agents, etc., which has hitherto not been possible with conventional application apparatus was.

Weitere Vorteile sind die geringen Emissionen an flüchtigen organischen Verbindungen (VOC-Emissionen) und der geringe Energiebedarf.Further advantages are the low emissions of volatile organic compounds (VOC emissions) and the low energy requirement.

Die Erfindung findet insbesondere Anwendung bei der Lackierung von Kraftfahrzeugkarosseriebauteilen (auch Modullackierungen). Jedoch findet die Erfindung beispielsweise auch in der Schienenfahrzeug-, Flugzeug-, Schiffs- und/oder Windenergieindustrie (z.B. Rotorblätter) Anwendung. Vorteilhaft kann die Erfindung aber auch in der Medizintechnik (z.B. keimresistente UV-Lacke), im Bauwesen (z.B. Fassadenelemente aus Polymeren mit UV-Beschichtungen), im Bereich der "Organischen Photovoltaik (z.B. UV-härtende Einzelschichten), etc. eingesetzt werden.The invention finds particular application in the painting of motor vehicle body components (also module coatings). However, the invention is also applicable to, for example, the rail, aircraft, marine and / or wind energy industries (e.g., rotor blades). However, the invention can also be advantageously used in medical technology (for example germ-resistant UV coatings), in construction (for example facade elements made of polymers with UV coatings), in the field of organic photovoltaics (for example UV-curing individual layers).

Ferner ist zu erwähnen, dass über geeignete Materialen die Strahlung auch in isoliert (Hochspannung) aufgebaute Zerstäuber eingeleitet werden kann, beispielsweise mit Hilfe von Strahlungs- und/oder Lichtleitern, Batteriebetrieb, potentialgetrennte Stromversorgung ähnlich wie bei einer elektrischen Turbine, etc.It should also be mentioned that the radiation can also be introduced into isolated (high-voltage) atomizers via suitable materials, for example with the aid of radiation and / or light guides, battery operation, potential-separated power supply similar to an electric turbine, etc.

Es ist möglich, den Beschichtungsprozess, vorzugsweise den Lackierprozess, mit einem Wäscher oder einer Trockenabscheidung zur Abscheidung des Oversprays zu kombinieren.It is possible to combine the coating process, preferably the painting process, with a scrubber or a dry separation to separate the overspray.

Die Erfindung umfasst insbesondere alle durch Strahlung härtbaren Beschichtungsmittel, vorzugsweise Lacke, sowie alle dazu geeigneten Beschichtungsverfahren, vorzugsweise Lackierverfahren, mitunter auch das Fluten und das Inkjet-Verfahren.In particular, the invention encompasses all radiation-curable coating compositions, preferably paints, as well as all suitable coating methods, preferably coating methods, sometimes also the flooding and the inkjet method.

Ferner umfasst die Erfindung auch ein zugehöriges Verfahren für die vorstehend beschriebene Applikationsvorrichtung.Furthermore, the invention also includes an associated method for the application device described above.

Das Verfahren zeichnet sich insbesondere dadurch aus, dass zumindest ein Strahlungsabgabeabschnitt das Beschichtungsmittel vor Auftreffen auf die zu beschichtende Oberfläche mit der Strahlung in Kontakt bringt.The method is characterized in particular by the fact that at least one radiation delivery section brings the coating agent into contact with the radiation before impinging on the surface to be coated.

Ferner umfasst die Erfindung auch zugehörige Beschichtungsmittelapplizierkomponenten, insbesondere Rotationszerstäuberkomponenten, vorzugsweise einen Glockenteller, eine Verteilerscheibe, ein Farbrohr, Außenaufladungsmittel zur Außenaufladung des Beschichtungsmittels, ein Modul zur Oberflächenvergrößerung und/oder zur Durchmischung eines Beschichtungsmittels, und/oder eine Dosiereinrichtung. Die Beschichtungsmittelapplizierkomponente kann aus strahlungsdurchlässigem Material hergestellt sein oder zumindest strahlungsdurchlässiges Material aufweisen. Als Material kann beispielsweise ein strahlungsdurchlässiger Kunststoff verwendet werden, wie z.B. PLEXIGLAS SUNACTIVE® XT oder PLEXIGLAS SUNACTIVE® GS von Röhm, Quarz, Quarzglas, spezielles UV durchlässiges Glas, z.B. Quarzglas GE 021A1 von Momentive performance Materials, etc.. Auch Kunststoffe, die bei der Herstellung oben genannter Teile mittels Stereolithografie eingesetzt werden, können verwendet werden.Furthermore, the invention also encompasses associated coating agent application components, in particular rotary atomizer components, preferably a bell cup, a distributor disk, a color tube, external charging means for external charging of the coating agent, a module for increasing the surface area and / or mixing of a coating agent, and / or a metering device. The coating agent application component may be made of radiation-transmissive material or at least have radiation-transmissive material. As a material, for example, a radiation-permeable plastic can be used, such as PLEXIGLAS SUNACTIVE ® XT or PLEXIGLAS SUNACTIVE ® GS from Röhm, quartz, quartz glass, special UV-transparent glass, such as quartz glass GE 021A1 of Momentive performance materials, etc .. Also plastics that are at The production of the above-mentioned parts by means of stereolithography can be used.

Der Strahlungsabgabeabschnitt, der zumindest eine strahlungsdurchlässige Abschnitt, die Beschichtungsmittelapplizierkomponente, der Glockenteller, die Verteilerscheibe, das Farbrohr, Abschnitte der stirnseitigen Fläche, die Außenaufladungsmittel, das Modul, und/oder Abschnitte der Dosiereinrichtung sind insbesondere strahlungsdurchlässig für aktinische Strahlung (photokatalytische Strahlung), ultraviolette Strahlung, Korpuskularstrahlung (z.B. Elektronenstrahl-Härtung), und/oder radioaktive Strahlung.The radiation delivery section, the at least one radiation-transmissive section, the coating agent application component, the bell cup, the distributor plate, the color tube, sections of the frontal surface, the external charging means, the module, and / or sections of the metering device are in particular radiation-transmissive to actinic radiation (photocatalytic radiation), ultraviolet Radiation, corpuscular radiation (eg electron beam curing), and / or radioactive radiation.

Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet oder werden nachstehend zusammen mit der Beschreibung des bevorzugten Ausführungsbeispiels der Erfindung anhand der Figuren näher erläutert. Es zeigen:

