EP2494270B1 - Lampe à led comportant un corps de refroidissement - Google Patents

Lampe à led comportant un corps de refroidissement Download PDF

Info

Publication number
EP2494270B1
EP2494270B1 EP10771039.4A EP10771039A EP2494270B1 EP 2494270 B1 EP2494270 B1 EP 2494270B1 EP 10771039 A EP10771039 A EP 10771039A EP 2494270 B1 EP2494270 B1 EP 2494270B1
Authority
EP
European Patent Office
Prior art keywords
channels
led lamp
ring structure
axis
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10771039.4A
Other languages
German (de)
English (en)
Other versions
EP2494270A1 (fr
Inventor
Istvan Bakk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tridonic Jennersdorf GmbH
Original Assignee
Tridonic Jennersdorf GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tridonic Jennersdorf GmbH filed Critical Tridonic Jennersdorf GmbH
Publication of EP2494270A1 publication Critical patent/EP2494270A1/fr
Application granted granted Critical
Publication of EP2494270B1 publication Critical patent/EP2494270B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/83Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks the elements having apertures, ducts or channels, e.g. heat radiation holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/77Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical diverging planar fins or blades, e.g. with fan-like or star-like cross-section
    • F21V29/773Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical diverging planar fins or blades, e.g. with fan-like or star-like cross-section the planes containing the fins or blades having the direction of the light emitting axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to an LED lamp (LED: light-emitting diode), which comprises a luminous means with at least one LED and a heat sink.
  • LED light-emitting diode
  • heat is generally generated, by the LED or the LEDs themselves, but also by the supply circuit ("driver circuit") for the LED (s). This heat is at least partially transmitted from the said components to surrounding components or to the surrounding air.
  • the supply circuit for the LED (s).
  • the heat it is desirable for the heat to be effectively and efficiently transported away from the named components (supply circuit, LED chip) so that the temperature of the LED does not rise above a certain level.
  • WO 2006/118457 A1 is a heat sink for a LED lamp known. The effectiveness of heat dissipation is limited in this heat sink.
  • the invention has for its object to provide LED lamps with improved heat sinks.
  • an LED lamp comprising a lighting means having at least one LED, a supply circuit, a heat sink (thus in thermal contact), and a driver housing for receiving a driver for driving the LED.
  • the heat sink is designed such that a plurality of channels for removing air, which is heated by an operation of the lighting means, are formed by it.
  • the channels are arranged in a ring around an axis.
  • the length of at least one channel is at least half of the shortest diagonal or transversal in the transverse extent of the corresponding one channel.
  • the driver housing has a surface area which forms an inner boundary of at least part of the channels and which is preferably connected in a planar manner to the heat sink (K1-K6).
  • the length is at least half of the shortest diagonal or transversal in the transverse extent of the corresponding channel.
  • an LED lamp which comprises a luminous means with at least one LED, a supply circuit and a (thus in thermal contact) heat sink.
  • the heat sink is designed such that a plurality of channels for removing air, which is heated by an operation of the lighting means, are formed by it.
  • the channels are arranged in a ring around an axis.
  • the entirety of the channels has a transverse extension transverse to the axis and a longitudinal extent along the axis which is at least as great as half the transverse extent.
  • Such a dimensioning improves the convection flow through the channels, in particular due to the particularly good chimney effect, so that a particularly effective heat removal is made possible.
  • the heat sink is configured such that the channels form a first ring structure and a second ring structure, wherein the second ring structure surrounds the first ring structure with respect to the axis.
  • an LED lamp which comprises a luminous means with at least one LED, a supply circuit, a (thus in thermal contact) heat sink and a driver housing for receiving a driver for operating the LED.
  • the heat sink is designed such that a plurality of channels for removing air, which is heated by an operation of the lighting means, are formed by it.
  • the channels are annularly disposed about an axis such that the channels form a first ring structure and a second ring structure, the second ring structure surrounding the first ring structure with respect to the axis.
  • the driver housing has a surface area which forms an inner boundary of at least part of the channels and which is preferably connected in a flat manner to the heat sink
  • the area for heat dissipation is increased.
  • a larger volume of air to be flowed through in the heat sink available, so that heat can be removed more effectively and efficiently.
  • the heat conduction is improved, while the size of the heat sink (in comparison to a heat sink with a ring structure) increases only minimally.
  • each of the channels has a cross section with a closed circumference. If possible, the channels should not have a closed circumference over their entire length, although it is also possible for them to have a closed circumference over their entire length. In this way, the heat dissipation by the corresponding air flow or convection is still improved because of the chimney effect, which adjusts due to the closed circumference.
