EP2493964A1 - Verfahren zur masterbatch-herstellung aus naturkautschuk und silica - Google Patents

Verfahren zur masterbatch-herstellung aus naturkautschuk und silica

Info

Publication number
EP2493964A1
EP2493964A1 EP10768498A EP10768498A EP2493964A1 EP 2493964 A1 EP2493964 A1 EP 2493964A1 EP 10768498 A EP10768498 A EP 10768498A EP 10768498 A EP10768498 A EP 10768498A EP 2493964 A1 EP2493964 A1 EP 2493964A1
Authority
EP
European Patent Office
Prior art keywords
silica
phr
masterbatch
coagulum
natural rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10768498A
Other languages
English (en)
French (fr)
Inventor
Julien Berriot
Benoît DE GAUDEMARIS
Géraldine LAFFARGUE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Generale des Etablissements Michelin SCA
Original Assignee
Michelin Recherche et Technique SA Switzerland
Compagnie Generale des Etablissements Michelin SCA
Michelin Recherche et Technique SA France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michelin Recherche et Technique SA Switzerland, Compagnie Generale des Etablissements Michelin SCA, Michelin Recherche et Technique SA France filed Critical Michelin Recherche et Technique SA Switzerland
Publication of EP2493964A1 publication Critical patent/EP2493964A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2307/00Characterised by the use of natural rubber
    • C08J2307/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2407/00Characterised by the use of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2409/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • the invention relates to the preparation of a masterbatch of natural rubber and silica comprising at least one silica (modified) and a natural rubber latex.
  • masterbatch (commonly referred to by its English name as “masterbatch”) means an elastomer-based composite in which a filler and possibly other additives have been introduced.
  • the present invention relates in particular to the use of such a masterbatch for the manufacture of inorganic filler-reinforced diene rubber compositions for the manufacture of tires or semi-finished products for tires, in particular treads of these tires.
  • this filler In order to obtain the optimum reinforcing properties conferred by a load in a tire tread and thus a high wear resistance, it is known that it is generally appropriate for this filler to be present in the elastomeric matrix under final form that is both finely divided possible and distributed in the most homogeneous way possible.
  • carbon black has such aptitudes, which is not generally the case for inorganic fillers, in particular silicas. Indeed, for reasons of mutual affinities, these inorganic filler particles have an unfortunate tendency in the elastomeric matrix to agglomerate with each other. These interactions have the detrimental consequence of limiting the dispersion of the charge and therefore the reinforcing properties to a level substantially lower than that which it would be theoretically possible to achieve if all the bonds (inorganic filler / elastomer) that can be created during the mixing operation, were actually obtained; these interactions tend on the other hand to increase the consistency in the green state of the rubber compositions and thus to make their implementation ("processability") more difficult than in the presence of carbon black.
  • the advantage of using a high surface area silica resides mainly in the possibility of increasing the number of bonds of the silica with the elastomer and therefore of increasing the level of reinforcement thereof. Therefore, it appears advantageous to use, in tire tread rubber compositions, silicas with a high specific surface area, possibly greater than that conventionally used, of the order of 160 m 2 / g, in particular to improve the wear resistance of these treads. Nevertheless, the dispersibility of the charge and the increase in its specific surface area are considered as antinomic features. Indeed, a large specific surface area implies an increase in the interactions between charge objects, and therefore a poor dispersion thereof in the elastomeric matrix and a difficult implementation.
  • Another type of solution has been envisaged which consists, in order to improve the dispersibility of the filler in the elastomeric matrix, of mixing the elastomer and the "liquid" phase filler.
  • an elastomer in the form of latex has been used which is in the form of elastomer particles dispersed in water, and an aqueous dispersion of the filler, that is to say a dispersed silica. in water, commonly called “slurry”.
  • slurry aqueous dispersion of the filler
  • the contacting of the elastomer latex and the slurry does not allow coagulation in the liquid medium, coagulation which should allow to obtain a solid which after drying, results in obtaining the masterbatch of elastomer and silica desired.
  • silica aggregates are typically hydrophilic in nature and have affinity to water, so silica aggregates have more affinity with water than with the elastomer particles themselves.
  • US Pat. No. 5,763,388 proposes the incorporation of silica into the rubber latex by treating the silica with a coupling agent, mixing the silica thus treated in the presence of conventional coagulation agents.
