EP2486094A1 - Polymermischungen von polystyrol mit styrol-butadien-blockcopolymeren - Google Patents

Polymermischungen von polystyrol mit styrol-butadien-blockcopolymeren

Info

Publication number
EP2486094A1
EP2486094A1 EP10760696A EP10760696A EP2486094A1 EP 2486094 A1 EP2486094 A1 EP 2486094A1 EP 10760696 A EP10760696 A EP 10760696A EP 10760696 A EP10760696 A EP 10760696A EP 2486094 A1 EP2486094 A1 EP 2486094A1
Authority
EP
European Patent Office
Prior art keywords
styrene
film
weight
butadiene
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10760696A
Other languages
English (en)
French (fr)
Inventor
Norbert Niessner
Rogelio Chavez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP10760696A priority Critical patent/EP2486094A1/de
Publication of EP2486094A1 publication Critical patent/EP2486094A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2453/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2453/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/109Esters; Ether-esters of carbonic acid, e.g. R-O-C(=O)-O-R
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes

Definitions

  • the invention relates to a mixture comprising a) 1 to 40 wt .-% of a styrene-butadiene-styrene block copolymer
  • d) contains 0.1 to 20 wt .-% of a foam-forming additive, wherein the sum of components a) to d) 100 wt .-% results.
  • DE-A-44 16 862 discloses expandable styrene polymers for elastic polystyrene foams containing polystyrene and styrene-butadiene-styrene block copolymers.
  • the document refers exclusively to expandable styrene polymers, i. polystyrene beads obtainable via suspension polymerization with e.g. Pentane as blowing agent, which foams by temperature / steam, but does not give an intimate blend with the other components.
  • foams of polyolefin / polystyrene resin mixtures are known, which are formed by mixing a polyolefin resin and a polystyrene resin in the presence of a hydrogenated styrene-butadiene block copolymer, as well as extrusion foams from the resulting Resin composition in the presence of a blowing agent.
  • US Pat. No. 6,268,046 discloses foamable mixtures comprising two different styrene polymers with CO2 as blowing agent. It is described that elastomeric styrene / butadiene copolymer is added to increase the overall elasticity of the molded articles.
  • EP-A-1 730 221 From EP-A-1 730 221 (WO-A-2005/095501) are known foams of polystyrene containing low molecular weight random styrene-butadiene copolymers. This results in a reduction in the compressive strength and flexural strength of the foam from 60 to 40 days.
  • Foams based on expandable polystyrene, a blowing agent and styrene-butadiene block copolymers are known from EP-A-1 930 365.
  • Foamed films for use in a microwave oven are known from JP-A-08/041 233.
  • the desired effect high temperature resistance with gradual improvement of the toughness
  • DE-A-10 2004 055 539 discloses mixtures comprising mineral fillers and thermoplastic elastomers based on styrene.
  • a disadvantage of the aforementioned polymers is that no way is described to improve both toughness and stiffness of foams.
  • the present invention had the object to remedy the aforementioned disadvantages. Accordingly, new and improved blends were found which a) 1 to 40 wt .-% of a styrene-butadiene-styrene block copolymers with
  • the mixtures according to the invention comprise, preferably consisting of 1 to 40 wt .-%, preferably 2 to 30 wt .-%, particularly preferably 5 to 10 wt .-% of styrene-butadiene-styrene block copolymers (component A), 60 to 99 wt.
  • component A preferably 70 to 98 wt .-%, particularly preferably 90 to 95 wt .-% of polystyrene (component B), 0 to 50 wt .-%, preferably 0.1 to 20 wt .-%, particularly preferably 1 to 10% by weight of a filler (component C) and 0.1 to 20% by weight, preferably 0.2 to 15% by weight, particularly preferably 0.5 to 10% by weight, of an additive (component D) , Component A:
  • styrene and butadiene are generally predominantly, preferably at least 95%, particularly preferably 98%, in particular 99%, very preferably 100% in polymerized form.
  • the content of at least one copolymerized styrene monomer is 60 to 95 wt .-%, preferably 65 to 90 wt .-%, particularly preferably 70 to 80 wt .-% (component a1.).
  • the content of at least one copolymerized diene moiety monomers is 5 to 40 wt .-%, preferably 10 to 35 wt .-%, particularly preferably 20 to 30 wt .-%.
  • Suitable diene components are, for example, butadiene, pentadiene, dimethylbutadiene and isoprene, preferably butadiene and isoprene, more preferably butadiene.
  • comonomers may also be added to these monomers, e.g. Acrylates.
  • the monomers mentioned in DE-A 196 33 626 on page 3, lines 5-50 under M1-M10 are suitable as comonomers.
  • the block copolymers known as such are prepared by anionic polymerization in a manner known to those skilled in the art. Usually mono-, bi- or multifunctional alkali metal alkyls, aryls or aralkyls are used as initiators.
  • Examples include n-butyllithium and sec-butyllithium called.
  • the preferred solution polymerization may be carried out in an aliphatic, aromatic or cycloaliphatic hydrocarbon such as benzene, toluene, hexane, cyclohexane, heptane, octane, with or without addition of further substances, e.g. Ethern, done.
  • so-called retarders e.g. Magnesium or aluminum organyls are added.
  • the living chains can be terminated with a chain stopper.
  • Proton-active substances such as e.g.
  • the living chain ends for example a styrene-butadiene block
  • suitable coupling means often forming a mixture of linear and star-shaped (with n arms) styrene-butadiene block copolymers.
  • the block structure is essentially formed by first anionically polymerizing styrene alone, resulting in a styrene block. After consumption of the styrene monomers, the monomer is changed by adding monomeric butadiene and polymerizing anionically to form a butadiene block (so-called sequential polymerization).
  • the obtained diblock polymer S-B can be polymerized by renewed monomer exchange on styrene to form a triblock polymer S-B-S, if desired.
  • triblock copolymers B-S-B The same applies analogously for triblock copolymers B-S-B.
  • the two styrene blocks can have the same size (same molecular weight, ie symmetrical structure S1-B-S1) or different sizes (different sizes). different molecular weight so unbalanced structure S1-B-S2) be.
  • S1-B-S1 symmetrical structure
  • S1-B-S2 different sizes
  • S1-B-S2 different molecular weight so unbalanced structure
  • BSB block sequences SSB or S1-S2-B, or SBB or S-B1-B2
  • the above are the indices for the block sizes (block lengths or molecular weights).
  • the block sizes depend, for example, on the monomer amounts used and the polymerization conditions.
  • blocks BIS may also be present.
  • the blocks BIS are also soft and contain butadiene and styrene, for example randomly distributed or as tapered
  • styrene-butadiene block copolymers four-block and polyblock copolymers are also suitable.
  • Said block copolymers may have a linear structure (described above). However, branched and star-shaped structures are preferred. Branched block copolymers are obtained in a known manner, e.g. by grafting reactions of polymeric "side branches" onto a polymer backbone.
  • Star shaped block copolymers are e.g. by reacting the living anionic chain ends with an at least bifunctional coupling agent.
  • an at least bifunctional coupling agent are described, for example, in US-A-3,985,830, US-A-3,280,084, US-A-3,637,554 and US-A-4,091,053.
  • epoxidized glycerides for example epoxidized linseed oil or soybean oil
  • silicon halides such as SiCU
  • di-vinylbenzene di-vinylbenzene
  • polyfunctional aldehydes ketones, esters, anhydrides or epoxides.
  • Carbonates such as diethyl carbonate or ethylene carbonate (1,3-dioxolan-2-one) are also preferred.