  • an LED lamp which comprises a luminous means with at least one LED, a supply circuit and a (thus in thermal contact) heat sink.
  • the heat sink is designed such that a plurality of channels for removing air, which is heated by an operation of the lighting means, are formed by it.
  • the channels are annularly disposed about an axis such that the channels form a first ring structure and a second ring structure.
  • Each of the channels of the first ring structure has a cross section with a closed perimeter, and each of the channels of the second ring structure is circumferentially separated from each other with respect to the axis only by fin wall parts that extend at least substantially in radial directions.
  • the advantage of the chimney effect can be exploited by means of the closed channels, while at the same time, with a small weight of the heat sink, can be removed via corresponding cooling fins additional heat.
  • the ring structures, depending on the arrangement, for each other serve as an air guide part, by the by the first
  • Ring structure flowing air is selectively directed into the second ring structure, or vice versa.
  • the second ring structure and the first ring structure at least partially overlap in the longitudinal direction of the axis.
  • the channels upstream in the direction of air flow serve on the one hand as air guide parts for improved air flow, while at the same time the surface for increased heat dissipation is increased in the overlapping region.
  • each of the channels has a rotationally symmetrical, preferably cylindrical, particularly preferably circular-cylindrical cross-section.
  • the axis is preferably equal to the rotational symmetry or longitudinal axis of the LED lamp.
  • the first and / or second ring structure each have at least two ring structures.
  • each of the channels has a longitudinal axis oriented in its orientation on the axis, whereby the air convection through the chimney effect can proceed unhindered.
  • the Longitudinal axes of the individual channels but advantageously not parallel to each other.
  • the channels with respect to the axis in the circumferential direction are separated from one another only by rib wall parts which extend at least substantially in radial directions. In this way, a heat dissipation takes place with low weight of the heat sink.
  • the heat sink further comprises a cladding part which is arranged such that it surrounds the channels or at least one ring structure with respect to the axis from the outside, wherein the cladding part has a cylindrical or conical outer surface, which is preferably designed rotationally symmetrical to the axis ,
  • the wrapping part particularly advantageously surrounds the entirety of the channels or at least one ring structure in the longitudinal direction of the axis completely or only partially, preferably at least half of the longitudinal extent.
  • the wrapping part is designed such that - in the longitudinal direction of the axis - the entirety of the channels or at least one ring structure projects beyond in one direction or in both directions.
  • the air flows that form in the channels, merged again before leaving the heat sink or formed by splitting only after entry of the air into the interior of the heat sink.
  • the wrapping part has a preferably circular-cylindrical or conical inner surface which is arranged directly adjacent to the radial end regions of the rib wall parts, so that an outer boundary is formed by the wrapping part for at least part of the channels.
  • a closed cross-section of the channels is achieved so as to achieve a chimney effect safely to ensure a high heat dissipation.
  • the heat sink is integrally formed. This allows a particularly effective heat conduction within the heat sink.
  • the piece may consist of aluminum and be formed for example as a solid diecasting.
  • the heat sink is made of plastic. This is advantageous in terms of the permissible surface temperature because it is higher for the plastic than for aluminum. This is due to the fact that the sensation of pain, for example, at a surface temperature of 70 degrees Celsius in plastic is much lower than at 70 degrees hot aluminum.
  • plastic is generally not suitable for temperatures as high as aluminum, in the outer region of the heat sink considered here, correspondingly lower temperatures can be expected.
  • an outer surface of the heat sink can generally be made lighter and better in appearance and aesthetics than an outer surface made of aluminum.
  • each of the channels has a cross-section with a diameter of at least 4 mm, preferably at least 8 mm, in particular preferably from 5 to 12 mm. Further, by extending each of the channels preferably at least 10 mm in the longitudinal direction of the axis.
  • the first ring structure with respect to the longitudinal direction of the axis are arranged offset to the second ring structure.
  • the channels or ribs arranged downstream in the direction of flow also serve as an air guide for the subsequent channels, whereby a targeted, strong air flow for safe and high heat dissipation is provided.
  • the LED lamp further comprises a driver housing for receiving a driver for operating the LED, wherein the driver housing has a surface region which forms an inner boundary of at least a portion of the channels. This allows a particularly good removal of heat that arises during operation of the lamp by the driver.
  • the driver housing is connected to the surface of the heat sink.
  • the LED lamp is particularly advantageously substantially in the form of a conventional incandescent or halogen lamp.