  • the patent EP1321488 also proposes to put in contact an aqueous dispersion with negatively charged silica and a diene elastomer latex, with an emulsion containing a polysulfide coupling agent, in the presence of a coagulation agent such as a polyamine .
  • the Applicants have surprisingly discovered a method for obtaining a silica-elastomer masterbatch prepared in the "liquid" phase without using a coagulation agent or a coupling agent.
  • Such a method allows, moreover, not only to achieve a very good rate of return (greater than 80% by mass) by respecting the feed rate previously introduced and with good dispersion of the filler in the elastomeric matrix.
  • the method for preparing a masterbatch of natural rubber and silica comprises the following successive stages:
  • the coagulum recovery step is performed by a filtering operation.
  • the coagulum recovery step is performed by a centrifugation operation.
  • the silica is a precipitated silica.
  • the metallic element is aluminum, one of the following conditions being preferably satisfied:
  • the formulation pH is between 6 and 8 and the aluminum doping rate of the silica is greater than or equal to (1.75 * pH-10.5);
  • the formulation pH is greater than 8 and the aluminum doping rate of the silica is greater than or equal to 3.5% by weight.
  • the invention also relates to a masterbatch of diene elastomer and silica prepared according to the method which comprises the following successive steps:
  • the subject of the invention is also a rubber composition based on at least one masterbatch of diene elastomer and silica prepared according to the method according to the invention, as well as a finished or semi-finished article, a tire tread a tire or semi-finished product comprising at least one such rubber composition.
  • diope means silica with a metallic element, the fact of modifying the surface of the silica so as to integrate this metallic element in the mesh of the peripheral layers of the silica and / or on the surface of this silica .
  • silica especially silica “doped” aluminum, a silica having a metal element, in particular aluminum, in the mesh of its peripheral layers and / or on its surface.
  • This method is used to determine the surface aluminum of doped silicas by atomic emission spectrometry (ICP-AES). These silicas are prepared by doping with a commercial silica.
  • the aluminum is solubilized by hot sulfuric acid and then assayed by inductively coupled plasma atomic emission spectrometry (ICP-AES).
  • Surface aluminum contents are calculated by subtracting the aluminum contents from the starting commercial silica.
  • the calibration range used is 0 to 20 mg / l of aluminum, two measurements are made per sample.
  • the measurements will be done in duplicate. It is preferable to make a blank procedure during each series of measurements (preparation in the same conditions but without sample). The raw silicas before doping will also be analyzed. In an Erlermeyer, 250 mg of silica is weighed.
  • the verification indicator is prepared in each series of measurements in the same way as the above standards by introducing 1 ml of aluminum standard solution at 1 g / l of a different batch. It validates the calibration. The verification cookie does not keep after use. d) -4- ICP-AES Assay:
  • Verification standard E5 (theoretical value: 50mg / l)
  • Plasma and nebulization settings Spray chamber: cyclonic type (Scott chamber)
  • Plasma gas flow 12 1 / min
  • the uncertainty of measurement was determined on the ICP-AES spectrometer: Jobin Yvon Activa M at the rate of three measurements per day during 6 days. The uncertainty given is three standard deviations.
  • the pH is measured according to the following method deriving from the ISO 787/9 standard (pH of a suspension at 5% in water)
  • Reaction medium stirred with mechanical stirring (about 650 rpm)
  • the quantity of product analyzed must be weighed to 0.0 lmg and between 20 and 30 mg.
  • the blank curve is made following the procedure described in the TGA User's Manual.
  • Steps c) -1 to c) -3 described above are carried out with the following 2 instructions: during the preparation of the sample: note the weight of the empty crucible (PO) and the weight of the sample PI
  • the TGA takes into account, in order to determine the losses, the mass of the sample P2 which it calculates at the effective start of the measurement from the weight of the crucible, which is essential for the calculation of the residue; P2 is calculated by the TGA taking into account the mass P3 (Crucible + sample) at time T0 - PO.
  • the calculation of the levels of the various constituents and of the residue is made with respect to the sample weight PI defined during the preparation and not with respect to P2.
  • the volatile matter rate then calculated by the apparatus is erroneous since a part of MV, volatile matter (PI - P2) evaporated during the wait between the preparation and the actual start of the measurement.
  • Tx load (pcmo) [(D) / (B + C)] * 100
  • B is the percentage of organic material (range 250-550 ° C)
  • C is the percentage of losses (between 550 and 750 ° C)
  • D is the percentage of residue (above 750 ° C).
  • the coagulation yield corresponds to the ratio of the recovered dry mass (from which the mass of volatile matter as defined in the ATG measurement protocol has been removed in the paragraphs above) on the target mass, multiplied by one hundred.