  • dimerization are dichlorodialkylsilanes, dialdehydes such as terephthalaldehyde and esters such as ethyl formate or ethyl acetate.
  • star-shaped block copolymers By coupling identical or different polymer chains one can produce symmetrical or asymmetrical star structures, ie the individual star branches can be identical or different, in particular contain different blocks S, B, B / S or different block sequences. Further details on star-shaped block copolymers can be found, for example, in WO-A 00/58380.
  • Styrene-butadiene-styrene block copolymers having a styrene content of 60 to 95% by weight of styrene are, for example, K-Resin 01, K-Resin 03, K-Resin 05, K-Resin 10, Styrolux® 684D, Styrolux® 693 D and Styrolux ® 3G55.
  • Component B Component B:
  • Suitable styrene polymers are all customary polymers based on styrene monomers.
  • styrene monomers all vinylaromatic monomers can be used, for example styrene, ⁇ -methylstyrene, p-methylstyrene, ethylstyrene, tert-butylstyrene, vinylstyrene, vinyltoluene, 1,2-diphenylethylene, 1,1-diphenylethylene or mixtures thereof.
  • the styrenic polymers may be rubber-free or rubber-containing.
  • the former includes polystyrene (GPPS), the latter being commonly referred to as impact, for example, impact polystyrene (HIPS).
  • the rubbers contained in the impact-resistant styrene polymers are in particular those based on diene monomers.
  • Suitable diene monomers are all polymerizable dienes, in particular 1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 2,3-dimethylbutadiene, isoprene, piperylene or mixtures thereof. Preference is 1, 3-butadiene (in short: butadiene).
  • the process is characterized in that the styrene polymer used is polystyrene (GPPS), impact-modified polystyrene (HIPS), or mixtures thereof. Particular preference is given to using GPPS.
  • HIPS high-impact polystyrene
  • the preparation of the styrene polymers can be effected in a manner known per se, for example by mass, solution, emulsion, suspension or precipitation polymerization of the monomers, or combinations of these types of polymerization.
  • the radical, anionic or cationic initiators known to the person skilled in the art, as well as other auxiliaries, are used for this purpose.
  • the rubber-containing (impact-modified) styrene polymers have a rubber content of 0.1 to 12% by weight.
  • the rubber-containing styrenic polymers preferably have weight-average molecular weights of 80,000 to 500,000, in particular 100,000 to 400,000 g / mol
  • the rubber-free styrene polymers preferably have weight-average molecular weights of 100,000 to 500,000, in particular 120,000 to 400,000 g / mol.
  • the styrene polymers used as starting material, the known additives and processing aids (short: additives) in the usual amounts for these substances contain, for example, lubricants or mold release agents, colorants such as pigments or dyes, flame retardants, antioxidants, light stabilizers, fibrous and powdery fillers or reinforcing agents or antistatic agents, and other additives, or mixtures thereof.
  • the styrene polymers used may also contain mineral oil in amounts of 0 to less than 8 wt .-%.
  • Such products are commercially available, e.g. Polystyrol® 143E from BASF.
  • Such to less than 8 wt .-% mineral oil-containing styrene polymers can be used particularly advantageous if the product mineral oil-containing styrene polymers with a particularly high mineral oil content, for example 20 to 50 wt .-%, to be produced.
  • mineral oil all, usually from mineral resources (petroleum, lignite, coal, wood, peat) obtained, liquid distillation products are suitable. They usually consist of mixtures of saturated hydrocarbons and are usually unsaponifiable. Suitable mineral oils are e.g. Petrol, diesel oils, heating oils, lubricating oils, kerosene or insulating oils. Also liquid paraffins, ie mixtures of purified, saturated aliphatic hydrocarbons, are suitable.
  • the suitable mineral oils have a density of 0.75 to 1, 0 g / ml according to DIN 51757 at 15 ° C, and a viscosity (kinematic) of 50 to 90 mm 2 / s according to DIN 51562 at 40 ° C, on.
  • white oils especially those which are approved as additives for styrene polymers (polystyrenes, etc.) with food contact, food law.
  • white oil Vinog® 70 from Wintershall AG, a mineral oil having the following properties:
  • the mineral oil content of the mineral oil-containing styrene polymer is at least 8% by weight. It is preferably at most 50% by weight. More preferably, the mineral oil content is 8 to 50 wt .-%, and in particular it is 10 to 50 wt .-%. Most preferably, it is 15 to 40 wt .-%.
  • Component C All commercially available mineral fillers such as talc, calcium carbonate, titanium dioxide, magnesium sulfate, magnesium oxide, calcium oxide, aluminum oxide, preferably talc, calcium carbonate and titanium dioxide.
  • Component D All commercially available mineral fillers such as talc, calcium carbonate, titanium dioxide, magnesium sulfate, magnesium oxide, calcium oxide, aluminum oxide, preferably talc, calcium carbonate and titanium dioxide.
  • blowing agents such as carbon dioxide with or without alcohol, nitrogen, butane, pentane or chemical blowing agents such as sodium carbonate, potassium carbonate or reaction products of citric acid.
  • blowing agents such as carbon dioxide with or without alcohol, nitrogen, butane, pentane or chemical blowing agents such as sodium carbonate, potassium carbonate or reaction products of citric acid.
  • component B is melted, and component A is already introduced into the extruder as a mixture with B or, alternatively, via an additional metering. Both components are now heated beyond the glass stage of B, so that they melt in the extruder.
  • component C is added as a mixture with A and / or B or, alternatively, by separate dosing. Separate doses may be, for example: gear pumps (in the case of liquid / pasty components), melt extruder, plug screw.
  • component D is added.
  • a chemical blowing agent e.g. a mixture of citric acid and sodium bicatbonate - component D can also be added together as a mixture with A and / or B.
  • Component D is a physical blowing agent, it is preferably in the plastic or molten state of the melt, consisting of the components A, B and optionally C, added.
  • Physical blowing agents are those which are present in the gaseous state under the respective extrusion temperatures and at atmospheric pressure (1 bar).
  • the resulting mixture of components A to D is then extruded through a die, typically forming a semi-finished product (film, film, tube, tube, etc.) which has a foam structure due to the spontaneous expansion of the pressurized blowing agent.
  • melt extruder which usually has the purpose to cool the low-viscosity mixture AD and thus to convert into a higher viscous melt
  • a melt is cooled to 1 10 to 150 ° C.
  • Typical extrusion temperatures are 100 to 300 ° C, preferably 1 10 to 275 ° C and particularly preferably 120 to 250 ° C.
  • the mixtures according to the invention can be used in or as
  • Foamed films for food packaging of all kinds (such as meat trays, vegetable trays),
  • a star-shaped S / B block copolymer was prepared according to Example 17 of WO-A-2000/058380 (in the following Table A: Example 6).
  • component B polystyrene having a mean viscosity number of 96 (measured as 0.5 wt .-% solution in dimethylformamide [DMF] at 23 ° C) was used.
  • the foam samples were extruded on a tandem machine. This consisted of a first extruder for melting the polymer and for mixing the blowing agent and a second extruder for cooling the blowing agent-containing melt. Styrene-butadiene-styrene block copolymer and polystyrene were fed to the first extruder. The polymer was melted at 210 ° C and the foam-forming additive was injected together at one point. The blowing agent used was carbon dioxide. The propellant-containing melt was then in a second

