EP2493650A2 - Method and device for producing a component of a turbomachine - Google Patents

Method and device for producing a component of a turbomachine

Info

Publication number
EP2493650A2
EP2493650A2 EP10798474A EP10798474A EP2493650A2 EP 2493650 A2 EP2493650 A2 EP 2493650A2 EP 10798474 A EP10798474 A EP 10798474A EP 10798474 A EP10798474 A EP 10798474A EP 2493650 A2 EP2493650 A2 EP 2493650A2
Authority
EP
European Patent Office
Prior art keywords
component
laser
layer
plasma
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10798474A
Other languages
German (de)
French (fr)
Inventor
Erwin Bayer
Sven-J. Hiller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Publication of EP2493650A2 publication Critical patent/EP2493650A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/364Process control of energy beam parameters for post-heating, e.g. remelting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/50Treatment of workpieces or articles during build-up, e.g. treatments applied to fused layers during build-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • B22F12/43Radiation means characterised by the type, e.g. laser or electron beam pulsed; frequency modulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/356Working by laser beam, e.g. welding, cutting or boring for surface treatment by shock processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/005Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of a refractory metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/007Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of copper or another noble metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/14Titanium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method for producing a component of a turbomachine, in particular a component of a turbine or a compressor, by means of a generative manufacturing method for the layered construction of the component.
  • the invention further relates to an apparatus for producing a component of a turbomachine, in particular a component of a turbine or a compressor.
  • Methods and apparatus for making a component of a turbomachine are known in a wide variety.
  • generative manufacturing methods are known in which the component is built up in layers.
  • ⁇ 38 ⁇ ⁇ 1 ⁇ 6 ⁇ ⁇ ⁇ 88 ⁇ 6- ⁇ or electron beam deposition welding results in a very fine-grained component structure.
  • a disadvantage of this fine-grained component structure is the lack of forming work, which enables, for example, a precipitation hardening and thus a high strength comparable to a forging alloy.
  • the components are also processed by means of a hot isostatic pressing.
  • An inventive method for producing a component of a turbomachine comprises a generative manufacturing method for layered construction of the component, wherein after the production of one or more successive component layers at least partially a laser or plasma-induced pressurization of the surface of the last produced component layer takes place. Due to the layer-by-layer solidification of the component during the generative structure, the component as a whole solidifies.
  • the laser- or plasma-induced pressurization of the surface of the last-produced component layer leads in each case to permanent plastic deformation in the microstructure and to a transformation of the sclerotic structure into a forging structure with a very fine-grained microstructure. Overall, a reshaping of the melt structure of the component results in a Schmiedeslruktur with increased strength and a significant reduction in microporosity even in the construction phase of the generatively produced component.
  • the method comprises the following steps: a) layer-wise application of at least one pulverulent component material to a component platform, the order taking place in accordance with the layer information of the component to be produced; b) layer-by-layer and local fusion or sintering of the component material by means of at least one laser or electron beam for producing the component layer, wherein at least one laser or at least one electron beam device corresponding to the layer information of the component to be produced is applied via the applied component material layer is guided; c) at least partially laser- or plasma-induced pressurization of the surface of the component layer; d) layer-wise lowering of the component platform by a predefined layer thickness; and e) repeating steps a) to d) until completion of the component.
  • the method comprises the following steps: a) layer-wise application of at least one pulverulent component material to a component platform, the order taking place in accordance with the layer information of the component to be produced; b) layer-wise and local fusion or sintering of the component material by means of at least one laser or electron beam for producing the component layer, wherein at least one laser or at least one electron beam device is guided over the applied component material layer in accordance with the layer information of the component to be produced; c) layer-wise lowering of the component platform by a predefined layer thickness; d) repeating steps a) to c); e) at least partially laser- or plasma-induced pressurization of the surface of the device layer; and f) repeating steps a) to e) until completion of the component.
  • the solidification can be carried out either after each applied component layer or even after a plurality of component layers, for example only after every fifth or tenth component layer.
  • the number of solidification steps also results according to the required degree of deformation of the component and the power density of the pressurization source.
  • the additive manufacturing process can be a rapid prototyping or rapid manufacturing process, in particular sintering, micro-sintering, melting, build-up welding with a laser or electron beam.
  • the powdered component material usually consists of metal, a metal alloy, ceramic, silicate or a mixture thereof.
  • a C0 2 or Nd: YAG laser may be used. In particular, this laser can be pulsed.
  • the laser- or plasma-induced pressurization of the surface of the last-produced component layer by means of a plasma shock peening, in particular a laser shock peening by means of a laser beam source or a plasma pulse Peening means of a plasma pulse carried out.
  • a plasma shock peening in particular a laser shock peening by means of a laser beam source or a plasma pulse Peening means of a plasma pulse carried out.
  • a short pulse laser can advantageously be used.
  • the shape and the material structure of the component are determined as a computer-generated model and the layer information generated therefrom is used to control at least one powder feed, the component platform, the at least one laser or the at least one electron beam device.
  • This enables automated and computer-controlled production processes.
  • a device according to the invention for producing a component of a turbomachine comprises at least one powder feed for applying at least one powdered component material to a component platform, at least one radiation source for a layered and local fusion or merging of the component material and at least one Laser beam source or at least one plasma pulse source for generating a laser or plasma-induced pressure wave.
  • the device according to the invention enables the production of components with increased strength, since it combines the implementation of a generative manufacturing process, such as a rapid prototyping or rapid manufacturing process with the possibility of laser or plasma-induced pressurization.
  • the radiation source may be a laser or an electron beam device.
  • the laser is for example a C0 2 or Nd: YAG laser.
  • the laser beam source for generating the laser-induced pressurization may in particular be a short-pulse laser.
  • the Pulverzuchtung can on the one hand to an active Pulverzuchtung, which is either coaxial or arranged laterally to the radiation source for a layered and local fusing or sintering of the component material, or a powder bed, wherein the powdered component material in layers prior to fusing or sintering on the Powder bed is applied. Furthermore, it is possible that the process of solidification takes place parallel to the generative structure in the same plant.
  • the laser beam source or the laser for the solidification of the component or the component layers can also be used to clean the component surface, so that a Subsequent surface finish of the component can be dispensed with.
  • only the parameters of the laser, in particular the energy performance, must be adjusted.
  • the laser beam source or the plasma pulse source is adjusted so that not only the solidification step but also the fusing and sintering of the component material can be performed by the laser beam source or the plasma pulse source.
  • the figure shows a schematic representation of a device 26 for producing a component 10 of a turbomachine.
  • the component 10 is a blade of a high-pressure turbine.
  • the device 26 comprises a radiation source 14 for a layer-by-layer and local fusion or sintering of a component material 16.
  • the radiation source 14 is a pulsed Nd: YAG laser in the illustrated example.
  • the laser power is depending on the type of component, in particular paddle type, about 400 to 1000 W.
  • the average particle size of the pulverfbrmigen component material 16 used is about 10 to 100 ⁇ .
  • the component material 16 consists in particular of a titanium or nickel alloy.
  • the device 26 has a powder feed 28 for applying the pulverfbrmigen component material 16 and a component platform (not shown).
  • the powder feeder 28 is arranged coaxially with the radiation source 14, namely the laser.
  • the generated laser and powder beam 18 is fused or sintered into a component layer 12.
  • an applicator laser is used for this embodiment of the apparatus and method.
  • a sintering or melting laser is used as a radiation source 18, in which case the component 10 is generated in a powder bed of a powder container 24.
  • the device 26 also has a second radiation source, namely a laser beam source 20 for generating a laser-induced pressure wave.
  • the laser beam source 20 is a short-pulse laser which, by means of a laser-induced pressurization of a surface of the last-produced component layer 12, effects reshaping and solidification of the component layers during the generative structure. In this case, a laser beam 22 is guided along the surface of the last-produced component layer 12.
  • the shape and material structure of the component 10 are determined as a computer-generated model (CAD model) in a computer.
  • the layer information generated therefrom is input as corresponding data into a control computer (not shown) of the device 26. These data serve to control the powder feed 28, the component platform and the radiation source 14, namely the application laser.
  • the laser beam source 20 for generating a pressure wave on the surface of the last-produced component layer 12 can also be controlled by means of this information.
  • the named computer can also be used in particular as a control computer of the device 26.
  • the layered structure of the component 10 is carried out according to a generative manufacturing method as described above.