  • the method for preparing a masterbatch of natural rubber and silica according to the invention comprises the following successive steps:
  • the silica is doped with a divalent metal element.
  • divalent metallic elements alkaline earths, and more particularly aluminum, may be mentioned in particular.
  • This "doping" step of the silica can advantageously be carried out according to the protocol detailed in the patent application WO 02/051750.
  • the doping level obtained corresponds to the percentage by weight of aluminum per hundred parts by weight of silica.
  • any silica S1O2 known to those skilled in the art, especially any precipitated or fumed silica having a BET surface and a CTAB specific surface both less than 450 m 2 / g, preferably 30 to 400 m 2 / g.
  • HDS highly specific silicas
  • the silicas “Ultrasil” 7000 and “Ultrasil” 7005 from Degussa the "Zeosil” silicas 1165MP, 1135MP and 1115MP from Rhodia.
  • the "Hi-Sil EZ150G” silica from PPG the "Zeopol” 8715, 8745 and 8755 silicas from Huber, the high surface area silicas as described in application WO 03/16837.
  • the doped silica obtained is then dispersed in water, preferably so as to obtain a dispersion whose viscosity is sufficient to be easily "manipulable".
  • a dispersion whose viscosity is sufficient to be easily "manipulable" For example, an aqueous dispersion of silica doped with a silica content in water of 4% by weight can be produced.
  • the dispersion is sonifée to allow to obtain a stability of the aggregates in water, which improves the aqueous dispersion of silica doped in the master batch then produced.
  • This sonication can notably be carried out using a Vibracell generator manufactured by SONICS and Materials Inc. of 1500 Watts with a piezoelectric converter with PZT crystal (reference 75010), a booster for the probe and a 19mm diameter titanium alloy probe. (for a height of 127mm).
  • an acidifying agent such as strong acids or weak acids, to allow the pH of the aqueous dispersion of doped silica to be modified in order to obtain at the time of setting contact of the two dispersions described in the following, the pH of the targeted formulation.
  • Natural rubber exists in various forms, as detailed in Chapter 3, Latex concentrates: properties and composition, K.F. Gaseley, A.D.T. Gordon and TD Pendle in “Natural Rubber Science and Technology", AD Roberts, Oxford University Press - 1988.
  • natural latex rubber latex "field”
  • natural concentrated rubber rubber latex the epoxy latex (“ENR")
  • ENR epoxy latex
  • Field natural rubber latex is a latex in which ammonia has been added to prevent premature coagulation and the concentrated natural rubber latex is a field latex which has been treated to a wash followed by a new concentration (the different categories of concentrated natural rubber latex are listed in particular according to ASTM D 1076-06).
  • the latex can be used directly or be previously diluted in water to facilitate its implementation.
  • mixers such as high shear mixers are preferred.
  • a coagulum of elastomer and silica is formed either as a single solid element in the solution, or in the form of several separate solid elements.
  • formulation pH of this new dispersion is measured according to the protocol described previously in the tests.
  • (iii) formulation pH is greater than 8 and silica doping rate of silica greater than or equal to 3.5% by weight.
  • the volumes of the two dispersions to put in contact and in particular the silica dispersion volume depends on the target silica level for the masterbatch to be produced. So the volume will be adapted accordingly.
  • the target silica content for the masterbatch is between 20 and 150 phr (parts by weight per hundred parts of elastomer), preferably between 30 and 100 phr and more preferably between 30 and 90 phr, more preferably between 30 and 90 phr. and 70 pce.
  • the solids recovered are filtered or centrifuged. Indeed, the filtering operation that can be performed using a filtration screen, may be unsuitable when the coagulum is in the form of many small and solid elements. In such a case, an additional centrifugation operation is preferably carried out.
  • the coagulum obtained is dried, for example in an oven.
  • the ATG loading rate and the coagulation yield are measured.
  • the masterbatches thus produced are capable of being used in rubber compositions, in particular for tires.
  • the tire rubber compositions based on the masterbatches according to the invention also comprise, in a known manner, a coupling agent and a vulcanization system.
  • coupling agent is understood, in known manner, an agent capable of establishing a sufficient bond, chemical and / or physical, between the inorganic filler and the diene elastomer; such a coupling agent, at least bifunctional, has for example as simplified general formula "Y-Z-X", in which:
  • Y represents a functional group ("Y" function) which is capable of binding physically and / or chemically to the inorganic filler, such a bond being able to be established, for example, between a silicon atom of the coupling agent and the surface hydroxyl (OH) groups of the inorganic filler (for example surface silanols in the case of silica);