Fig. 1
eine schematische Darstellung eines Längsschnitts eines Strahlungsabgabeabschnitts, der in einer Applikationsvorrichtung gemäß einem ersten Ausführungsbeispiel der Erfindung anzuordnen ist;
Fig. 2
eine schematische Darstellung eines Querschnitts des Strahlungsabgabeabschnitts entlang Linie L1-L1 in Fig. 1;
Fig. 3
eine schematische Darstellung eines in eine Beschichtungsmittelleitung ragenden Strahlungsabgabeabschnitts gemäß einem zweiten Ausführungsbeispiel der Erfindung;
Fig. 4
eine Querschnittsdarstellung eines Teils einer Applikationseinheit, die in einer Applikationsvorrichtung gemäß einem dritten Ausführungsbeispiel der Erfindung anzuordnen ist;
Fig. 5
zeigt eine schematische Darstellung einer Draufsicht auf eine stirnseitige Fläche der Applikationseinheit entlang Linie L2-L2 in Fig. 4;
Fig. 6
eine schematische Darstellung eines Mischers, der in einer Applikationsvorrichtung gemäß einem vierten Ausführungsbeispiel anzuordnen ist;
Fig. 7
eine Querschnittsdarstellung eines Teils einer Applikationseinheit, die in einer Applikationsvorrichtung gemäß einem weiteren Ausführungsbeispiel der Erfindung anzuordnen ist.
Other advantageous developments of the invention are characterized in the subclaims or are explained in more detail below together with the description of the preferred embodiment of the invention with reference to the figures. Show it:
Fig. 1
a schematic representation of a longitudinal section of a radiation delivery section, which is to be arranged in an application device according to a first embodiment of the invention;
Fig. 2
a schematic representation of a cross section of the radiation delivery section along line L1-L1 in Fig. 1 ;
Fig. 3
a schematic representation of a projecting into a coating agent line radiation delivery section according to a second embodiment of the invention;
Fig. 4
a cross-sectional view of a portion of an application unit to be arranged in an application device according to a third embodiment of the invention;
Fig. 5
shows a schematic representation of a plan view of an end face of the application unit along line L2-L2 in Fig. 4 ;
Fig. 6
a schematic representation of a mixer, which is to be arranged in an application device according to a fourth embodiment;
Fig. 7
a cross-sectional view of a portion of an application unit, which is to be arranged in an application device according to a further embodiment of the invention.

Fig. 1 zeigt eine schematische Darstellung eines Längsschnitts eines Strahlungsabgabeabschnitts 10 zur Abgabe von Strahlung S, der in einer Applikationsvorrichtung gemäß einem ersten Ausführungsbeispiel der Erfindung anzuordnen ist. Der Strahlungsabgabeabschnitt 10 umfasst einen strahlungsdurchlässigen Abschnitt 11. Der Strahlungsabgabeabschnitt 10 bzw. der strahlungsdurchlässige Abschnitt 11 ist im Wesentlichen röhrenförmig oder ringförmig vorgesehen und umfasst einen strahlungsundurchlässigen radial äußeren Bereich 11A und einen strahlungsdurchlässigen radial inneren Bereich 11B. Fig. 1 shows a schematic representation of a longitudinal section of a radiation delivery section 10 for emitting radiation S, which is to be arranged in an application device according to a first embodiment of the invention. The radiation delivery section 10 comprises a radiation-transmissive section 11. The radiation delivery section 10 or the radiation-transmissive section 11 is provided substantially tubular or annular and comprises a radiopaque radial outer region 11A and a radiation-transmissive radially inner region 11B.

Ferner zeigt Fig. 1 einen von Beschichtungsmittel B zu durchströmenden Abschnitt A. Pfeil P1 zeigt die Strömungsrichtung des Beschichtungsmittels B. Der Abschnitt A weist einen Eingang für das Beschichtungsmittel B und einen Ausgang für das Beschichtungsmittel B auf und ist im Querschnitt geschlossenwandig durch den strahlungsdurchlässigen Abschnitt 11 begrenzt, um einerseits ein Durchströmen des Beschichtungsmittels B zu ermöglichen und um andererseits das Beschichtungsmittel B in Umfangsrichtung vollständig zu umschließen. Im vorliegenden Ausführungsbeispiel wird der Abschnitt A in Umfangsrichtung durch den strahlungsdurchlässigen inneren Bereich 11B begrenzt.Further shows Fig. 1 Arrow P1 shows the flow direction of the coating agent B. The section A has an inlet for the coating agent B and an outlet for the coating agent B and is closed in cross-section closed-walled by the radiation-transmissive portion 11, on the one hand to allow flow through the coating agent B and on the other hand to completely enclose the coating agent B in the circumferential direction. In the present embodiment, the portion A is circumferentially bounded by the radiation-transmissive inner portion 11B.

Der Strahlungsabgabeabschnitt 10 kann an jedweder Position zwischen einem Beschichtungsmittelreservoir und einer Austrittsöffnung einer Applikationseinheit positioniert sein, wobei eine Position nahe der Austrittsöffnung zu bevorzugen ist, um die Distanz zwischen Bestrahlungsort und der Austrittsöffnung für das Beschichtungsmittel B bzw. der zu beschichtenden Oberfläche gering zu halten.The radiation delivery section 10 can be positioned at any position between a coating agent reservoir and an outlet opening of an application unit, wherein a position close to the outlet opening is to be preferred in order to minimize the distance between the irradiation location and the outlet opening for the coating agent B or the surface to be coated.

Ein Strahlungsleiter 12, vorzugsweise ein Lichtleiter, ist einerseits an den strahlungsdurchlässigen Abschnitt 11 gekoppelt, und andererseits an eine Strahlungsquelle, vorzugsweise eine Lichtquelle, gekoppelt. Somit kann der Strahlungsabgabeabschnitt 10, insbesondere der strahlungsdurchlässige Abschnitt 11 mit Strahlung S versorgt werden, um diese auf das Beschichtungsmittel B abzugeben. Die Strahlungsquelle und der Strahlungsabgabeabschnitt 10 sind somit entfernt voneinander positioniert.A radiation conductor 12, preferably a light guide, is coupled on the one hand to the radiation-transmissive section 11, and on the other hand to a radiation source, preferably a light source. Thus, the radiation delivery section 10, in particular the radiation-transmissive section 11 can be supplied with radiation S in order to deliver it to the coating agent B. The radiation source and the radiation delivery section 10 are thus positioned away from each other.

Fig. 2 zeigt eine schematische Darstellung eines Querschnitts des Strahlungsabgabeabschnitts 10 entlang Linie L1-L1 in Fig. 1. Auch dort sind der Abschnitt A, der strahlungsdurchlässige Abschnitt 11, der strahlungsundurchlässige radial äußere Bereich 11A und der strahlungsdurchlässige radial innere Bereich 11B, der von dem Beschichtungsmittel B durchströmt wird, zu sehen. Wie in Fig. 2 gesehen werden kann, erfolgt die Abgabe von Strahlung S über den gesamten Innenumfang des strahlungsdurchlässigen radial inneren Bereichs 11B in den von Beschichtungsmittel B zu durchströmenden Abschnitt A. Fig. 2 shows a schematic representation of a cross section of the radiation delivery section 10 along line L1-L1 in FIG Fig. 1 , There too, the section A, the radiation-transmissive section 11, the radiopaque radial outer region 11A and the radiation-permeable radially inner region 11B, through which the coating agent B flows, can be seen. As in Fig. 2 can be seen, the emission of radiation S takes place over the entire inner circumference of the radiation-permeable radially inner region 11B in the section A to be flowed through by the coating agent B.

Wie aus den Figs. 1 und 2 ersichtlich wird, wird der Strahlungsabgabeabschnitt 10 bzw. der strahlungsdurchlässige Abschnitt 11 über den Strahlungsleiter 12 mit Strahlung S versorgt, um das Beschichtungsmittel B zu bestrahlen. Die zugeführte Strahlung S breitet sich in dem strahlungsdurchlässigen Abschnitt 11 in dessen Längsrichtung P2 und dessen Umfangsrichtung P3 aus, indem sie teilweise zwischen dem strahlungsundurchlässigen radial äußeren Bereich 11A und dem strahlungsdurchlässigen radial inneren Bereich 11B reflektiert wird. Dabei kann ein Teil der Strahlung S aus dem strahlungsdurchlässigen radial inneren Bereich 11B entweichen und auf das Beschichtungsmittel B einwirken.Like from the Figs. 1 and 2 is apparent, the radiation-emitting portion 10 and the radiation-transmissive portion 11 is supplied via the radiation conductor 12 with radiation S to irradiate the coating agent B. The supplied Radiation S propagates in the radiation-transmissive portion 11 in its longitudinal direction P2 and its circumferential direction P3 by being partially reflected between the radiopaque radial outer region 11A and the radiation-transmissive radially inner region 11B. In this case, part of the radiation S can escape from the radiation-permeable radially inner region 11B and act on the coating agent B.

