EP2058614A2 - Device to irradiate elements with UV/light and method of its operation - Google Patents
Device to irradiate elements with UV/light and method of its operation Download PDFInfo
- Publication number
- EP2058614A2 EP2058614A2 EP08019129A EP08019129A EP2058614A2 EP 2058614 A2 EP2058614 A2 EP 2058614A2 EP 08019129 A EP08019129 A EP 08019129A EP 08019129 A EP08019129 A EP 08019129A EP 2058614 A2 EP2058614 A2 EP 2058614A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- irradiation chamber
- inert gas
- cooling medium
- cooling
- radiator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 239000011261 inert gas Substances 0.000 claims abstract description 47
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 60
- 239000002826 coolant Substances 0.000 claims description 33
- 238000001816 cooling Methods 0.000 claims description 32
- 229910052757 nitrogen Inorganic materials 0.000 claims description 30
- 230000008569 process Effects 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 239000004922 lacquer Substances 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 15
- 238000000576 coating method Methods 0.000 abstract description 9
- 230000005855 radiation Effects 0.000 description 51
- 239000007789 gas Substances 0.000 description 14
- 229910052760 oxygen Inorganic materials 0.000 description 12
- 239000001301 oxygen Substances 0.000 description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 238000001723 curing Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 5
- 229910052756 noble gas Inorganic materials 0.000 description 4
- 150000002835 noble gases Chemical class 0.000 description 4
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000006552 photochemical reaction Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000007306 turnover Effects 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910018503 SF6 Inorganic materials 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 210000004905 finger nail Anatomy 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000006462 rearrangement reaction Methods 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B3/00—Drying solid materials or objects by processes involving the application of heat
- F26B3/28—Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B21/00—Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
- F26B21/14—Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects using gases or vapours other than air or steam, e.g. inert gases
Definitions
- the invention relates to a device for irradiation of elements with UV light according to the preamble of patent claim 1, and a method for their operation according to claim 10. Furthermore, the invention relates to a method for curing UV-curable substances according to claim 15.
- the hardening material can be supplied to the radiation source in the form of a layer applied to a carrier web or in the form of plates or other flat shaped bodies.
- the products cure under the action of the radiation in a short time, so that it is possible to continuously pass the material to be cured on a transport device under a corresponding radiation source.
- systems are known from the prior art, which use UV light for the crosslinking of coatings.
- Such systems are used to produce high quality surfaces. These surfaces can be shiny and smooth, but also structured. These may be surfaces of paper webs or plastic films or veneers of furniture.
- the layer to be treated is often provided with photoinitiators to effect the desired crosslinking by the UV light.
- the DE 199 07 681 A1 describes a method and an apparatus for treating material webs by means of radiation energy, in which the material web moves in a conveying direction and is exposed on one side to radiant energy.
- the invention relates to a method and a device for irradiating the material web by means of UV light for crosslinking coatings, in particular of Silicone. It is suggested that in the conveying direction in front of or behind or in the region of the application of radiation energy, the material web is at least on one side with a gaseous medium, in particular for cooling thereof, acted upon.
- the DE 10 2005 007 370 B3 discloses a compact UV light source having at least two spaced-apart electrodes, between which a dielectric is arranged, which can be generated by the application of a high alternating voltage between the electrodes, a barrier discharge.
- a discharge space between the two electrodes is filled with a plasma-excited state emitting UV radiation gas or gas mixture.
- one of the two electrodes has a tip directed toward the other electrode, or is provided with such a tip, by which a shortest distance to the other electrode is determined.
- the DE 34 16 502 A1 relates to a device for curing sheet-like materials, in particular applied to carrier webs layers of curable by UV radiation compounds or preparations, which has a chamber with a radiation source disposed therein. Furthermore, one of the chamber upstream inlet sluice acted upon with inert gas and optionally an outlet sluice and means for transporting the device to be led and irradiated by the device is provided.
- the DE 10 2004 012 128 A1 describes a UV lamp, in particular for the curing of coated surfaces, having a light exit opening having a lamp housing in which a UV lamp is arranged, and a switching element for activating the UV lamp when placing the lamp on a surface.
- the DE 102 39 356 A1 discloses a device for treating a web of radiation energy, in particular UV light, having one or more radiation sources which are arranged perpendicular to the direction of movement parallel to the flat side of the web in inserts in an upper and / or lower part of the device, between which the material web runs. It is provided that between the radiation source and the material web in each case a radiation-permeable protective screen is present, which is connected to the insert and can be removed together with this from the device.
- UV-curable compounds are inhibited or at least impaired by oxygen, such as oxygen contained in the air.
- oxygen such as oxygen contained in the air.
- ozone is formed by the high-energy UV radiation in an oxygen-containing atmosphere. This gas is highly reactive and rapidly oxidizes substances in contact with it. The curing therefore takes place according to the prior art in an irradiation device which is acted upon with inert gas.
- the amount of heat developed by the radiation source is removed by the inert gas. It is therefore often only those radiation sources are used which develop relatively little heat, it being accepted that these radiation sources are less effective, so that the flow rate of products to be cured is relatively limited.
- the use of more efficient radiation sources requires an economically not sustainable throughput of inert gas to dissipate the heat.
- the amount of heat is removed via the surface of the cured or cured material.
- the invention has for its object to provide a device for irradiation of elements with UV light and a method for operating a device, with possible leaks of the radiation source taken into account and yet a low-oxygen atmosphere in the irradiation chamber are guaranteed can.
- the invention solves the problem by a device for irradiation of elements with UV light with the features of claim 1 and by a method for their Operation with the features of claim 10.
- Advantageous embodiments of the invention are set forth in the dependent claims.
- the interior of the UV radiator has a negative pressure relative to the irradiation chamber avoids that cooling medium escapes from the UV emitter into the irradiation chamber.
- air as a cost-effective cooling medium is thereby prevented that oxygen penetrates into the irradiation chamber and inhibits the photochemically initiated process of curing or interferes.
- the quality of the surface coating can be improved and the yield of defect-free coatings can be increased.
- the cost of treating the items in question can be reduced.
- no time-consuming work is required to fully seal the UV radiation sources.
- gas is continuously withdrawn from the treatment chamber into the radiation source by the negative pressure existing in the radiation sources with respect to the treatment chamber, so that the content of residual oxygen present in the treatment chamber is reduced continuously.
- the atmospheric oxygen enriched by the longer standstill time of the UV curing system is deliberately removed from the irradiation chamber within a short time.
- the residual oxygen content in the UV treatment chamber can thus be largely stopped.
- an oxygen enrichment of the nitrogen in the irradiation chamber by a leaky UV radiation cooling is no longer possible.
- the at least one UV emitter is cooled with a cooling medium which contains an inert gas, in particular nitrogen, which corresponds in particular to the inert gas of the irradiation chamber.
- cooling with a cooling medium and more powerful UV radiation sources which show a higher heat development can be used.
- an inert gas such as noble gases, carbon dioxide, sulfur hexafluoride or, in particular, nitrogen
- possible leakages of the radiation source are irrelevant, since the gases mentioned are relatively unreactive and do not interfere with the sensitive photochemistry initiated by UV irradiation.
- the composition of the cooling medium corresponds to that of the atmosphere in the irradiation chamber, the escape of cooling medium into the irradiation chamber maintains the concentration of the individual gases, so that possible chemical or physical effects on the irradiation result are excluded.
- the UV emitter is separated from the irradiation chamber by a dividing wall having at least one opening for passage of inert gas from the irradiation chamber into the UV emitter.
- a dividing wall having at least one opening for passage of inert gas from the irradiation chamber into the UV emitter.
- the cooling medium is guided in a circuit, and at least one heat exchanger for cooling the cooling medium is provided in the cooling circuit.
- the cooling medium By means of guidance in the circulation, the cooling medium is used again and is lost only to a small extent. Thus, a cost-effective operation is possible.
- the cooling medium By providing a first heat exchanger, the cooling medium is effectively cooled, wherein the heat energy thereby obtained can be reused for other processes.
- the use of a heat exchanger allows the degree of cooling to occur in a very defined manner.
- the volume flow can be adapted to the respective heat development of the UV radiation source.
- a higher volume flow is necessary and correspondingly at a lower heat output a low volume flow.
- the heat output also depends on the type of UV radiation source or its power consumption, so that depending on the power consumption and Strahlungsánart an individually adjustable volume flow is required.
- an inert gas supply for supplying inert gas, in particular nitrogen, is provided in the irradiation chamber.
- the irradiation chamber also continuously loses inert gas due to leaks in relation to the UV radiation source but also at other points to the outside environment.
- inert gas By means of an inert gas, the leaked inert gas is compensated and counteracted a pressure loss.
- the chemical and physical conditions in the irradiation chamber that is to say in particular the composition of the atmosphere and its pressure, can be kept substantially constant and a uniform environment ensured. This increases in particular the uniformity and the quality of the irradiation effect.
- At least one second heat exchanger is provided for heating the inert gas supplied to the irradiation chamber.
- an elevated temperature in the irradiation chamber is also necessary.
- the increase in temperature increases the rate of chemical reactions, thereby improving conversion and yield.
- possible solvent residues for example in UV-curable materials, are evaporated more rapidly at a higher temperature.