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Die Erfindung betrifft eine Mischung, die a) 1 bis 40 Gew.-% eines Styrol-Butadien-Styrol Blockcopolymeren mit 1.) 60 bis 95 Gew.-% Styrolmonomer und 2.) 5 bis 50 Gew.-% Dienmonomer, enthalten, b) 60 bis 99 Gew.-% Styrolpolymer, c) 0 bis 50 Gew.-% eines Füllstoffes und d) 0,1 bis 20 Gew.-% eines schaumbildenden Additivs enthält, wobei die Summe der Komponenten a) bis d) 100 Gew.-% ergibt.

Description

Polymermischungen von Polystyrol mit Styrol-Butadien-Blockcopolymeren
Beschreibung Die Erfindung betrifft eine Mischung, die a) 1 bis 40 Gew.-% eines Styrol-Butadien-Styrol Blockcopolymeren mit
1 . ) 60 bis 95 Gew.-% Styrolmonomer und
2. ) 5 bis 50 Gew.-% Dienmonomer,
enthalten,
b) 60 bis 99 Gew.-% Styrolpolymer,
c) 0 bis 50 Gew.-% eines Füllstoffes und
d) 0,1 bis 20 Gew.-% eines schaumbildenden Additivs enthält, wobei die Summe der Komponenten a) bis d) 100 Gew.-% ergibt.
Aus der DE-A-44 16 862 sind expandierbare Styrolpolymerisate für elastische Polystyrolschäume bekannt, die Polystyrol und Styrol-Butadien-Styrol Blockcopolymere enthalten. Die Schrift bezieht sich ausschließlich auf expandierbare Styrolpolymerisate, d.h. über Suspensionspolymerisation erhältliche Polystyrolkugeln mit z.B. Pentan als Treibmittel, welche durch Temperatur/Dampfeinwirkung aufschäumt, aber keinen innigen Blend mit den anderen Komponenten ergibt.
Aus der EP-A-313 653 (WO-A-88/08864) sind Schaumsstoffe aus Polyolefin/Polystyrol Harzgemischen bekannt, die durch Mischung eines Polyolefinharzes und eines Polystyrolharzes in Gegenwart eines hydrierten Styrol-Butadien-Blockcopolymers entstehen, sowie Extrusionsschäume aus der resultierenden Harzzusammensetzung in Gegenwart eines Treibmittels. Aus US-B-6,268,046 sind schäumbare Mischungen enthaltend zwei unterschiedliche Styrolpolymere mit CO2 als Treibmittel bekannt. Es ist beschrieben, dass elastomeres Styrol/Butadien Copolymerisat zur Erhöhung der Gesamtelastizität der Formkörper hinzugegeben wird. Aus der EP-A-1 730 221 (WO-A-2005/095501 ) sind Schäume aus Polystyrol bekannt, enthaltend niedermolekulare statistische Styrol-Butadien-Copolymere. Dies resultiert in einer Reduzierung der Druckfestigkeit und Biegefestigkeit des Schaums von 60 auf 40 Tage. Aus der EP-A-1 930 365 sind Schäume basierend auf expandierbarem Polystyrol, einem Treibmittel und Styrol-Butadien-Blockcopolymeren bekannt. Aus der JP-A-08/041 233 sind geschäumte Folien für Anwendung im Mikrowellenofen bekannt. Der gewünschte Effekt (hohe Temperaturbeständigkeit bei gradueller Verbesserung der Zähigkeit) wird dabei durch geringe Mengen Styrol-Butadien- Blockcopolymere als Abmischkomponente in Polystyrol erhalten.
Aus der DE-A-10 2004 055 539 sind Mischungen enthaltend mineralische Füllstoffe, sowie thermoplastische Elastomere auf Basis von Styrol bekannt.
Nachteilig an den zuvor genannten Polymeren ist, dass kein Weg beschrieben wird, um sowohl Zähigkeit als auch Steifigkeit von Schäumen zu verbessern.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, den zuvor genannten Nachteilen abzuhelfen. Demgemäß wurden neue und verbesserte Mischungen gefunden, die a) 1 bis 40 Gew.-% eines Styrol-Butadien-Styrol Blockcopolymeren mit
1 . ) 60 bis 95 Gew.-% Styrolmonomer und
2. ) 5 bis 50 Gew.-% Dienmonomer,
enthalten,
b) 60 bis 99 Gew.-%Styrolpolymer,
c) 0 bis 50 Gew.-% eines Füllstoffes und
d) 0,1 bis 20 Gew.-% eines Additivs enthält, wobei die Summe der Komponenten a) bis d) 100 Gew.-% ergibt.
Die erfindungsgemäßen Mischungen enthalten, bevorzugt bestehen aus 1 bis 40 Gew.-%, bevorzugt 2 bis 30 Gew.-%, besonders bevorzugt 5 bis 10 Gew.-% Styrol- Butadien-Styrol Blockcopolymeren (Komponente A), 60 bis 99 Gew.-% , bevorzugt 70 bis 98 Gew.-%, besonders bevorzugt 90 bis 95 Gew.-% Polystyrol (Komponente B), 0 bis 50 Gew.-%, bevorzugt 0,1 bis 20 Gew.-%, besonders bevorzugt 1 bis 10 Gew.-% eines Füllstoffes (Komponente C) und 0,1 bis 20 Gew.-%, bevorzugt 0,2 bis 15 Gew.- %, besonders bevorzugt 0,5 bis 10 Gew.-% eines Additivs (Komponente D). Komponente A:
In dem erfindungsgemäßen Styrol-Butadien-Styrol Blockcopolymere liegen Styrol und Butadien in der Regel überwiegend, bevorzugt zu mindestens 95%, besonders bevorzugt zu 98%, insbesondere zu 99%, ganz besonders bevorzugt zu 100% in polymeri- sierter Form vor. Der Gehalt mindestens eines einpolymerisierten Styrolmonomeren, beträgt 60 bis 95 Gew.-%, bevorzugt 65 bis 90 Gew.-%, besonders bevorzugt 70 bis 80 Gew.-% (Komponente a1 .). Der Gehalt mindestens eines einpolymerisierten Dienmo- nomeren, beträgt 5 bis 40 Gew.-%, bevorzugt 10 bis 35 Gew.-%, besonders bevorzugt 20 bis 30 Gew.-%.
Als Styrolmonomere können neben oder in Mischung mit Styrol, auch vinylaromatische Monomere verwendet werden, die am aromatischen Ring und/oder an der C=C Doppelbindung mit C1-C20 Kohlenwasserstoffresten substituiert sind, bevorzugt Styrol, al- pha-Methylstyrol und p-Methylstyrol, besonders bevorzugt Styrol.