  • X represents a functional group ("X" function) capable of binding physically and / or chemically to the diene elastomer, for example via a sulfur atom;
  • Z represents a divalent group making it possible to connect Y and X.
  • Coupling agents in particular silica / diene elastomer have been described in a very large number of documents, the best known being bifunctional organosilanes bearing alkoxyl functions (that is to say, by definition, "alkoxysilanes") to as functions "Y” and, as functions "X", functions capable of reacting with the diene elastomer such as for example polysulfide functions.
  • TESPT bis 3-triethoxysilylpropyl tetrasulfide
  • pigments whether these are aromatic or non-aromatic, pigments, protective agents such as anti-ozone waxes, chemical antiozonants, anti-oxidants, anti-fatigue agents, reinforcing resins, acceptors (for example phenolic novolac resin) or methylene donors (for example HMT or H3M) as described for example in the application WO 02/10269, a crosslinking system based on either sulfur or sulfur donors and / or peroxide and / or bismaleimides, vulcanization accelerators, vulcanization activators.
  • protective agents such as anti-ozone waxes, chemical antiozonants, anti-oxidants, anti-fatigue agents, reinforcing resins, acceptors (for example phenolic novolac resin) or methylene donors (for example HMT or H3M) as described for example in the application WO 02/10269, a crosslinking system based on either sulfur or sulfur donors and / or peroxide and / or bismaleimides, vulcanization
  • these compositions comprise, as preferred non-aromatic or very weakly aromatic plasticizing agent, at least one compound selected from the group consisting of naphthenic, paraffinic, MES, TDAE oils, esters (especially trioleate) oils.
  • glycerol the hydrocarbon plasticizing resins having a high Tg preferably greater than 30 ° C, and mixtures of such compounds.
  • compositions may also contain, in addition to the coupling agents, coupling activators, covering agents (comprising, for example, the only Y function) of the reinforcing inorganic filler or, more generally, processing aid agents capable of in a known manner, thanks to an improvement of the dispersion of the inorganic filler in the rubber matrix and to a lowering of the viscosity of the compositions, to improve their ability to use in the green state, these agents being for example hydrolysable silanes such as alkylalkoxysilanes (especially alkyltriethoxysilanes), polyols, polyethers (for example polyethylene glycols), primary, secondary or tertiary amines (for example trialkanol amines), hydroxylated or hydrolyzable POSs, for example cc, dihydroxy-polyorganosiloxanes (especially ⁇ , ⁇ -dihydroxy-polydimethylsiloxanes), fatty acids, for example e stea
  • the rubber compositions of the invention are manufactured in appropriate mixers, using two successive preparation phases according to a general procedure well known to those skilled in the art: a first phase of work or thermomechanical mixing (sometimes called phase “non-productive") at a high temperature, up to a maximum temperature of between 130 ° C and 200 ° C, preferably between 145 ° C and 185 ° C, followed by a second mechanical working phase (sometimes referred to as "Productive” phase) at lower temperature, typically below 120 ° C, for example between 60 ° C and 100 ° C, finishing phase during which is incorporated the crosslinking system or vulcanization.
  • a first phase of work or thermomechanical mixing sometimes called phase "non-productive”
  • a second mechanical working phase sometimes referred to as "Productive” phase
  • all the basic constituents of the compositions of the invention are intimately incorporated, by kneading, with the diene elastomer during the first so-called non-productive phase, that is, that is to say that is introduced into the mixer and that is kneaded thermomechanically, in one or more steps, at least these various basic constituents until the maximum temperature between 130 ° C and 200 ° C, preferably between between 145 ° C and 185 ° C.
  • the first (non-productive) phase is carried out in a single thermomechanical step during which all the necessary constituents, the possible coating agents, are introduced into a suitable mixer such as a conventional internal mixer. or other complementary additives and other additives, with the exception of the vulcanization system.
  • the total mixing time in this non-productive phase is preferably between 1 and 15 minutes.
  • the vulcanization system is then incorporated at low temperature, generally in an external mixer such as a roller mixer; the whole is then mixed (productive phase) for a few minutes, for example between 2 and 15 min.
  • a coating agent When a coating agent is used, its incorporation can be carried out entirely during the non-productive phase, together with the inorganic filler, or well in total during the productive phase, at the same time as the vulcanization system, or fractionated over the two successive phases.
  • the crosslinking system is preferably a vulcanization system, that is to say a system based on sulfur (or a sulfur-donor agent) and a primary vulcanization accelerator.
  • a vulcanization system that is to say a system based on sulfur (or a sulfur-donor agent) and a primary vulcanization accelerator.
  • various known secondary accelerators or vulcanization activators such as zinc oxide.