- the second heat exchanger is coupled to the cooling circuit, so that heat energy can be taken from the cooling medium heated by the UV radiator and fed to the inert gas to be supplied into the irradiation chamber.
- the heat energy generated by the UV radiation source can be used and used for the heating of the inert gas to be supplied to the irradiation chamber.
- the loss of heat energy is largely avoided within the existing efficiency, and the energy costs can be reduced to a considerable extent. This aspect is particularly important against the background of rising energy prices but also from an ecological point of view.
- the UV radiator and the irradiation chamber are arranged in a cabin through which a conveying device for conveying elements to be irradiated is guided through the irradiation chamber.
- the UV radiation source and irradiation chamber are largely isolated from the environment, thus minimizing the risk of any environmentally harmful gases escaping.
- a continuous and uniform feeding of elements to be irradiated in the irradiation chamber is ensured by the conveyor.
- the same exposure qualities are improved by the same exposure times and spatial light distribution.
- the on-going transport of elements reduces economically ineffective dead times, thereby reducing production costs.
- the irradiation chamber has reflectors for reflecting UV radiation.
- the reflectors By means of the reflectors, an optimum yield of the UV radiation power is achieved and energy losses are avoided. The energy and production costs will be further reduced.
- the reflection and the reflection taking place in the process achieve a uniform irradiation of the elements from different directions, so that the homogeneity of the surface coating is improved by means of UV irradiation.
- the invention also provides a method for operating a device for irradiating elements with UV light according to claim 10, wherein a negative pressure is generated in the interior of the UV radiator with respect to the irradiation chamber.
- the irradiation chamber Due to the presence of a negative pressure and existing leaks in the housing region of the UV emitter, the irradiation chamber is constantly deprived of atmospheric gas, so that gaseous impurities contained therein are gradually removed. In particular, the residual oxygen content is kept at a low level. Due to the extremely low oxygen concentration within the irradiation chamber, the photochemistry is not impaired by the UV irradiation and there are in particular no inhibition or unwanted side reactions. In addition, ordinary atmospheric air can also be used as cooling medium for the UV radiator, since the risk of leakage of oxygen into the treatment chamber can be kept very low due to the existing negative pressure.
- the UV radiator is cooled with an inert gas, in particular with nitrogen, as cooling medium, which is guided in a cooling circuit.
- inert gas When using inert gas, it is harmless if traces of the cooling medium penetrate into the treatment chamber. The traces of gas introduced into the treatment chamber can not cause adverse chemical reactions on the surface due to the reaction inertness of the inert gas due to a photochemical reaction or other physical adsorption processes.
- nitrogen is particularly suitable as an inert gas. Nitrogen has a sufficient reaction inertia, especially at moderate temperatures, and can be obtained as an 80% atmospheric constituent in a very favorable manner. In particular, nitrogen is completely harmless even in the event of leaks occurring for the surrounding environment, so that costly security measures can be omitted in this case.
- the UV radiation source can also be operated with a high power, since excess heat energy is continuously dissipated. This increases in particular the life of expensive UV radiation sources. Furthermore, via a heat exchanger, the heat energy recovered used and used for another process step. Moreover, in a recirculated system, only a small portion of the inert gas is lost, so that relatively little additional inert gas must be supplied. This is particularly advantageous for expensive noble gases, if they are used as inert gases.
- inert gas heated in the irradiation chamber in particular heated nitrogen, is fed in.
- the energy required in the irradiation chamber for the photochemical reactions can be fed into the system in a particularly simple manner via the inert gas. This results in higher reaction rates and better yields of irradiated materials.
- heated nitrogen can in turn be a very inexpensive to obtain raw material, which has a high environmental impact, are used.
- nitrogen does not reach the same inertness as, for example, noble gases, especially at elevated temperatures, this restriction does not play a role in terms of cost, since a considerable reactivity of nitrogen can generally only be observed at much higher temperatures.
- UV radiator sucks in inert gas from the irradiation chamber.
- the inert gas originating from the irradiation chamber can be used directly for use as the cooling medium of the UV emitter.
- the continuous removal of inert gas from the irradiation chamber also reduces the proportion of gaseous contaminants in the atmosphere of the chamber.
- the inert gas used fulfills two functions in this case. On the one hand, it acts as a carrier of heat energy, which is necessary for maintaining a sufficient speed of the photochemical processes.
- the gas is sucked into the UV lamp after cooling in the treatment chamber, can enter here in the cooling circuit and thus find use as a cooling medium. As a result, any losses occurring in the cooling circuit can be compensated.
- the thermal energy for heating the inert gas for the irradiation chamber is at least partially removed from the cooling circuit.
- the thermal energy to be taken from the cooling circuit can also be adapted to a certain extent to the power consumption of the UV radiation sources.
- an increased turnover speed is achieved by the present in the irradiation chamber increased energy density.
- an increased flow of heated inert gas into the irradiation chamber is again necessary to maintain the given reaction conditions.
- the extraction of the heat energy from the refrigeration cycle and the use for heating the inert gas supplied to the irradiation chamber can be suitably achieved with a heat exchanger.
- Another aspect of the invention relates to a process for UV-curable substances, in particular of elements with UV-curable coatings, with the device according to the invention.
- material and surface aging processes can be carried out under irradiation, for example for testing purposes, for artificial bleaching or yellowing.
- Short-wave UV-C radiation can be used to disinfect surfaces via its germicidal effect.
- UV-A lamps with a power consumption below 600 W can serve, for example, for curing photopolymerizable materials.
- the photochemical processes induced by the method according to the invention include, in particular, cleavage, addition, redox or rearrangement reactions.
- the irradiation chamber 40 is flanked on both sides by a UV emitter 20.
- the UV radiator 20 has a housing, in the interior of which a UV lamp 30 with an arc length of 250 mm is provided.
- the UV lamp 30 emits ultraviolet radiation, which penetrates into the irradiation chamber 40 via a quartz glass 35.
- a component 50 on which the ultraviolet radiation impinges to effect the desired photochemical reactions. Between the quartz glass 35 and the UV radiation source 20 are defined leaks 37 are provided.
- the inside of the irradiation chamber 40 has reflectors 45 which reflect ultraviolet light and thus at least partly reflect it back onto the component 50.
- the component 50 is held in the irradiation chamber 40 via a conveyor 15.
- the conveyor 15 removes fully exposed components 50 from the irradiation chamber 40 and supplies untreated components 50.
- the conveyor 15 and the radiation source 20 and the irradiation chamber 40 are within a hardness booth 10.
- the conveyor 15 is designed as a suspension conveyor and can be operated continuously or discontinuously.
- the UV lamps 20 are cooled by a cooling circuit 75, which is operated with cooled nitrogen.
- the cooled nitrogen enters at inlet openings 23 of the UV radiator 20 and after the absorption of heat energy at the outputs 27 again.
- the heated nitrogen exiting from the exits 27 is deprived of heat energy by means of the heat exchanger 60 and this thermal energy is used to heat the nitrogen for the irradiation chamber 40.
- a further heat exchanger 65 is provided, which causes a further cooling of the cooling medium.
- about 1000 m 3 / h of cooling air enter the heat exchanger 65 in order to extract the corresponding heat energy from the nitrogen.
- other cooling fluids in particular liquids such as water, can be used.
- an exhaust fan 70 is provided, which discharges a small portion of nitrogen, from about 2 to 5 m 3 / h, from the circulatory system. The amount removed corresponds approximately to the size which the UV radiators 20 have sucked in via the leaks from the irradiation chamber 40.
- an adjustment flap 72 is provided for regulating the volume flow of cooling medium. In the case of increased radiant power, there is a greater need for cooling, so that either the temperature of the cooling medium can be lowered for increased removal of heat energy, or the volume flow of nitrogen is increased via the adjusting flap 72.
- the cooled nitrogen from the heat exchanger 65 is again supplied via the circuit 75 to the UV lamps 20 for cooling, whereby the circuit is closed.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Coating Apparatus (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
Description
Die Erfindung betrifft eine Vorrichtung zur Bestrahlung von Elementen mit UV-Licht nach dem Oberbegriff des Patentanspruchs 1, sowie ein Verfahren zu deren Betrieb nach Patentanspruch 10. Ferner betrifft die Erfindung ein Verfahren zum Härten von UV-härtbaren Stoffen nach Patentanspruch 15.The invention relates to a device for irradiation of elements with UV light according to the preamble of patent claim 1, and a method for their operation according to claim 10. Furthermore, the invention relates to a method for curing UV-curable substances according to
Aus dem Stand der Technik sind Verbindungen oder Zubereitungen bekannt, welche unter der Einwirkung von UV-Strahlung aushärten. Das aushärtende Gut kann dabei der Strahlungsquelle in Form einer auf einer Trägerbahn aufgebrachten Schicht oder in Form von Platten oder anderen flächigen Formkörpern zugeführt werden. Die Produkte härten unter der Einwirkung der Strahlung in kurzer Zeit aus, so dass es möglich ist, das zu härtende Gut kontinuierlich auf einer Transportvorrichtung unter einer entsprechenden Strahlungsquelle vorbeizuführen.From the prior art compounds or preparations are known which cure under the action of UV radiation. The hardening material can be supplied to the radiation source in the form of a layer applied to a carrier web or in the form of plates or other flat shaped bodies. The products cure under the action of the radiation in a short time, so that it is possible to continuously pass the material to be cured on a transport device under a corresponding radiation source.