  • a conventional incandescent or halogen lamp preferably has: a light bulb or halogen lamp base for mechanical and electrical connection with a corresponding conventional version, and a transparent cover, which is modeled on a glass bulb of the conventional light bulb or halogen lamp.
  • the LED lamp can be used everywhere instead of a conventional light bulb or halogen lamp, without making technical changes to the lights.
  • the appearance remains the same as a conventional lamp.
  • Fig. 10 is a side view of an LED lamp L according to the invention outlined.
  • the LED lamp L has a heat sink K6 according to the invention according to an embodiment.
  • different heat sinks K1-K6 for LED lamps will be described with reference to various embodiments.
  • the LED lamp L may be formed to be suitable for replacing a conventional bulb or halogen lamp. It can therefore according to their external appearance substantially in the form of a conventional light bulb or halogen lamp and / or with a corresponding thread 40, or E27 or E14 thread, or plug (not shown) to be equipped or the mechanical and electrical connection with a corresponding conventional version is used. Such a lamp is therefore often referred to as a "retrofit LED lamp”.
  • a supply circuit (“driver circuit") T is supplied with voltage which, starting, for example, from a supplied AC voltage (for example mains voltage) or DC voltage, the LED (s) of the lamp in a suitable manner controlled or regulated with electrical energy.
  • a supply circuit for example, from a supplied AC voltage (for example mains voltage) or DC voltage, the LED (s) of the lamp in a suitable manner controlled or regulated with electrical energy.
  • the driver circuit T is mechanically and electrically protected in a driver housing G be arranged (see, for example. Fig. 1 ).
  • the LED lamp L can accordingly have a transparent cover 42, which is modeled on a glass bulb of the conventional light bulb or halogen lamp.
  • the LED lamp has a luminous means which comprises at least one LED (not shown).
  • the LED lamp emits white light.
  • FIG. 1 shows a heat sink K1 according to the first embodiment. This is formed by a plurality of channels 1, which are arranged annularly about an axis A and thus preferably form a ring structure R1. Particularly preferably, the axis A corresponds to the rotational symmetry axis or longitudinal axis LL of the LED lamp L (cf. Fig. 10 ).
  • the heat sink K1 is further formed in one piece.
  • the piece may consist of aluminum and be formed for example as a solid diecasting.
  • the heat sink K1 is made of plastic. This is advantageous in terms of the permissible surface temperature because it is higher for the plastic than for aluminum. This is due to the fact that the sensation of pain, for example, at a surface temperature of 70 degrees Celsius in plastic is much lower than at 70 degrees hot aluminum.
  • plastic is generally not suitable for temperatures as high as aluminum, but in particular in the outer region of the heat sink K1 can be expected with correspondingly lower temperatures. Besides, lets In general, an outer surface of the heat sink K1 is lighter and better in appearance and aesthetics than an outer surface made of aluminum.
  • the channels 1 of the heat sink K1 have a cross section with a closed circumference.
  • each of the channels 1 further preferably has a rotationally symmetrical, preferably cylindrical, particularly preferably a circular cylindrical cross-section, in order to achieve a fluidically optimal shape as possible with as little turbulence as possible. This also ensures a space-saving arrangement of the channels 1 with comparatively low weight and at the same time sufficient contact surface for heat transfer.
  • the channels may be shaped differently within a structure. The channels can thus have more than one cross-sectional shape.
  • the channels also have varying diameters in their overall length, i. along its longitudinal axis.
  • the channels are wider at the top than at the bottom of the heat sink.
  • the channels 1 are used for the removal of air by means of convection, which is heated by an operation of the LED lamp L, ie in particular by the light source or the LED and / or the driver T.
  • the channels 1 are accordingly designed such that when operating the LED lamp L by the resulting heat a Air flow through the respective channels 1 can form. Therefore, the channels 1 are preferably designed such that they can cause a chimney effect for this air flow in this sense.
  • the channels 1 have a closed-section cross-section and further have a front opening 2 and a rear opening 3 so that air can flow in and out of the channels 1.
  • the entirety of the channels 1 has, transverse to the axis A, a transverse extension and along the axis A a longitudinal extent.
  • the longitudinal extent is at least as large as half the transverse extent. Such a dimensioning improves the flow of air through the channels 1, in particular due to the chimney effect that occurs, so that a particularly effective heat dissipation is made possible.
  • each of the channels 1 has a cross section with a diameter of at least 4 mm, particularly preferably between 6 and 12 mm, in order to achieve an optimal chimney effect.
  • the heat sink K1 between 3 and 30 channels 1, on the one hand to provide a large surface area due to numerous channels 1 for heat dissipation, and on the other hand to dimension the channels 1 according to the above information in order to effect the chimney effect safely.
  • the invention is not limited to a specific number of channels 1.
  • the driver T is arranged.
  • the Driver housing G on a surface area O, which forms a largely planar inner boundary of the ring structure R1 of the channels 1.
  • the surface area O can be advantageously cylindrical in terms of flow, in particular circular-cylindrical.