Der strahlungsdurchlässige Abschnitt 11 ist so ausgelegt, dass er über seine gesamte Innenumfangsfläche und über seine gesamte Längserstreckung Strahlung S abgeben kann. Somit kann das durchströmende Beschichtungsmittel B ebenfalls in Umfangsrichtung vollumfänglich bestrahlt werden, und nicht nur von einer oder zwei Seiten, wodurch es möglich ist, das durchströmende Beschichtungsmittel B über den gesamten Strömungsquerschnitt effektiv, homogen und/oder gleichmäßig zu bestrahlen.The radiation-transmissive portion 11 is designed so that it can emit radiation S over its entire inner peripheral surface and over its entire longitudinal extent. Thus, the through-flowing coating agent B can also be fully irradiated in the circumferential direction, and not only from one or two sides, whereby it is possible to effectively, homogeneously and / or uniformly irradiate the through-flowing coating agent B over the entire flow cross-section.

Ein weiterer Vorteil besteht darin, dass eine in Fig. 1 gezeigte Strahlungseinkopplungsfläche 13 zum Einleiten der Strahlung S in den strahlungsdurchlässigen Abschnitt 11 um ein Vielfaches kleiner ist als die Fläche zur Abgabe der Strahlung auf das Beschichtungsmittel B. Das heißt im ersten Ausführungsbeispiel, dass die Strahlungseinkopplungsfläche 13 um ein Vielfaches kleiner ist als die Innenumfangsfläche des rohrförmigen strahlungsdurchlässigen Abschnitts 11.Another advantage is that a in Fig. 1 shown radiation input surface 13 for introducing the radiation S into the radiation-transmissive portion 11 is many times smaller than the area for emitting the radiation to the coating agent B. That is, in the first embodiment, that the radiation injection surface 13 is many times smaller than the inner peripheral surface of the tubular radiation-transmissive portion 11.

Fig. 3 zeigt eine schematische Darstellung eines in einen von Beschichtungsmittel B zu durchströmenden Abschnitt A ragenden Strahlungsabgabeabschnitts 20 gemäß einem zweiten Ausführungsbeispiel der Erfindung. Pfeil P1 gibt die Strömungsrichtung des Beschichtungsmittels B an. Fig. 3 shows a schematic representation of a protruding into a to be flowed through by coating agent B section A radiation delivery section 20 according to a second embodiment of the invention. Arrow P1 indicates the flow direction of the coating agent B.

Der Strahlungsabgabeabschnitt 20 umfasst einen Strahlungsleiter 20A, von dem vier weitere Strahlungsleiter 20B, 20C, 20D und 20E in den Abschnitt A hineinragen. Die Strahlungsleiter 20B, 20C, 20D und 20E weisen jeweils an ihrem freien Ende eine Strahlungsaustrittsöffnung auf, um das Beschichtungsmittel B zu bestrahlen. Ähnlich wie beim ersten Ausführungsbeispiel ist der Strahlungsabgabeabschnitt 20 über einen Strahlungsleiter 20A an eine Strahlungsquelle angeschlossen.The radiation delivery section 20 comprises a radiation conductor 20A, from which four further radiation conductors 20B, 20C, 20D and 20E protrude into the section A. The radiation conductors 20B, 20C, 20D and 20E each have a radiation exit opening at their free end in order to irradiate the coating agent B. Similar to the first embodiment, the radiation delivery section 20 is connected to a radiation source via a radiation conductor 20A.

Die Strahlungsleiter 20B, 20C, 20D und 20E ragen unterschiedlich weit in den Abschnitt A, um eine effektive, homogene und/oder gleichmäßige Bestrahlung über den Strömungsquerschnitt des Beschichtungsmittels B zu gewährleisten. Obwohl im Gegensatz zum ersten Ausführungsbeispiel im Wesentlichen punktförmige Bestrahlungen des Beschichtungsmittels B erfolgen, kann aufgrund der Anordnung der Strahlungsleiter 20B, 20C, 20D und 20E in dem von Beschichtungsmittel B durchströmten Abschnitt A eine effektive, homogene und/oder gleichmäßige Bestrahlung des Beschichtungsmittels B erzielt werden.Radiation conductors 20B, 20C, 20D and 20E protrude at different distances into section A in order to ensure effective, homogeneous and / or uniform irradiation over the flow cross-section of coating agent B. Although, in contrast to the first embodiment, substantially point-like irradiations of the coating agent B take place, due to the arrangement of the radiation conductors 20B, 20C, 20D and 20E in the section A through which coating agent B flows, effective, homogeneous and / or uniform irradiation of the coating agent B can be achieved ,

Es ist möglich, die Innenfläche des vom Beschichtungsmittel B zu durchströmenden Abschnitts zumindest bereichsweise mit einem Reflektor, z.B. einer Verspiegelung, einer Aluminiumschicht, etc. zu versehen. Dadurch ist es möglich, die von den Strahlungsleitern 20B, 20C, 20D und 20E abgegebene Strahlung, die das Beschichtungsmittel B durchdringt, zurück auf das Beschichtungsmittel B zu reflektieren, was zu einer effektiveren Bestrahlung des Beschichtungsmittels führt.It is possible for the inner surface of the section to be flowed through by the coating agent B to be provided, at least in regions, with a reflector, e.g. a reflective coating, an aluminum layer, etc. to provide. Thereby, it is possible to reflect the radiation emitted from the radiation conductors 20B, 20C, 20D and 20E, which penetrates the coating agent B, back to the coating agent B, resulting in a more effective irradiation of the coating agent.

Fig. 4 zeigt eine Querschnittsdarstellung eines Teils einer Applikationseinheit 35, die in einer Applikationsvorrichtung gemäß einem dritten Ausführungsbeispiel der Erfindung anzuordnen ist. Bei der Applikationseinheit 35 handelt es sich vorzugsweise um einen Rotationszerstäuber. Der Rotationszerstäuber 35 umfasst eine Vielzahl von Strahlungsabgabeabschnitten 30, wie beispielsweise einen Glockenteller 30A, eine Verteilerscheibe 30B, eine Vielzahl von Strahlungsmitteln 30D und ein Farbrohr 30C. Die Strahlungsmittel 30D sind an oder in einer stirnseitigen Fläche 31 vorgesehen und auf den Glockenteller 30A gerichtet (bei einer anderen Ausführungsform können die Strahlungsmittel auch so vorgesehen sein, dass sie direkt auf einen Beschichtungsmittelsprühstrahl und/oder direkt auf die zu beschichtende Oberfläche gerichtet sind), um diesen mit Strahlung S zur Abgabe an das Beschichtungsmittel B zu versorgen. An der stirnseitigen Fläche 31 ist ferner ein Lenkgasring 32 mit Lenkgasdüsen 32A bereitgestellt. Fig. 4 shows a cross-sectional view of a portion of an application unit 35, which is to be arranged in an application device according to a third embodiment of the invention. The application unit 35 is preferably around a rotary atomizer. The rotary atomizer 35 includes a plurality of radiation emitting portions 30, such as a bell cup 30A, a distributor disk 30B, a plurality of radiation means 30D and a paint tube 30C. The radiation means 30D are provided on or in an end surface 31 and directed towards the bell cup 30A (in another embodiment, the radiation means may also be provided so as to be directed directly onto a coating agent spray and / or directly onto the surface to be coated), to provide this with radiation S for delivery to the coating agent B. On the front surface 31, a steering gas ring 32 is further provided with gas nozzles 32A.