Ferner sind aus dem Stand der Technik Anlagen bekannt, die zum Vernetzen von Beschichtungen UV-Licht einsetzen. Solche Anlagen werden verwendet, um hochwertige Oberflächen zu erzeugen. Diese Oberflächen können glänzend und glatt aber auch strukturiert sein. Es kann sich dabei um Oberflächen von Papierbahnen oder Kunststofffolien oder aber um Furniere von Möbeln handeln. Die zu behandelnde Schicht ist häufig mit Fotoinitiatoren versehen, um durch die UV-Lichteinwirkung die gewünschte Vernetzung zu bewirken.Furthermore, systems are known from the prior art, which use UV light for the crosslinking of coatings. Such systems are used to produce high quality surfaces. These surfaces can be shiny and smooth, but also structured. These may be surfaces of paper webs or plastic films or veneers of furniture. The layer to be treated is often provided with photoinitiators to effect the desired crosslinking by the UV light.
Die
Die
Die
Die
Die
Die Aushärtung von UV-härtbaren Verbindungen wird durch Sauerstoff, wie zum Beispiel durch den in der Luft enthaltenen Sauerstoff, inhibiert oder zumindest beeinträchtigt. Insbesondere wird durch die hochenergetische UV-Strahlung in einer sauerstoffhaltigen Atmosphäre Ozon gebildet. Dieses Gas ist hochreaktiv und wirkt rasch oxidativ auf damit in Kontakt kommende Substanzen ein. Die Aushärtung erfolgt deshalb entsprechend dem Stand der Technik in einer Bestrahlungsvorrichtung, welche mit Inertgas beaufschlagt ist.Curing of UV-curable compounds is inhibited or at least impaired by oxygen, such as oxygen contained in the air. In particular, ozone is formed by the high-energy UV radiation in an oxygen-containing atmosphere. This gas is highly reactive and rapidly oxidizes substances in contact with it. The curing therefore takes place according to the prior art in an irradiation device which is acted upon with inert gas.
Bei den nach dem Stand der Technik bekannten Vorrichtungen wird die von der Strahlungsquelle entwickelte Wärmemenge durch das Inertgas abgeführt. Es werden deshalb häufig nur derartige Strahlungsquellen verwendet, welche verhältnismäßig wenig Wärme entwickeln, wobei in Kauf genommen wird, dass diese Strahlungsquellen weniger wirksam sind, so dass die Durchlaufgeschwindigkeit von zu härtenden Produkten relativ begrenzt ist. Die Verwendung wirksamerer Strahlungsquellen bedingt einen wirtschaftlich nicht mehr tragbaren Durchsatz von Inertgas zur Abführung der Wärme. Außerdem wird hierbei die Wärmemenge über die Oberfläche des auszuhärtenden oder ausgehärteten Gutes abtransportiert.In the devices known from the prior art, the amount of heat developed by the radiation source is removed by the inert gas. It is therefore often only those radiation sources are used which develop relatively little heat, it being accepted that these radiation sources are less effective, so that the flow rate of products to be cured is relatively limited. The use of more efficient radiation sources requires an economically not sustainable throughput of inert gas to dissipate the heat. In addition, in this case the amount of heat is removed via the surface of the cured or cured material.
Bei der Verwendung intensiverer Strahlungsquellen ist es aus wirtschaftlichen Gründen notwendig, auf kostengünstigere Kühlmedien für die Strahlungsquelle, insbesondere auf Luft, auszuweichen. Dabei besteht jedoch die Gefahr, dass bei einer nicht vollkommen gasdichten Abdichtung der Strahlungsquelle Spuren von Luft in die Bestrahlungskammer entweichen können und dadurch der hochempfindliche photochemische Prozess der Härtung mittels UV-Strahlung gestört wird. Eine vollkommene Abdichtung der Strahlungsquelle ist häufig auch unter sehr hohem Aufwand kaum zu erreichen.When using more intensive radiation sources, it is necessary for economic reasons, to switch to less expensive cooling media for the radiation source, in particular on air. However, there is the danger that, if the radiation source is not completely gas-tight, traces of air can escape into the irradiation chamber, thereby disturbing the highly sensitive photochemical curing process by means of UV radiation. A perfect seal of the radiation source is often difficult to achieve, even at very high cost.
Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine Vorrichtung zum Bestrahlung von Elementen mit UV-Licht sowie ein Verfahren zum Betrieb einer Vorrichtung bereitzustellen, wobei mögliche Undichtigkeiten der Strahlungsquelle in Kauf genommen und dennoch eine sauerstoffarme Atmosphäre in der Bestrahlungskammer gewährleistet werden kann.Based on this prior art, the invention has for its object to provide a device for irradiation of elements with UV light and a method for operating a device, with possible leaks of the radiation source taken into account and yet a low-oxygen atmosphere in the irradiation chamber are guaranteed can.
Die Erfindung löst die Aufgabe, durch eine Vorrichtung zur Bestrahlung von Elementen mit UV-Licht mit den Merkmalen nach Anspruch 1 sowie durch ein Verfahren zu deren Betrieb mit den Merkmalen nach Anspruch 10. Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen ausgeführt.The invention solves the problem by a device for irradiation of elements with UV light with the features of claim 1 and by a method for their Operation with the features of claim 10. Advantageous embodiments of the invention are set forth in the dependent claims.
Dadurch, dass der Innenraum des UV-Strahlers gegenüber der Bestrahlungskammer einen Unterdruck aufweist, wird vermieden, dass Kühlmedium aus dem UV-Strahler in die Bestrahlungskammer entweicht. Insbesondere bei Verwendung von Luft als kostengünstigem Kühlmedium wird dadurch verhindert, dass Sauerstoff in die Bestrahlungskammer eindringt und den photochemisch initiierten Prozess der Aushärtung inhibiert oder stört. Auf diese Weise kann die Qualität der Oberflächenbeschichtung verbessert und die Ausbeute an fehlerfreien Beschichtungen erhöht werden. Somit können die Kosten für die Behandlung der betreffenden Elemente reduziert werden. Darüber hinaus entfallen aufwändige Arbeiten zur vollständigen Abdichtung der UV-Strahlungsquellen. Ferner wird durch den in den Strahlungsquellen gegenüber der Behandlungskammer vorliegenden Unterdruck laufend Gas aus der Behandlungskammer in die Strahlungsquelle abgezogen, so dass der in der Behandlungskammer vorliegende Gehalt an Restsauerstoff kontinuierlich verringert wird. Insbesondere wird durch die Undichtigkeit der UV-Strahlungsquelle der durch die längere Stillstandszeit der UV-Aushärteanlage angereicherte Luftsauerstoff gezielt innerhalb einer kurzen Zeit aus der Bestrahlungskammer entfernt. Der Restsauerstoffgehalt in der UV-Behandlungskammer kann damit weitgehend angehalten werden. Darüber hinaus ist eine Sauerstoffanreicherung des Stickstoffes in der Bestrahlungskammer durch eine undichte UV-Strahlungskühlung nicht mehr möglich.The fact that the interior of the UV radiator has a negative pressure relative to the irradiation chamber avoids that cooling medium escapes from the UV emitter into the irradiation chamber. In particular, when using air as a cost-effective cooling medium is thereby prevented that oxygen penetrates into the irradiation chamber and inhibits the photochemically initiated process of curing or interferes. In this way, the quality of the surface coating can be improved and the yield of defect-free coatings can be increased. Thus, the cost of treating the items in question can be reduced. In addition, no time-consuming work is required to fully seal the UV radiation sources. Furthermore, gas is continuously withdrawn from the treatment chamber into the radiation source by the negative pressure existing in the radiation sources with respect to the treatment chamber, so that the content of residual oxygen present in the treatment chamber is reduced continuously. In particular, due to the leakage of the UV radiation source, the atmospheric oxygen enriched by the longer standstill time of the UV curing system is deliberately removed from the irradiation chamber within a short time. The residual oxygen content in the UV treatment chamber can thus be largely stopped. In addition, an oxygen enrichment of the nitrogen in the irradiation chamber by a leaky UV radiation cooling is no longer possible.
Insgesamt werden somit die Betriebskosten deutlich reduziert, während gleichzeitig Qualität und Ausbeute der UV-Beschichtung verbessert werden.Overall, the operating costs are thus significantly reduced, while improving the quality and yield of the UV coating.
Geeigneterweise ist der mindestens eine UV-Strahler mit einem Kühlmedium gekühlt, das ein Inertgas, insbesondere Stickstoff enthält, welches insbesondere dem Inertgas der Bestrahlungskammer entspricht.Suitably, the at least one UV emitter is cooled with a cooling medium which contains an inert gas, in particular nitrogen, which corresponds in particular to the inert gas of the irradiation chamber.