Abstract

The invention relates to a method for producing a component (10) of a turbomachine, especially a structural part of a turbine or a compressor, the method being a generative production method for the layer-by-layer buildup of the component (10). After production of one or more successive component layers pressure is applied to at least sections of the surface of the most recently produced component layer (12), the pressure being induced by laser or plasma. The invention further relates to a device for producing a component (10) of a turbomachine, especially a structural part of a turbine or a compressor, the device (26) comprising at least one powder feed (28) for the deposition of at least one powder component material (16) onto a component platform, at least one radiation source (14) for a local layer-by-layer fusion or sintering of the component material (16) and at least one laser radiation source (20) or at least one plasma impulse source.

Description

Verfahren und Vorrichtung zur Herstellung eines Bauteils einer Strömungsmaschine  Method and device for producing a component of a turbomachine
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Bauteils einer Strömungsmaschine, insbesondere eines Bauteils einer Turbine oder eines Verdichters, mittels eines generativen Fertigungsverfahrens zum schichtweisen Aufbau des Bauteils. Die Erfindung betrifft weiterhin eine Vorrichtung zur Herstellung eines Bauteils einer Strömungsmaschine, insbesondere eines Bauteils einer Turbine oder eines Verdichters. The present invention relates to a method for producing a component of a turbomachine, in particular a component of a turbine or a compressor, by means of a generative manufacturing method for the layered construction of the component. The invention further relates to an apparatus for producing a component of a turbomachine, in particular a component of a turbine or a compressor.
Verfahren und Vorrichtungen zur Herstellung eines Bauteils einer Strömungsmaschine sind in einer großen Vielzahl bekannt. Insbesondere sind generative Fertigungsverfahren bekannt, bei denen das Bauteil schichtweise aufgebaut wird. Beim generativen Herstellen von vorwiegend metallischen Bauteilen durch Rapid-Manufacturing- oder Rapid-Prototyping- Verfahren oder durch Lasersintern, Ε38ε ΐι1ν6Γ ηίΪΓ^88ϋΐΝν6-βεη oder Elektronenstrahl- Auftragsschweißen entsteht eine sehr feinkörnige Bauteilstruktur. Nachteilig an dieser feinkörnigen Bauteilstruktur ist jedoch die fehlende Umformarbeit, die zum Beispiel eine Ausscheidungshärtung und damit eine hohe Festigkeit vergleichbar mit einer Schmiedelegierung ermöglicht. Um die Werkstoffeigenschaften eines Bauteils nach dem generativen Aufbau zu verbessern, werden die Bauteile auch mittels eines heißisostatischen Pressens bearbeitet. Dabei wird versucht, die Eigenschaften des generativ hergestellten Bauteils durch ein energiearmes Zusammensintern verschiedener Werk- stoffpulver zu verbessern und an die Eigenschaften einer Schmiedelegierung anzugleichen. Diese Eigenschaften können auch mit bisherigen generativen Verfahren nicht erreicht werden, so dass insbesondere hochtemperatur- oder druckbelastete Bauteile nicht generativ hergestellt werden. Methods and apparatus for making a component of a turbomachine are known in a wide variety. In particular, generative manufacturing methods are known in which the component is built up in layers. In generative production of predominantly metallic components by rapid-manufacturing or rapid prototyping methods or by laser sintering, Ε38ε ΐι1ν6Γ ηίΪΓ ^ 88ϋΐΝν6-βεη or electron beam deposition welding results in a very fine-grained component structure. A disadvantage of this fine-grained component structure, however, is the lack of forming work, which enables, for example, a precipitation hardening and thus a high strength comparable to a forging alloy. In order to improve the material properties of a component after the generative structure, the components are also processed by means of a hot isostatic pressing. An attempt is made to improve the properties of the generatively produced component by low-energy sintering of different material powders and to match the properties of a forging alloy. These properties can not be achieved with previous generative methods, so that in particular high-temperature or pressure-loaded components are not produced generatively.
Es ist daher Aufgabe der vorliegenden Erfindung ein Verfahren zur Herstellung eines Bauteils einer Strömungsmaschine der eingangs genannten Art bereit zu stellen, welches die Herstellung von Bauteilen mit gesteigerter Festigkeit, insbesondere von Bauteilen einer Turbine oder eines Verdichters ermöglicht. It is therefore an object of the present invention to provide a method for producing a component of a turbomachine of the aforementioned type, which enables the production of components with increased strength, in particular of components of a turbine or a compressor.
Es ist weiterhin Aufgabe der vorliegenden Erfindung eine Vorrichtung zur Herstellung eines Bauteils einer Strömungsmaschine bereit zu stellen, welche die Herstellung von Bauteilen mit gesteigerter Festigkeit, insbesondere von Bauteilen einer Turbine oder eines Verdichters ermöglicht. It is a further object of the present invention to provide an apparatus for producing a component of a turbomachine, which comprises the production of components increased strength, in particular of components of a turbine or a compressor allows.
Die der Erfindung zu Grunde liegenden Aufgaben werden durch ein Verfahren mit den im Anspruch 1 dargelegten Merkmalen sowie durch die im Anspruch 12 dargestellten Vorrichtung gelöst. The objects underlying the invention are achieved by a method having the features set out in claim 1 as well as by the device shown in claim 12.
Vorteilhafte Ausgestaltungen mit zweckmäßigen Weiterbildungen der Erfindung sind in den jeweiligen Unteransprüchen angegeben, wobei vorteilhafte Ausgestaltungen des Verfahrens als vorteilhafte Ausgestaltungen der Vorrichtung und umgekehrt - soweit zweckmäßig - anzusehen sind. Advantageous embodiments with expedient developments of the invention are specified in the respective subclaims, wherein advantageous embodiments of the method as advantageous embodiments of the device and vice versa - if appropriate - are to be regarded.
Ein erfindungsgemäßes Verfahren zur Herstellung eines Bauteils einer Strömungsmaschine, insbesondere eines Bauteils einer Turbine oder eines Verdichters, umfasst ein generatives Fertigungsverfahren zum schichtweisen Aufbau des Bauteils, wobei nach der Herstellung einer oder mehrerer aufeinander folgender Bauteilschichten zumindest teilweise eine laser- oder plasmainduzierte Druckbeaufschlagung der Oberfläche der zuletzt hergestellten Bauteilschicht erfolgt. Durch die schichtweise Verfestigung des Bauteils während des generativen Aufbaus erfolgt eine Verfestigung des Bauteils insgesamt. Die laser- oder plasmainduzierte Druckbeaufschlagung der Oberfläche der zuletzt hergestellten Bauteilschicht fuhrt jeweils zu bleibenden plastischen Verformungen im Gefuge und zu einer Umwandlung der Sclimelzstruktur in eine Schmiedestruktur mit sehr feinkörnigem Gefuge. Insgesamt ergibt sich ein Umformen der Schmelzstruktur des Bauteils in eine Schmiedeslruktur mit gesteigerter Festigkeit und eine signifikante Verringerung der Mikroporosität schon in der Bauphase des generativ hergestellten Bauteils. An inventive method for producing a component of a turbomachine, in particular a component of a turbine or a compressor comprises a generative manufacturing method for layered construction of the component, wherein after the production of one or more successive component layers at least partially a laser or plasma-induced pressurization of the surface of the last produced component layer takes place. Due to the layer-by-layer solidification of the component during the generative structure, the component as a whole solidifies. The laser- or plasma-induced pressurization of the surface of the last-produced component layer leads in each case to permanent plastic deformation in the microstructure and to a transformation of the sclerotic structure into a forging structure with a very fine-grained microstructure. Overall, a reshaping of the melt structure of the component results in a Schmiedeslruktur with increased strength and a significant reduction in microporosity even in the construction phase of the generatively produced component.