  • Sulfur is used at a preferential rate of between 0.5 and 12 phr, in particular between 1 and 10 phr.
  • the primary vulcanization accelerator is used at a preferred level of between 0.5 and 10 phr, more preferably between 0.5 and 5.0 phr.
  • accelerator primary or secondary
  • any compound capable of acting as an accelerator of vulcanization of diene elastomers in the presence of sulfur in particular thiazole-type accelerators and their derivatives, accelerators of thiuram type, zinc dithiocarbamates.
  • accelerators are for example selected from the group consisting of 2-mercaptobenzothiazyl disulfide (abbreviated "MBTS”), tetrabenzylthiuram disulfide (“TBZTD”), N-cyclohexyl-2-benzothiazyl sulfenamide (“CBS”), N, N dicyclohexyl-2-benzothiazyl sulphenamide (“DCBS”), N-tert-butyl-2-benzothiazyl sulphenamide (“TBBS”), N-tert-butyl-2-benzothiazyl sulphenimide (“TBSI”), zinc dibenzyldithiocarbamate (“ ZBEC ”) and mixtures of these compounds.
  • MBTS 2-mercaptobenzothiazyl disulfide
  • TBZTD tetrabenzylthiuram disulfide
  • CBS N-cyclohexyl-2-benzothiazyl sulfen
  • the final composition thus obtained is then calendered, for example in the form of a sheet or a plate, in particular for a characterization in the laboratory, or else extruded in the form of a rubber profile that can be used, for example, as a tread. tire for passenger vehicle.
  • the pH is maintained at 7.5 during the addition of the aluminum sulphate in order to prevent the sharp increase in the viscosity of the medium
  • the suspension thus sheared is introduced into the reactor and 2964.67 ml of demineralized water are added to obtain an initial concentration of 40 g / l, ie 3.8% w.
  • the medium is stirred at 650 rpm and heated to 60 ° C. (check with a temperature probe integrated in the electrode and adjust to this temperature)
  • the A1 2 (SO 4 ) 3 , 18H 2 O is added at 15 ml / min and the pH of the medium is stabilized at 7.5 by simultaneous addition of sodium hydroxide
  • reaction medium is left stirring and heating for 30 minutes (pH regulation at 7.5), then the pH is lowered to 4.5 by addition of H 2 SO 4 .
  • the cake obtained is resuspended in demineralised water at a concentration of approximately 10% w.
  • the measurement conditions 160 ° C without temperature ramp, duration of 30 minutes
  • taring of the aluminum cup about 2.5 g of sample are introduced into the cup and we start the measurement.
  • the protocol to be followed for different doping levels is identical except for the amount of aluminum precursor salt to be introduced, as summarized in Table 1 which follows, in which the amounts of aluminum salt used according to the rates appear. targeted doping.
  • the aluminum doped silicas previously obtained are dispersed in water so as to obtain a concentration of 4% by weight of silica in water.
  • the volume of the aqueous dispersion of doped silica is adjusted in relation to the volume of the latex as a function of the concentration of the silica and the concentration of the latex, so that, when the two dispersions are brought into contact (silica and elastomer latex), ) the desired formulation pH.
  • silica 50 parts by weight per hundred parts of elastomer was chosen, which corresponds here to 50 phr (in effect the masterbatches described here only comprise silica and the diene elastomer).
  • the pH measuring electrode is introduced into the mixture in order to measure the formulation pH.
  • the coagulum formed or the solids formed are centrifuged, including in cases where the visual appearance of the coagulum made it possible to envisage a filtering operation.
  • the centrifugation is carried out after transfer into a 250mL nalgene flask using a Sigma 4K15 scoop centrifuge at 8000 rpm for 10 minutes.
  • the coagulum thus recovered is dried under a fume hood at room temperature for 24 hours and then in an oven for 24 hours at 65 ° C. under a pressure of 300 mbar in order to remove the last traces of water.
  • the ATG loading rate and the coagulation yield are then measured.
  • This example is intended to demonstrate the proper functioning of the method according to the invention, in particular vis-à-vis the formulation pH measured for a doping rate of the given silica.
  • test E'4 (whose formulation pH is 8) that the silica level is not within the acceptable tolerance ("20% deviation from the 50pcmo target), nor the yield (which is less than 80%).
  • the tests E 'I, E' 2 and E '3 make it possible to obtain masterbatches with both acceptable silica levels (between 40 .mu.m and 60 .mu.C) and a coagulation yield greater than 80%.
  • Tests E "1 and E" 2 are carried out under conditions identical to those of the preceding examples with an aluminum doped silica with a doping level of 5% by weight.
  • Tests E "1 and E" 2 differ from each other as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
EP10768498A 2009-10-30 2010-10-25 Verfahren zur masterbatch-herstellung aus naturkautschuk und silica Withdrawn EP2493964A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0957694A FR2954774B1 (fr) 2009-10-30 2009-10-30 Methode de preparation d'un melange maitre de caoutchouc naturel et de silice
PCT/EP2010/066044 WO2011051215A1 (fr) 2009-10-30 2010-10-25 Methode de preparation d'un melange maitre de caoutchouc naturel et de silice

