EP2497956A1 - Free flow pump - Google Patents

Free flow pump Download PDF

Info

Publication number
EP2497956A1
EP2497956A1 EP11157262A EP11157262A EP2497956A1 EP 2497956 A1 EP2497956 A1 EP 2497956A1 EP 11157262 A EP11157262 A EP 11157262A EP 11157262 A EP11157262 A EP 11157262A EP 2497956 A1 EP2497956 A1 EP 2497956A1
Authority
EP
European Patent Office
Prior art keywords
impeller
free
flow pump
plate surface
hub body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11157262A
Other languages
German (de)
French (fr)
Inventor
Jean-Nicolas Favre
Hagen Renger
Michel Grimm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EGGER PUMPS Tech AG
Original Assignee
EGGER PUMPS Tech AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44303228&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2497956(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by EGGER PUMPS Tech AG filed Critical EGGER PUMPS Tech AG
Priority to EP11157262A priority Critical patent/EP2497956A1/en
Priority to CN201280011965.XA priority patent/CN103477083B/en
Priority to BR112013022590-4A priority patent/BR112013022590B1/en
Priority to CA2828911A priority patent/CA2828911C/en
Priority to PCT/EP2012/053261 priority patent/WO2012119877A2/en
Priority to MX2013009982A priority patent/MX2013009982A/en
Priority to US14/003,274 priority patent/US9605678B2/en
Priority to ES12705877.4T priority patent/ES2557563T3/en
Priority to DK12705877.4T priority patent/DK2683945T3/en
Priority to EP12705877.4A priority patent/EP2683945B1/en
Priority to PL12705877T priority patent/PL2683945T3/en
Priority to JP2013557040A priority patent/JP5993383B2/en
Publication of EP2497956A1 publication Critical patent/EP2497956A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • F04D7/04Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being viscous or non-homogenous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2238Special flow patterns
    • F04D29/2244Free vortex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps

Definitions

  • the present invention relates to a free-flow pump with an impeller, which is spaced from an inlet so that a free passage for solids contained in the pumped liquid between the inlet and the impeller outlet is present, and the impeller bottom through the end face of a in the center of the impeller cantilevered hub body and a lower plate surface is formed, which opens with its maximum depth in the outer periphery of the impeller and is equipped with blades whose open blade end faces adjoin the hub body at its inner end and extending from there to the outer periphery of the impeller.
  • Such free-stream pumps as they are from the EP 0 081 456 A1 are known in the same applicant, are often used in wastewater, which are contaminated in particular with solids.
  • the distance between the impeller and the pump inlet is chosen so that a free flow space between the inlet and the impeller outlet is formed as a passage for a largest eligible ball with a predetermined ball diameter to counteract a risk of clogging by the solid components in the fluid.
  • the invention is therefore based on the object, a free-flow pump of the type mentioned in such a way that the accumulation of flat materials is avoided in front of the surface of rotation of the impeller so that a trouble-free pump delivery can take place.
  • a free-flow pump is proposed in which the bottom of the impeller is at least in the region of the inner third of its radius with respect to the inner end of the blade end faces not more than one-sixth lower than the height difference between the inner end of the blade end faces and the maximum depth of the plate surface.
  • the structural design of the impeller is preferably optimized so that a reduction of the pump efficiency can be kept as low as possible in order to allow the clog-free use of the free-flow pump for a variety of applications.
  • the rotor bottom be at least in the region of the inner half of its radius with respect to the inner end of the blade end sides not more than two-thirds lower than the height difference between the inner end of the blade end faces and the maximum depth of the disc surface. Most preferably, for this reason, the impeller floor in this area is lowered by not more than half of this height difference from the inner end of the blade end faces.
  • the height difference of the disk surface in the middle radial third of the impeller is preferably more than half, more preferably more than two-thirds of the height difference between the inner end of the blade end faces and the maximum depth of the plate surface.
  • An effective flow through the impeller can be achieved in that the plate surface in the direction of the outer circumference of the impeller has a continuously sloping surface portion which extends over at least a third, preferably at least half, of the radius of the impeller. More preferably, the continuously sloping surface portion extends over at least two thirds of the radius of the impeller.
  • the continuously sloping surface section opens into the outer circumference of the impeller.
  • the plate surface may have a substantially flat surface portion which extends at most over the outer two thirds, preferably at most over the outer half, of the radius of the impeller.
  • the flat plate surface along an abrupt increase in height can be connected directly to the front side of the hub body.
  • the disk surface in the middle radial third of the impeller may have a substantially stepped height drop.
  • Area section connects to the front side of the hub body substantially steadily.
  • the convex curvature may contribute to avoiding adhesion of sheet materials in the impeller entry area.
  • contributing to this purpose may be that the open blade end faces substantially adjacent to the end face of the hub body at this.
  • steeper running frontal surfaces are conceivable.
  • a further expedient embodiment of the invention provides that the height of at least two blades increases towards the outer circumference of the impeller. This can contribute to increasing the pump efficiency, since in this way an increased force is applied to the fluid emerging from the impeller in the radial direction.
  • An in Fig. 1 shown free-flow pump 1 has a pump housing 2, which has a front inlet opening 3 and a side outlet opening 4. From the pump housing 2, an impeller chamber 6 is enclosed.
  • an impeller 11 is arranged at a distance from the inlet opening 3 such that a free passage 7 for solids contained in the conveyed liquid toward the outlet opening 4 is present.
  • the impeller 11 comprises a hub body 12 in which a shaft 8 is fixed.
  • the shaft 8 extends along the longitudinal axis 5 in the rear part of the pump housing 2, where it is connected to a drive, not shown.
  • the hub body 12 comprises a windshield 25, through the free surface 24 of which the central portion of the end face 14 of the hub body 12 is formed.
  • the surface 24 of the front screen 25 is formed substantially flat.
  • the windshield 25 has a central bore for receiving a screw 9 and a gentle rounding along its outer edge, to which a radially outer face-side surface portion 13 of the hub body 12 adjoins, which is also flat.
  • the end face 14 of the hub body 12 is thus formed substantially flat and extends over slightly more than one third of the total radius of the impeller eleventh
  • the outer wall 15 of the hub body 12 adjoins the end face 14 of the hub body 12 in a stepwise abrupt manner.
  • the adjoining surface region 15 extends over half of the impeller depth substantially parallel to the longitudinal axis 5 of the pump housing 2 and then opens into a concavely curved region 16.
  • the concave curved surface portion 16 of the hub body 12 extends approximately over the middle third of the radius of the impeller 11 and then reaches its maximum depth with respect to the end face 14 of the hub body 12. From there opens the concave curved portion 16 in a flat surface portion 17, which is substantially perpendicular to the longitudinal axis 5 of the pump housing 2. This flat region 17 extends over the entire outer third of the radius of the impeller 11 and opens into its outer periphery.
  • the plate surface 18 formed by the surface regions 15-17 is equipped with blades 19.
  • the blades 19 each extend, starting from their inner end, on the region 15 of the hub body 12 which is substantially parallel to the longitudinal axis 5, as far as the outer circumference of the rotor 11.
  • the blades 19 have a substantially constant height profile.
  • the height of the blades 19 is slightly smaller than the height difference H between the flat surface region 17 and the connection region of the end face 14 and outer wall 15 of the hub body 12.
  • the Fig. 2 shows a plan view of the end face 14 of the hub body 12 and the surrounding plate surface 18, through which the impeller bottom of the impeller 11 is formed.
  • the open blade end faces 20 of the blades 19 adjoin the connection area between the end face 14 of the hub body 12 and the plate surface 18. From there, the blade end faces 20 are curved to the outer circumference of the impeller 11, wherein their thickness remains constant.
  • the direction of curvature of the blades 19 runs counter to the direction of rotation R of the impeller 1.
  • the Fig. 3 shows a cross-sectional view through the impeller 11 according to section III in Fig. 1 , This corresponds to one
  • the plate surface 18 is in this depth range of the impeller 11 at the same height with the surface portion 15 of the hub body 12, which lies in the middle radial third of the impeller 11.
  • free-flow pump 1 is a pumping liquids that are contaminated with cloths or rags, for example, without blockages of the impeller chamber 6 is possible.
  • the tendency of flat materials to settle on the front of the impeller 11 can be effectively avoided by the described geometry of the impeller 11.
  • a free-flow pump 21 is shown according to a second embodiment.
  • free-flow pump 1 identically formed components are provided with the same reference numerals.
  • the essential difference between the free-flow pump 21 and the above-described free-flow pump 1 is another geometry of its impeller 22. Clogging of the impeller chamber 6 by laminar materials can also be avoided by this impeller geometry and losses in the efficiency of the free-flow pump 21 can be sufficiently low for many applications being held.
  • these are the following structural measures:
  • the impeller 22 comprises a hub body 23, whose end face 24 extends over approximately one third of the radius of the impeller 22.
  • the end face 24 of the hub body 23 is substantially completely formed by the free surface of the front windshield 25, which has a continuous transition to an outwardly lying convex curvature 26 on the outer wall of the hub body 23.
  • the free surface of the windshield 25 consists of the central flat surface portion with the central bore for receiving the screw 9, and the gently rounded outer taper, to which the convex curvature 26 connects to the outer wall of the hub body 23.
  • the middle flat surface portion extends over more than two-thirds of the radius of the windshield 25th
  • the around the front side 24 of the hub body 23 outwardly lying plate surface 28 extends beyond the outer two thirds of the radius of the impeller 22.
  • the plate surface 28 consists of the convex curved surface portion 26 and an adjoining concavely curved surface portion 27, which along the outer wall of the Hub body 23 extend.
  • the convexly curved surface portion 26 corresponds to only about one seventh of the radius of the plate surface 28th
  • the plate surface 28 is equipped with blades 29 whose open blade end faces 30 adjoin the end surface 24 of the hub body 23 at its inner end in the region of its convexly curved connection region 26 to the plate surface 28.
  • the blades 29 extend from there to the outer periphery of the impeller 22.
  • the blades 19 have a constant height profile, with their height in the Substantially corresponds to the height difference H of the concave curved surface portion 27 on the outer circumference of the impeller of the convexly curved terminal portion 26 to the plate surface 28.
  • the maximum depth of the plate surface 28 results from its maximum height difference H from the inlet side closest surface portion of the inner ends of the blade end faces 30.
  • the plate surface 28 thus assumes its maximum depth only along its outer circumference, where the concave curved surface portion 27 opens into the outer periphery of the impeller 22 ,
  • the impeller bottom of the impeller 22 which is formed entirely by the end face 24 of the hub body 23 and the disc surface lying around 28, in its inner radial third only from the front side 24 of the hub body 23.
  • the change in height of the impeller floor in this area thus corresponds to Essentially the height profile of the windshield 25, which in comparison to the height difference H has only a small change in height at its outer edge region.
  • the Fig. 5 shows a plan view of the end face 24 of the hub body 23 and the surrounding plate surface 28, through which the impeller bottom is formed.
  • the Fig. 6 shows a cross-sectional view through the impeller 22 according to section VI in Fig. 4 , This corresponds to a section through the impeller 22 along half the height difference H between the inner end of the blade end faces 20 and the maximum depth of the disc surface 28 with respect to the inner end of the blade end faces 20.
  • the plate surface 28 is in this depth range to half the radius of the impeller 22 within its concave curved surface portion 27th
  • a free-flow pump 32 is shown according to a third embodiment.
  • free-stream pumps 1 identically formed components are provided with the same reference numerals.
  • the free-flow pump 21 essentially corresponds to the above-described free-flow pump 21 with the difference that the blade geometry of the impeller 22 is changed in order to improve the pump efficiency.
  • the impeller 33 of the free-flow pump 32 also comprises height-variable blades 34.
  • the open blade end faces 35 of the vertically variable blades 34 also adjoin the end face 24 of the hub body 23 in the area of its convexly curved connection region 26 at the inner surface at.
  • the blades 34 extend from there to the outer periphery of the impeller 33, wherein its height increases continuously.
  • the maximum height increase 36 of the blades 34 is located in the outer third of the radius of the impeller 33. From there to the outer periphery of the impeller 33, the height increase of the blades 34 is progressively smaller Mass until its height remains substantially constant over the outer tenth of the radius of the impeller 33 away.
  • the height of the blades 34 remains substantially constant over the inner radial half of the impeller floor. Then over the outer radial half of the Laufrad Camills away takes place a rapid increase in height, in which the height of the blades 34 increases by approximately one quarter of the maximum depth of the plate surface 28 with respect to the end face 24 of the hub body 25. As a result, an increase in the delivery head and the pump efficiency is achieved without having to accept disadvantageous clogging properties due to existing in the pumped liquid sheet materials.
  • the Fig. 8 shows a plan view of the impeller 33.
  • the free blade end faces 35 of the height-adjustable blades 34 have substantially the same shape characteristics as the blade end faces 30 of the constant-height blades 29, in particular with respect to their relative spacing to adjacent blades 29 and their curved shape.
  • the intervening arrangement of the height-constant blades 29 pursues the purpose of temporarily freeing the free passage 7 for passing larger solids in the fluid during a impeller rotation.
  • the Fig. 9 shows a cross-sectional view through the impeller 33 according to section IX in Fig. 7 , This corresponds to a section through the impeller 33 along half the height difference H between the inner end of the blade end faces 30, 35 and the maximum depth of the disc surface 28.
  • this section is identical to the equivalent cross-section VI by the impeller 22 of the free-flow pump 21, which in Fig. 4 is shown.