In vorteilhaften Ausgestaltungen des erfindungsgemäßen Verfahrens umfasst das Verfahren folgende Schritte: a) Schichtweiser Auftrag von mindestens einem pulverförmigen Bauteilwerkstoff auf eine Bauteilplattform, wobei der Auftrag entsprechend der Schichtinformation des herzustellenden Bauteils erfolgt; b) Schichtweises und lokales Verschmelzen oder Versintern des Bauteilwerkstoffs mittels mindestens eines Laser- oder Elektronenstrahls zur Herstellung der Bauteilschicht, wobei mindestens ein Laser oder mindestens eine Elektronenstrahlvorrichtung entsprechend der Schichtinformation des herzustellenden Bauteils über die aufgetragene Bauteil- werkstoffschicht geführt wird; c) Zumindest teilweise laser- oder plasmainduzierte Druckbeaufschlagung der Oberfläche der Bauteilschicht; d) Schichtweises Absenken der Bauteilplattform um eine vordefinierte Schichtdicke; und e) Wiederholen der Schritte a) bis d) bis zur Fertigstellung des Bauteils. Es ist aber auch möglich, dass das Verfahren folgende Schritte umfasst: a) Schichtweiser Auftrag von mindestens einem pulverfbrmigen Bauteilwerkstoff auf eine Bauteilplattform, wobei der Auftrag entsprechend der Schichtinformation des herzustellenden Bauteils erfolgt; b) Schichtweises und lokales Verschmelzen oder Versintern des Bauteilwerkstoffs mittels mindestens eines Laser- oder Elektronenstrahls zur Herstellung der Bauteilschicht, wobei mindestens ein Laser oder mindestens eine Elektronenstrahlvorrichtung entsprechend der Schichtinformation des herzustellenden Bauteils über die aufgetragene Bauteilwerkstoffschicht geführt wird; c) Schichtweises Absenken der Bauteilplattform um eine vordefinierte Schichtdicke; d) Wiederholen der Schritte a) bis c); e) Zumindest teilweise laser- oder plasmainduzierte Druckbeaufschlagung der Oberfläche der Bauteilschicht; und f) Wiederholen der Schritte a) bis e) bis zur Fertigstellung des Bauteils. In advantageous embodiments of the method according to the invention, the method comprises the following steps: a) layer-wise application of at least one pulverulent component material to a component platform, the order taking place in accordance with the layer information of the component to be produced; b) layer-by-layer and local fusion or sintering of the component material by means of at least one laser or electron beam for producing the component layer, wherein at least one laser or at least one electron beam device corresponding to the layer information of the component to be produced is applied via the applied component material layer is guided; c) at least partially laser- or plasma-induced pressurization of the surface of the component layer; d) layer-wise lowering of the component platform by a predefined layer thickness; and e) repeating steps a) to d) until completion of the component. However, it is also possible for the method to comprise the following steps: a) layer-wise application of at least one pulverulent component material to a component platform, the order taking place in accordance with the layer information of the component to be produced; b) layer-wise and local fusion or sintering of the component material by means of at least one laser or electron beam for producing the component layer, wherein at least one laser or at least one electron beam device is guided over the applied component material layer in accordance with the layer information of the component to be produced; c) layer-wise lowering of the component platform by a predefined layer thickness; d) repeating steps a) to c); e) at least partially laser- or plasma-induced pressurization of the surface of the device layer; and f) repeating steps a) to e) until completion of the component.
Je nach Eindringtiefe der laser- oder plasmainduzierten Druckbeaufschlagung kann die Verfestigung entweder nach jeder aufgetragenen Bauteilschicht oder auch nach einer Vielzahl von Bauteilschichten, zum Beispiel nur nach jeder fünften oder zehnten Bauteilschicht, durchgeführt werden. Die Anzahl der Verfestigungsschritte ergibt sich auch entsprechend dem geforderten Umformgrad des Bauteils und der Leistungsdichte der Druckbeaufschlagungsquelle. Des Weiteren kann das generative Fertigungsverfahren ein Rapid Prototyping- oder Rapid-Manufacturing- Verfahren, insbesondere ein Sintern, Mikrosintern, Schmelzen, Auftragsschweißen mit einem Laser- oder Elektronenstrahl sein. Der pulverförmige Bauteilwerkstoff besteht üblicherweise aus Metall, einer Metall-Legierung, Keramik, Silikat oder einer Mischung davon. Im Falle des Laser- sinterns, Lasermikrosinterns, Laserschmelzens oder Laserauftragsschweißens kann ein C02- oder Nd:YAG-Laser verwendet werden. Insbesondere kann dieser Laser gepulst ausgebildet sein. Depending on the penetration depth of the laser or plasma-induced pressurization, the solidification can be carried out either after each applied component layer or even after a plurality of component layers, for example only after every fifth or tenth component layer. The number of solidification steps also results according to the required degree of deformation of the component and the power density of the pressurization source. Furthermore, the additive manufacturing process can be a rapid prototyping or rapid manufacturing process, in particular sintering, micro-sintering, melting, build-up welding with a laser or electron beam. The powdered component material usually consists of metal, a metal alloy, ceramic, silicate or a mixture thereof. In the case of laser sintering, laser microsintering, laser melting or laser deposition welding, a C0 2 or Nd: YAG laser may be used. In particular, this laser can be pulsed.
In weiteren vorteilhaften Ausgestaltungen des erfindungsgemäßen Verfahrens wird die laser- oder plasmainduzierte Druckbeaufschlagung der Oberfläche der zuletzt hergestellten Bauteilschicht mittels eines Plasma-Schock-Peenings, insbesondere einem Laser-Schock-Peening mittels einer Laserstrahlquelle oder einem Plasma-Impuls-Peening mittels einer Plasmaimpulsquelle durchgeführt. Für das Laser-Schock-Peening kann vorteilhafterweise ein Kurzpulslaser verwendet werden. In further advantageous embodiments of the method according to the invention, the laser- or plasma-induced pressurization of the surface of the last-produced component layer by means of a plasma shock peening, in particular a laser shock peening by means of a laser beam source or a plasma pulse Peening means of a plasma pulse carried out. For the laser shock peening, a short pulse laser can advantageously be used.
In einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens wird die Form und der Materialaufbau des Bauteils als computergeneriertes Modell bestimmt und die daraus generierten Schichtinformationen zur Steuerung von mindestens einer Pulverzuführung, der Bauteilplattform, des mindestens einen Lasers oder der mindestens einen Elektronenstrahlvorrich- tüng verwendet. Damit sind automatisierte und computergesteuerte Herstellungsabläufe möglich. Zudem ist es möglich, die Laserstrahlquelle oder die Plasmaimpulsquelle zur Erzeugung der la- ser- oder plasmainduzierten Druckbeaufschlagung ebenfalls anhand der generierten Daten zu steuern. In a further advantageous refinement of the method according to the invention, the shape and the material structure of the component are determined as a computer-generated model and the layer information generated therefrom is used to control at least one powder feed, the component platform, the at least one laser or the at least one electron beam device. This enables automated and computer-controlled production processes. In addition, it is possible to control the laser beam source or the plasma pulse source to generate the laser- or plasma-induced pressurization likewise on the basis of the generated data.