Durch die Kühlung mit einem Kühlmedium können auch leistungsfähigere UV-Strahlungsquellen, die eine höhere Wärmeentwicklung zeigen, verwendet werden. Durch die Verwendung von einem Inertgas, wie beispielsweise Edelgasen, Kohlendioxid, Schwefelhexafluorid oder insbesondere Stickstoff, sind mögliche Undichtigkeiten der Strahlungsquelle irrelevant, da die genannten Gase verhältnismäßig unreaktiv sind und nicht in die sensible Photochemie, die durch UV-Bestrahlung initiiert wird, eingreifen. Wenn die Zusammensetzung des Kühlmediums dem der Atmosphäre in der Bestrahlungskammer entspricht, wird durch das Entweichen von Kühlmedium in die Bestrahlungskammer die Konzentration der Einzelgase beibehalten, so dass mögliche chemische oder physikalische Auswirkungen auf das Bestrahlungsergebnis ausgeschlossen sind.By cooling with a cooling medium and more powerful UV radiation sources, which show a higher heat development can be used. By using an inert gas, such as noble gases, carbon dioxide, sulfur hexafluoride or, in particular, nitrogen, possible leakages of the radiation source are irrelevant, since the gases mentioned are relatively unreactive and do not interfere with the sensitive photochemistry initiated by UV irradiation. If the composition of the cooling medium corresponds to that of the atmosphere in the irradiation chamber, the escape of cooling medium into the irradiation chamber maintains the concentration of the individual gases, so that possible chemical or physical effects on the irradiation result are excluded.
Geeigneterweise ist der UV-Strahler von der Bestrahlungskammer durch eine Trennwand abgetrennt, welche mindestens eine Öffnung zum Durchtritt von Inertgas von der Bestrahlungskammer in den UV-Strahler aufweist. Durch dieses definierte Vorsehen einer Öffnung zum Durchtritt von Inertgas wird ein gleich bleibender Gasstrom aus der Bestrahlungskammer in die Strahlungskammer gewährleistet, wodurch mögliche in der Kammer vorliegende Verunreinigung an unerwünschten Gasen laufend ausgetragen werden. Ferner ist beim Vorliegen einer definierten Öffnung der Ausgabestrom aus der Bestrahlungskammer genau festgelegt und kann durch entsprechende Maßnahmen besser kompensiert werden. Für die Trennwand können verschiedene UV-transparente Materialien, wie Quarzglas, verwendet werden.Suitably, the UV emitter is separated from the irradiation chamber by a dividing wall having at least one opening for passage of inert gas from the irradiation chamber into the UV emitter. By this defined provision of an opening for the passage of inert gas, a constant gas flow from the irradiation chamber is ensured in the radiation chamber, whereby possible present in the chamber contamination of unwanted gases are continuously discharged. Furthermore, in the presence of a defined opening, the output flow from the irradiation chamber is precisely defined and can be better compensated by appropriate measures. For the partition, various UV-transparent materials such as quartz glass can be used.
In einer bevorzugten Ausführungsform der erfindungsgemäßen Vorrichtung ist das Kühlmedium in einem Kreislauf geführt, und ist in dem Kühlkreislauf mindestens ein Wärmetauscher zum Kühlen des Kühlmediums vorgesehen.In a preferred embodiment of the device according to the invention, the cooling medium is guided in a circuit, and at least one heat exchanger for cooling the cooling medium is provided in the cooling circuit.
Mittels Führung im Kreislauf wird das Kühlmedium wieder verwendet und geht nur in geringem Umfang verloren. Somit ist ein kostengünstiger Betrieb möglich. Durch das Vorsehen eines ersten Wärmetauschers wird das Kühlmedium effektiv gekühlt, wobei die dabei gewonnene Wärmeenergie für andere Prozesse weiterverwendet werden kann. Die Verwendung eines Wärmetauschers ermöglicht, dass das Maß der Abkühlung auf eine sehr definierte Weise erfolgt.By means of guidance in the circulation, the cooling medium is used again and is lost only to a small extent. Thus, a cost-effective operation is possible. By providing a first heat exchanger, the cooling medium is effectively cooled, wherein the heat energy thereby obtained can be reused for other processes. The use of a heat exchanger allows the degree of cooling to occur in a very defined manner.
Es ist vorteilhaft, wenn in dem Kühlkreislauf ein Regelventil zum Regeln des Volumenstroms des Kühlmediums und/oder ein Auslassventil zur Abfuhr von überschüssigem Kühlmedium vorgesehen sind.It is advantageous if a control valve for regulating the volume flow of the cooling medium and / or an outlet valve for removing excess cooling medium are provided in the cooling circuit.
Über ein Regelventil zum Regeln des Volumenstroms des Kühlmediums kann der Volumenstrom an die jeweilige Wärmeentwicklung der UV-Strahlungsquelle angepasst werden. So ist bei einer starken Wärmeentwicklung der UV-Strahlungsquelle ein höherer Volumenstrom notwendig und bei einer geringeren Wärmeabgabe entsprechend ein niedriger Volumenstrom. Insbesondere hängt die Wärmeabgabe auch von der Art der UV-Strahlungsquelle beziehungsweise deren Leistungsaufnahme ab, so dass je nach Leistungsaufnahme und Strahlungsquelleart ein individuell einzustellender Volumenstrom erforderlich ist.Via a control valve for controlling the volume flow of the cooling medium, the volume flow can be adapted to the respective heat development of the UV radiation source. Thus, with a strong heat development of the UV radiation source, a higher volume flow is necessary and correspondingly at a lower heat output a low volume flow. In particular, the heat output also depends on the type of UV radiation source or its power consumption, so that depending on the power consumption and Strahlungsquelleart an individually adjustable volume flow is required.
Durch den in der UV-Strahlungsquelle vorliegenden Unterdruck und den bestehenden Undichtigkeiten wird laufend Gas aus der Bestrahlungskammer in die UV-Strahlungsquelle abgezogen und dadurch das Volumen an Kühlmedium erhöht. Um ein Ansteigen des Druckes an Kühlmedium zu verhindern, wird über das Auslaufventil angesaugtes und überschüssiges Kühlmedium abgeführt. Dadurch kann der Druck an Kühlmedium in dem Kühlkreislauf konstant gehalten werden, und möglichen Störungen des Kreislaufsystems durch entstehenden Überdruck begegnet werden.Due to the negative pressure present in the UV radiation source and the existing leaks, gas is continuously withdrawn from the irradiation chamber into the UV radiation source, thereby increasing the volume of cooling medium. In order to prevent an increase in the pressure of the cooling medium, sucked in and excess cooling medium is discharged via the outlet valve. As a result, the pressure on the cooling medium in the cooling circuit can be kept constant, and possible problems of the circulation system can be counteracted by the resulting overpressure.
Vorteilhafterweise ist eine Inertgaszufuhr zum Zuführen von Inertgas, insbesondere von Stickstoff, in die Bestrahlungskammer vorgesehen.Advantageously, an inert gas supply for supplying inert gas, in particular nitrogen, is provided in the irradiation chamber.
Auch die Bestrahlungskammer verliert durch Undichtigkeiten gegenüber der UV-Strahlungsquelle aber auch an anderen Stellen zur äußeren Umgebung ständig Inertgas. Mittels einer Inertgaszufuhr wird das ausgetretene Inertgas kompensiert und einem Druckverlust entgegengewirkt. Dadurch können die chemischen und physikalischen Verhältnisse in der Bestrahlungskammer, das heißt insbesondere die Zusammensetzung der Atmosphäre sowie deren Druck, weitgehend konstant gehalten und eine gleichmäßige Umgebung gewährleistet werden. Dies erhöht insbesondere die Gleichförmigkeit und die Qualität der Bestrahlungswirkung.The irradiation chamber also continuously loses inert gas due to leaks in relation to the UV radiation source but also at other points to the outside environment. By means of an inert gas, the leaked inert gas is compensated and counteracted a pressure loss. As a result, the chemical and physical conditions in the irradiation chamber, that is to say in particular the composition of the atmosphere and its pressure, can be kept substantially constant and a uniform environment ensured. This increases in particular the uniformity and the quality of the irradiation effect.
Es ist vorteilhaft, wenn mindestens ein zweiter Wärmetauscher zum Erwärmen des der Bestrahlungskammer zugeführten Inertgases vorgesehen ist.It is advantageous if at least one second heat exchanger is provided for heating the inert gas supplied to the irradiation chamber.
Um eine optimale photochemische Umsetzung durch die UV-Bestrahlung zu gewährleisten, ist auch eine erhöhte Temperatur in der Bestrahlungskammer notwendig. Durch die Temperaturerhöhung wird die Geschwindigkeit der chemischen Umsetzungen erhöht und dadurch Umsatz und Ausbeute verbessert. Gleichzeitig werden bei einer höheren Temperatur mögliche Lösungsmittelrückstände beispielsweise in UV-härtbaren Materialien rascher verdampft.In order to ensure optimum photochemical conversion by the UV irradiation, an elevated temperature in the irradiation chamber is also necessary. The increase in temperature increases the rate of chemical reactions, thereby improving conversion and yield. At the same time, possible solvent residues, for example in UV-curable materials, are evaporated more rapidly at a higher temperature.
Es ist bevorzugt, wenn der zweite Wärmetauscher mit dem Kühlkreislauf gekoppelt ist, so dass dem vom UV-Strahler erwärmten Kühlmedium Wärmeenergie entnehmbar und dem in die Bestrahlungskammer zuzuführenden Inertgas zuführbar ist.It is preferred if the second heat exchanger is coupled to the cooling circuit, so that heat energy can be taken from the cooling medium heated by the UV radiator and fed to the inert gas to be supplied into the irradiation chamber.