Abstract

The pump has a running wheel spaced at a distance from an inlet (3) such that a free passage (7) is provided between the inlet and a running wheel outlet. A running wheel base of the outlet is formed through a front side (24) of a hub body and underlying plate surface (28), where the body is projected in center part of the wheel. The base is provided in an inner region of the pump, where the radius of the inner region is smaller than height difference between an inner end of blade front surfaces (30, 35) and a maximum depth of the plate surface based on the inner end of the front surfaces.

Description

Die vorliegende Erfindung bezieht sich auf eine Freistrompumpe mit einem Laufrad, das von einem Einlauf derart beabstandet ist, dass ein freier Durchgang für in der Förderflüssigkeit enthaltene Festkörper zwischen dem Einlauf und dem Laufradaustritt vorhanden ist, und dessen Laufradboden durch die Stirnseite eines im Zentrum des Laufrads auskragenden Nabenkörpers und eine tiefer liegende Tellerfläche gebildet ist, die mit ihrer Maximaltiefe in den Aussenumfang des Laufrads mündet und mit Schaufeln bestückt ist, deren offene Schaufelstirnseiten an ihrem inneren Ende an den Nabenkörper angrenzen und sich von dort bis zum Aussenumfang des Laufrads erstrecken.The present invention relates to a free-flow pump with an impeller, which is spaced from an inlet so that a free passage for solids contained in the pumped liquid between the inlet and the impeller outlet is present, and the impeller bottom through the end face of a in the center of the impeller cantilevered hub body and a lower plate surface is formed, which opens with its maximum depth in the outer periphery of the impeller and is equipped with blades whose open blade end faces adjoin the hub body at its inner end and extending from there to the outer periphery of the impeller.

Derartige Freistrompumpen, wie sie aus der EP 0 081 456 A1 der gleichen Anmelderin bekannt sind, werden häufig in Abwässern eingesetzt, die insbesondere mit Feststoffen verunreinigt sind. Der Abstand zwischen dem Laufrad und dem Pumpeneinlauf ist dabei so gewählt, dass ein freier Strömungsraum zwischen dem Einlauf und dem Laufradaustritt als Durchgang für eine am grössten förderbare Kugel mit vorbestimmtem Kugeldurchmesser gebildet ist, um einer Verstopfungsgefahr durch die festen Bestandteile in der Förderflüssigkeit entgegenzuwirken.Such free-stream pumps, as they are from the EP 0 081 456 A1 are known in the same applicant, are often used in wastewater, which are contaminated in particular with solids. The distance between the impeller and the pump inlet is chosen so that a free flow space between the inlet and the impeller outlet is formed as a passage for a largest eligible ball with a predetermined ball diameter to counteract a risk of clogging by the solid components in the fluid.

In der Praxis hat sich allerdings häufig gezeigt, dass insbesondere aus Fasern oder Garnen bestehende Gewebe oder Gestricke oder andersartige Feststoffe aus flächigem und flexiblem Material eine Tendenz aufweisen, sich an der Laufradoberfläche festzusetzen, ohne dass ein störungsfreier Durchtritt durch den hierfür vorgesehenen schaufelfreien Raum stattfinden kann. Insbesondere wurde eine kürzerfristige oder auch unbegrenzt andaurende Festsetzung derartiger Materialien im Zentralbereich des Laufrades beobachtet. Diese Materialanballung vor der Laufradoberfläche bringt eine unerwünschte Verringerung der Förderhöhe und des Wirkungsgrads mit sich oder führt zuerst zu einer Reduktion des Durchflusses und schlussendlich zu einer vollständigen Verstopfung der Pumpe.In practice, however, it has frequently been found that woven or knitted fabrics or other types of solids made of flat and flexible material, in particular consisting of fibers or yarns, have a tendency to settle on the surface of the impeller without a trouble-free passage through the blade-free space provided for this purpose , In particular, a shorter-term or unlimited fixing of such materials in the central region of the impeller observed. This accumulation of material in front of the impeller surface entails an undesirable reduction of the delivery head and the efficiency or leads first to a reduction of the flow and finally to a complete blockage of the pump.