Publications (1)

Publication Number Publication Date
EP2493964A1 true EP2493964A1 (de) 2012-09-05

Family

ID=42224299

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10768498A Withdrawn EP2493964A1 (de) 2009-10-30 2010-10-25 Verfahren zur masterbatch-herstellung aus naturkautschuk und silica

Country Status (7)

Country Link
US (1) US9175144B2 (de)
EP (1) EP2493964A1 (de)
JP (1) JP2013509470A (de)
CN (1) CN102725332B (de)
FR (1) FR2954774B1 (de)
RU (1) RU2559497C2 (de)
WO (1) WO2011051215A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2952064B1 (fr) * 2009-10-30 2012-08-31 Michelin Soc Tech Methode de preparation d'un melange maitre d'elastomere dienique et de silice
CN103221463B (zh) 2010-09-15 2015-07-01 卡博特公司 具有含二氧化硅的填料的弹性体复合材料及其制造方法
FR2981081B1 (fr) * 2011-10-11 2013-11-01 Michelin Soc Tech Methode de preparation d'un melange maitre de caoutchouc naturel et de silice
FR2981080B1 (fr) 2011-10-11 2013-11-01 Michelin Soc Tech Methode de preparation d'un melange maitre de caoutchouc naturel et de silice dopee magnesium
CN105764973B (zh) 2013-11-27 2018-11-13 株式会社普利司通 橡胶组合物和轮胎
CA2983470C (en) 2015-04-30 2021-07-06 Cabot Corporation Carbon-coated particles
FR3038901B1 (fr) 2015-07-15 2022-06-17 Cabot Corp Procede de farbication d'un composite d'elastomere renforce avec de la silice et du noir de carbone et de produits contenant ledit elastomere
BR112018000833B1 (pt) 2015-07-15 2022-12-13 Cabot Corporation Métodos de produção de compósito de elastômero reforçado com sílica e artigo contendo o mesmo
FR3082781B1 (fr) * 2018-06-21 2022-12-02 Michelin & Cie Pneumatique comprenant un composite piezoelectrique
CN110564018B (zh) * 2019-09-26 2022-05-03 海南省先进天然橡胶复合材料工程研究中心有限公司 一种白炭黑天然橡胶复合材料的环保制备方法
US11773240B2 (en) 2019-10-06 2023-10-03 Silpara Technologies LLC Molecular composites of functional silica and natural rubber
WO2023055929A1 (en) 2021-09-30 2023-04-06 Cabot Corporation Methods of producing carbon blacks from low-yielding feedstocks and products made from same
NL2033169B1 (en) 2021-09-30 2023-06-26 Cabot Corp Methods of producing carbon blacks from low-yielding feedstocks and products made from same
WO2023147235A1 (en) 2022-01-28 2023-08-03 Cabot Corporation Methods of producing carbon blacks from low-yielding feedstocks and products made from same utilizing plasma or electrically heated processes
CN116871149A (zh) * 2023-08-01 2023-10-13 深圳市亚微新材料有限公司 亲水硅胶皮革、制作方法及硅氮烷在硅胶皮革中的应用