Auf diese Weise kann die von der UV-Strahlungsquelle erzeugte Wärmeenergie genutzt und für die Erwärmung des der Bestrahlungskammer zuzuführenden Inertgases verwendet werden. Somit wird im Rahmen des bestehenden Wirkungsgrades der Verlust an Wärmeenergie weitgehend vermieden, und die aufzuwendenden Energiekosten können in erheblichem Maße reduziert werden. Dieser Aspekt ist insbesondere vor dem Hintergrund steigender Energiepreise aber auch unter ökologischen Gesichtspunkten von Bedeutung.In this way, the heat energy generated by the UV radiation source can be used and used for the heating of the inert gas to be supplied to the irradiation chamber. Thus, the loss of heat energy is largely avoided within the existing efficiency, and the energy costs can be reduced to a considerable extent. This aspect is particularly important against the background of rising energy prices but also from an ecological point of view.
Es ist weiterhin zweckmäßig, wenn der UV-Strahler und die Bestrahlungskammer in einer Kabine angeordnet sind durch welche eine Fördereinrichtung zum Befördern von zu bestrahlenden Elementen durch die Bestrahlungskammer geführt ist.It is also expedient if the UV radiator and the irradiation chamber are arranged in a cabin through which a conveying device for conveying elements to be irradiated is guided through the irradiation chamber.
Somit sind UV-Strahlungsquelle und Bestrahlungskammer von der Umgebung weitgehend isoliert, so dass das Risiko eventuell austretender umweltschädlicher Gase auf ein Minimum reduziert wird. Darüber hinaus ist durch die Fördereinrichtung ein stetiges und gleichmäßiges Zuführen von zu bestrahlenden Elementen in die Bestrahlungskammer gewährleistet. Insbesondere bei einem automatisierten Betrieb werden gleiche Belichtungsqualitäten durch gleiche Belichtungszeiten und räumliche Lichtverteilung verbessert. Auch werden durch den laufenden Antransport von Elementen ökonomisch uneffektive Totzeiten vermindert und dadurch die Produktionskosten reduziert.Thus, the UV radiation source and irradiation chamber are largely isolated from the environment, thus minimizing the risk of any environmentally harmful gases escaping. In addition, a continuous and uniform feeding of elements to be irradiated in the irradiation chamber is ensured by the conveyor. In particular, in an automated operation the same exposure qualities are improved by the same exposure times and spatial light distribution. Also, the on-going transport of elements reduces economically ineffective dead times, thereby reducing production costs.
Geeigneterweise weist die Bestrahlungskammer Reflektoren zur Reflexion von UV-Strahlung auf. Mittels der Reflektoren wird eine optimale Ausbeute der UV-Strahlungsleistung erreicht und Energieverluste vermieden. Die Energie- und Produktionskosten werden dadurch weiter verringert. Ferner wird durch die Reflexion und die dabei stattfindende Rückstrahlung eine gleichmäßige Bestrahlung der Elemente von verschiedenen Richtungen erreicht, so dass die Homogenität der Oberflächenbeschichtung mittels UV-Bestrahlung verbessert wird.Suitably, the irradiation chamber has reflectors for reflecting UV radiation. By means of the reflectors, an optimum yield of the UV radiation power is achieved and energy losses are avoided. The energy and production costs will be further reduced. Furthermore, the reflection and the reflection taking place in the process achieve a uniform irradiation of the elements from different directions, so that the homogeneity of the surface coating is improved by means of UV irradiation.
Gegenstand der Erfindung ist auch ein Verfahren zum Betrieb einer Vorrichtung zur Bestrahlung von Elementen mit UV-Licht nach Anspruch 10, wobei in dem Innenraum des UV-Strahlers gegenüber der Bestrahlungskammer ein Unterdruck erzeugt wird.The invention also provides a method for operating a device for irradiating elements with UV light according to claim 10, wherein a negative pressure is generated in the interior of the UV radiator with respect to the irradiation chamber.
Durch das Vorliegen eines Unterdruckes sowie bestehender Undichtigkeiten im Gehäusebereich des UV-Strahlers wird der Bestrahlungskammer ständig Atmosphärengas entzogen, so dass darin enthaltene gasförmige Verunreinigungen allmählich entfernt werden. Insbesondere wird der Restsauerstoffgehalt auf einem niedrigen Niveau gehalten. Durch die extrem geringe Sauerstoffkonzentration innerhalb der Bestrahlungskammer wird die Photochemie durch die UV-Bestrahlung nicht beeinträchtigt und es treten insbesondere keine Inhibition oder unerwünschte Nebenreaktionen auf. Darüber hinaus kann für den UV-Strahler auch gewöhnliche Atmosphärenluft als Kühlmedium verwendet werden, da durch den bestehenden Unterdruck das Risiko von Entweichen von Sauerstoff in die Behandlungskammer sehr gering gehalten werden kann.Due to the presence of a negative pressure and existing leaks in the housing region of the UV emitter, the irradiation chamber is constantly deprived of atmospheric gas, so that gaseous impurities contained therein are gradually removed. In particular, the residual oxygen content is kept at a low level. Due to the extremely low oxygen concentration within the irradiation chamber, the photochemistry is not impaired by the UV irradiation and there are in particular no inhibition or unwanted side reactions. In addition, ordinary atmospheric air can also be used as cooling medium for the UV radiator, since the risk of leakage of oxygen into the treatment chamber can be kept very low due to the existing negative pressure.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird der UV-Strahler mit einem Inertgas, insbesondere mit Stickstoff, als Kühlmedium gekühlt, welches in einem Kühlkreislauf geführt wird.In a preferred embodiment of the method according to the invention, the UV radiator is cooled with an inert gas, in particular with nitrogen, as cooling medium, which is guided in a cooling circuit.
Bei der Verwendung von Inertgas ist es unschädlich, wenn Spuren des Kühlmediums in die Behandlungskammer eindringen. Die in die Behandlungskammer eingetretenen Gasspuren können aufgrund der Reaktionsträgheit des Inertgases keine nachteiligen chemischen Reaktionen auf der Oberfläche durch eine photochemische Reaktion oder anderweitige physikalische Adsorptionsvorgänge hervorrufen. Neben Edelgasen und anderen aus der Industrie bekannten Schutzgasen ist insbesondere Stickstoff als Inertgas geeignet. Stickstoff weist insbesondere bei gemäßigten Temperaturen eine ausreichende Reaktionsträgheit auf und ist als 80%iger Atmosphärenbestandteil in sehr günstiger Weise zu erhalten. Insbesondere ist Stickstoff auch im Falle auftretender Leckagen für die umgebende Umwelt völlig unschädlich, so dass in diesem Fall kostenaufwändige Sicherheitsmaßnahmen entfallen können.When using inert gas, it is harmless if traces of the cooling medium penetrate into the treatment chamber. The traces of gas introduced into the treatment chamber can not cause adverse chemical reactions on the surface due to the reaction inertness of the inert gas due to a photochemical reaction or other physical adsorption processes. In addition to noble gases and other protective gases known from industry, nitrogen is particularly suitable as an inert gas. Nitrogen has a sufficient reaction inertia, especially at moderate temperatures, and can be obtained as an 80% atmospheric constituent in a very favorable manner. In particular, nitrogen is completely harmless even in the event of leaks occurring for the surrounding environment, so that costly security measures can be omitted in this case.
Durch das Führen in einem Kühlkreislauf kann die UV-Strahlungsquelle auch mit einer hohen Leistung betrieben werden, da überschüssig erzeugte Wärmeenergie stetig abgeführt wird. Dies erhöht insbesondere die Lebensdauer der teuren UV-Strahlungsquellen. Ferner kann über einen Wärmetauscher die gewonnene Wärmeenergie genutzt und für einen anderen Verfahrensschritt verwendet werden. Darüber hinaus geht bei einem in einen Kreislauf geführten System nur ein geringer Teil des Inertgases verloren, so dass relativ wenig zusätzliches Inertgas zugeführt werden muss. Dies ist insbesondere bei teuren Edelgasen, sofern diese als Inertgase verwendet werden, von Vorteil.By guiding in a cooling circuit, the UV radiation source can also be operated with a high power, since excess heat energy is continuously dissipated. This increases in particular the life of expensive UV radiation sources. Furthermore, via a heat exchanger, the heat energy recovered used and used for another process step. Moreover, in a recirculated system, only a small portion of the inert gas is lost, so that relatively little additional inert gas must be supplied. This is particularly advantageous for expensive noble gases, if they are used as inert gases.
Es ist vorteilhaft, wenn in die Bestrahlungskammer erwärmtes Inertgas, insbesondere erwärmter Stickstoff, eingespeist wird.It is advantageous if inert gas heated in the irradiation chamber, in particular heated nitrogen, is fed in.