Als Dienkomponenten eignen sich beispielsweise Butadien, Pentadien, Dimethylbuta- dien und Isopren, bevorzugt Butadien und Isopren, besonders bevorzugt Butadien. Weiterhin können zu diesen Monomeren auch Comonomere zugesetzt werden, wie z.B. Acrylate. Außerdem sind die in der DE-A 196 33 626 auf S. 3, Z. 5-50 unter M1 - M10 genannten Monomere als Comonomere geeignet. In der Regel werden die - als solche bekannten - Blockcopolymere durch anionische Polymerisation in dem Fach- mann bekannter Weise hergestellt. Üblicherweise werden dabei als Initiatoren mono-, bi- oder multifunktionelle Alkalimetallalkyle, -aryle oder -aralkyle eingesetzt. Beispielhaft seien n-Butyllithium und sec.-Butyllithium genannt. Die bevorzugte Polymerisation in Lösung kann in einem aliphatischen, aromatischen oder cycloaliphatischen Kohlenwasserstoff wie Benzol, Toluol, Hexan, Cyclohexan, Heptan, Octan unter ggf. Zusatz von weiteren Substanzen, wie z.B. Ethern, erfolgen. Zur Kontrolle der Reaktionsgeschwindigkeit können bei Bedarf sogenannte Retarder, wie z.B. Magnesium- oder A- luminiumorganyle zugesetzt werden. Nach Beendigung der Polymerisation können die lebenden Ketten mit einem Kettenabbruchmittel abgeschlossen werden. Hierzu eignen sich protonenaktive Substanzen wie z.B. Wasser, Alkohole, sowie anorganische Säu- ren wie z.B. Kohlensäure. In einer weiteren bevorzugten Ausführungsform werden die lebenden kettenenden, beispielsweise eines Styrol-Butadien-Blocks, durch geeignete Kopplungsmittel miteinander verbunden, wobei oftmals eine Mischung aus linearen und sternförmigen (mit n Armen) Styrol-Butadien-Blockcopolymeren entstehen. Die Styrol-Butadien-Blockcopolymere A können z.B. lineare Zweiblock-Copolymere S- B oder Dreiblock-Copolymere S-B-S bzw. B-S-B sein (S = Styrolblock, B = Butadienblock), wie man sie durch anionische Polymerisation nach an sich bekannten Verfahren erhält. Die Blockstruktur entsteht im wesentlichen dadurch, dass man zunächst Styrol alleine anionisch polymerisiert, wodurch ein Styrolblock entsteht. Nach Ver- brauch der Styrolmonomere wechselt man das Monomere, indem man monomeres Butadien zufügt und anionisch zu einem Butadienblock polymerisiert (sog. sequentielle Polymerisation). Das erhaltene Zweiblockpolymere S-B kann durch erneuten Monome- renwechsel auf Styrol zu einem Dreiblockpolymeren S-B-S polymerisiert werden, falls gewünscht. Entsprechendes gilt sinngemäß für Dreiblockcopolymere B-S-B.
Bei den Dreiblockcopolymeren können die beiden Styrol-Blöcke gleich groß (gleiches Molekulargewicht, also symmetrischer Aufbau S1-B-S1) oder verschieden groß (unter- schiedliches Molekulargewicht also unsymmetrischer Aufbau S1-B-S2) sein. Gleiches gilt sinngemäß für die beiden Butadien-Blöcke der Blockcopolymere B-S-B. Selbstverständlich sind auch Blockabfolgen S-S-B bzw. S1-S2-B, oder S-B-B bzw. S-B1-B2, möglich. Vorstehend stehen die Indices für die Blockgrößen (Blocklängen bzw. Moleku- largewichte). Die Blockgrößen hängen beispielsweise ab von den verwendeten Monomermengen und den Polymerisationsbedingungen.
Anstelle der kautschukelastischen "weichen" Butadienblöcke B oder zusätzlich zu den Blöcken B können auch Blöcke BIS stehen. Die Blöcke BIS sind ebenfalls weich und enthalten Butadien und Styrol, beispielsweise statistisch verteilt oder als tapered-
Struktur (tapered = Gradient von styrolreich nach styrolarm oder umgekehrt). Falls das Blockcopolymere mehrere BIS-Blöcke enthält, können die Absolutmengen, und die relativen Anteile, an Styrol und Butadien in den einzelnen BIS-Blöcken gleich oder verschieden (ergebend unterschiedliche Blöcke (B/S)i , (B/S)2 etc.) sein. Die Blöcke BIS werden - unabhängig davon, ob ihr Aufbau statistisch oder tapered oder andersartig ist - zusammenfassend auch als "gemischte" Blöcke bezeichnet.
Als Styrol-Butadien-Blockcopolymere sind auch Vier- und Polyblockcopolymere geeignet.
Die genannten Blockcopolymere können eine (vorstehend beschriebene) lineare Struktur aufweisen. Jedoch sind verzweigte und sternförmige Strukturen bevorzugt. Verzweigte Blockcopolymere erhält man in bekannter Weise, z.B. durch Pfropfreaktionen von polymeren "Seitenästen" auf eine Polymer-Hauptkette.
Sternförmige Blockcopolymere sind z.B. durch Umsetzung der lebenden anionischen Kettenenden mit einem mindestens bifunktionellen Kopplungsmittel erhältlich. Solche Kopplungsmittel werden etwa in den US-A-3,985,830, US-A-3,280,084, US-A- 3,637,554 und US-A-4,091 ,053 beschrieben. Bevorzugt sind epoxidierte Glyceride (z. B. epoxidiertes Leinsamenöl oder Sojaöl), Siliciumhalogenide wie SiCU, oder auch Di- vinylbenzol, außerdem polyfuktionelle Aldehyde, Ketone, Ester, Anhydride oder Epoxi- de. Carbonate wie Diethylcarbonat oder Ethylencarbonat (1 ,3-Dioxolan-2-on) sind e- benfalls bevorzugt. Speziell für die Dimerisierung eignen sich auch Dichlordialkylsilane, Dialdehyde wie Terephthalaldehyd und Ester wie Ethylformiat oder Ethylacetat.