  • a part of the driver housing G directly adjoins the channels 1, so that a direct or direct heat transfer from the driver housing G to the channels 1 is made possible.
  • the driver T or its housing G is preferably arranged centrally to the axis A in order to achieve a particularly effective and uniform heat dissipation over the largest possible contact surface.
  • the channels 1 are preferably oriented such that their longitudinal axis LK is oriented parallel to the axis A, so as to be as compact as possible around the driver T to the LED lamp L to lie and thus to form the largest possible surface contact for heat dissipation.
  • the channels 1 are all aligned in this way, the air convection can also proceed unhindered with the aid of the chimney effect.
  • FIGS. 2A to 2C show various examples of the configuration of the ring structure R1 of the heat sink K1.
  • the heat sink K1 can be a cylindrical shape ( Fig. 2A ) or else have seen a shape tapering towards one end in the longitudinal direction of the axis.
  • the latter offers, in addition to an optical approach to the structure of conventional light bulbs, the further advantage that due to the tapered inlet more air can penetrate into the channels 1, which, together with the chimney effect, leads to improved heat dissipation.
  • FIG. 3 shows a second embodiment of the LED lamp according to the invention. This corresponds essentially to the LED lamp according to the first Embodiment. Unless otherwise stated, therefore, the statements on the first embodiment apply analogously to the second embodiment. The reference numerals are used accordingly.
  • the heat sink K2 of the LED lamp according to the second embodiment further comprises a cladding part 10 as compared with that of the first embodiment. This is arranged such that it surrounds the channels 1 and the ring structure R1 of the channels 1 with respect to the axis A from the outside.
  • the sheath part 10 preferably has a cylindrical or conical outer surface, which is also preferably designed to be rotationally symmetrical with respect to the axis A.
  • the wrapping part 10 can surround the entirety of the channels 1 or the ring structure R1 in the longitudinal direction of the axis A completely or only partially, preferably at least half of the longitudinal extent.
  • the covering part 10 may be designed such that it projects beyond the entirety of the channels 1 or the ring structure R1 in one direction or in both directions-in the longitudinal direction of the axis.
  • the air currents that form in the channels 1, merged again before leaving the heat sink K2 or only after entry of air into the interior of the heat sink K2 formed by splitting, creating a uniform and safe air flow is ensured.
  • the air flow is aligned at an early stage according to the channels 1, which is thus specifically directed into this and ensures effective heat dissipation.
  • the wrapping part 10 is preferably formed integrally with the heat sink K2.
  • the areas of the heat sink K2 made of aluminum facing the driver T and the regions facing away from the driver T, such as the cladding part 10, made of plastic in order to allow the best possible heat conduction to avoid injuries due to the lower pain sensation Plastic compared to aluminum and to ensure the widest possible aesthetic and creative possibilities of the exterior design of the heat sink K2.
  • FIG. 5 and 6A to 6C show a further embodiment of a heat sink K3 for an LED lamp. This corresponds essentially to the LED lamp according to the aforementioned embodiments. Unless otherwise stated, the statements on the preceding exemplary embodiments therefore also apply analogously to the third exemplary embodiment. The reference numerals are used accordingly.
  • FIG. 5 a non-inventive heat sink K3 with channels 1 ', which are separated with respect to the axis A in the circumferential direction only by fin wall parts 20 which extend at least substantially in the radial directions.
  • the channels 1 ' preferably have a closed circumference in cross-section, which further preferably by an additional enclosure part 10' around the channels 1 'and the ring structure R1 'is formed around.
  • the wrapping part 10 'can then have a preferably circular-cylindrical or conical inner surface which is arranged directly adjacent to the radial end regions of the rib wall parts 20, so that an outer boundary for at least a part of the channels 1' is formed by the wrapping part 10 '(cf. also Figs. 6A-6C ). In this way, a closed cross-section of the channels 1 'is achieved in order thus to achieve a chimney effect safely and to ensure effective heat dissipation.
  • the wrapping part 10 'can also be formed integrally with the heat sink K3.
  • a heat sink K3 which, for example, directly in one piece with the housing of the LED lamp or the driver housing G may be formed.
  • the external appearance, in particular of a retrofit LED lamp is not impaired by a heat sink K3 formed in this way. Rather, this can be easily formed directly in the production and requires no further components for optical adjustment.
  • FIG. 7 shows a fourth embodiment of the heat sink K4 according to the invention, which substantially corresponds to that of the second embodiment
  • FIGS. 8 and 9A to 9F show a fifth embodiment of the heat sink K5 according to the invention, which substantially corresponds to that of the third embodiment.
  • the statements on all the preceding exemplary embodiments therefore also apply analogously to the fourth and fifth exemplary embodiments.
  • the reference numerals are used accordingly.
  • the channels 1, 1 '- in analogy to the aforementioned first ring structure R1, R1' - form a second ring structure R2, R2 ', which in turn is arranged annularly around the axis A.