Die in der Bestrahlungskammer für die photochemischen Umsetzungen erforderliche Energie kann auf diese Weise besonders einfach über das Inertgas in das System eingespeist werden. Es ergeben sich dadurch höhere Reaktionsgeschwindigkeiten und bessere Ausbeuten an bestrahlten Materialien. Durch die Verwendung von erwärmtem Stickstoff kann wiederum ein sehr kostengünstig zu erhaltender Rohstoff, der eine hohe Umweltverträglichkeit aufweist, eingesetzt werden. Zwar erreicht Stickstoff insbesondere bei erhöhten Temperaturen nicht die gleiche Inertheit wie beispielsweise Edelgase, unter Kostengesichtspunkten spielt diese Einschränkung jedoch keine Rolle, da eine nennenswerte Reaktionsfähigkeit von Stickstoff im Allgemeinen erst bei wesentlich höheren Temperaturen zu beobachten ist.The energy required in the irradiation chamber for the photochemical reactions can be fed into the system in a particularly simple manner via the inert gas. This results in higher reaction rates and better yields of irradiated materials. By using heated nitrogen can in turn be a very inexpensive to obtain raw material, which has a high environmental impact, are used. Although nitrogen does not reach the same inertness as, for example, noble gases, especially at elevated temperatures, this restriction does not play a role in terms of cost, since a considerable reactivity of nitrogen can generally only be observed at much higher temperatures.
Weiterhin ist es vorteilhaft, wenn der UV-Strahler aus der Bestrahlungskammer Inertgas ansaugt.Furthermore, it is advantageous if the UV radiator sucks in inert gas from the irradiation chamber.
Das aus der Bestrahlungskammer stammende Inertgas kann unmittelbar für die Verwendung als Kühlmedium des UV-Strahlers verwendet werden. Insbesondere wird durch den kontinuierlichen Abtransport von Inertgas aus der Bestrahlungskammer auch der Anteil an gasförmigen Verunreinigungen in der Atmosphäre der Kammer verringert. Das verwendete Inertgas erfüllt in diesem Fall zwei Funktionen. Zum einen fungiert es als Träger von Wärmeenergie, welche für die Aufrechterhaltung einer ausreichenden Geschwindigkeit der photochemischen Prozesse erforderlich ist. Zum anderen wird das Gas nach der Abkühlung in der Behandlungskammer in den UV-Strahler eingesaugt, kann hier in den Kühlkreislauf eintreten und somit als Kühlmedium Verwendung finden. Dadurch können auch eventuell in dem Kühlkreislauf auftretende Verluste ausgeglichen werden. Ferner besteht somit auch die Möglichkeit, in die Bestrahlungskammer kontinuierlich frisch erwärmtes Inertgas einzuleiten. Die Temperatur innerhalb der Kammer kann daher auf einem weitgehend gleich bleibenden Niveau gehalten werden, wodurch die Homogenität der Photochemie unterstützt wird.The inert gas originating from the irradiation chamber can be used directly for use as the cooling medium of the UV emitter. In particular, the continuous removal of inert gas from the irradiation chamber also reduces the proportion of gaseous contaminants in the atmosphere of the chamber. The inert gas used fulfills two functions in this case. On the one hand, it acts as a carrier of heat energy, which is necessary for maintaining a sufficient speed of the photochemical processes. On the other hand, the gas is sucked into the UV lamp after cooling in the treatment chamber, can enter here in the cooling circuit and thus find use as a cooling medium. As a result, any losses occurring in the cooling circuit can be compensated. Furthermore, it is thus also possible to continuously introduce freshly heated inert gas into the irradiation chamber. The temperature inside the chamber Therefore, it can be kept at a largely constant level, which promotes the homogeneity of photochemistry.
Es ist bevorzugt, wenn die Wärmeenergie zum Erwärmen des Inertgases für die Bestrahlungskammer dem Kühlkreislauf zumindest teilweise entnommen wird.It is preferred if the thermal energy for heating the inert gas for the irradiation chamber is at least partially removed from the cooling circuit.
Auf diese Weise wird die von der UV-Strahlungsquelle abgegebene Wärmeenergie weiter genutzt und geht nicht verloren. Die Betriebskosten werden dadurch reduziert und die Wirtschaftlichkeit des Verfahrens verbessert. Auch unter ökologischen Gesichtspunkten ist eine dadurch erreichte Vermeidung einer Abgabe überschüssiger Wärmeenergie an die Umwelt von Vorteil. Dabei kann die dem Kühlkreislauf zu entnehmende Wärmeenergie in einem gewissen Umfang auch an die Leistungsaufnahme der UV-Strahlungsquellen angepasst werden. So ist bei einer erhöhten Strahlungsleistung einerseits zwar eine höhere Wärmeabfuhr zum Kühlen der UV-Strahler notwendig, andererseits wird jedoch durch die in der Bestrahlungskammer vorliegende erhöhte Energiedichte auch eine vergrößerte Umsatzgeschwindigkeit erreicht. Für eine erhöhte Umsatzrate ist wiederum jedoch ein verstärkter Strom an erwärmtem Inertgas in die Bestrahlungskammer notwendig, um die gegebenen Reaktionsbedingungen aufrechtzuerhalten.In this way, the heat energy emitted by the UV radiation source continues to be used and is not lost. The operating costs are reduced and the cost of the process improved. From an ecological point of view as well, an avoidance of a release of surplus heat energy to the environment achieved thereby is advantageous. In this case, the thermal energy to be taken from the cooling circuit can also be adapted to a certain extent to the power consumption of the UV radiation sources. Thus, with an increased radiation power on the one hand, although a higher heat dissipation for cooling the UV lamps is necessary, on the other hand, however, an increased turnover speed is achieved by the present in the irradiation chamber increased energy density. However, for an increased turnover rate, an increased flow of heated inert gas into the irradiation chamber is again necessary to maintain the given reaction conditions.
Die Entnahme der Wärmeenergie aus dem Kühlkreislauf und die Verwendung zum Erwärmen des der Bestrahlungskammer zugeführten Inertgases kann in geeigneter Weise mit einem Wärmeaustauscher erreicht werden.The extraction of the heat energy from the refrigeration cycle and the use for heating the inert gas supplied to the irradiation chamber can be suitably achieved with a heat exchanger.
Ein weiterer Aspekt der Erfindung betrifft ein Verfahren zu UV-härtbaren Stoffen, insbesondere von Elementen mit UV-härtbaren Lacken, mit der erfindungsgemäßen Vorrichtung.Another aspect of the invention relates to a process for UV-curable substances, in particular of elements with UV-curable coatings, with the device according to the invention.
Es besteht in der Industrie ein zunehmender Bedarf zur Aushärtung von photopolymerisierbaren Beschichtungen wie sie im Bereich der Kleinserienfertigung und bei Lackreparaturen der Fall ist. Anwendungen für das erfindungsgemäße Verfahren sind die Härtung und Polymerisation von Druckfarben, Lacken, Klebstoffen, Kunststoffen, Photoresisten, photopolymeren Druckplatten, Fingernagellacken, Harzen für die Stereolithographie oder anderer mit UV-Strahlung arbeitender Rapid-Phototyping- und Teilfertigungsverfahren, Gießmassen für die Elektronik, mechanische Bauteile, optische Linsen, Körper und Oberflächen sowie allgemein für zu fixierende und konservierende Objekte und Formen.There is an increasing demand in the industry for the curing of photopolymerizable coatings as is the case in the field of small batch production and paint repairs. Applications for the process according to the invention are the curing and polymerization of printing inks, lacquers, adhesives, plastics, photoresists, photopolymeric printing plates, fingernail lacquers, resins for stereolithography or other rapid UV phototyping and partial manufacturing processes, casting compounds for electronics, mechanical Components, optical lenses, body and surfaces and in general for objects and shapes to be fixed and preserved.
Neben Aushärtungsverfahren von UV-härtbaren Verbindungen können Material- und Oberflächenalterungsprozesse unter Bestrahlung beispielsweise zu Prüfzwecken, zur künstlichen Ausbleichung oder Vergilbung durchgeführt werden. Kurzwellige UV-C-Strahlung kann über seine Keim tötende Wirkung zur Desinfektion von Oberflächen eingesetzt werden. Insbesondere UV-A-Lampen mit einer Leistungsaufnahme unter 600 W können zum Beispiel zur Härtung photopolymerisierbarer Materialien dienen. Die durch das erfindungsgemäße Verfahren induzierten photochemischen Prozesse beinhalten insbesondere Spaltungs-, Additions-, Redox- oder Umlagerungsreaktionen.In addition to curing methods of UV-curable compounds, material and surface aging processes can be carried out under irradiation, for example for testing purposes, for artificial bleaching or yellowing. Short-wave UV-C radiation can be used to disinfect surfaces via its germicidal effect. In particular, UV-A lamps with a power consumption below 600 W can serve, for example, for curing photopolymerizable materials. The photochemical processes induced by the method according to the invention include, in particular, cleavage, addition, redox or rearrangement reactions.
Die Erfindung wird nachfolgend anhand eines schematischen Ausführungsbeispiels unter Bezugnahme auf die Zeichnung näher erläutert. Es zeigt:
- Fig. 1
- einen Querschnitt durch die erfindungsgemäße Vorrichtung mit entsprechendem Kühlkreislaufsystem.
- Fig. 1
- a cross section through the device according to the invention with a corresponding cooling circuit system.