Durch Kopplung gleicher oder verschiedener Polymerketten kann man symmetrische oder unsymmetrische Sternstrukturen herstellen, d.h. die einzelnen Sternäste können gleich oder verschieden sein, insbesondere verschiedene Blöcke S, B, B/S bzw. unterschiedliche Blockabfolgen enthalten. Weitere Einzelheiten zu sternförmigen Blockcopo- lymeren sind beispielsweise der WO-A 00/58380 zu entnehmen. Styrol-Butadien-Styrol Blockcopolymere mit einem Styrolgehalt von 60 bis 95 Gew.-% Styrol sind beispielsweise K-Resin 01 , K-Resin 03, K-Resin 05, K-Resin 10, Styrolux® 684D, Styrolux® 693 D und Styrolux® 3G55. Komponente B:
Als Styrolpolymere sind alle üblichen Polymere auf Basis von Styrolmonomeren geeignet. Als Styrolmonomere können alle vinylaromatischen Monomere verwendet werden, beispielsweise Styrol, α-Methylstyrol, p-Methylstyrol, Ethylstyrol, tert.-Butylstyrol, Vi- nylstyrol, Vinyltoluol, 1 ,2-Diphenylethylen, 1 ,1 -Diphenylethylen oder deren Mischungen. Die Styrolpolymere können kautschukfrei oder kautschukhaltig sein. Zu ersteren gehört Polystyrol (GPPS), letztere werden üblicherweise als schlagzäh bezeichnet, beispielsweise schlagzähes Polystyrol (HIPS).
Die in den schlagzähen Styrol polymeren enthaltenen Kautschuke sind insbesondere solche auf Basis von Dienmonomeren. Als Dienmonomere sind alle polymerisierbaren Diene geeignet, insbesondere 1 ,3-Butadien, 1 ,3-Pentadien, 1 ,3-Hexadien, 2,3- Dimethylbutadien, Isopren, Piperylen oder Mischungen davon. Bevorzugt ist 1 ,3- Butadien (kurz: Butadien). In einer bevorzugten Ausführungsform ist das Verfahren dadurch gekennzeichnet, dass als Styrolpolymer, Polystyrol (GPPS), schlagzähes Polystyrol (HIPS), oder deren Mischungen, verwendet wird. Besonders bevorzugt verwendet man GPPS.
Beispielsweise Polystyrol® 158 K und Polystyrol® 145 D der BASF SE sowie hoch- schlagfestes Polystyrol (HIPS), beispielsweise Polystyrol® 486 M, Polystyrol® 476 L.
Die Herstellung der Styrolpolymere kann in an sich bekannter Weise erfolgen, etwa durch Masse-, Lösungs-, Emulsions-, Suspensions- oder Fällungspolymerisation der Monomeren, bzw. Kombinationen dieser Polymerisationstypen. In der Regel werden dazu die dem Fachmann bekannten radikalischen, anionischen oder kationischen Initiatoren, sowie sonstige Hilfsstoffe, mit verwendet.
In der Regel weisen die kautschukhaltigen (schlagzähen) Styrolpolymere einen Kautschukgehalt von 0,1 bis 12 Gew.-% auf.
Die kautschukhaltigen Styrolpolymere haben bevorzugt gewichtsmittlere Molekulargewichte von 80.000 bis 500.000, insbesondere 100.000 bis 400.000 g/mol, die kautschukfreien Styrolpolymere haben bevorzugt gewichtsmittlere Molekulargewichte von 100.000 bis 500.000, insbesondere 120.000 bis 400.000 g/mol.
Die als Einsatzstoff verwendeten Styrolpolymere können die bekannten Zusatzstoffe und Verarbeitungshilfsmittel (kurz: Additive) in den für diese Stoffe üblichen Mengen enthalten, z.B. Gleit- oder Entformungsmittel, Farbmittel wie z.B. Pigmente oder Farbstoffe, Flammschutzmittel, Antioxidantien, Stabilisatoren gegen Lichteinwirkung, faserund pulverförmige Füll- oder Verstärkungsmittel oder Antistatika, sowie andere Zusatzstoffe, oder deren Mischungen.
Insbesondere können die eingesetzten Styrolpolymere auch Mineralöl in Mengen von 0 bis unter 8 Gew.-% enthalten. Man kann also auch solche Styrolpolymere als Ausgangsstoff verwenden, die bereits schwach, d.h. bis unter 8 Gew.-%, mineralölhaltig sind. Derartige Produkte sind handelsüblich, z.B. Polystyrol® 143E von BASF. Solche bis unter 8 Gew.-% Mineralöl enthaltende Styrolpolymere kann man insbesondere dann vorteilhaft einsetzen, wenn als Produkt mineralölhaltige Styrolpolymere mit besonders hohem Mineralölgehalt, beispielsweise 20 bis 50 Gew.-%, hergestellt werden sollen. Als Mineralöl sind alle, üblicherweise aus mineralischen Rohstoffen (Erdöl, Braun-, Steinkohle, Holz, Torf) gewonnenen, flüssigen Destillationsprodukte geeignet. Sie bestehen in der Regel aus Gemischen gesättigter Kohlenwasserstoffe und sind in der Regel unverseifbar. Geeignete Mineralöle sind z.B. Benzin, Dieselöle, Heizöle, Schmieröle, Leuchtpetroleum oder Isolieröle. Auch flüssige Paraffine, also Gemische gereinigter, gesättigter aliphatischer Kohlenwasserstoffe, sind geeignet.
Bevorzugt weisen die geeigneten Mineralöle eine Dichte von 0,75 bis 1 ,0 g/ml nach DIN 51757 bei 15°C, und eine Viskosität (kinematisch) von 50 bis 90 mm2/s nach DIN 51562 bei 40°C, auf.
Bevorzugt verwendet man als Mineralöle Weißöle, insbesondere solche, die als Additive für Styrolpolymere (Polystyrole, etc.) mit Lebensmittelkontakt, lebensmittelrechtlich zugelassen sind. Besonders bevorzugt verwendet man beispielsweise das Weißöl Wi- nog® 70 von Fa. Wintershall AG, ein Mineralöl mit folgenden Eigenschaften:
- Dichte: ca. 0,867 g/ml bei 15°C nach DIN 51757
- kinematische Viskosität: ca. 70 mm2/s bei 40°C nach DIN 51562
- Erstarrungspunkt: ca. (-9)°C nach DIN/ISO 3016
- Flammpunkt: ca. 266°C nach ISO 2592