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3694398A (en) * 1965-05-24 1972-09-26 Burke Oliver W Jun Silica pigments and elastomer-silica pigment masterbatches and production processes relating thereto
US4132561A (en) * 1976-08-06 1979-01-02 Marion Darrah Intrachromospheruloid pigments and processes for producing same
FR2673187B1 (fr) 1991-02-25 1994-07-01 Michelin & Cie Composition de caoutchouc et enveloppes de pneumatiques a base de ladite composition.
FR2722505B1 (fr) 1994-07-15 1996-09-27 Michelin & Cie Compositions elastomeres chargees a la silice utilisables pour des enveloppes de pneumatiques
FR2722503A1 (fr) 1994-07-15 1996-01-19 Michelin & Cie Polymeres dieniques fonctionnels, leur procede de preparation et leur utilisation dans des compositions elastomeres chargees a la silice utilisables pour des enveloppes de pneumatiques
FR2732351B1 (fr) 1995-03-29 1998-08-21 Michelin & Cie Composition de caoutchouc pour enveloppe de pneumatique renfermant de la silice dopee aluminium a titre de charge renforcante
US5877238A (en) * 1995-05-22 1999-03-02 Cabot Corporation Elastomeric compounds incorporating silicon-treated carbon blacks and coupling agents
ES2178687T3 (es) 1995-10-04 2003-01-01 Michelin & Cie Composicion de caucho a base de un polimero dienico que comprende un derivado de organosilano, utilizable para la fabricacion de bandas de rodadura de neumaticos.
FR2744127A1 (fr) 1996-01-26 1997-08-01 Michelin & Cie Composition de caoutchouc a base d'un polymere dienique ayant une fonction silanol et comprenant un derive organosilane
US5763398A (en) * 1996-06-20 1998-06-09 Ferring B.V. Nasal administration of desmopressin
US5763388A (en) * 1996-12-18 1998-06-09 Dsm Copolymer, Inc. Process for producing improved silica-reinforced masterbatch of polymers prepared in latex form
FR2763593B1 (fr) 1997-05-26 1999-07-09 Michelin & Cie Composition de caoutchouc a base de silice destinee a la fabrication d'enveloppes de pneumatiques routiers ayant une resistance au roulement amelioree
EP0996666B1 (de) 1997-07-07 2003-10-29 Compagnie Générale des Etablissements MICHELIN-MICHELIN & CIE Kautschukmischung für gefärbten reifen
FR2765881B1 (fr) 1997-07-09 1999-08-13 Michelin & Cie Composition de caoutchouc vulcanisable au soufre contenant de la silice
AU8807198A (en) 1997-07-11 1999-02-08 Compagnie Generale Des Etablissements Michelin - Michelin & Cie Diene rubber composition reinforced with white filler, comprising as coupling agent (white filler/elastomer) multifunctionalized polyorganosiloxane
WO1999006480A1 (fr) 1997-08-01 1999-02-11 Compagnie Generale Des Etablissements Michelin-Michelin & Cie. Composition de caoutchouc pour pneumatique couleur
CA2338152A1 (fr) 1998-07-22 2000-02-03 Societe De Technologie Michelin Systeme de couplage (charge blanche/elastomere dienique) a base d'alkoxysilane polysulfure, d'enamine et de derive guanidique
CN1128174C (zh) 1998-07-22 2003-11-19 米凯林技术公司 基于多硫化烷氧基硅烷、二硫代磷酸锌和胍衍生物的偶联体系及其应用,包含该偶联体系的橡胶组合物及其应用
FR2804119B1 (fr) * 2000-01-24 2002-12-13 Rhodia Chimie Sa Procede de preparation de melanges-maitres a base de polymere et de particules minerales et melanges-maitres ainsi obtenus
AU2002210430A1 (en) 2000-07-31 2002-02-13 Michelin Recherche Et Technique S.A. Running tread for tyre
JP2004522811A (ja) * 2000-10-18 2004-07-29 エクソンモービル・ケミカル・パテンツ・インク エラストマー組成物
FR2819246B1 (fr) 2000-12-27 2003-10-03 Rhodia Chimie Sa Suspensions de silice precipitee, dopee et de faible granulometrie et leur application comme charge pour papier
US20030125474A1 (en) * 2001-06-27 2003-07-03 Fumito Yatsuyanagi Rubber composition
JP2003012863A (ja) * 2001-06-27 2003-01-15 Yokohama Rubber Co Ltd:The ゴム組成物
SE519792C2 (sv) 2001-08-17 2003-04-08 Volvo Lastvagnar Ab Metod för estimering av massan hos ett fordon vilket framförs på en väg med en varierande lutning samt metod för estimering av lutningen av den väg där ett fordon framförs
US7101922B2 (en) 2001-12-18 2006-09-05 The Goodyear Tire & Rubber Company Method for preparing elastomer/silica composite
DE10256790A1 (de) * 2002-12-05 2004-06-17 Degussa Ag Kontinuierliches Verfahren zur Herstellung füllstoffhaltiger Kautschukgranulate
US7572851B2 (en) * 2003-07-30 2009-08-11 The Goodyear Tire & Rubber Company Process for preparing a silica rubber blend
US7414087B2 (en) * 2003-08-20 2008-08-19 Sumitomo Rubber Industries, Ltd. Rubber composition and pneumatic tire using the same
DE10354616A1 (de) * 2003-11-21 2005-06-23 Degussa Ag Kautschukmischungen
ES2385569T3 (es) * 2004-11-19 2012-07-26 Bridgestone Corporation Mezcla madre de caucho natural modificado y método para producir la misma así como composición de caucho y neumático
JP2009215338A (ja) * 2008-03-07 2009-09-24 Daiso Co Ltd シリカ配合ゴム組成物とその架橋物、及びその製造方法。