Der Erfindung liegt daher die Aufgabe zugrunde, eine Freistrompumpe der eingangs genannten Art derart weiterzubilden, dass die Ansammlung flächiger Materialen vor der Rotationsfläche des Laufrades vermieden wird, damit eine störungsfreie Pumpenförderung stattfinden kann.The invention is therefore based on the object, a free-flow pump of the type mentioned in such a way that the accumulation of flat materials is avoided in front of the surface of rotation of the impeller so that a trouble-free pump delivery can take place.

Diese Aufgabe wird durch die Freistrompumpe gemässThis task is performed by the free-flow pump according to

Patentanspruch 1 gelöst. Die abhängigen Patentansprüche geben bevorzugte Ausführungsformen an.Claim 1 solved. The dependent claims indicate preferred embodiments.

Erfindungsgemäss wird also eine Freistrompumpe vorgeschlagen, bei welcher der Boden des Laufrads zumindest im Bereich des inneren Drittels seines Radius in Bezug auf das innere Ende der Schaufelstirnseiten um nicht mehr als ein Sechstel tiefer liegt als der Höhenunterschied zwischen dem inneren Ende der Schaufelstirnseiten und der Maximaltiefe der Tellerfläche.According to the invention, therefore, a free-flow pump is proposed in which the bottom of the impeller is at least in the region of the inner third of its radius with respect to the inner end of the blade end faces not more than one-sixth lower than the height difference between the inner end of the blade end faces and the maximum depth of the plate surface.

Überraschenderweise wurde im Rahmen der vorliegenden Erfindung nämlich festgestellt, dass durch eine somit bewirkte Verringerung der Ansaugwirkung im Zentralbereich des Laufrads und eine daraus resultierende Aufweitung des Strömungsweges um diesen Zentralbereich herum die eingangs beschriebene Materialanballung von flächigen Materialien über die gesamte Laufradoberfläche hinweg deutlich verringert werden kann oder auch vollständig vermieden werden kann.Surprisingly, in the context of the present invention, it has been found that by a reduction in the suction effect in the central region of the impeller and a resulting widening of the flow path around this central region, the initially described material accumulation of flat materials over the entire impeller surface becomes clear can be reduced or even completely avoided.

Der konstruktive Aufbau des Laufrads ist vorzugsweise derart optimiert, dass eine Verminderung des Pumpenwirkungsgrades möglichst gering gehalten werden kann, um den verstopfungsfreien Einsatz der Freistrompumpe für eine Vielzahl von Anwendungen zu ermöglichen. Erfindungsgemäss hat sich hierfür als wesentlich herausgestellt, dass die Tellerfläche mit ihrer Maximaltiefe in den Aussenumfang des Laufrads mündet. Dadurch kann der zum Herstellen der Nutzströmung erforderliche Druckaufbau und die Beschleunigung des Wirbels im Strömungsraum recht hoch gehalten werden und somit eine verhältnismässig grosse Förderhöhe während eines verstopfungsfreien Betriebs der Freistrompumpe erzielt werden.The structural design of the impeller is preferably optimized so that a reduction of the pump efficiency can be kept as low as possible in order to allow the clog-free use of the free-flow pump for a variety of applications. According to the invention, it has proven to be essential for this that the plate surface opens with its maximum depth into the outer circumference of the impeller. As a result, the pressure build-up required for producing the useful flow and the acceleration of the vortex in the flow space can be kept quite high and thus a comparatively large delivery height can be achieved during a blockage-free operation of the free-flow pump.

Um die Materialanballung von flächigen und flexiblen Materialien im Eintrittsbereich der Schaufelkanäle weiter zu vermindern, wird vorgeschlagen, dass der Laufradboden vorzugsweise zumindest im Bereich der inneren Hälfte seines Radius in Bezug auf das innere Ende der Schaufelstirnseiten um nicht mehr als zwei Drittel tiefer liegt als der Höhenunterschied zwischen dem inneren Ende der Schaufelstirnseiten und der Maximaltiefe der Tellerfläche. Höchst bevorzugt ist aus diesem Grund der Laufradboden in diesem Bereich um nicht mehr als die Hälfte dieses Höhenunterschieds von dem inneren Ende der Schaufelstirnseiten abgesenkt.In order to further reduce the material agglomeration of flat and flexible materials in the inlet region of the blade channels, it is proposed that the rotor bottom be at least in the region of the inner half of its radius with respect to the inner end of the blade end sides not more than two-thirds lower than the height difference between the inner end of the blade end faces and the maximum depth of the disc surface. Most preferably, for this reason, the impeller floor in this area is lowered by not more than half of this height difference from the inner end of the blade end faces.

Zur Beibehaltung eines recht hohen Pumpenwirkungsgrads beträgt die Höhendifferenz der Tellerfläche im mittleren Radialdrittel des Laufrads vorzugsweise mehr als die Hälfte, weiter bevorzugt mehr als zwei Drittel, des Höhenunterschieds zwischen dem inneren Ende der Schaufelstirnseiten und der Maximaltiefe der Tellerfläche.In order to maintain a fairly high pump efficiency, the height difference of the disk surface in the middle radial third of the impeller is preferably more than half, more preferably more than two-thirds of the height difference between the inner end of the blade end faces and the maximum depth of the plate surface.

Eine wirkungsvolle Durchströmung des Laufrads kann dadurch erreicht werden, dass die Tellerfläche in Richtung des Aussenumfangs des Laufrads einen kontinuierlich abfallenden Flächenabschnitt aufweist, der sich über mindestens ein Drittel, vorzugsweise über mindestens die Hälfte, des Radius des Laufrads erstreckt. Weiter bevorzugt erstreckt sich der kontinuierlich abfallende Flächenabschnitt über mindestens zwei Drittel des Radius des Laufrads. Durch eine solche Laufradgeometrie lässt sich ein für viele Anwendungen ausreichend hoher Pumpenwirkungsgrad und die Vermeidung einer unerwünschten Ansammlung flächiger Materialien vor der Laufradoberfläche vorteilhaft kombinieren. In zweckmässiger Ausgestaltung der Erfindung mündet der kontinuierlich abfallende Flächenabschnitt dabei in den Aussenumfang des Laufrads.An effective flow through the impeller can be achieved in that the plate surface in the direction of the outer circumference of the impeller has a continuously sloping surface portion which extends over at least a third, preferably at least half, of the radius of the impeller. More preferably, the continuously sloping surface portion extends over at least two thirds of the radius of the impeller. By means of such an impeller geometry, a sufficiently high pump efficiency for many applications and the avoidance of undesired accumulation of flat materials in front of the impeller surface can be advantageously combined. In an expedient embodiment of the invention, the continuously sloping surface section opens into the outer circumference of the impeller.

Alternativ kann die Tellerfläche einen im Wesentlichen flachen Flächenabschnitt aufweisen, der sich höchstens über die äusseren zwei Drittel, vorzugsweise höchstens über die äussere Hälfte, des Radius des Laufrads erstreckt. Dabei kann beispielsweise die flache Tellerfläche entlang eines abrupten Höhenanstiegs direkt an die Stirnseite des Nabenkörpers angeschlossen sein. Beispielsweise kann die Tellerfläche im mittleren Radialdrittel des Laufrads einen im Wesentlichen stufenförmigen Höhenabfall aufweisen.Alternatively, the plate surface may have a substantially flat surface portion which extends at most over the outer two thirds, preferably at most over the outer half, of the radius of the impeller. In this case, for example, the flat plate surface along an abrupt increase in height can be connected directly to the front side of the hub body. For example, the disk surface in the middle radial third of the impeller may have a substantially stepped height drop.

Eine weitere vorteilhafte Ausgestaltung des erfindungsgemässen Laufrads kann darin bestehen, dass die Tellerfläche entlang eines konvex gekrümmtenA further advantageous embodiment of the inventive impeller may consist in that the plate surface along a convex curved

Flächenabschnitts an die Stirnseite des Nabenkörpers im Wesentlichen stetig anschliesst. Die konvexe Krümmung kann zur Vermeidung einer Anhaftung flächiger Materialien in dem Laufradseintrittsbereich beitragen. Ferner kann zu diesem Zweck beitragen, dass die offenen Schaufelstirnseiten im Wesentlichen im Bereich der Stirnseite des Nabenkörpers an diesen angrenzen. Weiterhin kann diesbezüglich vorteilhaft sein, dass die Stirnseite des Nabenkörpers im Wesentlichen flach ausgebildet ist. Allerdings sind auch steiler verlaufende stirnseitige Oberflächen denkbar.Area section connects to the front side of the hub body substantially steadily. The convex curvature may contribute to avoiding adhesion of sheet materials in the impeller entry area. Furthermore, contributing to this purpose may be that the open blade end faces substantially adjacent to the end face of the hub body at this. Furthermore, it may be advantageous in this respect that the end face of the hub body is formed substantially flat. However, steeper running frontal surfaces are conceivable.