- unlöslich in Wasser.
Erfindungsgemäß beträgt der Mineralölgehalt des mineralölhaltigen Styrolpolymeren mindestens 8 Gew.-%. Bevorzugt beträgt er maximal 50 Gew.-%. Besonders bevorzugt liegt der Mineralölgehalt bei 8 bis 50 Gew.-%, und insbesondere beträgt er 10 bis 50 Gew.-%. Ganz besonders bevorzugt beträgt er 15 bis 40 Gew.-%.
Komponente C: Alle kommerziell erhältlichen mineralische Füllstoffe wie Talk, Calciumcarbonat, Titandioxid, Magnesiumsulfat, Magnesiumoxid, Calciumoxid, Aluminiumoxid, bevorzugt Talk, Calciumcarbonat und Titandioxid. Komponente D:
Alle kommerziell erhältlichen Treibmittel wie Kohlendioxid mit oder ohne Alkohol, Stickstoff, Butan, Pentan oder chemische Treibmittel wie Natriumcarbonat, Kaliumcarbonat oder Reaktionsprodukte von Zitronensäure. Das Verfahren zur Herstellung der erfindungsgemäßen Mischungen kann wie folgt durchgeführt werden:
In einem Extruder, bevorzugt sind hier Tandemextruder, wird Komponente B aufgeschmolzen, und Komponente A bereits als Mischung mit B, oder - alternativ - über eine zusätzliche Dosierung in den Extruder eingeführt. Beide Komponenten werden nun über die Glasstufe von von B hinaus erwärmt, so dass sie im Extruder aufschmelzen. Gegebenenfalls wird Komponente C als Mischung mit A und/oder B hinzugegeben, oder - alternativ - per separater Dosierung. Separate Dosierungen können beispielsweise sein: Zahnradpumpen (bei flüssigen / pastösen Komponenten), Aufschmelzextruder, Stopfschnecken.
Typischerweise während oder nach dem Aufschmelzvorgang wird Komponente D zugesetzt. Im Falle eines chemischen Treibmittels - wie z.B. eine Mischung aus Citro- nensäure und Natriumbicatbonat - kann Komponente D auch gemeinsam als Mischung mit A und/oder B zugesetzt werden. Ist Komponente D ein physikalisches Treibmittels, so wird es bevorzugt in den plastischen oder aufgeschmolzenene Zustand der Schmelze, bestehend aus den Komponenten A, B und ggf C, zugegeben.
Physikalische Treibmittel sind solche, die unter den jeweiligen Extrusionstemperaturen und bei Normaldruck (1 bar) im gasförmigen Zustand vorliegen.
Die so erhaltene Mischung der Komponenten A bis D wird danach durch eine Düse extrudiert, wobei typischerweise ein Halbzeug (Folie, Film, Schlauch, Rohr, etc) entsteht, welcher durch die spontane Expansion des unter Druck stehenden Treibmittels eine Schaumstruktur aufweist.
In einer bevorzugten Fahrweise wird die Schmelze vor dem Austrag durch eine Düse in einem weiteren Extruder („Tandem-Extruder") überführt, welcher in der Regel den zweck hat, die niedrigviskose Mischung A-D abzukühlen und damit in eine höher vis- kose Schmelze zu überführen. Bevorzugt wird dabei eine Schmelze auf 1 10 bis 150°C abgekühlt. Typische Extrusions-Temperaturen (durchschnittliche Temperaturen der Schmelze im Extruder) liegen bei 100 bis 300°C, bevorzugt 1 10 bis 275°C und besonders bevorzugt bei 120 bis 250°C. Die erfindungsgemäßen Mischungen können verwendet werden in bzw. als
• geschäumte(n) Folien für Lebensmittelverpackungen aller Art (wie beispielsweise Fleisch-Trays, Gemüse-Trays.),
• XPS für Bauindustrie
• Profile für Isolation oder Verzierung (Stuck),
· Geschäumte Teller und Becher
• Geschäumte Leisten
Beispiele
Als Komponente A wurde ein sternförmiges S/B Blockcopolymer hergestellt, gemäß Beispiel 17 der WO-A-2000/058380 (in der nachfolgenden Tabelle A: Beispiel 6).
Tabelle A
Kalium-tetrahydrolinaloolat
Als Komponente B wurde Polystyrol mit mittlerer Viskositätszahl von 96 (gemessen als 0,5 Gew.-% ige Lösung in Dimethylformamid [DMF] bei 23°C) eingesetzt.
Verfahrensdurchführung:
Die Schaumsstoffproben wurden auf einer Tandemanlage extrudiert. Diese bestand aus einem ersten Extruder zum Aufschmelzen des Polymeren und zum Einmischen des Treibmittels und einem zweiten Extruder zum Kühlen der treibmittelhaltigen Schmelze. Styrol-Butadien-Styrol Blockcopolymer und Polystyrol wurden dem ersten Extruder zugeführt. Das Polymere wurde bei 210°C aufgeschmolzen und das schaumbildende Additiv gemeinsam an einem Punkt eingespritzt. Als Treibmittel wurde Koh- lendioxid eingesetzt. Die treibmittelhaltige Schmelze wurde dann in einem zweiten
Extruder auf die zum Schäumen notwendige Temperatur von 120 bis140°C abgekühlt. Der Durchsatz betrug ca. 200 kg/h, die Ringdüse hatte einen Durchmesser von 100 mm und eine Dicke von 2 mm. Die Schaumproben wurden zu gleichartigen Formkörpern geschnitten und im Zugversuch gemäß AST D838 untersucht. Als Maß für die Steifigkeit wurde der Zug-E- Modui bestimmt, als maß für die Zähigkeit die Reißdehnung, beide sowohl längs zur Extrusionsrichtung (I) als auch transversal (t), d.h. quer zur Extrusionsrichtung.
Die Ergebnisse sind der nachfolgenden Tabelle B zu entnehmen.
Tabelle B
KompoKompoGewicht Breite und Dicke Zug E- Reißnente A nente B [g] Länge [mm] Modul [psi] dehnung
[mm] [%]
0 100 0,42 10 x 100 2.42 1 1985 (I) 3.9 (I)
1 1564 (t) 4.3 (t)
5 95 0,44 10 x 100 1 .98 15204 (t) 4.8 (I)
14392 (I) 4.3 (t)