In diesem Ausführungsbeispiel sind der Glockenteller 30A und/oder die Verteilerscheibe 30B zumindest abschnittsweise strahlungsdurchlässig ausgebildet.In this embodiment, the bell cup 30A and / or the distributor disc 30B are at least partially radiation-permeable.

Das Farbrohr 30C ist an eine Strahlungsquelle gekoppelt, um mit Strahlung S versorgt zu werden. Das Farbrohr 30C ist auf die Verteilerscheibe 30B gerichtet, um diese mit Strahlung S zur Abgabe an das Beschichtungsmittel B zu versorgen. Die Strahlungsabgabe auf das Beschichtungsmittel B erfolgt also durch den Glockenteller 30A, vorzugsweise über die Beschichtungsmittelüberströmfläche des Glockentellers 30A, und durch die Verteilerscheibe 30B.The color tube 30C is coupled to a radiation source to be supplied with radiation S. The paint tube 30C is directed to the distributor disc 30B to provide it with radiation S for delivery to the coating agent B. The emission of radiation to the coating agent B thus takes place through the bell cup 30A, preferably via the coating medium overflow surface of the bell cup 30A, and through the distributor disk 30B.

Die Strahlungsmittel 30D sind in einer ringförmigen Anordnung an der stirnseitigen Fläche 31 um den Glockenteller 30A herum angeordnet. Die Strahlungsmittel 30D werden über jeweils einen Strahlungsleiter mit Strahlung S versorgt, um die Strahlung in Richtung auf den Glockenteller 30A abzugeben. Die Strahlungsmittel 30D und die Strahlungsqüelle sind somit entfernt voneinander positioniert. Dies ist insbesondere dann vorteilhaft, wenn die Applikationseinheit 35 am freien Ende eines Roboterarms angeordnet werden soll, da das Gewicht am freien Ende des Roboterarms gering gehalten werden kann, was vorteilhaft für die empfindliche Roboterdynamik ist. Es ist aber auch möglich, die Strahlungsmittel 30D als Strahlungsquellen zur Erzeugung von Strahlung S direkt an der Applikationseinheit 35 anzuordnen, vorzugsweise an oder in der stirnseitigen Fläche 31.The radiation means 30D are arranged in an annular arrangement on the front face 31 around the bell cup 30A. The radiation means 30D are supplied with radiation S via a respective radiation conductor in order to emit the radiation in the direction of the bell cup 30A. The Radiation means 30D and the radiation sources are thus positioned away from each other. This is particularly advantageous when the application unit 35 is to be arranged at the free end of a robot arm, since the weight at the free end of the robot arm can be kept low, which is advantageous for the sensitive robot dynamics. However, it is also possible to arrange the radiation means 30D as radiation sources for generating radiation S directly on the application unit 35, preferably on or in the frontal area 31.

Die Strahlungsmittel 30D sind in Figur 4 auf den Glockenteller 30A gerichtet, um diesen zu bestrahlen. Da der Glockenteller 30A zumindest abschnittsweise strahlungsdurchlässig ist, wird vor allem das sich auf der Beschichtungsmittelüberströmfläche des Glockentellers 30A befindliche Beschichtungsmittel B großflächig bestrahlt, um eine effektive, homogene und/oder gleichmäßige Bestrahlung zu gewährleisten.The radiation means 30D are in FIG. 4 directed to the bell cup 30A to irradiate it. Since the bell cup 30A is at least partially radiation-permeable, in particular the coating agent B located on the coating medium overflow surface of the bell cup 30A is irradiated over a large area in order to ensure effective, homogeneous and / or uniform irradiation.

Es ist auch möglich, die an oder in der stirnseitigen Fläche 31 angeordneten Strahlungsmittel 30D so vorzusehen, dass Strahlung S im Wesentlichen direkt auf einen Beschichtungsmittelsprühstrahl gerichtet ist, und/oder die an oder in der stirnseitigen Fläche 31 angeordneten Strahlungsmittel 30D so vorzusehen, dass die Strahlung S im Wesentlichen auf ein bereits auf die zu beschichtende Oberfläche appliziertes Beschichtungsmittel B gerichtet ist.It is also possible to provide the radiation means 30D disposed on or in the end face 31 such that radiation S is directed substantially directly onto a coating agent spray jet, and / or to provide the radiation means 30D arranged on or in the front face 31 such that the Radiation S is directed to a substantially already applied to the surface to be coated coating agent B.

Dazu sollten die Strahlungsmittel 30D vorzugsweise radial außerhalb der Außenkante des Glockentellers positioniert sein, wie schematisch gezeigt in Figur 4 durch den Pfeil P', die Strahlungsmittel 30D' und die Strahlung S', wobei dann der Radius R2 der Strahlungsmittelanordnung größer ist als der Radius R1 der Lenkgasdüsenanordnung (siehe Figur 5).For this purpose, the radiation means 30D should preferably be positioned radially outside the outer edge of the bell cup, as shown schematically in FIG FIG. 4 by the arrow P ', the radiation means 30D' and the radiation S ', in which case the Radius R2 of the radiation means arrangement is greater than the radius R1 of the steering gas nozzle arrangement (see FIG. 5 ).

An der stirnseitigen Fläche 31 und/oder am freien Ende eines Roboterarms, ist ferner der Lenkgasring 32 mit den Lenkgasdüsen 32A zur Abgabe von Inertgas G bereitgestellt. Zu diesem Zweck kann die Applikationsvorrichtung ein Inertgasreservoir aufweisen. Das von den Lenkgasdüsen 32A abgegebene Inertgas G dient einerseits dazu, das Beschichtungsmittel B zu formen, und andererseits dazu, unerwünschte Reaktionen mit Bestandteilen in der normalen Atmosphäre zu verhindern. Die Lenkgasdüsen 32A sind so angeordnet, dass das Inertgas G auf die Auβenfläche des Glockentellers 30A und/oder die umlaufende Auβenkante des Rands des Glockentellers 30A gerichtet ist.On the front surface 31 and / or at the free end of a robot arm, the steering gas ring 32 is further provided with the gas nozzles 32A for the release of inert gas G. For this purpose, the application device may comprise an inert gas reservoir. The inert gas G discharged from the steering gas nozzles 32A serves, on the one hand, to form the coating agent B and, on the other hand, to prevent undesired reactions with constituents in the normal atmosphere. The steering gas nozzles 32A are arranged so that the inert gas G is directed to the outer surface of the bell cup 30A and / or the peripheral outer edge of the bell cup 30A.

An der stirnseitigen Fläche 31 können auch weitere Strahlungsabgabeabschnitte bereitgestellt sein, deren abgegebene Strahlung auf den Beschichtungsmittelsprühstrahl und/oder auf die zu beschichtende Oberfläche gerichtet ist. Somit kann das Beschichtungsmittel B im Flug, also zwischen der Außenkante des Glockentellers 30A und der zu beschichtenden Oberfläche, bestrahlt werden.At the end face 31, further radiation delivery sections can be provided, whose emitted radiation is directed to the coating agent spray and / or to the surface to be coated. Thus, the coating agent B in flight, so between the outer edge of the bell cup 30A and the surface to be coated, are irradiated.