Eine erfindungsgemäße Vorrichtung zur Herstellung eines Bauteils einer Strömungsmaschine, insbesondere eines Bauteils einer Turbine oder eines Verdichters, umfasst mindestens eine Pulverzufuhrung zum Auftrag von mindestens einem pulverförmigen Bauteilwerkstoff auf eine Bauteilplattform, mindestens eine Strahlenquelle für ein schichtweises und lokales Verschmelzen oder Vereintem des Bauteilwerkstoffs sowie mindestens eine Laserstrahlquelle oder mindestens eine Plasmaimpulsquelle zur Erzeugung einer laser- oder plasmainduzierten Druckwelle. Die erfindungsgemäße Vorrichtung ermöglicht die Herstellung von Bauteilen mit gesteigerter Festigkeit, da sie die Durchführung eines generativen Fertigungsverfahrens, wie zum Beispiel eines Rapid-Prototyping- oder Rapid-Manufacturing-Verfahrens mit der Möglichkeit einer laser- oder plasmainduzierten Druckbeaufschlagung kombiniert. Dabei kann die Strahlenquelle ein Laser oder eine Elektronenstrahlvorrichtung sein. Der Laser ist zum Beispiel ein C02- oder Nd:YAG- Laser. Die Laserstrahlquelle zur Erzeugung der laserinduzierten Druckbeaufschlagung kann insbesondere ein Kurzpulslaser sein. Bei der Pulverzufuhrung kann es sich einerseits um eine aktive Pulverzufuhrung, die entweder koaxial oder seitlich zur Strahlenquelle für ein schichtweises und lokales Verschmelzen oder Versintern des Bauteilwerkstoffs angeordnet ist, oder um ein Pulverbett handeln, wobei der pulverförmige Bauteilwerkstoff schichtweise vor dem Verschmelzen oder Versintern auf das Pulverbett aufgetragen wird. Des Weiteren ist es möglich, dass der Pro- zess der Verfestigung parallel zum generativen Aufbau in der gleichen Anlage erfolgt. Die Laserstrahlquelle beziehungsweise der Laser für die Verfestigung des Bauteils beziehungsweise der Bauteilschichten kann zudem zum Säubern der Bauteiloberfläche genutzt werden, so dass auf ein nachträgliches Oberflächenfinish des Bauteils verzichtet werden kann. Hierzu müssen lediglich die Parameter des Lasers, insbesondere die Energieleistung, angepasst werden. Des Weiteren besteht die Möglichkeit, dass die Laserstrahlquelle oder die Plasmaimpulsquelle derart eingestellt wird, dass nicht nur der Verfestigungsschritt, sondern auch das Verschmelzen und Versintern des Bauteilwerkstoffs mittels der Laserstrahlquelle oder der Plasmaimpulsquelle durchgeführt werden kann. A device according to the invention for producing a component of a turbomachine, in particular a component of a turbine or a compressor, comprises at least one powder feed for applying at least one powdered component material to a component platform, at least one radiation source for a layered and local fusion or merging of the component material and at least one Laser beam source or at least one plasma pulse source for generating a laser or plasma-induced pressure wave. The device according to the invention enables the production of components with increased strength, since it combines the implementation of a generative manufacturing process, such as a rapid prototyping or rapid manufacturing process with the possibility of laser or plasma-induced pressurization. In this case, the radiation source may be a laser or an electron beam device. The laser is for example a C0 2 or Nd: YAG laser. The laser beam source for generating the laser-induced pressurization may in particular be a short-pulse laser. The Pulverzufuhrung can on the one hand to an active Pulverzufuhrung, which is either coaxial or arranged laterally to the radiation source for a layered and local fusing or sintering of the component material, or a powder bed, wherein the powdered component material in layers prior to fusing or sintering on the Powder bed is applied. Furthermore, it is possible that the process of solidification takes place parallel to the generative structure in the same plant. The laser beam source or the laser for the solidification of the component or the component layers can also be used to clean the component surface, so that a Subsequent surface finish of the component can be dispensed with. For this purpose, only the parameters of the laser, in particular the energy performance, must be adjusted. Furthermore, there is a possibility that the laser beam source or the plasma pulse source is adjusted so that not only the solidification step but also the fusing and sintering of the component material can be performed by the laser beam source or the plasma pulse source.
Verwendung findet das im Vorhergehenden beschriebene Verfahren und die im Vorhergehenden beschriebene Vorrichtung bei der Herstellung von Triebwerksbauteilen aus Nickel- oder Titanbasislegierungen, insbesondere zur Herstellung von Verdichter- oder Turbinenschaufeln. Use is made of the method described above and the apparatus described above in the production of engine components of nickel or titanium-based alloys, in particular for the production of compressor or turbine blades.
Weitere Vorteile, Merkmale und Einzelheitert der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines zeichnerisch dargestellten Ausführungsbeispiels. Dabei zeigt die Figur eine schematische Darstellung einer Vorrichtung 26 zur Herstellung eines Bauteils 10 einer Strömungsmaschine. Bei dem Bauteil 10 handelt es sich in dem dargestellten Ausführungsbeispiel um eine Schaufel einer Hochdruckturbine. Die Vorrichtung 26 umfasst eine Strahlenquelle 14 für ein schichtweises und lokales Verschmelzen oder Versintem eines Bauteil Werkstoffs 16. Die Strahlenquelle 14 ist in dem dargestellten Beispiel ein gepulster Nd:YAG-Laser. Die Laserleistung beträgt je nach Bauteiltyp, insbesondere Schaufeltyp, ca. 400 bis 1000 W. Die mittlere Korngröße des verwendeten pulverfbrmigen Bauteilwerkstoffs 16 beträgt ca. 10 bis 100 μπι. Der Bauteilwerkstoff 16 besteht dabei insbesondere aus einer Titan- oder Nickellegierung. Des Weiteren weist die Vorrichtung 26 eine Pulverzuführung 28 zum Auftrag des pulverfbrmigen Bauteilwerkstoffs 16 sowie eine Bauteilplattform (nicht dargestellt) auf. Further advantages, features and detail of the invention will become apparent from the following description of a drawing illustrated embodiment. The figure shows a schematic representation of a device 26 for producing a component 10 of a turbomachine. In the illustrated embodiment, the component 10 is a blade of a high-pressure turbine. The device 26 comprises a radiation source 14 for a layer-by-layer and local fusion or sintering of a component material 16. The radiation source 14 is a pulsed Nd: YAG laser in the illustrated example. The laser power is depending on the type of component, in particular paddle type, about 400 to 1000 W. The average particle size of the pulverfbrmigen component material 16 used is about 10 to 100 μπι. The component material 16 consists in particular of a titanium or nickel alloy. Furthermore, the device 26 has a powder feed 28 for applying the pulverfbrmigen component material 16 and a component platform (not shown).