  • the first ring structure R1, R1 'and / or the second ring structure R2, R2' each have at least one further, that is, at least two ring structures.
  • the formation of two ring structures or two "chimneys" enables the formation of a particularly effective air flow for the removal of the heat produced during operation of the LED lamp.
  • the surface serving for heat removal is enlarged by the surrounding ring structures R1, R1 ', R2, R2' of the channels 1, 1 '.
  • a larger volume of air to be flowed through in the heat sink K4, K5 available so that heat can be removed even more effective and efficient.
  • the heat conduction is improved, while the size of the heat sink K4, K5 increases only minimally in comparison to a heat sink with only one ring structure R1, R1 '.
  • the surrounding ring structures R1, R1 'R2, R2' may also only partially overlap, ie surround, or be offset relative to one another so that they are seen in the longitudinal direction of the axis A and in particular in the flow direction of the channels 1, 1 '- are arranged one behind the other, so no longer overlap in a cross-sectional area of the LED lamp.
  • the ring structures R1, R1 ', R2, R2' can be arranged relative to one another in such a way that through the direction of flow vorgelagerte ring structure of the air flow is directed directly and selectively to the downstream ring structure, and thus a more efficient air flow with improved heat dissipation is provided.
  • each of the channels 1 "of the first ring structure R1" has a closed-end cross-section, and each of the channels 1 "'of the second ring structure R2" is circumferentially separated from each other by rib wall parts 20 "with respect to the axis A only
  • the weight of the heat sink K6 can be reduced while at the same time ensuring a particularly effective heat dissipation due to the chimney effect with respect to the first ring structure R1 "and by means of the cooling fins 20" of the second ring structure R2 " can be.
  • the channels in the first and the second ring structure may have different lengths. Even the channels within a ring structure may have different lengths.
  • the channels Due to the fact that now so the channels can have different lengths and can also have different diameters D, results for the totality of the channels a varying length and a varying diameter.
  • the totality of the channels has a certain width, which is the shortest diameter of the totality of the channels.
  • the ensemble Due to the varying length, the ensemble also has a certain diagonal and / or transverse which represents the shortest diagonal and / or transversal of the totality of the channels.
  • each individual channel has a certain width, which represents the shortest diameter of the channel. Due to the varying length, the channel also has a certain diagonal and / or transversal that represents the shortest diagonal and / or transversal of the channel.
  • a corresponding enclosure part may be provided.
  • This can either be arranged only between the first ring structure R1, R1 ', R1 "and the second ring structure R2, R2', R2" (cf. Fig. 7 ), ie the first ring structure R1, R1 'surrounded with respect to the axis from the outside, or only the second ring structure R2, R2' with respect to the axis A surrounded from the outside, or both ring structures R1, R1 ', R2, R2' surrounded with respect to the axis A from the outside.
  • the channels 1, 1 ' as in the FIGS. 7 and 8th shown, each having the same shape.
  • the channels 1, 1 'of the respective ring structures R1, R1', R2, R2 ' are not bound to a specific shape, not even one another, so that, for example, the first ring structure R1, R1' has channels with a circular cross section, while the channels of the second ring structure R2, R2 'or any other ring structure have a different shape.
  • the channels within a ring structure R1, R1 ', R2, R2' can also differ from each other.
  • rib structure and closed structure can alternate in the circumferential direction of the ring structure R1, R1 ', R2, R2'.
  • the invention is not limited to one and two ring structures. Rather, as many as you like Ring structures surround each other and / or offset from each other and / or be arranged partially overlapping.
  • the ring structures in particular in the case of rotationally symmetrical channels, are arranged in an ideally offset relationship to one another. In this way, a compact structure can be achieved by means of which, even with numerous channels, the outer shape of the heat sink can be almost maintained, while at the same time takes place due to high contact area and a high number of channels, a particularly good heat dissipation.
  • the respective ring structures R1, R1 ', R2, R2' and / or their cladding part 10, 10 ' can - fluidically advantageous - to the front and / or to the rear. With respect to the other ring structures R1, R1', R2, R2 'and or wrapper parts 10, 10 'project beyond. If, for example, the wrapping part 10, 10 ', which surrounds the second ring structure R2, R2', extends further to the rear than the first ring structure R1, R1 'or its wrapping part 10, 10', the "partial air flow" will pass through the first Ring structure R1, R1 'and the "partial air flow" through the second ring structure R2, R2' merged before the merged from these two partial air flows out air from the heat sink.
  • the air flowing into the cooling body is divided into the two mentioned partial air flows only within the cooling body ,
  • the invention is not limited to the aforementioned embodiments. Also any combination of ring structures, channels, envelope parts and rib wall parts and their shape and arrangement to each other are included in the scope of the claims of this invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Claims (17)