Zum Erreichen einer optimalen HQ-Kennlinie, durch welche die funktionale Abhängigkeit der Förderhöhe über den Förderstrom gekennzeichnet ist, kann ferner ein gebogener Verlauf der Schaufelstirnseiten hin zum Aussenumfang des Laufrads vorteilhaft sein.To achieve an optimum HQ characteristic, by which the functional dependence of the delivery height on the flow is characterized, may also be a curved course of the blade end faces towards the outer periphery of the impeller advantageous.

Eine weitere zweckmässige Ausgestaltung der Erfindung sieht vor, dass die Höhe zumindest zweier Schaufeln zum Aussenumfang des Laufrads hin zunimmt. Dies kann zur Erhöhung des Pumpenwirkungsgrads beitragen, da auf diese Weise eine erhöhte Krafteinwirkung auf die in radialer Richtung aus dem Laufrad austretende Förderflüssigkeit bereitgestellt wird.A further expedient embodiment of the invention provides that the height of at least two blades increases towards the outer circumference of the impeller. This can contribute to increasing the pump efficiency, since in this way an increased force is applied to the fluid emerging from the impeller in the radial direction.

Nachfolgend ist die Erfindung anhand bevorzugter Ausführungsformen unter Bezugnahme auf die Zeichungen näher erläutert, anhand welchen sich weitere Eigenschaften und Vorteile der Erfindung ergeben. Die Figuren, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination, die der Fachmann auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen wird. Dabei zeigen:

Fig. 1:
einen Meridianschnitt durch eine Freistrompumpe gemäss einer ersten Ausführungsform;
Fig. 2:
eine Frontansicht auf das Laufrad gemäss II der in Fig. 1 gezeigten Freistrompumpe;
Fig. 3:
einen Querschnitt durch das Laufrad gemäss III der in Fig. 1 gezeigten Freistrompumpe;
Fig. 4:
einen Meridianschnitt durch eine Freistrompumpe gemäss einer zweiten Ausführungsform;
Fig. 5:
eine Frontansicht auf das Laufrad gemäss V der in Fig. 4 gezeigten Freistrompumpe;
Fig. 6:
einen Querschnitt durch das Laufrad gemäss VI der in Fig. 4 gezeigten Freistrompumpe;
Fig. 7:
einen Meridianschnitt durch eine Freistrompumpe gemäss einer dritten Ausführungsform;
Fig. 8:
eine Frontansicht auf das Laufrad gemäss VIII der in Fig. 7 gezeigten Freistrompumpe; und
Fig. 9:
einen Querschnitt durch das Laufrad gemäss IX der in Fig. 7 gezeigten Freistrompumpe.
The invention is explained in more detail below with reference to preferred embodiments with reference to the drawings, on the basis of which further properties and advantages of the invention result. The figures, the description and the claims contain numerous features in combination which the skilled person will also consider individually and summarize to meaningful further combinations. Showing:
Fig. 1:
a meridian section through a free-flow pump according to a first embodiment;
Fig. 2:
a front view of the impeller according to II of in Fig. 1 shown free-flow pump;
3:
a cross section through the impeller according to III of in Fig. 1 shown free-flow pump;
4:
a meridian section through a free-flow pump according to a second embodiment;
Fig. 5:
a front view of the impeller according to V of in Fig. 4 shown free-flow pump;
Fig. 6:
a cross section through the impeller according to VI of in Fig. 4 shown free-flow pump;
Fig. 7:
a meridian section through a free-flow pump according to a third embodiment;
Fig. 8:
a front view of the impeller according to VIII of in Fig. 7 shown free-flow pump; and
Fig. 9:
a cross section through the impeller according to IX of in Fig. 7 shown free-flow pump.

Eine in Fig. 1 gezeigte Freistrompumpe 1 weist ein Pumpengehäuse 2 auf, welches eine vordere Einlassöffnung 3 und eine seitlich liegende Auslassöffnung 4 besitzt. Von dem Pumpengehäuse 2 ist eine Laufradkammer 6 umschlossen.An in Fig. 1 shown free-flow pump 1 has a pump housing 2, which has a front inlet opening 3 and a side outlet opening 4. From the pump housing 2, an impeller chamber 6 is enclosed.

In der Laufradkammer 6 ist ein Laufrad 11 in einem solchen Abstand zur Einlassöffnung 3 angeordnet, dass dadurch ein freier Durchgang 7 für in der Förderflüssigkeit enthaltene Festkörper hin zur Auslassöffnung 4 vorhanden ist. Das Laufrad 11 umfasst einen Nabenkörper 12, in welchem eine Welle 8 befestigt ist. Die Welle 8 erstreckt sich entlang der Längsachse 5 in den hinteren Teil des Pumpengehäuses 2, wo sie mit einem nicht dargestellten Antrieb verbunden ist.In the impeller chamber 6, an impeller 11 is arranged at a distance from the inlet opening 3 such that a free passage 7 for solids contained in the conveyed liquid toward the outlet opening 4 is present. The impeller 11 comprises a hub body 12 in which a shaft 8 is fixed. The shaft 8 extends along the longitudinal axis 5 in the rear part of the pump housing 2, where it is connected to a drive, not shown.

Der Nabenkörper 12 umfasst eine Frontscheibe 25, durch deren freie Oberfläche 24 der Zentralabschnitt der Stirnseite 14 des Nabenkörpers 12 gebildet ist. Die Oberfläche 24 der Frontscheibe 25 ist im Wesentlichen flach ausgebildet. Die Frontscheibe 25 weist eine zentrale Bohrung zur Aufnahme einer Schraube 9 und eine sanfte Abrundung entlang ihrem äusseren Rand auf, an welchen sich ein radial aussenliegender stirnseitiger Oberflächenabschnitt 13 des Nabenkörpers 12 anschliesst, der ebenfalls flach ist. Insgesamt ist die Stirnseite 14 des Nabenkörpers 12 also im Wesentlichen flach ausgebildet und erstreckt sich über etwas mehr als ein Drittel des Gesamtradius des Laufrads 11.The hub body 12 comprises a windshield 25, through the free surface 24 of which the central portion of the end face 14 of the hub body 12 is formed. The surface 24 of the front screen 25 is formed substantially flat. The windshield 25 has a central bore for receiving a screw 9 and a gentle rounding along its outer edge, to which a radially outer face-side surface portion 13 of the hub body 12 adjoins, which is also flat. Overall, the end face 14 of the hub body 12 is thus formed substantially flat and extends over slightly more than one third of the total radius of the impeller eleventh

Um die Stirnseite 14 des Nabenkörpers 12 herum grenzt stufenförmig abrupt die Aussenwandung 15 des Nabenkörpers 12 an. Der angrenzende Oberflächenbereich 15 verläuft über die Hälfte der Laufradtiefe im Wesentlichen parallel zur Längsachse 5 des Pumpengehäuses 2 und mündet dann in einen konkav gekrümmten Bereich 16.The outer wall 15 of the hub body 12 adjoins the end face 14 of the hub body 12 in a stepwise abrupt manner. The adjoining surface region 15 extends over half of the impeller depth substantially parallel to the longitudinal axis 5 of the pump housing 2 and then opens into a concavely curved region 16.

Der konkav gekrümmte Oberflächenbereich 16 des Nabenkörpers 12 erstreckt sich ungefähr über das mittlere Drittel des Radius des Laufrads 11 und erreicht dann seine Maximaltiefe in Bezug auf die Stirnseite 14 des Nabenkörpers 12. Von dort mündet der konkav gekrümmte Bereich 16 in einen flachen Oberflächenbereich 17, der im Wesentlichen senkrecht zur Längsachse 5 des Pumpengehäuses 2 verläuft. Dieser flache Bereich 17 erstreckt sich über das gesamte äussere Drittel des Radius des Laufrads 11 und mündet in dessen Aussenumfang.The concave curved surface portion 16 of the hub body 12 extends approximately over the middle third of the radius of the impeller 11 and then reaches its maximum depth with respect to the end face 14 of the hub body 12. From there opens the concave curved portion 16 in a flat surface portion 17, which is substantially perpendicular to the longitudinal axis 5 of the pump housing 2. This flat region 17 extends over the entire outer third of the radius of the impeller 11 and opens into its outer periphery.

Die durch die Oberflächenbereiche 15-17 gebildete Tellerfläche 18 ist mit Schaufeln 19 bestückt. Die Schaufeln 19 erstrecken sich jeweils ausgehend von ihrem inneren Ende an dem zur Längsachse 5 im Wesentlichen parallelen Bereich 15 des Nabenkörpers 12 bis zum Aussenumfang des Laufrads 11. Dabei weisen die Schaufeln 19 einen im Wesentlichen konstanten Höhenverlauf auf. Die Höhe der Schaufeln 19 ist dabei geringfügig kleiner als die Höhendifferenz H zwischen dem flachen Oberflächenbereich 17 und dem Anschlussbereich von Stirnseite 14 und Aussenwandung 15 des Nabenkörpers 12.The plate surface 18 formed by the surface regions 15-17 is equipped with blades 19. The blades 19 each extend, starting from their inner end, on the region 15 of the hub body 12 which is substantially parallel to the longitudinal axis 5, as far as the outer circumference of the rotor 11. The blades 19 have a substantially constant height profile. The height of the blades 19 is slightly smaller than the height difference H between the flat surface region 17 and the connection region of the end face 14 and outer wall 15 of the hub body 12.