Wie insbesondere in Fig. 5, die eine schematische Darstellung einer Draufsicht auf die stirnseitige Fläche 31 entlang Linie L2-L2 in Fig. 4 zeigt, gesehen werden kann, sind die Lenkgäsdüsen 32A und die Strahlungsmittel 30D ringförmig und konzentrisch zueinander angeordnet, wobei der Radius R1 der Lenkgasdüsenanordnung größer ist als der Radius R2 der Strahlungsmittelandordnung. Jedoch kann auch eine Anordnung gewählt werden, bei der der Radius R1 kleiner ist als der Radius R2 oder der Radius R1 gleich groß ist wie der Radius R2.As in particular in Fig. 5 , which is a schematic representation of a plan view of the front surface 31 along line L2-L2 in Fig. 4 can be seen, the Lenkgäsdüsen 32 A and the radiation means 30 D are arranged annularly and concentrically with each other, wherein the radius R 1 of the steering gas nozzle arrangement is greater than the radius R2 of the Strahlungsmittelandordnung. However, an arrangement may be chosen in which the radius R1 is smaller than the radius R2 or the radius R1 is the same size as the radius R2.

Die Applikationseinheit 35 ist vorzugsweise an oder in einem freien Ende eines beweglichen Roboterarms angeordnet, so dass das Beschichtungsmittel B und/oder die Strahlung S mit ausreichender Genauigkeit auf die zu beschichtende Oberfläche gerichtet werden können.The application unit 35 is preferably arranged on or in a free end of a movable robot arm, so that the coating agent B and / or the radiation S can be directed onto the surface to be coated with sufficient accuracy.

Bei der elektrostatischen Beschichtungsmittelaufladung (z.B. Lackaufladung) werden meist Außenaufladungsmittel zur Außenaufladung des Beschichtungsmittels eingesetzt. Die Außenaufladungsmittel (Außenaufladungsfinger) weisen üblicherweise Befestigungsmittel und Elektroden auf, um das Beschichtungsmittel elektrisch aufzuladen. Die Befestigungsmittel springen meist fingerartig von der stirnseitigen Fläche einer Applikationseinheit, vorzugsweise eines Rotationszerstäubers vor, und sind meist mit gleichmäßigen Winkelabständen um eine Beschichtungsmittelaustrittsöffnung der Applikationseinheit angeordnet. Bevorzugt sind die Elektroden an den freien Enden der Befestigungsmittel positioniert, um das Beschichtungsmittel elektrisch aufzuladen.In electrostatic coating agent charging (e.g., paint charging), external charging agents are usually used to externally charge the coating agent. The external charging means (external charging fingers) usually have fixing means and electrodes for electrically charging the coating agent. The fastening means usually project finger-like from the end face of an application unit, preferably a rotary atomizer, and are usually arranged at uniform angular intervals around a coating agent outlet opening of the application unit. Preferably, the electrodes are positioned at the free ends of the attachment means to electrically charge the coating agent.

Fig. 6 zeigt eine schematische Darstellung eines Strahlungsabgabeabschnitts 40, der in einer Applikationsvorrichtung gemäß einem vierten Ausführungsbeispiel anzuordnen ist. Fig. 6 shows a schematic representation of a radiation delivery section 40, which is to be arranged in an application device according to a fourth embodiment.

Der Strahlungsabgabeabschnitt 40 weist einen schematisch angedeuteten Mischer 41 als Modul zur Oberflächenvergrößerung und/oder zur Durchmischung von Beschichtungsmittel B auf, der in einem von Beschichtungsmittel B zu durchströmenden Abschnitt A angeordnet ist. Der Mischer 41 ist vorzugsweise ein Kenics-Mischer, der beispielsweise in einem Farbrohr eines Rotationszerstäubers angeordnet sein kann. Der Mischer 41 ist aus strahlungsdurchlässigem Material hergestellt und stellt somit einen strahlungsdurchlässigen Abschnitt dar. Ferner ist ein Strahlungsleiter 42, vorzugsweise ein Lichtleiter, zu sehen, der einerseits an den Mischer 41 gekoppelt ist und andererseits an eine Strahlungsquelle, vorzugsweise eine Lichtquelle, gekoppelt ist. Somit kann der Mischer 41 mit Strahlung versorgt werden, um diese auf das Beschichtungsmittel B abzugeben.The radiation delivery section 40 has a schematically indicated mixer 41 as a module for increasing the surface area and / or mixing of coating agent B, which is arranged in a section A to be flowed through by coating agent B. The mixer 41 is preferably a Kenics mixer, which may for example be arranged in a paint tube of a rotary atomizer. The mixer 41 is made of radiation-permeable material and thus constitutes a radiation-transmissive section. Furthermore, a radiation conductor 42, preferably a light guide, which is coupled on the one hand to the mixer 41 and on the other hand is coupled to a radiation source, preferably a light source. Thus, the mixer 41 can be supplied with radiation to deliver it to the coating agent B.

Der Mischer 41 ist so ausgelegt, dass er über seine im Wesentlichen gesamte Oberfläche Strahlung abgeben kann. Vorteilhaft ist, dass eine Strahlungseinkopplungsfläche 43 zum Einleiten von Strahlung in den Mischer 41 um ein Vielfaches kleiner ist als die Fläche zur Abgabe der Strahlung auf das Beschichtungsmittel B. Das heißt im vierten Ausführungsbeispiel, dass die Lichteinkopplungsfläche 43 um ein Vielfaches kleiner ist als die Oberfläche des Mischers 41.The mixer 41 is designed so that it can emit radiation over its substantially entire surface. It is advantageous that a radiation coupling surface 43 for introducing radiation into the mixer 41 is many times smaller than the surface for emitting the radiation to the coating agent B. That is, in the fourth embodiment, the light coupling surface 43 is many times smaller than the surface of the mixer 41.

Ferner ist vorteilhaft, dass die Bestrahlung des Beschichtungsmittels B einerseits aufgrund der Oberflächenvergrößerung und/oder der Durchmischung und andererseits aufgrund der großflächigen Abgabe von Strahlung von dem Mischer 41 äußerst effektiv, homogen und/oder gleichmäßig erfolgen kann.Furthermore, it is advantageous that the irradiation of the coating agent B on the one hand due to the surface enlargement and / or the mixing and on the other hand due to the large-scale release of radiation from the mixer 41 can be extremely effective, homogeneous and / or uniform.

Figur 7 zeigt eine Querschnittsdarstellung eines Teils einer Applikationseinheit 35', die in einer Applikationsvorrichtung gemäß einem weiteren Ausführungsbeispiel der Erfindung anzuordnen ist. Bei der Applikationseinheit 35' handelt es sich vorzugsweise um einen Rotationszerstäuber. FIG. 7 shows a cross-sectional view of a portion of an application unit 35 ', which is to be arranged in an application device according to a further embodiment of the invention. The application unit 35 'is preferably a rotary atomizer.