Man erkennt, dass in dem dargestellten Beispiel die Pulverzuführung 28 koaxial zur Strahlenquelle 14, nämlich dem Laser, angeordnet ist. Der erzeugte Laser- und Pulverstrahl 18 wird zu einer Bauteilschicht 12 verschmolzen beziehungsweise versintert. Für diese Ausgestaltungsform der Vorrichtung und des Verfahrens wird ein Auftraglaser verwendet. Es ist aber auch möglich, dass ein Sinter- oder Schmelzlaser als Strahlenquelle 18 verwendet wird, wobei in diesem Fall das Bauteil 10 in einem Pulverbett eines Pulverbehälters 24 erzeugt wird. In der Figur sind beiden Ausführungsformen dargestellt. Die Vorrichtung 26 weist zudem eine zweite Strahlenquelle, nämlich eine Laserstrahlquelle 20 zur Erzeugung einer laserinduzierten Druckwelle auf. Bei der Laserstrahlquelle 20 handelt es sich um einen Kurzpulslaser, der mittels einer laserinduzierten Druckbeaufschlagung einer Oberfläche der zuletzt erzeugten Bauteilschicht 12 ein Umformen und Verfestigen der Bauteilschichten während des generativen Aufbaus bewirkt. Dabei wird ein Laserstrahl 22 entlang der Oberfläche der zuletzt hergestellten Bauteilschicht 12 geführt. It can be seen that in the illustrated example, the powder feeder 28 is arranged coaxially with the radiation source 14, namely the laser. The generated laser and powder beam 18 is fused or sintered into a component layer 12. For this embodiment of the apparatus and method, an applicator laser is used. But it is also possible that a sintering or melting laser is used as a radiation source 18, in which case the component 10 is generated in a powder bed of a powder container 24. In the figure, both embodiments are shown. The device 26 also has a second radiation source, namely a laser beam source 20 for generating a laser-induced pressure wave. The laser beam source 20 is a short-pulse laser which, by means of a laser-induced pressurization of a surface of the last-produced component layer 12, effects reshaping and solidification of the component layers during the generative structure. In this case, a laser beam 22 is guided along the surface of the last-produced component layer 12.
Die Fertigung des Bauteils 10 im Folgenden beispielhaft beschrieben: The manufacture of the component 10 is described below by way of example:
Zunächst werden die Form und der Materialaufbau des Bauteils 10 als computergeneriertes Modell (CAD-Modell) in einem Computer bestimmt. Die daraus generierten Schichtinformationen werden als entsprechende Daten in einen Steuerrechner (nicht dargestellt) der Vorrichtung 26 eingegeben. Diese Daten dienen zur Steuerung der Pulverzuführung 28, der Bauteilplattform und der Strahlenquelle 14, nämlich dem Auftragslaser. Auch die Laserstrahlquelle 20 zur Erzeugung einer Druckwelle auf der Oberfläche der zuletzt hergestellten Bauteilschicht 12 kann mittels dieser Informationen gesteuert werden. Der genannte Computer kann insbesondere auch als Steuerrechner der Vorrichtung 26 verwendet werden. Im weiteren Verlauf der Herstellung des Bauteils 10 erfolgt der schichtweise Aufbau des Bauteils 10 gemäß einem generativen Fertigungsverfahren wie im Vorhergehenden beschrieben. Nach der Herstellung einer oder mehrerer aufeinander folgender Bauteilschichten erfolgt zumindest teilweise eine laser- oder plasmainduzierte Druckbeaufschlagung der Oberfläche der zuletzt hergestellten Bauteilschicht 12. Dies führt zu bleibenden plastischen Verformungen im Gefüge des Bauteils 10 beziehungsweise der einzelnen Bauteilschicht und zu einer Umwandlung der durch das generative Verfahren erzeugten Schmelzstruktur in eine Sclimiedestruktur mit sehr feinkörnigem Gefüge. First, the shape and material structure of the component 10 are determined as a computer-generated model (CAD model) in a computer. The layer information generated therefrom is input as corresponding data into a control computer (not shown) of the device 26. These data serve to control the powder feed 28, the component platform and the radiation source 14, namely the application laser. The laser beam source 20 for generating a pressure wave on the surface of the last-produced component layer 12 can also be controlled by means of this information. The named computer can also be used in particular as a control computer of the device 26. In the further course of the production of the component 10, the layered structure of the component 10 is carried out according to a generative manufacturing method as described above. After the production of one or more successive component layers takes place at least partially a laser or plasma-induced pressurization of the surface of the last produced component layer 12. This leads to permanent plastic deformation in the structure of the component 10 or the individual component layer and to a conversion by the generative process produced enamel structure in a Sclimiedestruktur with very fine-grained structure.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung eines Bauteils einer Strömungsmaschine, insbesondere eines Bauteils einer Turbine oder eines Verdichters, wobei das Verfahren als generatives Fertigungsverfahren zum schichtweisen Aufbau des Bauteils (10) ausgebildet ist, dadurch gekennzeichnet, dass nach der Herstellung einer oder mehrerer aufeinander folgender Bauteilschichten zumindest teilweise eine laser- oder plasmainduzierte Druckbeaufschlagung der Oberfläche der zuletzt hergestellten Bauteilschicht (12) erfolgt. 1. A method for producing a component of a turbomachine, in particular a component of a turbine or a compressor, wherein the method is designed as a generative manufacturing method for layered construction of the component (10), characterized in that after the production of one or more successive component layers at least partially a laser or plasma-induced pressurization of the surface of the last produced component layer (12) takes place.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Verfahren folgende Schritte umfasst: 2. Method according to claim 1, characterized in that the method comprises the following steps:
a) Schichtweiser Auftrag von mindestens einem pulverförmigen Bauteil Werkstoff (16) auf eine Bauteilplattform, wobei der Auftrag entsprechend der Schichtinformation des herzustellenden Bauteils (10) erfolgt;  a) layered order of at least one powdery component material (16) on a component platform, wherein the order is carried out according to the layer information of the component to be produced (10);
b) Schichtweises und lokales Verschmelzen oder Versintern des Bauteilwerkstoffs (16) mittels mindestens eines Laser- oder Elektronenstrahls zur Herstellung der Bauteilschicht (12), wobei mindestens ein Laser (14) oder mindestens eine Elektronenstrahlvorrichtung entsprechend der Schichtinformation des herzustellenden Bauteils (10) über die aufgetragene Bauteilwerkstoffschicht geführt wird;  b) layer-wise and local fusion or sintering of the component material (16) by means of at least one laser or electron beam for producing the component layer (12), wherein at least one laser (14) or at least one electron beam device according to the layer information of the component (10) to be produced via the applied component material layer is guided;
c) Zumindest teilweise laser- oder plasmainduzierte Druckbeaufschlagung der Oberfläche der Bauteilschicht (12);  c) at least partially laser- or plasma-induced pressurization of the surface of the device layer (12);
d) Schichtweises Absenken der Bauteilplattform um eine vordefinierte Schichtdicke; und e) Wiederholen der Schritte a) bis d) bis zur Fertigstellung des Bauteils (10).  d) layer-wise lowering of the component platform by a predefined layer thickness; and e) repeating steps a) to d) until completion of the component (10).
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Verfahren folgende Schritte umfasst: 3. The method according to claim 1, characterized in that the method comprises the following steps:
a) Schichtweiser Auftrag von mindestens einem pulverförmigen Bauteilwerkstoff (16) auf eine Bauteilplattform, wobei der Auftrag entsprechend der Schichtinformation des herzustellenden Bauteils (10) erfolgt;  a) layered order of at least one powdered component material (16) on a component platform, wherein the order is carried out according to the layer information of the component to be produced (10);