Die Fig. 2 zeigt eine Draufsicht auf die Stirnseite 14 des Nabenkörpers 12 und die darum liegende Tellerfläche 18, durch welche der Laufradboden des Laufrads 11 gebildet ist. Um den Umfang der Tellerfläche 18 herum sind in gleichmässigem Abstand zwölf Schaufeln 19 angeordnet. Die offenen Schaufelstirnseiten 20 der Schaufeln 19 grenzen an den Anschlussbereich zwischen der Stirnseite 14 des Nabenkörpers 12 und der Tellerfläche 18 an. Von dort verlaufen die Schaufelstirnseiten 20 gekrümmt bis zum Aussenumfang des Laufrads 11, wobei ihre Dicke konstant bleibt. Die Krümmungsrichtung der Schaufeln 19 verläuft entgegen der Rotationsrichtung R des Laufrads 1.The Fig. 2 shows a plan view of the end face 14 of the hub body 12 and the surrounding plate surface 18, through which the impeller bottom of the impeller 11 is formed. Around the circumference of the plate surface 18 around twelve blades 19 are arranged at a uniform distance. The open blade end faces 20 of the blades 19 adjoin the connection area between the end face 14 of the hub body 12 and the plate surface 18. From there, the blade end faces 20 are curved to the outer circumference of the impeller 11, wherein their thickness remains constant. The direction of curvature of the blades 19 runs counter to the direction of rotation R of the impeller 1.

Die Fig. 3 zeigt eine Querschnittsansicht durch das Laufrad 11 gemäss Schnitt III in Fig. 1. Dies entspricht einemThe Fig. 3 shows a cross-sectional view through the impeller 11 according to section III in Fig. 1 , This corresponds to one

Schnitt durch das Laufrad 11 entlang der Hälfte des Höhenunterschieds H zwischen dem inneren Ende der Schaufelstirnseiten 20 und der Maximaltiefe der Tellerfläche 18, gemessen an ihrem Abstand von dem einlassseitig nächstliegenden Oberflächenabschnitt des inneren Endes der Schaufelstirnseiten 20. Wie aus Fig. 3 hervorgeht, liegt die Tellerfläche 18 in diesem Tiefenbereich des Laufrads 11 auf gleicher Höhe mit dem Oberflächenabschnitt 15 des Nabenkörpers 12, der im mittleren radialen Drittel des Laufrads 11 liegt.Section through the impeller 11 along half the height difference H between the inner end of the blade end faces 20 and the maximum depth of the disc surface 18, measured at their distance from the inlet side closest surface portion of the inner end of the blade end faces 20. As out Fig. 3 shows, the plate surface 18 is in this depth range of the impeller 11 at the same height with the surface portion 15 of the hub body 12, which lies in the middle radial third of the impeller 11.

Durch die voranstehend beschriebene Freistrompumpe 1 ist ein Fördern von Flüssigkeiten, die beispielsweise mit Tüchern oder Lumpen verunreinigt sind, ohne Verstopfungen der Laufradkammer 6 möglich. Die Neigung flächiger Materialien, sich auf der Vorderseite des Laufrads 11 festzusetzen, kann durch die beschriebene Geometrie des Laufrads 11 wirkungsvoll vermieden werden.By the above-described free-flow pump 1 is a pumping liquids that are contaminated with cloths or rags, for example, without blockages of the impeller chamber 6 is possible. The tendency of flat materials to settle on the front of the impeller 11 can be effectively avoided by the described geometry of the impeller 11.

In Fig. 4 ist eine Freistrompumpe 21 gemäss einer zweiten Ausführungsform dargestellt. Im Hinblick auf die in Fig. 1 gezeigte Freistrompumpe 1 identisch ausgebildete Bauteile sind mit dem gleichen Bezugszeichen versehen. Der wesentliche Unterschied von Freistrompumpe 21 zu der voranstehend beschriebenen Freistrompumpe 1 besteht in einer anderen Geometrie ihres Laufrads 22. Auch durch diese Laufradgeometrie können einerseits Verstopfungen der Laufradkammer 6 durch flächige Materialen vermieden werden und andererseits können Einbussen im Wirkungsgrad der Freistrompumpe 21 für viele Anwendungen ausreichend gering gehalten werden. Insbesondere handelt es sich dabei um folgende baulichen Massnahmen:In Fig. 4 is a free-flow pump 21 is shown according to a second embodiment. With regard to in Fig. 1 shown free-flow pump 1 identically formed components are provided with the same reference numerals. The essential difference between the free-flow pump 21 and the above-described free-flow pump 1 is another geometry of its impeller 22. Clogging of the impeller chamber 6 by laminar materials can also be avoided by this impeller geometry and losses in the efficiency of the free-flow pump 21 can be sufficiently low for many applications being held. In particular, these are the following structural measures:

Das Laufrad 22 umfasst einen Nabenkörper 23, dessen Stirnseite 24 sich über ungefähr ein Drittel des Radius des Laufrads 22 erstreckt. Die Stirnseite 24 des Nabenkörpers 23 ist im Wesentlichen vollständig durch die freie Oberfläche der vorderen Frontscheibe 25 gebildet, die einen kontinuierlichen Übergang in eine aussen herum liegende konvexe Krümmung 26 an der Aussenwandung des Nabenkörpers 23 aufweist. Die freie Oberfläche der Frontscheibe 25 besteht aus dem mittleren flachen Oberflächenabschnitt mit der Zentralbohrung zur Aufnahme der Schraube 9, und der sanft abgerundeten äusseren Verjüngung, an welche die konvexe Krümmung 26 an der Aussenwandung des Nabenkörpers 23 anschliesst. Der mittlere flache Oberflächenabschnitt erstreckt sich dabei über mehr als zwei Drittel des Radius der Frontscheibe 25.The impeller 22 comprises a hub body 23, whose end face 24 extends over approximately one third of the radius of the impeller 22. The end face 24 of the hub body 23 is substantially completely formed by the free surface of the front windshield 25, which has a continuous transition to an outwardly lying convex curvature 26 on the outer wall of the hub body 23. The free surface of the windshield 25 consists of the central flat surface portion with the central bore for receiving the screw 9, and the gently rounded outer taper, to which the convex curvature 26 connects to the outer wall of the hub body 23. The middle flat surface portion extends over more than two-thirds of the radius of the windshield 25th

Die um die Stirnseite 24 des Nabenkörpers 23 aussenherum liegende Tellerfläche 28 erstreckt sich über die äusseren zwei Drittel des Radius des Laufrads 22. Die Tellerfläche 28 besteht aus dem konvex gekrümmten Oberflächenabschnitt 26 und einen daran anschliessenden konkav gekrümmten Oberflächenabschnitt 27, welche sich entlang der Aussenwandung des Nabenkörpers 23 erstrecken. Der konvex gekrümmte Oberflächenabschnitt 26 entspricht dabei nur ungefähr einem Siebtel des Radius der Tellerfläche 28.The around the front side 24 of the hub body 23 outwardly lying plate surface 28 extends beyond the outer two thirds of the radius of the impeller 22. The plate surface 28 consists of the convex curved surface portion 26 and an adjoining concavely curved surface portion 27, which along the outer wall of the Hub body 23 extend. The convexly curved surface portion 26 corresponds to only about one seventh of the radius of the plate surface 28th

Die Tellerfläche 28 ist mit Schaufeln 29 bestückt, deren offene Schaufelstirnseiten 30 an ihrem inneren Ende an die Stirnseite 24 des Nabenkörpers 23 im Bereich von dessen konvex gekrümmtem Anschlussbereich 26 an die Tellerfläche 28 angrenzen. Die Schaufeln 29 erstrecken sich von dort bis zum Aussenumfang des Laufrads 22. Dabei weisen die Schaufeln 19 einen konstanten Höhenverlauf auf, wobei ihre Höhe im Wesentlichen der Höhendifferenz H des konkav gekrümmten Oberflächenabschnitts 27 am Aussenumfang des Laufrads von dem konvex gekrümmtem Anschlussbereich 26 an die Tellerfläche 28 entspricht.The plate surface 28 is equipped with blades 29 whose open blade end faces 30 adjoin the end surface 24 of the hub body 23 at its inner end in the region of its convexly curved connection region 26 to the plate surface 28. The blades 29 extend from there to the outer periphery of the impeller 22. In this case, the blades 19 have a constant height profile, with their height in the Substantially corresponds to the height difference H of the concave curved surface portion 27 on the outer circumference of the impeller of the convexly curved terminal portion 26 to the plate surface 28.