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2011051215A1 *

Also Published As

Publication number Publication date
RU2559497C2 (ru) 2015-08-10
US9175144B2 (en) 2015-11-03
US20120264875A1 (en) 2012-10-18
FR2954774B1 (fr) 2012-01-06
JP2013509470A (ja) 2013-03-14
CN102725332B (zh) 2014-11-05
FR2954774A1 (fr) 2011-07-01
CN102725332A (zh) 2012-10-10
RU2012122214A (ru) 2013-12-10
WO2011051215A1 (fr) 2011-05-05

Similar Documents

Publication Publication Date Title
WO2011051215A1 (fr) Methode de preparation d'un melange maitre de caoutchouc naturel et de silice
FR2952064A1 (fr) Methode de preparation d'un melange maitre d'elastomere dienique et de silice
EP2493965A2 (de) Verfahren zur masterbatch-herstellung aus synthetischem dienelastomer und silica
EP2766200B1 (de) Verfahren zur masterbatch-herstellung aus naturkautschuk und silica
EP2766203A1 (de) Verfahren zur masterbatch-herstellung aus dienelastomer und silica
WO2013053737A1 (fr) Methode de preparation d'un melange maitre de caoutchouc naturel et de silice dopee magnesium
EP2655423B1 (de) Verfahren zur masterbatch-herstellung in der flüssigen phase
FR2969624A1 (fr) Procede de preparation d'un melange-maitre en phase liquide
EP3619051B1 (de) Kautschukzusammensetzung mit mindestens einem siliciumdioxid als anorganischer verstärkungsfüllstoff
WO2013053735A1 (fr) Methode pour preparer un melange maitre d'elastomere dienique et de silice
EP2766425B1 (de) Verfahren zur masterbatch-herstellung aus dienelastomer und silica
WO2013053736A1 (fr) Methode pour preparer un melange maitre d'elastomere dienique et de silice
WO2014161756A1 (fr) Methode pour preparer un melange maitre d'elastomere dienique et de charge renforcante

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120530

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20131209

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20170929