b) Schichtweises und lokales Verschmelzen oder Versintern des Bauteilwerkstoffs (16) mittels mindestens eines Laser- oder Elektronenstrahls zur Herstellung der Bauteilschicht (12), wobei mindestens ein Laser (14) oder mindestens eine Elektronenstrahl Vorrichtung entsprechend der Schichtinformation des herzustellenden Bauteils (10) über die aufgetragene Bauteilwerkstoffschicht geführt wird; b) Layer-wise and local fusion or sintering of the component material (16) by means of at least one laser or electron beam for the production of the component layer (12), wherein at least one laser (14) or at least one electron beam device is guided over the deposited component material layer in accordance with the layer information of the component (10) to be produced;
c) Schichtweises Absenken der Bauteilplattform um eine vordefinierte Schichtdicke; d) Wiederholen der Schritte a) bis c);  c) layer-wise lowering of the component platform by a predefined layer thickness; d) repeating steps a) to c);
e) Zumindest teilweise laser- oder plasmainduzierte Druckbeaufschlagung der Oberfläche der Bauteilschicht (12); und  e) at least partially laser or plasma-induced pressurization of the surface of the device layer (12); and
f) Wiederholen der Schritte a) bis e) bis zur Fertigstellung des Bauteils (10).  f) repeating steps a) to e) until completion of the component (10).
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren ein Rapid-Prototyping- oder Rapid-Manufacturing- Verfahren, insbesondere ein Sintern, Mikrosintern, Schmelzen, Auftragsschweißen mit einem Laser- oder Elektronenstrahl ist. 4. The method according to any one of the preceding claims, characterized in that the method is a rapid prototyping or rapid-manufacturing method, in particular sintering, micro-sintering, melting, build-up welding with a laser or electron beam.
5. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der pulverformige Bauteilwerkstoff (16) aus Metall, einer Metall-Legierung, Keramik, Silikat oder einer Mischung davon besteht. 5. The method according to claim 1 or 2, characterized in that the powdered component material (16) consists of metal, a metal alloy, ceramic, silicate or a mixture thereof.
6. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass für das Sintern, Mikrosintern, Schmelzen oder Auftragsschweißen ein C02- oder Nd:YAG-Laser (18) oder ein Elektronenstrahl verwendet wird. 6. The method according to claim 2 or 3, characterized in that for sintering, microsintering, melting or build-up welding a C0 2 - or Nd: YAG laser (18) or an electron beam is used.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der Laser gepulst ist. 7. The method according to claim 6, characterized in that the laser is pulsed.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die laser- oder plasmainduzierte Druckbeaufschlagung der Oberfläche der zuletzt hergestellten Bauteilschicht (12) mittels eines Plasma- Schock-Peening, insbesondere einem Laser- Schock-Peening mittels einer Laserstrahlquelle (20) oder einem Plasma-Impuls-Peening mittels einer Plasmaimpulsquelle durchgeführt wird. 8. The method according to any one of the preceding claims, characterized in that the laser or plasma-induced pressurization of the surface of the last-produced component layer (12) by means of a plasma shock peening, in particular a laser shock Peening means of a laser beam source (20) or a plasma pulse peening is performed by means of a plasma pulse source.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass für das Laser-Schock-Peening ein Kurzpulslaser verwendet wird. 9. The method according to claim 8, characterized in that a short pulse laser is used for the laser shock Peening.
10. Verfahren nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, dass die Laserstrahlquelle (20) oder die Plasmaimpulsquelle als Strahlenquelle (14) für das schichtweises und lokales Verschmelzen oder Versintern des Bauteil Werkstoffs (16) verwendet werden. 10. The method according to any one of claims 2 to 9, characterized in that the laser beam source (20) or the plasma pulse source as a radiation source (14) for the layer-by-layer and local fusing or sintering of the component material (16) are used.
11. Verfahren nach einem der Ansprüche 2 bis 10, dadurch gekennzeichnet, dass die Form und der Materialaufbau des Bauteils (10) als computergeneriertes Modell bestimmt wird und die daraus generierten Schichtinformationen zur Steuerung von mindestens einer Pulverzuführung (24), der Bauteilplattform, des mindestens einen Lasers (14) oder der mindestens einen Elektronenstrahlvorrichtung und verwendet werden. 11. The method according to any one of claims 2 to 10, characterized in that the shape and the material structure of the component (10) is determined as a computer-generated model and the layer information generated therefrom for controlling at least one powder feed (24), the component platform, the at least a laser (14) or the at least one electron beam device and are used.
12. Vorrichtung zur Herstellung eines Bauteils einer Strömungsmaschine, insbesondere eines Bauteils einer Turbine oder eines Verdichters, dadurch gekennzeichnet, dass die Vorrichtung (26) mindestens eine Pulverzuführung (28) zum Auftrag von mindestens einem pulverformigen Bauteil Werkstoff (16) auf eine Bauteilplattform, mindestens eine Strahlenquelle (14) für ein schichtweises und lokales Verschmelzen oder Versintern des Bauteilwerkstoffs (16) sowie mindestens eine Laserstrahlquelle (20) oder mindestens eine Plasmaimpulsquelle zur Erzeugung einer laser- oder plasmainduzierten Druckwelle umfasst. 12. An apparatus for producing a component of a turbomachine, in particular a component of a turbine or a compressor, characterized in that the device (26) at least one powder feed (28) for applying at least one powdered component material (16) on a component platform, at least a radiation source (14) for a layer-by-layer and local fusing or sintering of the component material (16) and at least one laser beam source (20) or at least one plasma pulse source for generating a laser- or plasma-induced pressure wave.
13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die Strahlenquelle (14) ein Laser oder eine Elektronenstrahlvorrichtung ist. 13. The apparatus according to claim 12, characterized in that the radiation source (14) is a laser or an electron beam device.
14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass der Laser ein C02- oder Nd:YAG-Laser ist. 14. The device according to claim 13, characterized in that the laser is a C0 2 - or Nd: YAG laser.
15. Vorrichtung nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass die Laserstrahlquelle (20) einen Kurzpulslaser umfasst. 15. Device according to one of claims 12 to 14, characterized in that the laser beam source (20) comprises a short pulse laser.
16. Vorrichtung nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, dass die Laserstrahlquelle (20) oder Plasmaimpulsquelle die Strahlenquelle (14) für ein schichtweises und lokales Verschmelzen oder Versintern des Bauteil Werkstoffs (16) ausbilden. Verwendung eines Verfahrens nach einem der Ansprüche 1 bis 10 oder einer Vorrichtung gemäß einem der Ansprüche 12 bis 16 zur Herstellung von Triebwerksbauteilen aus Nickel- oder Titanbasislegierungen, insbesondere zur Herstellung von Verdichter- oder Turbinenschaufeln. 16. Device according to one of claims 12 to 15, characterized in that the laser beam source (20) or plasma pulse source form the radiation source (14) for a layer-by-layer and local fusing or sintering of the component material (16). Use of a method according to any one of claims 1 to 10 or an apparatus according to any one of claims 12 to 16 for the production of engine components made of nickel or titanium-based alloys, in particular for the production of compressor or turbine blades.
EP10798474A 2009-10-31 2010-10-30 Method and device for producing a component of a turbomachine Withdrawn EP2493650A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009051551A DE102009051551A1 (en) 2009-10-31 2009-10-31 Method and device for producing a component of a turbomachine
PCT/DE2010/001275 WO2011050790A2 (en) 2009-10-31 2010-10-30 Method and device for producing a component of a turbomachine