Es sind verschiedene Ausführungsformen der erfindungsgemäßen Vorrichtung denkbar. Im Folgenden wir eine bevorzugte Ausführungsform beschrieben.Various embodiments of the device according to the invention are conceivable. In the following we describe a preferred embodiment.
In dem in
Durch eine Stickstoffzuführungsleitung 55 wird erwärmter Stickstoff über Stickstoffzuführöffnungen 57 in die Bestrahlungskammer 40 eingeführt. Die Innenseite der Bestrahlungskammer 40 weist Reflektoren 45 auf, die ultraviolettes Licht reflektieren und somit zumindest auch teilweise auf das Bauteil 50 zurückwerfen. Das Bauteil 50 wird über einen Förderer 15 in der Bestrahlungskammer 40 gehalten. Der Förderer 15 entfernt vollständig belichtete Bauteile 50 aus der Bestrahlungskammer 40 und liefert unbehandelte Bauteile 50 nach. Der Förderer 15 sowie die Strahlungsquelle 20 und die Bestrahlungskammer 40 befinden sich innerhalb einer Härtekabine 10. Der Förderer 15 ist als Hängeförderer ausgelegt und kann kontinuierlich oder diskontinuierlich betrieben werden.Through a
Die Erwärmung des Stickstoffes für die Bestrahlungskammer 40 erfolgt über einen Wärmetauscher 60, der etwa 50 m3/h Stickstoff erwärmt, welcher dann über die Stickstoffzuführung 55 der Bestrahlungskammer 40 zugeführt wird.The heating of the nitrogen for the
Die UV-Strahler 20 werden über einen Kühlkreislauf 75, der mit gekühltem Stickstoff betrieben wird, gekühlt. Der gekühlte Stickstoff tritt an Eintrittsöffnungen 23 des UV-Strahlers 20 ein und nach erfolgter Aufnahme von Wärmeenergie an den Ausgängen 27 wieder aus. Dem aus den Ausgängen 27 austretenden erwärmten Stickstoff wird mittels des Wärmetauschers 60 Wärmeenergie entzogen und diese Wärmeenergie zur Erwärmung des Stickstoffes für die Bestrahlungskammer 40 verwendet. Nachfolgend zum Wärmetauscher 60 ist ein weiterer Wärmetauscher 65 vorgesehen, der eine weitere Abkühlung des Kühlmediums bewirkt. Zu diesem Zweck treten ca. 1000 m3/h Kühlluft in den Wärmetauscher 65 ein, um dem Stickstoff die entsprechende Wärmeenergie zu entziehen. Neben Kühlluft können auch andere kühlende Fluide, insbesondere Flüssigkeiten wie Wasser, verwendet werden. Ferner sind in dem Kühlkreislauf 75 ein Abluftventilator 70 vorgesehen, der einen kleinen Teil Stickstoff, von etwa 2 bis 5 m3/h, aus dem Kreislaufsystem abführt. Die abgeführte Menge entspricht etwa der Größe, welche die UV-Strahler 20 über die Undichtigkeiten aus der Bestrahlungskammer 40 angesaugt haben. Ferner ist eine Verstellklappe 72 zur Regulierung des Volumenstroms an Kühlmedium vorgesehen. Bei einer erhöhten Strahlungsleistung besteht ein höherer Kühlungsbedarf, so dass zur verstärkten Abfuhr von Wärmeenergie entweder die Temperatur des Kühlmediums abgesenkt werden kann, oder über die Verstellklappe 72 der Volumenstrom an Stickstoff erhöht wird. Der aus dem Wärmetauscher 65 abgekühlte Stickstoff wird über den Kreislauf 75 erneut den UV-Strahlern 20 zur Abkühlung zugeführt, womit der Kreislauf geschlossen ist.The UV lamps 20 are cooled by a
Claims (15)
dadurch gekennzeichnet,
dass der Innenraum des UV-Strahlers (20) gegenüber der Bestrahlungskammer (40) einen Unterdruck aufweist.Device for irradiating elements (50) with UV light with at least one UV radiator (20), which has a UV lamp (30) in its interior, and an irradiation chamber (40) filled with the inert gas,
characterized,
that the interior of the UV lamp (20) relative to the irradiation chamber (40) has a negative pressure.
dadurch gekennzeichnet,
dass der mindestens eine UV-Strahler (20) mit einem Kühlmedium gekühlt ist, das ein Inertgas, insbesondere Stickstoff, enthält, welches insbesondere dem Inertgas der Bestrahlungskammer (40) entspricht.Device according to claim 1,
characterized,
in that the at least one UV radiator (20) is cooled with a cooling medium which contains an inert gas, in particular nitrogen, which in particular corresponds to the inert gas of the irradiation chamber (40).
dadurch gekennzeichnet,
dass der UV-Strahler (20) von der Bestrahlungskammer (40) durch eine Trennwand (35) abgetrennt ist, welche mindestens eine Öffnung (37) zum Durchtritt von Inertgas von der Bestrahlungskammer (40) in den UV-Strahler (20) aufweist.Apparatus according to claim 1 or 2,
characterized,
in that the UV radiator (20) is separated from the irradiation chamber (40) by a dividing wall (35) which has at least one opening (37) for the passage of inert gas from the irradiation chamber (40) into the UV radiator (20).
dadurch gekennzeichnet,
dass das Kühlmedium in einem Kreislauf (75) geführt ist, und dass in dem Kühlkreislauf (75) mindestens ein erster Wärmetauscher (65) zum Kühlen des Kühlmediums vorgesehen ist.Device according to claim 3,
characterized,
in that the cooling medium is guided in a circuit (75), and in that at least one first heat exchanger (65) is provided in the cooling circuit (75) for cooling the cooling medium.
dadurch gekennzeichnet,
dass in dem Kühlkreislauf (75) ein Regelventil (72) zum Regeln des Volumenstroms des Kühlmediums und/oder ein Auslaufventil (70) zur Abfuhr von überschüssigem Kühlmedium vorgesehen ist.Apparatus according to claim 3 or 4,
characterized,
in that a control valve (72) for regulating the volume flow of the cooling medium and / or an outlet valve (70) for removing excess cooling medium is provided in the cooling circuit (75).
dadurch gekennzeichnet,
dass eine Inertgaszufuhr (55) zum Zuführen von Inertgas, insbesondere von Stickstoff, in die Bestrahlungskammer (40) vorgesehen ist.Device according to one of claims 1 to 5,
characterized,
in that an inert gas feed (55) is provided for supplying inert gas, in particular nitrogen, into the irradiation chamber (40).
dadurch gekennzeichnet,
dass mindestens ein zweiter Wärmetauscher (60) zum Erwärmen des der Bestrahlungskammer (40) zugeführten Inertgases vorgesehen ist.Device according to claim 6,
characterized,
in that at least one second heat exchanger (60) is provided for heating the inert gas supplied to the irradiation chamber (40).
dadurch gekennzeichnet,
dass der zweite Wärmetauscher (60) mit dem Kühlkreislauf (75) gekoppelt ist, so dass dem vom UV-Strahler (20) erwärmten Kühlmedium Wärmeenergie entnehmbar und dem in die Bestrahlungskammer (40) zuzuführenden Inertgas zuführbar ist.Device according to claim 7,
characterized,
that the second heat exchanger (60) to the cooling circuit (75) is coupled so that the UV lamp from the heated (20) coolant heat energy can be removed and in the irradiation chamber (40) to be supplied to the inert gas can be fed.
dadurch gekennzeichnet,
dass der UV-Strahler (20) und die Bestrahlungskammer (40) in einer Kabine (10) angeordnet sind, durch welche eine Fördereinrichtung (15) zum Befördern von zu bestrahlenden Elementen (50) durch die Bestrahlungskammer (40) geführt ist.Device according to one of claims 1 to 8,
characterized,
in that the UV radiator (20) and the irradiation chamber (40) are arranged in a booth (10) through which a conveying device (15) for conveying elements (50) to be irradiated is guided through the irradiation chamber (40).
dadurch gekennzeichnet,
dass in dem Innenraum des UV-Strahlers (20) gegenüber der Bestrahlungskammer (40) ein Unterdruck erzeugt wird.Method for operating a device according to one of claims 1 to 9,
characterized,
in that a negative pressure is generated in the interior of the UV radiator (20) with respect to the irradiation chamber (40).
dadurch gekennzeichnet,
dass der UV-Strahler (20) mit einem Inertgas, insbesondere mit Stickstoff, als Kühlmedium gekühlt wird, welches in einem Kühlkreislauf (75) geführt wird.Method according to claim 10,
characterized,
that the UV lamp (20) with an inert gas, in particular nitrogen, is cooled as the cooling medium, which is guided in a cooling circuit (75).
dadurch gekennzeichnet,
dass in die Bestrahlungskammer (40) erwärmtes Inertgas, insbesondere erwärmter Stickstoff, eingespeist wird.Method according to claim 10 or 11,
characterized,
that in the irradiation chamber (40) heated inert gas, in particular heated nitrogen, is fed.
dadurch gekennzeichnet,
dass der UV-Strahler (20) aus der Bestrahlungskammer (40) Inertgas ansaugt.Method according to one of claims 10 to 12,
characterized,
that the UV lamp (20) from the irradiation chamber (40) sucks inert gas.