Insbesondere zeigt Figur 7 einen Abschnitt eines Glockentellers 30A'. An dem Glockenteller 30A', insbesondere im Bereich der Beschichtungsmittelüberströmfläche des Glockentellers 30A', ist zumindest ein Strahlungsabgabeabschnitt 30' vorgesehen, um das Beschichtungsmittel B vor Auftreffen auf die zu beschichtende Oberfläche mit der Strahlung S zu beaufschlagen. Der Strahlungsabgabeabschnitt 30' kann sich im Wesentlichen über die gesamte Beschichtungsmittelüberströmfläche erstrecken. Der Strahlungsabgabeabschnitt 30' kann aber auch nur abschnittsweise an der Beschichtungsmittelüberströmfläche vorgesehen sein.In particular shows FIG. 7 a portion of a bell cup 30A '. At least one radiation delivery section 30 'is provided on the bell cup 30A', in particular in the region of the coating medium overflow surface of the bell cup 30A ', in order to apply the radiation S to the coating agent B before it strikes the surface to be coated. The radiation delivery section 30 'may extend substantially throughout the coating agent overflow area. However, the radiation delivery section 30 'can also be provided only in sections at the coating agent overflow surface.

Der oder die Strahlungsabgabeabschnitte 30', die im Bereich der Beschichtungsmittelüberströmfläche vorgesehen sind, können bereitgestellt sein, um Strahlung ("aktiv") selbst zu erzeugen. Es ist auch möglich, dass der oder die Strahlungsabgabeabschnitte 30' von einer entfernt positionierten Strahlungsquelle mit Strahlung versorgt werden, um mit dieser das Beschichtungsmittel B zu beaufschlagen. Vorzugsweise ist der Glockenteller 30A' mit Ausnahme der Strahlungsabgabeabschnitte 30' aus einem nicht transparenten Material hergestellt.The radiation delivery section (s) 30 'provided in the area of the coating agent overflow area may be provided to self-generate radiation ("active"). It is also possible for the radiation delivery section or sections 30 'to be supplied with radiation by a radiation source positioned remotely in order to apply the coating agent B to it. Preferably, the bell cup 30A 'except for the radiation delivery portions 30' is made of a non-transparent material.

Der Strahlungsabgabeabschnitt 30' kann beispielsweise auch wie durch die in Figur 7 zu sehende gestrichelte Linie am Glockenteller 30A' vorgesehen werden, also den Glockenteller zumindest abschnittsweise durchdringen.For example, the radiation delivery section 30 'may also be constructed as shown in FIGS FIG. 7 to be seen dashed line on the bell cup 30A 'are provided, so penetrate the bell cup at least in sections.

Die Erfindung ist nicht auf die vorstehend beschriebenen bevorzugten Ausführungsbeispiele beschränkt. Vielmehr ist eine Vielzahl von Varianten und Abwandlungen möglich, die ebenfalls von dem Erfindungsgedanken Gebrauch machen . Allerdings sind in den Figuren 1, 2, 4, 5 und 7 keine Applikationsvorrichtungen oder Applizierkomponenten gemäß den Ansprüchen 1 bzw. 22 dargestellt.The invention is not limited to the preferred embodiments described above. Rather, a variety of variants and modifications is possible, which also make use of the inventive idea. However, in the FIGS. 1, 2 . 4, 5 and 7 no application devices or Applizierkomponenten according to claims 1 or 22 shown.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

10, 20, 30, 4010, 20, 30, 40
StrahlungsabgabeabschnittRadiation output section
1111
Strahlungsdurchlässiger AbschnittRadiation-permeable section
11A11A
Strahlungsundurchlässiger äußerer BereichRadiation-impermeable outer area
11B11B
Strahlungsdurchlässiger innerer BereichRadiation-permeable inner area
12, 20A-20E, 4212, 20A-20E, 42
Strahlungsleiterradiation guide
13, 4313, 43
StrahlungseinkopplungsflächeStrahlungseinkopplungsfläche
30A30A
GlockentellerA bell plate
30B30B
Verteilerscheibedistribution disc
30C30C
FarbrohrFarbrohr
30D30D
Strahlungsmittelradiation means
3131
Stirnseitige FlächeFront surface
3232
LenkgasringSteering gas ring
32A32A
LenkgasdüsenSteering gas nozzles
3535
Applikationseinheitapplication unit
4141
Mischermixer
AA
BeschichtungsmitteldurchströmabschnittBeschichtungsmitteldurchströmabschnitt
BB
Beschichtungsmittelcoating agents
GG
Inertgasinert gas
SS
Strahlungradiation
R1R1
LenkgasringradiusSteering gas ring radius
R2R2
StrahlungsmittelradiusRadiation means radius
P1P1
BeschichtungsmittelströmungsrichtungCoating flow direction
P2P2
Längsrichtunglongitudinal direction
P3P3
Umfangsrichtungcircumferentially

Claims (23)