Die Maximaltiefe der Tellerfläche 28 ergibt sich durch ihren maximalen Höhenunterschied H von dem einlassseitig nächstliegenden Oberflächenabschnitt der inneren Enden der Schaufelstirnseiten 30. Die Tellerfläche 28 nimmt somit ihre Maximaltiefe nur entlang ihres Aussenumfangs ein, wo der konkav gekrümmte Oberflächenabschnitt 27 in den Aussenumfang des Laufrads 22 mündet.The maximum depth of the plate surface 28 results from its maximum height difference H from the inlet side closest surface portion of the inner ends of the blade end faces 30. The plate surface 28 thus assumes its maximum depth only along its outer circumference, where the concave curved surface portion 27 opens into the outer periphery of the impeller 22 ,

Somit besteht der Laufradboden des Laufrads 22, welcher insgesamt durch die Stirnseite 24 des Nabenkörpers 23 und die darum liegende Tellerfläche 28 gebildet ist, in seinem inneren radialen Drittel nur aus der Stirnseite 24 des Nabenkörpers 23. Die Höhenänderung des Laufradbodens in diesem Bereich entspricht also im Wesentlichen dem Höhenverlauf der Frontscheibe 25, welche im Vergleich zur Höhendifferenz H nur eine geringe Höhenänderung an ihrem äusseren Randbereich aufweist.Thus, the impeller bottom of the impeller 22, which is formed entirely by the end face 24 of the hub body 23 and the disc surface lying around 28, in its inner radial third only from the front side 24 of the hub body 23. The change in height of the impeller floor in this area thus corresponds to Essentially the height profile of the windshield 25, which in comparison to the height difference H has only a small change in height at its outer edge region.

Die Fig. 5 zeigt eine Draufsicht auf die Stirnseite 24 des Nabenkörpers 23 und die darum liegende Tellerfläche 28, durch welche der Laufradboden gebildet ist. Um den Umfang der Tellerfläche 28 herum sind in gleichmässigem Abstand zwölf Schaufeln 29 angeordnet. Die Schaufeln 29 verlaufen ausgehend vom Anschlussbereich zwischen der Stirnseite 24 des Nabenkörpers 23 und der Tellerfläche 28 bis zum Aussenumfang des Laufrads 22. Die Schaufelstirnseiten 30 der Schaufeln 29 weisen dabei eine gebogene Verlaufsform auf. Die Fig. 6 zeigt eine Querschnittsansicht durch das Laufrad 22 gemäss Schnitt VI in Fig. 4. Dies entspricht einem Schnitt durch das Laufrad 22 entlang der Hälfte des Höhenunterschieds H zwischen dem inneren Ende der Schaufelstirnseiten 20 und der Maximaltiefe der Tellerfläche 28 bezüglich dem inneren Ende der Schaufelstirnseiten 20. Wie aus Fig. 6 hervorgeht, liegt die Tellerfläche 28 in diesem Tiefenbereich auf der Hälfte des Radius des Laufrads 22 innerhalb ihres konkav gekrümmten Oberflächenabschnitts 27.The Fig. 5 shows a plan view of the end face 24 of the hub body 23 and the surrounding plate surface 28, through which the impeller bottom is formed. Around the circumference of the plate surface 28 around twelve blades 29 are arranged at a uniform distance. The blades 29 extend from the connection region between the end face 24 of the hub body 23 and the plate surface 28 to the outer periphery of the impeller 22. The blade end faces 30 of the blades 29 have a curved shape. The Fig. 6 shows a cross-sectional view through the impeller 22 according to section VI in Fig. 4 , This corresponds to a section through the impeller 22 along half the height difference H between the inner end of the blade end faces 20 and the maximum depth of the disc surface 28 with respect to the inner end of the blade end faces 20. As shown in FIG Fig. 6 As can be seen, the plate surface 28 is in this depth range to half the radius of the impeller 22 within its concave curved surface portion 27th

In Fig. 7 ist eine Freistrompumpe 32 gemäss einer dritten Ausführungsform dargestellt. Im Hinblick auf die in Fig. 1 und Fig. 4 gezeigten Freistrompumpen 1, 21 identisch ausgebildete Bauteile sind mit dem gleichen Bezugszeichen versehen. Die Freistrompumpe 21 entspricht im Wesentlichen der voranstehend beschriebenen Freistrompumpe 21 mit dem Unterschied, dass die Schaufelgeometrie des Laufrads 22 verändert ist, um den Pumpenwirkungsgrad zu verbessern.In Fig. 7 is a free-flow pump 32 is shown according to a third embodiment. With regard to in Fig. 1 and Fig. 4 shown free-stream pumps 1, 21 identically formed components are provided with the same reference numerals. The free-flow pump 21 essentially corresponds to the above-described free-flow pump 21 with the difference that the blade geometry of the impeller 22 is changed in order to improve the pump efficiency.

Das Laufrad 33 der Freistrompumpe 32 umfasst neben den höhenkonstanten Schaufeln 29 noch höhenvariable Schaufeln 34. Die offenen Schaufelstirnseiten 35 der höhenvariablen Schaufeln 34 grenzen an ihrem inneren Ende ebenfalls an die Stirnseite 24 des Nabenkörpers 23 im Bereich von dessen konvex gekrümmtem Anschlussbereich 26 an die Tellerfläche 28 an. Die Schaufeln 34 erstrecken sich von dort bis zum Aussenumfang des Laufrads 33, wobei ihre Höhe kontinuierlich zunimmt. Die maximale Höhenzunahme 36 der Schaufeln 34 befindet sich im äusseren Drittel des Radius des Laufrads 33. Von dort zum Aussenumfang des Laufrads 33 hin verläuft die Höhenzunahme der Schaufeln 34 in zunehmend geringerem Masse, bis ihre Höhe über das äussere Zehntel des Radius des Laufrads 33 hinweg im Wesentlichen konstant bleibt.The impeller 33 of the free-flow pump 32 also comprises height-variable blades 34. The open blade end faces 35 of the vertically variable blades 34 also adjoin the end face 24 of the hub body 23 in the area of its convexly curved connection region 26 at the inner surface at. The blades 34 extend from there to the outer periphery of the impeller 33, wherein its height increases continuously. The maximum height increase 36 of the blades 34 is located in the outer third of the radius of the impeller 33. From there to the outer periphery of the impeller 33, the height increase of the blades 34 is progressively smaller Mass until its height remains substantially constant over the outer tenth of the radius of the impeller 33 away.

Somit bleibt die Höhe der Schaufeln 34 über die innere Radialhälfte des Laufradbodens im Wesentlichen konstant. Über die äussere Radialhälfte des Laufradbodens hinweg erfolgt dann ein rapider Höhenzuwachs, bei welchem die Höhe der Schaufeln 34 um ungefähr ein Viertel der Maximaltiefe der Tellerfläche 28 bezüglich der Stirnseite 24 des Nabenkörpers 25 zunimmt. Dadurch wird eine Erhöhung der Förderhöhe und des Pumpenwirkungsgrads erreicht, ohne nachteilige Verstopfungseigenschaften durch in der Förderflüssigkeit vorhandene flächige Materialen in Kauf nehmen zu müssen.Thus, the height of the blades 34 remains substantially constant over the inner radial half of the impeller floor. Then over the outer radial half of the Laufradbodens away takes place a rapid increase in height, in which the height of the blades 34 increases by approximately one quarter of the maximum depth of the plate surface 28 with respect to the end face 24 of the hub body 25. As a result, an increase in the delivery head and the pump efficiency is achieved without having to accept disadvantageous clogging properties due to existing in the pumped liquid sheet materials.

Die Fig. 8 zeigt eine Draufsicht auf das Laufrad 33. Um den Umfang der Tellerfläche 28 herum sind in gleichmässigem Abstand drei höhenvariable Schaufeln 34 und jeweils dazwischenliegend drei höhenkonstante Schaufeln 29 angeordnet. Die freien Schaufelstirnseiten 35 der höhenvariablen Schaufeln 34 weisen im Wesentlichen die gleichen Formeigenschaften wie die Schaufelstirnseiten 30 der höhenkonstanten Schaufeln 29 auf, insbesondere hinsichtlich ihres relativen Abstands zu benachbarten Schaufeln 29 und ihrer gebogenen Form.The Fig. 8 shows a plan view of the impeller 33. Around the circumference of the plate surface 28 around three vertically variable blades 34 and each intervening three height-constant blades 29 are arranged at a uniform distance. The free blade end faces 35 of the height-adjustable blades 34 have substantially the same shape characteristics as the blade end faces 30 of the constant-height blades 29, in particular with respect to their relative spacing to adjacent blades 29 and their curved shape.