  1. Lampe à LED (L), présentant :
    une lampe avec au moins une LED, un circuit d'alimentation pour l'au moins une LED, un corps de refroidissement (K1 à K6) et un boîtier de pilote (G) pour l'admission d'un pilote (T) pour le fonctionnement de la LED,
    caractérisée en ce
    que le corps de refroidissement (K1 à K6) est conçu de telle manière que plusieurs canaux (1, 1',1", 1''') avec une section transversale en forme de cercle sont formés par celui-ci pour l'évacuation d'air qui est réchauffé par le fonctionnement de la lampe, où les canaux (1, 1', 1", 1''') sont disposés en forme d'anneau autour d'un axe (A), où la longueur d'au moins un canal (1, 1', 1", 1''') est au moins égale à la moitié de la diagonale ou de la transversale la plus courte dans l'extension perpendiculaire du canal en question, et
    où le boîtier de pilote (G) présente une région de surface (0) qui forme une délimitation intérieure d'au moins une partie des canaux (1, 1', 1", 1''') et qui est reliée de préférence à plat avec le corps de refroidissement (K1 à K6),
    où les canaux (1, 1', 1", 1''') présentent des diamètres (D) variables le long de leur axe longitudinal.
  2. Lampe à LED (L) selon la revendication 1,
    dans laquelle, pour chaque canal (1, 1', 1", 1''') de la lampe à LED (L), la longueur est au moins égale à la moitié de la diagonale ou de la transversale la plus courte dans l'extension perpendiculaire du canal correspondant.
  3. Lampe à LED (L) selon l'une des revendications précédentes, qui est conçue de telle manière que les canaux (1, 1', 1", 1''') forment une première structure annulaire (R1, R1', R1") et une deuxième structure annulaire (R2, R2', R2"), où la deuxième structure annulaire (R2, R2', R2") entoure la première structure annulaire (R1, R1', R1''') par rapport à l'axe (A).
  4. Lampe à LED (L), présentant :
    une lampe avec au moins une LED, un circuit d'alimentation pour l'au moins une LED, un corps de refroidissement (K3 à K6) et un boîtier de pilote (G) pour l'admission d'un pilote (T) pour le fonctionnement de la LED,
    caractérisée en ce
    que le corps de refroidissement (K3 à K6) est conçu de telle manière que plusieurs canaux (1, 1', 1", 1''') avec une section transversale en forme de cercle sont formés par celui-ci pour l'évacuation d'air qui est réchauffé par un fonctionnement de la lampe, où les canaux (1, 1', 1", 1''') sont disposés sous forme d'anneaux autour d'un axe (A) de telle sorte que les canaux (1, 1', 1", 1''') forment une première structure annulaire (R1, R1', R1") et une deuxième structure annulaire (R2, R2', R2"), où la deuxième structure annulaire (R2, R2', R2") entoure la première structure annulaire (R1, R1', R1") par rapport à l'axe (A),
    où le boîtier de pilote (G) présente une région de surface (0) qui forme une délimitation intérieure d'au moins une partie des canaux (1, 1', 1", 1''') et qui est reliée de préférence à plat avec le corps de refroidissement (K1 à K6),
    où les canaux (1, 1', 1", 1''') présentent des diamètres (D) variables le long de leur axe longitudinal.
  5. Lampe à LED (L) selon l'une des revendications précédentes, chez laquelle chacun des canaux (1, 1') présente une section transversale avec un périmètre fermé.
  6. Lampe à LED (L) selon l'une des revendications 3 à 5, dans laquelle la deuxième structure annulaire (R2, R2', R2") et la première structure annulaire (R1, R1', R1''') se superposent au moins partiellement dans le sens longitudinal de l'axe (A).
  7. Lampe à LED (L) selon l'une des revendications précédentes, dans laquelle chacun des canaux (1) fermés présente une section transversale en symétrie de rotation, de préférence cylindrique, en particulier, cylindrique circulaire.
  8. Lampe à LED (L) selon l'une des revendications précédentes, dans laquelle l'axe (A) est identique à l'axe en symétrie de rotation, c'est à dire l'axe longitudinal (LL) de la lampe à LED-Lampe (L).
  9. Lampe à LED (L) selon l'une des revendications 3 à 8, dans laquelle les première et/ou deuxième structures annulaires (R1, R1', R1", R2, R2', R2") présentent respectivement au moins deux structures annulaires.
  10. Lampe à LED (L) selon l'une des revendications précédentes, dans laquelle chacun des canaux (1, 1', 1", 1''') présente un axe longitudinal (LK) qui est orienté parallèlement à l'axe (A) .
  11. Lampe à LED (L) selon l'une des revendications précédentes, dans laquelle les canaux (1', 1", 1''') sont séparés les uns des autres dans la direction circonférentielle simplement par des parties de parois nervurées (20, 20") par rapport à l'axe (A), qui s'étendent dans l'ensemble au moins dans des directions radiales.
  12. Lampe à LED (L) selon l'une des revendications précédentes, dans laquelle le corps de refroidissement (K2 à K6) présente en outre une partie d'enveloppe (10, 10') qui est disposée de telle manière qu'elle entoure par l'extérieur les canaux (1, 1', 1", 1'''), respectivement une structure annulaire (R1, R1', R1", R2, R2', R2"), par rapport à l'axe (A),
    où la partie d'enveloppe (10, 10') présente une surface extérieure cylindrique ou conique qui est de préférence conçue en symétrie de rotation par rapport à l'axe (A), où la partie d'enveloppe (10, 10') entoure de préférence la totalité des canaux (1, 1', 1", 1'''), respectivement au moins une structure annulaire (R1, R1', R1", R2, R2', R2") dans le sens longitudinal de l'axe (A) totalement ou uniquement partiellement, de manière particulièrement préférée au moins jusqu'à la moitié de l'extension longitudinale, et
    où la partie d'enveloppe (10, 10') est conçue de préférence de manière à ce qu'elle dépasse l'axe (A) dans le sens longitudinal, -la totalité des canaux (1, 1', 1", 1'''), respectivement au moins une structure annulaire (R1, R1', R1", R2, R2', R2") dans une direction ou dans les deux directions.
  13. Lampe à LED (L) dotée des caractéristiques qui sont citées dans les revendications 11 et 12,
    où la partie d'enveloppe (10, 10') présente de préférence une surface intérieure cylindrique circulaire ou conique qui est disposée immédiatement à la limite des zones d'extrémités radiales des parties de parois nervurées (20, 20") de sorte que par la partie d'enveloppe (10, 10') une délimitation extérieure est formée pour au moins une partie des canaux (1, 1', 1", 1''').
  14. Lampe à LED (L) selon l'une des revendications précédentes, dans laquelle le corps de refroidissement (K1 à K6) est conçu d'un seul tenant.
  15. Lampe à LED (L) selon l'une des revendications 3 à 14, dans laquelle la première structure annulaire (R1, R1', R1") est agencée décalée par rapport à la deuxième structure annulaire (R2, R2', R2") par rapport au sens longitudinal de l'axe (A).
  16. Lampe à LED (L) selon l'une des revendications précédentes, qui présente dans l'ensemble la forme d'une lampe à incandescence usuelle ou d'une lampe à halogène, et présente en outre :
    un socle de lampe à incandescence usuelle ou de lampe à halogène (40) pour la connexion mécanique et électrique avec une conception conventionnelle correspondante, et un couvercle (42) transparent qui reproduit une ampoule de verre de l'ampoule incandescente usuelle, respectivement d'une lampe à halogène.
  17. Lampe à LED (L) selon l'une des revendications précédentes, dans laquelle le corps de refroidissement (K1 à K6) présente une forme s'amenuisant jusqu'à l'extrémité, vu dans la direction longitudinale de l'axe.
EP10771039.4A 2009-10-30 2010-09-23 Lampe à led comportant un corps de refroidissement Not-in-force EP2494270B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009051334.5A DE102009051334B4 (de) 2009-10-30 2009-10-30 LED-Lampe mit Kühlkörper
PCT/EP2010/064046 WO2011051058A1 (fr) 2009-10-30 2010-09-23 Lampe à led comportant un corps de refroidissement