  1. Application device for applying a coating agent (B) which can be cured by radiation (S) onto a surface to be coated, with
    a) an application unit (35) for emitting the coating agent (B); and
    b) at least one radiation emission portion (10; 20; 20A-20E; 30, 30A-30D; 40) for emitting the radiation (S), which is provided such that the coating agent (B) comes into contact with the radiation (S) before hitting the surface to be coated;
    characterized in that
    c) the radiation emission portion (20) comprises at least one radiation conductor (20A-20E; 42) which protrudes into a portion (A) through which coating agent (B) will flow, in order to irradiate the coating agent (B); and/or
    d) the radiation emission portion (40) comprises a mixer (41) for surface area enlargement and/or mixing of the coating agent (B), which is arranged in a portion (A) through which coating agent (B) will flow, in order to emit radiation to the coating agent.
  2. Application device according to claim 1, characterized in that the radiation emission portion (10; 20, 20A-20E; 30, 30A-30D; 40) is provided
    a) in the application device; and/or
    b) in a metering device for metering the coating agent (B); and/or
    c) in the application unit (35), preferably in a colour tube (30C) of a rotary atomizer or on the mixer (41) for surface area enlargement and/or mixing of the coating agent (B); and/or
    d) on the application unit (35), preferably on or in an end face (31) of a rotary atomizer, in particular on a shaping gas ring (32) or on external charging means for externally charging the coating agent (B); and/or
    e) on a bell cup (30A) for a rotary atomizer; and/or
    f) on a distributor disk (30B) for a rotary atomizer; and/or
    g) on or in a coating agent line for the supply of coating agent (B) to the application unit (35).
  3. Application device according to claim 1 or 2, characterized in that
    a) the radiation emission portion (10; 30, 30A-30D; 40) has at least one radiation-permeable portion (11; 30A-30C; 41); and/or
    b) reflector means are provided to reflect the radiation (S) onto the coating agent (B) and/or back onto the coating agent (B).
  4. Application device according to any of the preceding claims, characterized in that a radiation input surface (13; 43) for introducing radiation (S) into the radiation emission portion (10; 40) and/or the radiation-permeable portion (11; 41) is smaller by a multiple than a surface for the emission of radiation (S) onto the coating agent (B).
  5. Application device according to claim 3 or 4, characterized in that the radiation-permeable portion (11) surrounds a portion (A) through which coating agent (B) will flow, in order to emit radiation (S) over its inner periphery towards the inside, and/or that the radiation-permeable portion (11) is a substantially tubular and/or annular and/or otherwise closed-wall portion which is provided to emit radiation (S) over its inner periphery towards the inside.
  6. Application device according to any of claims 3-5, characterized in that the radiation-permeable portion (11) has a radiation-impermeable outer region (11A) and a radiation-permeable inner region (11A), wherein preferably
    a) a radiation conductor (12) is coupled to the radiation-permeable portion (11) in order to supply this with radiation (S); and/or
    b) the radiation-permeable portion (11) is configured such that radiation (S) can propagate in its longitudinal direction (P1) and peripheral direction (P2); and/or
    c) the radiation-permeable inner region (11B) allows part of the radiation (S) to be transmitted towards the inside; and/or
    d) the radiation-impermeable outer region (11A) allows part of the radiation (S) to be reflected towards the inside to the radiation-permeable inner region (11B).
  7. Application device according to any of claims 3-6, characterized in that the radiation-permeable portion is provided
    a) on or in a colour tube in a rotary atomizer or in another application unit; and/or
    b) on or in a coating agent line for the supply of coating agent to the application unit.
  8. Application device according to any of the preceding claims, characterized in that at least two radiation conductors (20A-20E) are provided which protrude to different extents into the portion (A) through which coating agent will flow.
  9. Application device according to any of the preceding claims, characterized in that
    a) the mixer (41) is radiation-permeable; and/or
    b) at least one radiation conductor (42) is provided which is coupled to the mixer (41) to supply it with radiation (S).
  10. Application device according to any of the preceding claims, characterized in that the mixer is a static mixer.
  11. Application device according to any of the preceding claims, characterized in that
    a) a metering device is provided for metering the coating agent; and/or
    b) the application unit (35) comprises an atomizer, preferably a rotary atomizer, with
    c) a bell cup (30A); and/or
    d) a distributor disk (30B); and/or
    e) a colour tube (30C); and/or
    f) an end face (31) which preferably has a shaping gas ring (32); and/or
    g) external charging means for externally charging the coating agent (B); and/or
    a radiation emission portion and/or a radiation-permeable portion is arranged
    h) in the metering device; and/or
    i) on the bell cup (30A); and/or
    j) on the distributor disk (30B); and/or
    k) in or on the colour tube (30C); and/or ,
    l) on the end face (31); and/or
    m) on the external charging means; and/or
    a radiation emission can take place onto the coating agent (B)
    n) in the metering device; and/or
    o) through the bell cup (30A), preferably the surface of bell cup (30A) over which coating agent flows; and/or
    p) through the distributor disk (30B); and/or
    q) through the colour tube (30C); and/or
    r) in or on the end face (31); and/or
    s) through the external charging means.
  12. Application device according to any of claims 2-11, characterized in that
    a) the bell cup (30A); and/or
    b) the distributor disk (30B); and/or
    c) the colour tube (30C); and/or
    d) the end face (31), preferably the shaping gas ring (32); and/or
    e) the external charging means
    are made of radiation-permeable material.
  13. Application device according to claim 11 or 12, characterized in that the radiation emission portion (30) comprises a plurality of radiation means (30D) which
    a) are provided on or in the end face (31) such that radiation (S) is directed substantially onto the bell cup (30A); and/or
    b) are provided on or in the end face (31) such that radiation (S) is directed substantially directly onto a spray jet of coating agent; and/or
    c) are provided on or in the end face (31) such that the radiation (S) is directed substantially onto a coating agent (B) already applied to the surface to be coated; and/or
    d) which are arranged immovably on the end face (31) or arranged movably relative to the rotary atomizer.
  14. Application device according to any of claims 2-13, characterized in that the colour tube (30C) is provided to emit radiation (S) onto the distributor disk (30B) and/or radially towards the inside.
  15. Application device according to any of the preceding claims, characterized in that means for cooling inert gas are provided in order to guarantee that the inert gas meets the surface to be coated with a lower temperature than the surface to be coated.
  16. Application device according to any of the preceding claims, characterized in that
    a) the application unit (35); and/or
    b) the metering device
    are arranged on or in a movable robot arm, preferably on the free end of the movable robot arm.
  17. Application device according to any of the preceding claims, characterized in that
    a) the radiation emission portion is a radiation source for generating radiation (S); and/or
    b) the radiation emission portion is provided to be supplied with radiation (S); and/or
    c) the radiation emission portion is provided to be supplied with radiation (S) by being coupled to a radiation source via a radiation conductor; and/or
    d) the radiation emission portion is provided to be supplied with radiation (S) by being irradiated from a remote position, wherein
    e) the radiation source is positioned such that its heat emission does not have a negative effect on the coating agent; and/or
    f) insulators are provided to isolate the radiation source thermally from the coating agent; and/or
    g) means are provided for cooling the radiation source; and/or
    h) the radiation source is positioned such that its heat emission can act on the coating agent in order to lower its viscosity or accelerate its curing reaction; and/or
    i) means are provided for warming the coating agent, for tempering the coating agent so that its curing reaction can be influenced.
  18. Application device according to any of the preceding claims, characterized in that a paint booth is provided which can be operated
    a) in circulating air mode with inert gas; or
    b) under vacuum,
    wherein preferably
    c) inner walls of the paint booth are configured as radiators to irradiate the pre-radiated coating agent further; and/or
    d) furthermore, a movable robot is provided in the paint booth which emits radiation to irradiate the pre-radiated coating agent further.
  19. Application device according to any of the preceding claims, characterized in that
    a) surfaces touched by the coating agent and exposed to radiation are provided with a non-stick or easy-to-clean coating; and/or
    b) means are provided for flushing surfaces touched by coating agent and exposed to radiation with flushing agent and/or components which inhibit cross-linking effects.
  20. Method for applying a coating agent (B) which can be cured by radiation onto a surface to be coated, in particular with an application device according to any of the preceding claims, wherein
    a) an application unit (35) applies the coating agent (B) to the surface to be coated; and
    b) at least one radiation emission portion (10; 20, 20A-20E; 30, 30A-30D; 40) brings the coating agent (B) into contact with the radiation (S) before it hits the surface to be coated;
    characterized in that
    c) at least one radiation emission portion (20, 20A-20E) protrudes into a portion (A) through which coating agent (B) will flow and irradiates the coating agent (B); and/or
    d) a radiation-permeable mixer (41) is supplied with radiation (S) and emits radiation (S) onto the coating agent (B).
  21. Method according to claim 20, characterized in that the coating agent (B) flows through a substantially tubular and/or annular and/or otherwise closed-wall radiation-permeable portion (11), and the radiation-permeable portion (11) emits radiation (S) over substantially its entire inner periphery towards the inside onto the coating agent (B), and/or that the radiation (S) is emitted onto the coating agent (B)
    a) in an application device; and/or
    b) in a metering device for metering the coating agent; and/or
    c) in the application unit (35), preferably in and/or by a colour tube (30C) of a rotary atomizer; and/or
    d) on and/or by a bell cup (30A) for a rotary atomizer, preferably on the surface of the bell cup (30A) over which coating agent flows; and/or
    e) on and/or by a distributor disk (30B) for a rotary atomizer; and/or
    f) on or in an end face (31) of the application unit (35); and/or
    g) on and/or by external charging means; and/or
    h) on or in a coating agent line for supplying the coating agent (B) to the application unit (35).
  22. Coating agent application component in an application device according to any of claims 1-20, comprising
    a) a bell cup (30A); and/or
    b) a distributor disk (30B); and/or
    c) a colour tube (30C); and/or
    d) external charging means for externally charging the coating agent (B); and/or
    e) a module (40) for surface area enlargement and/or mixing of a coating agent (B); and/or
    f) a metering device;
    characterized in that
    the coating agent application component is made of radiation-permeable material or at least comprises radiation-permeable material, wherein in the case of a colour tube (30C), this has a portion (A) through which coating agent (B) will flow and into which a radiation conductor (20A-20E) protrudes in order to irradiate the coating agent, and/or this contains a mixer (41) for surface area enlargement and/or mixing of the coating agent (B), which is arranged in a portion (A) through which coating agent (B) will flow, in order to emit radiation to the coating agent (B).
  23. Application device and/or method and/or coating agent application component according to any of the preceding claims, characterized in that
    a) the radiation emission portion (10; 20, 20A-20E; 30, 30A- 30D; 40); and/or
    b) the at least one radiation-permeable portion (11); and/or
    c) the coating agent application component; and/or
    d) the bell cup (30A); and/or
    e) the distributor disk (30B); and/or
    f) the colour tube (30C); and/or
    g) portions of the end face (31); and/or
    h) the external charging means; and/or
    i) the module (40); and/or
    j) portions of the metering device;
    is/are radiation-permeable for
    k) actinic radiation; and/or
    l) ultraviolet radiation; and/or
    m) corpuscular radiation; and/or
    n) radioactive radiation.
EP10779713.6A 2009-11-11 2010-11-11 Application device for applying and irradiating a coating agent that can be cured by radiation Active EP2498919B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009052656A DE102009052656A1 (en) 2009-11-11 2009-11-11 Application device for applying and irradiating a radiation-curable coating agent
PCT/EP2010/006881 WO2011057786A1 (en) 2009-11-11 2010-11-11 Application device for applying and irradiating a coating agent that can be cured by radiation