Publications (1)

Publication Number Publication Date
EP2493650A2 true EP2493650A2 (en) 2012-09-05

Family

ID=43827457

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10798474A Withdrawn EP2493650A2 (en) 2009-10-31 2010-10-30 Method and device for producing a component of a turbomachine

Country Status (4)

Country Link
US (1) US20120217226A1 (en)
EP (1) EP2493650A2 (en)
DE (1) DE102009051551A1 (en)
WO (1) WO2011050790A2 (en)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010011059A1 (en) * 2010-03-11 2011-09-15 Global Beam Technologies Ag Method and device for producing a component
DE102011101369A1 (en) * 2011-05-12 2012-11-15 Mtu Aero Engines Gmbh Method of making, repairing or replacing a component
GB2491472B (en) * 2011-06-02 2018-06-06 Univ Cranfield Additive Layer Manufacture
EP2583784A1 (en) * 2011-10-21 2013-04-24 Siemens Aktiengesellschaft Preparation of a welding point before welding and component
DE102012200768B4 (en) 2012-01-19 2018-09-20 MTU Aero Engines AG Closure element of an inspection opening of a turbomachine and method for producing a closure element
FR2987293B1 (en) * 2012-02-27 2014-03-07 Michelin & Cie METHOD AND APPARATUS FOR REALIZING THREE-DIMENSIONAL OBJECTS WITH IMPROVED PROPERTIES
GB201204752D0 (en) * 2012-03-19 2012-05-02 Bae Systems Plc Additive layer manufacturing
GB201213940D0 (en) * 2012-08-06 2012-09-19 Materials Solutions Additive manufacturing
CN104755197B (en) * 2012-11-01 2018-02-23 通用电气公司 Increasing material manufacturing method and apparatus
US20140169971A1 (en) * 2012-12-18 2014-06-19 Hamilton Sundstrand Corporation Additively manufactured impeller
DE102013203936A1 (en) 2013-03-07 2014-09-11 Airbus Operations Gmbh Generative layer building method for producing a three-dimensional object and three-dimensional object
DE102013203938A1 (en) 2013-03-07 2014-09-25 Airbus Operations Gmbh Generative layer building method for producing a three-dimensional object and three-dimensional object
DE102013209994A1 (en) 2013-05-29 2014-12-04 MTU Aero Engines AG TiAl blade with surface modification
CN103305828B (en) * 2013-06-03 2016-08-31 南京航空航天大学 A kind of method of work of the device of ultrasonic impact strengthening laser cladding layer
EP2815839A1 (en) * 2013-06-21 2014-12-24 Siemens Aktiengesellschaft Method for repairing a turbine blade
EP2853336B1 (en) * 2013-09-30 2018-07-11 Airbus Operations GmbH Method of and system for fabricating a module through welding and peening the weld seam and/or the members
EP2868422A1 (en) * 2013-10-29 2015-05-06 Siemens Aktiengesellschaft Method for manufacturing a component and optical irradiation device
TWI624350B (en) * 2013-11-08 2018-05-21 財團法人工業技術研究院 Powder shaping method and apparatus thereof
DE102014205062A1 (en) 2014-03-19 2015-03-12 Voith Patent Gmbh Apparatus and method for making a Pelton impeller
CN103862050B (en) * 2014-03-31 2016-08-17 中国科学院西安光学精密机械研究所 Metal 3D printer based on interlayer shock peening technique and Method of printing
FR3027840B1 (en) * 2014-11-04 2016-12-23 Microturbo PROCESS FOR MANUFACTURING A CERAMIC TURBINE BLADE
CN104480476B (en) * 2014-11-12 2017-02-22 江苏大学 Laser thermal combination remanufacturing method for metal damage part
DE102015100088A1 (en) 2015-01-07 2016-07-07 Airbus Operations Gmbh Production of metallic components with integrated crack stopper
DE102015103127A1 (en) * 2015-03-04 2016-09-08 Trumpf Laser- Und Systemtechnik Gmbh Irradiation system for a device for additive manufacturing
CN104759623B (en) * 2015-03-10 2017-06-23 清华大学 Using the increasing material manufacturing device of electron beam laser compound scanning
DE102015212529A1 (en) * 2015-07-03 2017-01-05 Siemens Aktiengesellschaft Powder bed based additive manufacturing process with surface post-treatment and plant suitable for this manufacturing process
CN105127755A (en) * 2015-09-06 2015-12-09 北京航空航天大学 Workpiece forming and reinforcing composite machining device and method
US10596661B2 (en) 2015-09-28 2020-03-24 Ecole Polytechnique Federale De Lausanne (Epfl) Method and device for implementing laser shock peening or warm laser shock peening during selective laser melting
US10618111B2 (en) 2016-01-28 2020-04-14 Lawrence Livermore National Security, Llc Heat treatment to anneal residual stresses during additive manufacturing
EP3411170A4 (en) 2016-01-28 2020-02-12 Seurat Technologies, Inc. Additive manufacturing, spatial heat treating system and method
DE102016202821A1 (en) * 2016-02-24 2017-08-24 Siemens Aktiengesellschaft Cladding with simultaneous generation of residual compressive stresses
DE102016203649A1 (en) * 2016-03-07 2017-09-07 MTU Aero Engines AG Micro-forging in a generative manufacturing process
DE102016204905A1 (en) 2016-03-23 2017-09-28 Eos Gmbh Electro Optical Systems Method and device for producing a three-dimensional object
WO2017196956A1 (en) * 2016-05-10 2017-11-16 Resonetics, LLC Hybrid micro-manufacturing
CN105834428B (en) * 2016-05-30 2017-10-31 重庆理工大学 A kind of laser three-D method for quickly forming and manufacturing that powder is carried based on the differential of the arc
EP3562971A1 (en) * 2017-01-30 2019-11-06 Siemens Aktiengesellschaft Thermal barrier coating system compatible with overlay
CN106825574B (en) * 2017-04-18 2020-02-07 广东工业大学 Laser impact forging composite additive manufacturing method and device for metal gradient material
CN107217253B (en) * 2017-05-08 2020-10-16 广东工业大学 Light-powder-gas coaxial conveying laser cladding impact forging forming composite manufacturing method
CN107262713B (en) * 2017-05-08 2020-02-21 广东工业大学 Laser impact forging composite processing and forming device and method for coaxial powder feeding in light
CN107283059B (en) * 2017-05-18 2019-10-29 广东工业大学 A kind of molten laser-impact that accumulates of electric arc forges increasing material manufacturing method and apparatus
CN107385431B (en) * 2017-05-27 2020-02-07 广东工业大学 Laser cladding impact forging constrained forming method for non-matrix and non-support destressing metal part
CN107138728A (en) * 2017-05-27 2017-09-08 广东工业大学 The increasing material manufacturing method and increasing material manufacturing system of a kind of labyrinth
CN107385430B (en) * 2017-05-27 2020-07-10 广东工业大学 Multi-posture variable-light-spot laser impact forging composite forming system and method for unequal-width components
CN107335805B (en) * 2017-05-27 2019-11-26 广东工业大学 Wire feeding cladding laser-impact forges compound increasing material manufacturing method in a kind of metal parts laser light
CN107378251B (en) * 2017-05-31 2019-10-29 广东工业大学 A kind of destressing laser-impact of band large-scale metal part forges surface repairing method and device
CN107378250B (en) * 2017-05-31 2019-10-29 广东工业大学 Large-scale part laser melting coating impact based on CCD monitoring forges combined shaping method
CN107475709A (en) * 2017-06-05 2017-12-15 广东工业大学 The shaping impact of double laser beam deposition forges compound increasing material manufacturing method
US10821519B2 (en) 2017-06-23 2020-11-03 General Electric Company Laser shock peening within an additive manufacturing process
DE102017130126A1 (en) 2017-12-15 2019-06-19 Deutsches Zentrum für Luft- und Raumfahrt e.V. Gyroscope carrier structure, inertial spacecraft measurement unit and spacecraft
EP3542927A1 (en) * 2018-03-20 2019-09-25 Siemens Aktiengesellschaft Method for selectively irradiating a material layer, method for providing a data set, device and computer program product
CN108500270B (en) * 2018-05-15 2020-11-06 天津清研智束科技有限公司 Composite additive manufacturing method and composite additive manufacturing equipment
FR3090014B1 (en) * 2018-12-18 2021-04-09 Safran DEVICE FOR THE MANUFACTURING OF A METAL MATERIAL PART BY MATERIAL DEPOSIT