Publications (2)

Publication Number Publication Date
EP2494270A1 EP2494270A1 (fr) 2012-09-05
EP2494270B1 true EP2494270B1 (fr) 2019-04-24

Family

ID=43216930

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10771039.4A Not-in-force EP2494270B1 (fr) 2009-10-30 2010-09-23 Lampe à led comportant un corps de refroidissement

Country Status (6)

Country Link
US (1) US9163820B2 (fr)
EP (1) EP2494270B1 (fr)
CN (1) CN102639935A (fr)
DE (1) DE102009051334B4 (fr)
TW (1) TWI567327B (fr)
WO (1) WO2011051058A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011004022B4 (de) * 2011-02-14 2015-12-24 Osram Gmbh Leuchtvorrichtung
DE102011053493A1 (de) * 2011-04-05 2012-10-11 Jb-Lighting Lichtanlagentechnik Gmbh Scheinwerfer mit Leuchtdioden
RU167546U1 (ru) * 2016-03-10 2017-01-10 Закрытое акционерное общество "Инженерный центр "ЭЛЕКТРОЛУЧ" Светильник светодиодный
CN108308104B (zh) * 2018-02-28 2020-05-05 东莞市闻誉实业有限公司 照明装置及鱼缸
US10697626B1 (en) * 2019-01-18 2020-06-30 Signify Holding B.V. LED luminaire heatsink assembly
US11946630B2 (en) * 2021-03-30 2024-04-02 Chien-Ting Lin LED lamp heat dissipation structure with outward corrugations and reflector function