Die dazwischenliegende Anordnung von den höhenkonstanten Schaufeln 29 verfolgt dabei den Zweck, den freien Durchgang 7 zum Passieren grösserer Feststoffe in der Förderflüssigkeit während einer Laufradumdrehung temporär freizuhalten.The intervening arrangement of the height-constant blades 29 pursues the purpose of temporarily freeing the free passage 7 for passing larger solids in the fluid during a impeller rotation.

Die Fig. 9 zeigt eine Querschnittsansicht durch das Laufrad 33 gemäss Schnitt IX in Fig. 7. Dies entspricht einem Schnitt durch das Laufrad 33 entlang der Hälfte des Höhenunterschieds H zwischen dem inneren Ende der Schaufelstirnseiten 30, 35 und der Maximaltiefe der Tellerfläche 28. Wie aus einem Vergleich von Fig. 6 und Fig. 9 hervorgeht, ist dieser Schnitt identisch zu dem äquivalenten Querschnitt VI durch das Laufrad 22 der Freistrompumpe 21, die in Fig. 4 gezeigt ist.The Fig. 9 shows a cross-sectional view through the impeller 33 according to section IX in Fig. 7 , This corresponds to a section through the impeller 33 along half the height difference H between the inner end of the blade end faces 30, 35 and the maximum depth of the disc surface 28. As is apparent from a comparison of Fig. 6 and Fig. 9 is apparent, this section is identical to the equivalent cross-section VI by the impeller 22 of the free-flow pump 21, which in Fig. 4 is shown.

Aus der vorangehenden Beschreibung sind dem Fachmann zahlreiche Abwandlungen der erfindungsgemässen Freistrompumpe zugänglich, ohne den Schutzbereich der Erfindung zu verlassen, der alleine durch die Patentansprüche definiert ist.From the foregoing description, numerous modifications of the inventive free-flow pump are accessible to the person skilled in the art without departing from the scope of the invention, which is defined solely by the claims.

Claims (10)

Freistrompumpe mit einem Laufrad (11, 22, 33), das von einem Einlauf (3) derart beabstandet ist, dass ein freier Durchgang (7) für in der Förderflüssigkeit enthaltene Festkörper zwischen dem Einlauf (3) und dem Laufradaustritt vorhanden ist, und dessen Laufradboden durch die Stirnseite (14, 24) eines im Zentrum des Laufrads (11, 22, 33) auskragenden Nabenkörpers (12, 23) und eine tiefer liegende Tellerfläche (18, 28) gebildet ist, die mit ihrer Maximaltiefe in den Aussenumfang des Laufrads (11, 22, 33) mündet und mit Schaufeln (19, 29, 34) bestückt ist, deren offene Schaufelstirnseiten (20, 30, 35) an ihrem inneren Ende an den Nabenkörper (12, 23) angrenzen und sich von dort bis zum Aussenumfang des Laufrads (11, 22, 33) erstrecken, dadurch gekennzeichnet, dass der Laufradboden zumindest im Bereich des inneren Drittels seines Radius in Bezug auf das innere Ende der Schaufelstirnseiten (20, 30, 35) um nicht mehr als ein Sechstel tiefer liegt als der Höhenunterschied (H) zwischen dem inneren Ende der Schaufelstirnseiten (20, 30, 35) und der Maximaltiefe der Tellerfläche (18, 28).Free-flow pump with an impeller (11, 22, 33) which is spaced from an inlet (3) such that a free passage (7) for solids contained in the pumped liquid between the inlet (3) and the impeller outlet is present, and Impeller bottom through the end face (14, 24) in the center of the impeller (11, 22, 33) projecting hub body (12, 23) and a lower disc surface (18, 28) is formed, with its maximum depth in the outer periphery of the impeller (11, 22, 33) and with blades (19, 29, 34) is fitted, the open blade end faces (20, 30, 35) at its inner end to the hub body (12, 23) adjacent and from there to the Extending outer circumference of the impeller (11, 22, 33), characterized in that the impeller bottom, at least in the region of the inner third of its radius with respect to the inner end of the blade end faces (20, 30, 35) is not more than one-sixth lower than the height difference (H) between the inner end of the blade end faces (20, 30, 35) and the maximum depth of the plate surface (18, 28). Freistrompumpe nach Anspruch 1, dadurch gekennzeichnet, dass der Laufradboden zumindest im Bereich der inneren Hälfte seines Radius in Bezug auf das innere Ende der Schaufelstirnseiten (20, 30, 35) um nicht mehr als zwei Drittel, vorzugsweise um nicht mehr als die Hälfte, tiefer liegt als der Höhenunterschied (H) zwischen dem inneren Ende der Schaufelstirnseiten (20, 30, 35) und der Maximaltiefe der Tellerfläche (18, 28).Free-flow pump according to claim 1, characterized in that the impeller bottom at least in the region of the inner half of its radius with respect to the inner end of the blade end faces (20, 30, 35) by not more than two-thirds, preferably by not more than half, deeper is located as the height difference (H) between the inner end of the blade end faces (20, 30, 35) and the maximum depth of the plate surface (18, 28). Freistrompumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Tellerfläche (18, 28) in Richtung des Aussenumfangs des Laufrads (11, 22, 33) einen kontinuierlich abfallenden Flächenabschnitt (15, 16, 26, 27) aufweist, der sich über mindestens ein Drittel, vorzugsweise über mindestens die Hälfte, des Radius des Laufrads (11, 22, 33) erstreckt.Free-flow pump according to claim 1 or 2, characterized in that the plate surface (18, 28) in the direction the outer circumference of the impeller (11, 22, 33) has a continuously sloping surface portion (15, 16, 26, 27) extending over at least a third, preferably at least half, of the radius of the impeller (11, 22, 33) extends. Freistrompumpe nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Tellerfläche (18, 28) entlang eines konvex gekrümmten Flächenabschnitts (26) an die Stirnseite (14, 24) des Nabenkörpers (12, 23) im Wesentlichen stetig anschliesst.Free-flow pump according to one of claims 1 to 3, characterized in that the plate surface (18, 28) along a convex curved surface portion (26) to the end face (14, 24) of the hub body (12, 23) connects substantially steadily. Freistrompumpe nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Schaufelstirnseiten (20, 30, 35) im Wesentlichen im Bereich der Stirnseite (14, 24) des Nabenkörpers (12, 23) an diesen angrenzen.Free-flow pump according to one of claims 1 to 4, characterized in that the blade end faces (20, 30, 35) substantially in the region of the end face (14, 24) of the hub body (12, 23) adjoin the latter. Freistrompumpe nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Höhe zumindest zweier Schaufeln (19, 29, 34) zum Aussenumfang des Laufrads (11, 22, 33) hin zunimmt.Free-flow pump according to one of claims 1 to 5, characterized in that the height of at least two blades (19, 29, 34) increases towards the outer periphery of the impeller (11, 22, 33). Freistrompumpe nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Schaufelstirnseiten (20, 30, 35) eine gebogene Verlaufsform aufweisen.Free-flow pump according to one of claims 1 to 6, characterized in that the blade end faces (20, 30, 35) have a curved shape. Freistrompumpe nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Stirnseite (14, 24) des Nabenkörpers (12, 23) im Wesentlichen flach ausgebildet ist.Free-flow pump according to one of claims 1 to 7, characterized in that the end face (14, 24) of the hub body (12, 23) is formed substantially flat. Freistrompumpe nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Höhendifferenz der Tellerfläche (18, 28) im mittleren Radialdrittel des Laufrads (11, 22, 33) mehr als die Hälfte des Höhenunterschieds (H) zwischen dem inneren Ende der Schaufelstirnseiten (20, 30, 35) und der Maximaltiefe der Tellerfläche (18, 28) beträgt.Free-flow pump according to one of claims 1 to 8, characterized in that the height difference of the plate surface (18, 28) in the middle radial third of the impeller (11, 22, 33) is more than half the height difference (H) between the inner end of the blade end faces (20, 30, 35) and the maximum depth of the plate surface (18, 28). Freistrompumpe nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Tellerfläche (18, 28) im mittleren Radialdrittel des Laufrads (11, 22, 33) einen im Wesentlichen stufenförmigen Höhenabfall aufweist.Free-flow pump according to one of claims 1 to 9, characterized in that the plate surface (18, 28) in the middle radial third of the impeller (11, 22, 33) has a substantially stepped height drop.
EP11157262A 2011-03-08 2011-03-08 Free flow pump Withdrawn EP2497956A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EP11157262A EP2497956A1 (en) 2011-03-08 2011-03-08 Free flow pump
JP2013557040A JP5993383B2 (en) 2011-03-08 2012-02-27 Free flow pump
US14/003,274 US9605678B2 (en) 2011-03-08 2012-02-27 Free-flow pump
BR112013022590-4A BR112013022590B1 (en) 2011-03-08 2012-02-27 free flow pump
CA2828911A CA2828911C (en) 2011-03-08 2012-02-27 Free-flow pump
PCT/EP2012/053261 WO2012119877A2 (en) 2011-03-08 2012-02-27 Free-flow pump
MX2013009982A MX2013009982A (en) 2011-03-08 2012-02-27 Free-flow pump.
CN201280011965.XA CN103477083B (en) 2011-03-08 2012-02-27 Self-flow pump
ES12705877.4T ES2557563T3 (en) 2011-03-08 2012-02-27 Free flow pump
DK12705877.4T DK2683945T3 (en) 2011-03-08 2012-02-27 Fristrømspumpe
EP12705877.4A EP2683945B1 (en) 2011-03-08 2012-02-27 Free-flow pump
PL12705877T PL2683945T3 (en) 2011-03-08 2012-02-27 Free-flow pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11157262A EP2497956A1 (en) 2011-03-08 2011-03-08 Free flow pump