Claims

Patentansprüche 1 . Mischung, die 1 bis 40 Gew.-% eines Styrol-Butadien-Styrol Blockcopolymeren mit
1 . ) 60 bis 95 Gew.-% Styrolmonomer und
2. ) 5 bis 50 Gew.-% Dienmonomer,
enthalten,
60 bis 99 Gew.-% Styrolpolymer,
0 bis 50 Gew.-% eines Füllstoffes und
0,1 bis 20 Gew.-% eines schaumbildenden Additivs enthält, wobei die Summe der Komponenten a) bis d) 100 Gew.-% ergibt.
Mischung nach Anspruch 1 , dadurch gekennzeichnet, dass man als Füllstoffe mineralische Füllstoffe einsetzt.
Mischung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man als Füll Stoffe oder mineralische Füllstoffe Talk, Calciumcarbonat, Titandioxid oder deren Mischungen einsetzt.
Verfahren zur Herstellung von Mischungen nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass man die Komponenten A, B and C mischt, wobei die Mischung teilweise oder vollständig vor oder nach dem Beschicken des Extruders erfolgt, die Beschickung des Extruders mit den Komponenten A, B and C, Aufschmelzen und Mischen im Extruder,
Zugabe des schaumbildenden Additivs der Komponente D, Extrusion der Mischung der Komponenten A, B, C und D, wobei das schaumbildenden Additivs der Komponente D sich nach der Extrusion nach der Austrittsdüse in die Schaumstruktur gegebenenfalls in eine vorgegebene Form einer Folie, eines Films oder eines Profils ausdehnt und
Gegebenenfalls weitere Verarbeitung der Folie, des Films oder des Profils.
Verwendung der Mischungen nach einem der Ansprüche 1 bis 3 als Folie, Film, Schlauch, Rohr, Verpackungsmaterial, in Geschirr, in Tabletts und in Schüsseln sowie als geschäumte(n) Folien für Lebensmittelverpackungen, XPS für Bauindustrie, Profile für Isolation oder Verzierung, geschäumte Teller, Becher und Leisten.
EP10760696A 2009-10-09 2010-10-05 Polymermischungen von polystyrol mit styrol-butadien-blockcopolymeren Withdrawn EP2486094A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10760696A EP2486094A1 (de) 2009-10-09 2010-10-05 Polymermischungen von polystyrol mit styrol-butadien-blockcopolymeren