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4323756A (en) * 1979-10-29 1982-04-06 United Technologies Corporation Method for fabricating articles by sequential layer deposition
US4449714A (en) * 1983-03-22 1984-05-22 Gulf & Western Industries, Inc. Turbine engine seal and method for repair thereof
US5017753A (en) * 1986-10-17 1991-05-21 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
US4937421A (en) * 1989-07-03 1990-06-26 General Electric Company Laser peening system and method
US5207371A (en) * 1991-07-29 1993-05-04 Prinz Fritz B Method and apparatus for fabrication of three-dimensional metal articles by weld deposition
US5301863A (en) * 1992-11-04 1994-04-12 Prinz Fritz B Automated system for forming objects by incremental buildup of layers
US5837960A (en) * 1995-08-14 1998-11-17 The Regents Of The University Of California Laser production of articles from powders
US5735044A (en) * 1995-12-12 1998-04-07 General Electric Company Laser shock peening for gas turbine engine weld repair
US5932120A (en) * 1997-12-18 1999-08-03 General Electric Company Laser shock peening using low energy laser
US6122564A (en) * 1998-06-30 2000-09-19 Koch; Justin Apparatus and methods for monitoring and controlling multi-layer laser cladding
US6200689B1 (en) * 1998-10-14 2001-03-13 General Electric Company Laser shock peened gas turbine engine seal teeth
DE19903436C2 (en) * 1999-01-29 2001-02-08 Fraunhofer Ges Forschung Process for the production of three-dimensional shaped bodies
WO2001002160A1 (en) * 1999-07-07 2001-01-11 Optomec Design Company Method for providing features enabling thermal management in complex three-dimensional structures
US6852179B1 (en) * 2000-06-09 2005-02-08 Lsp Technologies Inc. Method of modifying a workpiece following laser shock processing
JP4490608B2 (en) * 2001-08-09 2010-06-30 株式会社東芝 Repair method of structure
SE524421C2 (en) * 2002-12-19 2004-08-10 Arcam Ab Apparatus and method for making a three-dimensional product
US7211763B2 (en) * 2004-12-22 2007-05-01 General Electric Company Photon energy material processing using liquid core waveguide and a computer program for controlling the same
US20070003416A1 (en) * 2005-06-30 2007-01-04 General Electric Company Niobium silicide-based turbine components, and related methods for laser deposition
ATE466720T1 (en) * 2006-06-20 2010-05-15 Univ Leuven Kath METHOD AND DEVICE FOR IN-SITU MONITORING AND FEEDBACK CONTROL OF SELECTIVE LASER POWDER PROCESSING
DE102006031938B4 (en) * 2006-07-11 2010-10-14 Mtu Aero Engines Gmbh Method and device for surface hardening of metallic materials by short pulse radiation
US8691329B2 (en) * 2007-01-31 2014-04-08 General Electric Company Laser net shape manufacturing using an adaptive toolpath deposition method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011050790A2 *

Also Published As

Publication number Publication date
WO2011050790A3 (en) 2011-06-23
WO2011050790A2 (en) 2011-05-05
US20120217226A1 (en) 2012-08-30
DE102009051551A1 (en) 2011-05-05

Similar Documents

Publication Publication Date Title
EP2493650A2 (en) Method and device for producing a component of a turbomachine
EP2794152B1 (en) Method for manufacturing a compact component, and component that can be produced by means of the method
EP3183083B2 (en) Method for producing a three-dimensional object
EP2782705B2 (en) Method of generative producing a component using a laser beam before, during and after the assembly
EP2493643A1 (en) Method and device for producing a component of a turbomachine
EP3216546A1 (en) Micro-forging in a generative production method
DE102016115674A1 (en) Additive manufacturing
DE102015115962B4 (en) Process for creating a metallic material mixture in additive manufacturing
DE102014108061A1 (en) Device and method for the generative production of at least one component region of a component
WO2012152259A1 (en) Method for the production, reparation or replacement of a component, including a compacting step using pressure
DE102016115676A1 (en) Additive manufacturing
DE102014207622A1 (en) Method for producing a component
EP3338918A1 (en) Layered construction device and layered construction method for additive manufacture of at least one component area of a component
DE102016209618A1 (en) Method and device for the additive production of at least one component region of a component
EP3321011A1 (en) Method for improving the surface quality of components made by additive manufacturing
DE102016208015A1 (en) 3D printing process for the additive production of metal components
DE102011089336A1 (en) Producing component from powder for turbomachines made of nickel-based alloys, by partially processing powder to green body in which non-powder particles are connected to each other and/or to green body using high energy beam
DE102019200620A1 (en) Process for the production of rotor blades made of Ni-based alloys and rotor blade produced accordingly
DE102014222526A1 (en) Method and device for the generative production of at least one component region of a component
EP3175941B1 (en) Method and apparatus for additive manufacture of at least one component area of a component
EP2161088A1 (en) Method for producing a component and device for same
DE19721595B4 (en) Material for the direct production of metallic functional patterns
EP2343143A2 (en) Method for producing components from refractory metals
DE102004042775A1 (en) Production of complex high strength components or tools from metal powders useful in production of forming, injection molding, pressure die casting, cutting tools and turbine components from metal powders
EP3718729B1 (en) Production method with additive component manufacture and finishing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120416

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MTU AERO ENGINES AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160503