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511209B1 (en) 2001-10-02 2003-01-28 Albert C. L. Chiang Lighting fixture
NL1028678C2 (nl) 2005-04-01 2006-10-03 Lemnis Lighting Ip Gmbh Koellichaam, lamp en werkwijze voor het vervaardigen van een koellichaam.
US20070279862A1 (en) * 2006-06-06 2007-12-06 Jia-Hao Li Heat-Dissipating Structure For Lamp
US8226270B2 (en) * 2007-05-23 2012-07-24 Sharp Kabushiki Kaisha Lighting device
CN101424394B (zh) * 2007-11-02 2010-09-08 富准精密工业(深圳)有限公司 散热装置及其应用的发光二极管灯具
TWI324670B (en) * 2007-11-02 2010-05-11 Foxsemicon Integrated Tech Inc Light-emitting diode illuminating device
US7637635B2 (en) * 2007-11-21 2009-12-29 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. LED lamp with a heat sink
JP4945433B2 (ja) * 2007-12-28 2012-06-06 シャープ株式会社 照明装置
CN201184555Y (zh) * 2007-12-28 2009-01-21 王鑫超 一种多边嵌槽式柱形led灯泡
US20090185380A1 (en) * 2008-01-17 2009-07-23 Ho Sung Tao LED Lamp with Heat Dissipating Configuration
US20090296387A1 (en) * 2008-05-27 2009-12-03 Sea Gull Lighting Products, Llc Led retrofit light engine
DE202009005266U1 (de) * 2009-09-10 2009-12-03 Davinci Industrial Inc., Hsinchuang LED-Lampe mit hoher Wärmeabführleistung und Sicherheit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102009051334B4 (de) 2016-12-15
EP2494270A1 (fr) 2012-09-05
TW201128112A (en) 2011-08-16
DE102009051334A1 (de) 2011-05-05
TWI567327B (zh) 2017-01-21
CN102639935A (zh) 2012-08-15
US20120218755A1 (en) 2012-08-30
US9163820B2 (en) 2015-10-20
WO2011051058A1 (fr) 2011-05-05

Similar Documents

Publication Publication Date Title
EP2494270B1 (fr) Lampe à led comportant un corps de refroidissement
EP2350528B1 (fr) Lampe à led
EP2193310B1 (fr) Corps de refroidissement et système de refroidissement pour un module de led
EP2407713B1 (fr) Lampe à DEL dotée d'un corps de refroidissement
DE202004013773U1 (de) Lampe
DE202009006095U1 (de) LED-Lampe mit mehrschichtigen Lichtquellen
DE102011081369A1 (de) Leuchte, insbesondere LED-Leuchte mit passiver Kühlung
EP2539632B1 (fr) Dissipateur thermique pour une source lumineuse
EP3171077B1 (fr) Technique d'éclairage anti-éblouissement
EP3911892B1 (fr) Luminaire avec dissipateur thermique fermé sur la périphérie
DE202009005266U1 (de) LED-Lampe mit hoher Wärmeabführleistung und Sicherheit
CH704544A1 (de) Leuchteinrichtung mit Wärmeverteiler.
DE102018101503A1 (de) Elektrische Steckverbindung zum Verbinden eines Leuchtmittels mit einer elektrischen Anschlussleitung
DE19539808C2 (de) Leuchte für eine Niedervolt-Glühlampe
DE202016107013U1 (de) Leuchteinheit, insbesondere für eine Schirmleuchte, und Leuchte, insbesondere Schirmleuchte, mit einer Leuchteinheit
EP3118518B1 (fr) Boîtier de lampe
DE202017006973U1 (de) Beleuchtungsvorrichtung
DE102010031008A1 (de) LED-Leuchte
DE10051904B4 (de) Strahlungsquelle und Bestrahlungsanordnung
DE102017109836B4 (de) Leuchtmittel mit Kühlkörper
EP3686481B1 (fr) Dissipateur thermique pour une platine del
DE202010008309U1 (de) LED-Lampe
AT516656B1 (de) Ablängbarer Leuchtmittelträger und Einbauleuchte
DE202009000002U1 (de) Baugruppe für eine Hochleistungs-LED-Lampe sowie Chipträger für eine solche Lampe
EP3418631A1 (fr) Corps de refroidissement pour un moyen d'éclairage de del et procédé de fabrication de corps de refroidissement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120416

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160202

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190128

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010015958

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1124581

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190424

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190824

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190725

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010015958

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

26N No opposition filed

Effective date: 20200127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190923

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190923

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502010015958

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200928

Year of fee payment: 11

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1124581

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100923

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010015958

Country of ref document: DE

Owner name: TRIDONIC GMBH & CO KG, AT

Free format text: FORMER OWNER: TRIDONIC JENNERSDORF GMBH, JENNERSDORF, AT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220920

Year of fee payment: 13

Ref country code: DE

Payment date: 20220527

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010015958

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230923