dadurch gekennzeichnet,
dass Wärmeenergie zum Erwärmen des Inertgases für die Bestrahlungskammer (40) dem Kühlkreislauf (75) zumindest teilweise entnommen wird.Method according to one of claims 10 to 13,
characterized,
that heat energy for heating the inert gas for the irradiation chamber (40) is at least partially removed from the cooling circuit (75).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200710053543 DE102007053543B4 (en) | 2007-11-09 | 2007-11-09 | Device for irradiating elements with UV light and method for their operation |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2058614A2 true EP2058614A2 (en) | 2009-05-13 |
EP2058614A3 EP2058614A3 (en) | 2014-04-02 |
Family
ID=40328299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08019129.9A Withdrawn EP2058614A3 (en) | 2007-11-09 | 2008-10-31 | Device to irradiate elements with UV/light and method of its operation |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2058614A3 (en) |
DE (1) | DE102007053543B4 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2696155A1 (en) | 2012-08-07 | 2014-02-12 | Sturm Maschinen- & Anlagenbau GmbH | Method and device for UV curing |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3416502A1 (en) | 1984-05-04 | 1985-11-07 | Goldschmidt Ag Th | DEVICE FOR CURING FLAT-MATERIAL MATERIALS FROM CONNECTIONS OR PREPARATIONS THAT ARE CURABLE BY UV RADIATION |
DE19907681A1 (en) | 1999-02-23 | 2000-08-24 | Juergen Wahrmund | Continuous treatment of bands with UV light to cross-link coatings, is accompanied by flows of gas to control temperature ideally, preventing excessive heating, with optional local control of moisture and oxygen |
DE10239356A1 (en) | 2002-08-24 | 2004-02-26 | Wahrmund, Jürgen | Irradiation unit, e.g. for irradiating paper with UV light, comprises one or more radiation sources arranged perpendicularly to the direction of movement |
DE102004012128A1 (en) | 2004-03-12 | 2005-09-29 | Arccure Technologies Gmbh | Ultraviolet lamp esp. for setting or hardening coated surfaces e.g. painted car body parts using pressure differential to activate the lamp |
DE102005007370B3 (en) | 2005-02-17 | 2006-09-21 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Ultraviolet light source for e.g. ultraviolet microscopy, has dielectric arranged between two electrodes, where one electrode includes tip directed to another electrode, such that shortest distance is defined between electrodes |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3402505A1 (en) * | 1983-01-25 | 1984-08-09 | Citizen Watch Co. Ltd., Tanashi, Tokyo | DEVICE AND METHOD FOR CURING LIGHT-RESISTANT RESIN ADHESIVES |
JPS6244742A (en) * | 1985-08-23 | 1987-02-26 | Hitachi Ltd | Method and apparatus for correction |
SE8802431L (en) * | 1988-06-28 | 1989-12-29 | Svecia Silkscreen Maskiner Ab | DRY APPLICATION WITH UV LIGHT CREATING BODIES |
DE10255419A1 (en) * | 2002-11-28 | 2004-06-09 | Air Liquide Gmbh | Substrate, e.g. automotive body part coating process, involves applying coating material to substrate and exposing material to inert gas atmosphere with regulation of distance of concentration section from substrate |
DE10249709A1 (en) * | 2002-10-25 | 2004-05-13 | Messer Griesheim Gmbh | Component radiation hardening unit, comprises a radiation apparatus, an inert gas supply line and nozzle, and an integral heat exchanger |
DE102004029667A1 (en) * | 2003-09-04 | 2005-04-07 | Cetelon Lackfabrik Walter Stier Gmbh & Co.Kg | Hardening radiation hardenable coatings on a substrate, comprises moving the substrates through a closed channel unit containing an inert gas and irradiating them with UV radiation |
-
2007
- 2007-11-09 DE DE200710053543 patent/DE102007053543B4/en not_active Expired - Fee Related
-
2008
- 2008-10-31 EP EP08019129.9A patent/EP2058614A3/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3416502A1 (en) | 1984-05-04 | 1985-11-07 | Goldschmidt Ag Th | DEVICE FOR CURING FLAT-MATERIAL MATERIALS FROM CONNECTIONS OR PREPARATIONS THAT ARE CURABLE BY UV RADIATION |
DE19907681A1 (en) | 1999-02-23 | 2000-08-24 | Juergen Wahrmund | Continuous treatment of bands with UV light to cross-link coatings, is accompanied by flows of gas to control temperature ideally, preventing excessive heating, with optional local control of moisture and oxygen |
DE10239356A1 (en) | 2002-08-24 | 2004-02-26 | Wahrmund, Jürgen | Irradiation unit, e.g. for irradiating paper with UV light, comprises one or more radiation sources arranged perpendicularly to the direction of movement |
DE102004012128A1 (en) | 2004-03-12 | 2005-09-29 | Arccure Technologies Gmbh | Ultraviolet lamp esp. for setting or hardening coated surfaces e.g. painted car body parts using pressure differential to activate the lamp |
DE102005007370B3 (en) | 2005-02-17 | 2006-09-21 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Ultraviolet light source for e.g. ultraviolet microscopy, has dielectric arranged between two electrodes, where one electrode includes tip directed to another electrode, such that shortest distance is defined between electrodes |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2696155A1 (en) | 2012-08-07 | 2014-02-12 | Sturm Maschinen- & Anlagenbau GmbH | Method and device for UV curing |
Also Published As
Publication number | Publication date |
---|---|
DE102007053543A1 (en) | 2009-05-28 |
EP2058614A3 (en) | 2014-04-02 |
DE102007053543B4 (en) | 2012-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102008014378B4 (en) | Exposure chamber for the curing of paints on components and hardening system for motor vehicle bodies | |
EP1967284A2 (en) | Method and device for UV-ray hardening of substrate layers | |
WO1990015778A1 (en) | Process and device for treating polluted fluids | |
DE10202311A1 (en) | Apparatus for the plasma treatment of dielectric objects, e.g. internal coating of bottles, comprises a transporter which feeds workpieces continuously through a zone irradiated with electromagnetic energy from a plasma generator | |
DE202005021576U1 (en) | Apparatus for carrying out a method for modifying surfaces of radiation-curable paints and lacquers by photochemical microfolding using short-wave monochromatic UV radiation under stable irradiation and inerting conditions | |
DE2749439A1 (en) | METHOD AND DEVICE FOR CURING COATING SUBSTANCES | |
EP0036557B1 (en) | Method and apparatus for the cross-linking of synthetic lacquers applied to substrates | |
DE3416502A1 (en) | DEVICE FOR CURING FLAT-MATERIAL MATERIALS FROM CONNECTIONS OR PREPARATIONS THAT ARE CURABLE BY UV RADIATION | |
DE102010042670A1 (en) | Device, useful e.g. for ultraviolet irradiation of liquid or gaseous medium, comprises ultraviolet radiation source and two ultraviolet-transparent walls, which are arranged between reaction chamber and ultraviolet radiation-emitting region | |
DE2626963A1 (en) | UV RADIATION SYSTEM | |
DE102005043222A1 (en) | Irradiation reactor for continuous UV irradiating of a liquid with electromagnetic- or electron radiation, comprises a hollow irradiation chamber and radiation permeable windows attached on a casing of the irradiation chamber | |
DE102007053543B4 (en) | Device for irradiating elements with UV light and method for their operation | |
EP1400287B1 (en) | Apparatus for hardening UV-photocurable coatings | |
KR101134861B1 (en) | Ultraviolet crosslinking equipment under controlled atmosphere | |
DE102016102187B3 (en) | Device for the treatment of a substrate with UV radiation and use of the device | |
DE102015226316B3 (en) | Apparatus and method for curing a coating on a spectacle lens | |
WO2022242960A1 (en) | Method and device for printing directly onto containers for filling products | |
DE10255419A1 (en) | Substrate, e.g. automotive body part coating process, involves applying coating material to substrate and exposing material to inert gas atmosphere with regulation of distance of concentration section from substrate | |
DE102004029667A1 (en) | Hardening radiation hardenable coatings on a substrate, comprises moving the substrates through a closed channel unit containing an inert gas and irradiating them with UV radiation | |
DE102019125606B3 (en) | Irradiation device for irradiating substrates with UV radiation and a method for operating an irradiation device | |
EP1413416A2 (en) | Radiation hardening installation | |
DE19527472C1 (en) | Fluid treatment with very high intensity UV-C radiation | |
DE19904493A1 (en) | Plant for purifying waters and sludges includes main electron-beam reactor tank with air-cooled window from which ozone is fed to pre- and post-reaction stages to break contaminants down completely, with high energy efficiency | |
DE19920693C1 (en) | Open UV / VUV excimer lamp and process for surface modification of polymers | |
DE20120718U1 (en) | UV radiation assembly, to treat workpiece surfaces, has radiation chamber totally filled with inert carbon dioxide gas, and initial ante-chamber in movement path to exclude oxygen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: STURM MASCHINEN- & ANLAGENBAU GMBH |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F26B 21/14 20060101ALI20140221BHEP Ipc: F26B 3/28 20060101AFI20140221BHEP |
|
17P | Request for examination filed |
Effective date: 20140702 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AXX | Extension fees paid |
Extension state: RS Extension state: BA Extension state: AL Extension state: MK |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20180501 |