Publications (2)

Publication Number Publication Date
EP2498919A1 EP2498919A1 (en) 2012-09-19
EP2498919B1 true EP2498919B1 (en) 2016-07-06

Family

ID=43755267

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10779713.6A Active EP2498919B1 (en) 2009-11-11 2010-11-11 Application device for applying and irradiating a coating agent that can be cured by radiation

Country Status (3)

Country Link
EP (1) EP2498919B1 (en)
DE (1) DE102009052656A1 (en)
WO (1) WO2011057786A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2491643A (en) * 2011-06-10 2012-12-12 Lambson Ltd Method of forming a polymeric material on a substrate
DE102012005261A1 (en) * 2012-03-15 2013-09-19 Eisenmann Ag Rotary atomiser and method of applying a coating material to an article
US9339832B2 (en) 2012-03-22 2016-05-17 Basf Se Spraygun for producing cured coating films and methods of use thereof
EP2828001A1 (en) * 2012-03-22 2015-01-28 Basf Se Method and device for producing cured coating layers
DE102014008052A1 (en) * 2014-05-28 2015-12-17 Eisenmann Ag Plant and method for treating objects

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665523A (en) * 1992-08-19 1994-03-08 Toyota Motor Corp High-solid coating composition and coating method
DE9419641U1 (en) * 1994-12-07 1995-02-02 Dürr GmbH, 70435 Stuttgart Rotary atomizer with a bell body
DE19851139A1 (en) * 1998-11-05 2000-05-11 Basf Ag Method and device for producing hardened lacquer layers
WO2004069427A1 (en) * 2003-02-06 2004-08-19 Akzo Nobel Coatings International B.V. Spray gun and process for application of actinic radiation-curable coating
DE102007012897A1 (en) 2007-03-17 2007-11-29 Daimlerchrysler Ag Chamber for UV irradiation of lacquered components, e.g. automobile parts, has several UV radiators distributed over base, lid and walls of chamber to provide even irradiation

Also Published As

Publication number Publication date
EP2498919A1 (en) 2012-09-19
DE102009052656A1 (en) 2011-05-12
WO2011057786A1 (en) 2011-05-19

Similar Documents

Publication Publication Date Title
EP2498919B1 (en) Application device for applying and irradiating a coating agent that can be cured by radiation
DE102008014378B4 (en) Exposure chamber for the curing of paints on components and hardening system for motor vehicle bodies
EP3256541B1 (en) Method of applying a sulphur-containing sealing compound, apparatus therefor, and use thereof
EP0279199B1 (en) Apparatus for processing uv-curable resin compositions
EP2792422A1 (en) Device for the curing of a coating applied to a cable
WO2013139851A1 (en) Method and device for producing cured coating layers
EP1002587B1 (en) Process and apparatus for making cured coatings
WO2011054578A1 (en) Device for radiation treatment of a coating
DE10051109C1 (en) Hardening of coatings in an inert atmosphere using radiation, comprises using a tower construction with low parts entrance and exit, and a high irradiation source
DE102008046548B4 (en) Exposure chamber for the curing of radiation-curing coatings and curing system for motor vehicle bodies
DE102008052102B4 (en) Device for pre- and / or after-treatment of a component surface by means of a plasma jet
EP1060029A1 (en) Method for multi-layer varnishing with radiation hardenable coating agents
EP1400287B1 (en) Apparatus for hardening UV-photocurable coatings
WO2019233839A1 (en) Device and method for matting a surface
EP2580784B1 (en) Method and device for contacting a semiconductor substrate by means of a jet printing method
DE102010013342A1 (en) Surface area coating method for object e.g. body part of motor car, by radiation-curable substance, involves applying substance according to radiation exposure to object surface, where completed areas of coating are hardened by substance
EP2696155B1 (en) Method and device for UV curing
EP0930104B1 (en) Apparatus and process for curing and hardening lacquer
EP2813316B1 (en) Method for closing cooling holes
DE102004029667A1 (en) Hardening radiation hardenable coatings on a substrate, comprises moving the substrates through a closed channel unit containing an inert gas and irradiating them with UV radiation
DE102010018704A1 (en) Irradiating device for curing coating of radiation-curable paint of motor vehicle component, has UV radiator for emitting UV radiations, and reflector for deflecting optical path to traveling direction and/or opposite to direction
EP2638974B1 (en) Use of a rotary atomizer
DE102009015195A1 (en) Radiation dryer i.e. UV-dryer, for drying and/or hardening e.g. lacquer layer, during manufacture of furniture, has holder movable along support rail, where radiator is varied in inclination angle in vertical orientation
EP2058614A2 (en) Device to irradiate elements with UV/light and method of its operation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120509

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150513

17Q First examination report despatched

Effective date: 20150603

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502010011967

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B05D0003060000

Ipc: B05B0003100000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B05B 15/12 20060101ALN20160111BHEP

Ipc: B05B 13/04 20060101ALN20160111BHEP

Ipc: B05B 5/047 20060101ALN20160111BHEP

Ipc: B05B 3/10 20060101AFI20160111BHEP

Ipc: B05B 15/00 20060101ALI20160111BHEP

Ipc: B05D 1/02 20060101ALN20160111BHEP

Ipc: B05B 5/04 20060101ALI20160111BHEP

Ipc: B05B 5/08 20060101ALI20160111BHEP

INTG Intention to grant announced

Effective date: 20160211

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 810321

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010011967

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010011967

Country of ref document: DE

Owner name: DUERR SYSTEMS AG, DE

Free format text: FORMER OWNER: DUERR SYSTEMS GMBH, 74321 BIETIGHEIM-BISSINGEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010011967

Country of ref document: DE

Representative=s name: V. BEZOLD & PARTNER PATENTANWAELTE - PARTG MBB, DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: DUERR SYSTEMS AG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160706

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161106

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161006

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161007

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161107

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010011967

Country of ref document: DE

Representative=s name: V. BEZOLD & PARTNER PATENTANWAELTE - PARTG MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010011967

Country of ref document: DE

Owner name: DUERR SYSTEMS AG, DE

Free format text: FORMER OWNER: DUERR SYSTEMS AG, 74321 BIETIGHEIM-BISSINGEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010011967

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161006

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

26N No opposition filed

Effective date: 20170407

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161111

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161111

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 810321

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161111

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221122

Year of fee payment: 13

Ref country code: FR

Payment date: 20221129

Year of fee payment: 13

Ref country code: DE

Payment date: 20221123

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512