Publications (1)

Publication Number Publication Date
EP2497956A1 true EP2497956A1 (en) 2012-09-12

Family

ID=44303228

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11157262A Withdrawn EP2497956A1 (en) 2011-03-08 2011-03-08 Free flow pump
EP12705877.4A Revoked EP2683945B1 (en) 2011-03-08 2012-02-27 Free-flow pump

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP12705877.4A Revoked EP2683945B1 (en) 2011-03-08 2012-02-27 Free-flow pump

Country Status (11)

Country Link
US (1) US9605678B2 (en)
EP (2) EP2497956A1 (en)
JP (1) JP5993383B2 (en)
CN (1) CN103477083B (en)
BR (1) BR112013022590B1 (en)
CA (1) CA2828911C (en)
DK (1) DK2683945T3 (en)
ES (1) ES2557563T3 (en)
MX (1) MX2013009982A (en)
PL (1) PL2683945T3 (en)
WO (1) WO2012119877A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016016375A1 (en) 2014-07-30 2016-02-04 Basf Se Method for producing free-flowing and storage-stable dicarboxylic acid crystals

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013082717A1 (en) 2011-12-06 2013-06-13 Bachellier Carl Roy Improved impeller apparatus and dispersion method
EA031306B1 (en) * 2013-03-28 2018-12-28 Веир Минералз Австралия Лтд Slurry pump impeller
US9863423B2 (en) 2014-04-14 2018-01-09 Enevor Inc. Conical impeller and applications thereof
US10584713B2 (en) 2018-01-05 2020-03-10 Spectrum Brands, Inc. Impeller assembly for use in an aquarium filter pump and methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1930566A1 (en) * 1968-06-25 1970-02-05 Wissenschaftlich Tech Zentrum Vortex pump
EP0081456A1 (en) 1981-12-08 1983-06-15 EMILE EGGER & CIE SA Free vortex pump
GB2136509A (en) * 1983-03-10 1984-09-19 Ebara Corp Vortex pump
EP0649987A1 (en) * 1993-10-22 1995-04-26 Itt Flygt Ab A pump housing for a rotary pump
WO2004065797A1 (en) * 2003-01-17 2004-08-05 Ksb Aktiengesellschaft Non-chokable pump
WO2004065796A1 (en) * 2003-01-17 2004-08-05 Ksb Aktiengesellschaft Non-chokable pump

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT122689B (en) 1929-03-21 1931-05-11 Carl Vilsmeier Single or multi-stage centrifugal pump.
CH277438A (en) 1949-09-28 1951-08-31 Guebeli Vincent Centrifugal pump.
DE1046502B (en) 1955-02-15 1958-12-11 Roger Bert Centrifugal pump, especially for washing machines
US3167021A (en) * 1963-04-15 1965-01-26 Allis Chalmers Mfg Co Nonclogging centrifugal pump
JPS5133362Y2 (en) * 1972-04-12 1976-08-19
SE374415B (en) 1974-04-09 1975-03-03 Stenberg Flygt Ab
JPS5569184U (en) 1978-11-06 1980-05-13
CA1189632A (en) * 1981-10-22 1985-06-25 Robert Furrer Apparatus for applying solder to a printed-circuit board
DE3147513A1 (en) 1981-12-01 1983-06-09 Klein, Schanzlin & Becker Ag, 6710 Frankenthal RADIAL IMPELLER FOR CENTRIFUGAL PUMPS
JPS58160590A (en) 1982-03-17 1983-09-24 Fuji Electric Co Ltd Vortex flow pump
DE3544569A1 (en) 1985-12-17 1987-06-19 Klein Schanzlin & Becker Ag Reducing the outer diameter of centrifugal-pump impellers
US5460482A (en) * 1992-05-26 1995-10-24 Vaughan Co., Inc. Centrifugal chopper pump with internal cutter
US5520506A (en) 1994-07-25 1996-05-28 Ingersoll-Rand Company Pulp slurry-handling, centrifugal pump
JP3352922B2 (en) 1997-09-22 2002-12-03 株式会社荏原製作所 Vortex pump
JP2000240584A (en) 1999-02-18 2000-09-05 Ebara Corp Vortex pump
JP2001024591A (en) 1999-07-07 2001-01-26 Sanyo Electric Co Ltd Optical communication device
JP2001193682A (en) 2000-01-06 2001-07-17 Ebara Corp Voltex pump
JP2001248591A (en) * 2000-03-03 2001-09-14 Tsurumi Mfg Co Ltd Impeller for submerged pump
CN101021215A (en) * 2007-03-16 2007-08-22 上海凯泉泵业(集团)有限公司 Round-disc through-hole ultra low ratio rotary speed centrifugal pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1930566A1 (en) * 1968-06-25 1970-02-05 Wissenschaftlich Tech Zentrum Vortex pump
EP0081456A1 (en) 1981-12-08 1983-06-15 EMILE EGGER & CIE SA Free vortex pump
GB2136509A (en) * 1983-03-10 1984-09-19 Ebara Corp Vortex pump
EP0649987A1 (en) * 1993-10-22 1995-04-26 Itt Flygt Ab A pump housing for a rotary pump
WO2004065797A1 (en) * 2003-01-17 2004-08-05 Ksb Aktiengesellschaft Non-chokable pump
WO2004065796A1 (en) * 2003-01-17 2004-08-05 Ksb Aktiengesellschaft Non-chokable pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016016375A1 (en) 2014-07-30 2016-02-04 Basf Se Method for producing free-flowing and storage-stable dicarboxylic acid crystals

Also Published As

Publication number Publication date
JP2014507600A (en) 2014-03-27
BR112013022590A2 (en) 2016-12-06
EP2683945B1 (en) 2015-10-21
JP5993383B2 (en) 2016-09-14
PL2683945T3 (en) 2016-06-30
WO2012119877A2 (en) 2012-09-13
EP2683945A2 (en) 2014-01-15
CA2828911C (en) 2019-09-24
US9605678B2 (en) 2017-03-28
BR112013022590B1 (en) 2021-02-09
MX2013009982A (en) 2014-01-24
CN103477083A (en) 2013-12-25
US20140003929A1 (en) 2014-01-02
ES2557563T3 (en) 2016-01-27
WO2012119877A3 (en) 2013-05-23
CN103477083B (en) 2016-04-27
CA2828911A1 (en) 2012-09-13
DK2683945T3 (en) 2016-01-25

Similar Documents

Publication Publication Date Title
EP2929191B1 (en) Centrifugal pump in particular for waste water or polluted water
DE2854656C2 (en) Centrifugal pump with one impeller and two upstream axial impellers
EP1797327B1 (en) Rotary piston pump comprising a pump housing and two double-bladed rotary pistons
EP3171970A1 (en) Stirring device
EP2497956A1 (en) Free flow pump
EP3779201B1 (en) Scraper element for the leading edges of impellers of waste water pumps
EP2888484B1 (en) Pump for transporting waste water and wheel and floor panel for same
DE4428633C2 (en) Peripheral pump for supplying fuel to a vehicle engine
DE112004001198T5 (en) Impeller blade assembly for a centrifugal pump
EP3478389B1 (en) Backwash filter
EP1213517B1 (en) Mechanical seal for fluid-flow machines
DE4208202A1 (en) CENTRIFUGAL PUMP
DE102011078017B3 (en) pump
DE102008057849A1 (en) Cutting device for e.g. sewage pump, has cutting body coaxially surrounded by fixed cutting ring, where annular gap between cutting body and ring decreases in its width from inlet aperture to rotor in opening region close to pump inlet
EP2616640B1 (en) Rotary piston pump and rotary piston
EP3388671A1 (en) Impeller pump
WO2007098800A1 (en) Water pump
EP1276992A1 (en) Gear-wheel pump, in particular for a high-pressure fuel pump
CH717512A1 (en) Impeller for a centrifugal pump.
EP3559475A1 (en) Vortex pump
DE102012023731B4 (en) Centrifugal pump especially for waste water or dirty water
DE10249244B4 (en) Impeller for a side channel machine
DE60211797T2 (en) pump impeller
DE102008021767A1 (en) Centrifugal pump with crushing device
EP4305317A1 (en) Centrifugal pump having inlet fins

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130313