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09172692 2009-10-09
PCT/EP2010/064778 WO2011042405A1 (de) 2009-10-09 2010-10-05 Polymermischungen von polystyrol mit styrol-butadien-blockcopolymeren
EP10760696A EP2486094A1 (de) 2009-10-09 2010-10-05 Polymermischungen von polystyrol mit styrol-butadien-blockcopolymeren

Publications (1)

Publication Number Publication Date
EP2486094A1 true EP2486094A1 (de) 2012-08-15

Family

ID=42983568

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10760696A Withdrawn EP2486094A1 (de) 2009-10-09 2010-10-05 Polymermischungen von polystyrol mit styrol-butadien-blockcopolymeren

Country Status (3)

Country Link
US (1) US20120208909A1 (de)
EP (1) EP2486094A1 (de)
WO (1) WO2011042405A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8440764B2 (en) 2010-05-07 2013-05-14 Styrolution GmbH Molding composition with reduced light scattering
AT516041B1 (de) * 2014-08-26 2016-02-15 Ifn Holding Ag Fenster

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE638995A (de) 1962-07-16
NL133447C (de) 1966-11-07
US3985830B1 (en) 1974-07-15 1998-03-03 Univ Akron Star polymers and process for the preparation thereof
US4091053A (en) 1976-06-24 1978-05-23 Phillips Petroleum Company Coupled resinous diene copolymer with good integral hinge flex life and high hardness
JPS62174237A (ja) 1985-10-19 1987-07-31 Asahi Chem Ind Co Ltd ポリオレフイン‐ポリスチレン混合樹脂発泡体
CA2163537A1 (en) * 1993-05-27 1994-12-08 Julien N. R. Callens Foam boards produced using halogen-free blowing agents
DE4416862A1 (de) 1994-05-13 1996-02-22 Basf Ag Expandierbare Styrolpolymerisate
JPH0841233A (ja) 1994-07-29 1996-02-13 Sekisui Plastics Co Ltd スチレン系耐熱樹脂発泡シート、及びその製造方法
DE19633626A1 (de) 1996-08-21 1998-02-26 Basf Ag Verfahren zur Herstellung eines partikelförmigen Polymerisates
US6268046B1 (en) 1998-10-21 2001-07-31 Owens Corning Fiberglas Technology, Inc. Process for producing extruded foam products having polystyrene blends with high levels of CO2 as a blowing agent
DE19914075A1 (de) 1999-03-27 2000-09-28 Basf Ag Glasklares, schlagzähes Polystyrol auf Basis von Styrol-Butadien-Blockcopolymeren
DE10358801A1 (de) * 2003-12-12 2005-07-14 Basf Ag Partikelschaumformteile aus expandierbaren Styrolpolymeren und Mischungen mit thermoplastischen Polymeren
GB0407463D0 (en) 2004-04-01 2004-05-05 Nova Chem Int Sa Extruded foam structure with an inorganic blowing agent
DE102005046818A1 (de) * 2005-09-29 2007-04-05 Basf Ag Zähe, Füllstoff-haltige Formmassen auf Basis von Styrolpolymeren
DE102004055539A1 (de) 2004-11-17 2006-05-18 Basf Ag Masterbatch auf Basis von Styrol-Butadien-Blockcopolymeren
JP5274845B2 (ja) * 2006-01-19 2013-08-28 旭化成ケミカルズ株式会社 発泡体
NL1033014C2 (nl) 2006-12-07 2008-06-10 Synbra Tech Bv Werkwijze voor het vervaardigen van een uitgangsmateriaal voor een geschuimd vormdeel, alsmede het geschuimde vormdeel.
SI2144959T1 (sl) * 2007-04-11 2011-05-31 Basf Se Elastiäśni delci pene na osnovi poliolefinstirinske polimerne meĺ anice
MX2010009533A (es) * 2008-03-13 2010-09-24 Basf Se Espuma de particulas elastica fabricada a partir de mezclas de polimeros de poliolefina/estireno.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011042405A1 *

Also Published As

Publication number Publication date
WO2011042405A1 (de) 2011-04-14
US20120208909A1 (en) 2012-08-16

Similar Documents

Publication Publication Date Title
EP2254937B1 (de) Elastischer partikelschaumstoff auf basis von polyolefin/styrol-polymer-mischungen
EP1062275B1 (de) Polymermischungen aus styrolpolymeren
DE60113473T2 (de) Geschlossenzelliger Schaum von vinylaromatischen Polymeren und Verfahren zu dessen Herstellung
KR20110110280A (ko) 폴리올레핀/스티렌 중합체 혼합물 기재의 탄성 입자 발포체
DE102005001637A1 (de) Styrol-Butadien-Blockcopolymermischungen für Schrumpffolien
EP0545181B1 (de) Thermoplastische Formmasse
EP3625310B1 (de) Bromierte flammschutzmittel
US10131779B2 (en) Blends of styrene-butadiene copolymers
US6433092B2 (en) Tetrafunctional initiator
DE69925014T2 (de) Verfahren zur herstellung von extrudiertem schaumstoff
DE4416852A1 (de) Expandierbare Styrolpolymerisate
DE102008061603A1 (de) Thermoplastische Elastomerzusammensetzung zum Schaumspritzformen, Schaumkörper und Verfahren zur Herstellung des Schaumkörpers
DE102004008201A1 (de) Verfahren zur Herstellung füllstoffhaltiger Schaumstoffplatten
DE69534119T2 (de) Styrolpolymerharze mit verbessertem glanz und schlagfestigkeit
EP0682077A2 (de) Expandierbare Styrolpolymerisate
DE60030439T2 (de) Flaschenstopfen aus synthetischem material
WO2011042405A1 (de) Polymermischungen von polystyrol mit styrol-butadien-blockcopolymeren
EP3744770A1 (de) Formzusammensetzungen und daraus hergestellte geschäumte artikel
EP0927226B1 (de) Thermoplastische formmassen
WO1997001601A1 (de) Schlagzähe formmasse aus styrolpolymeren
EP3625272B1 (de) Bromierte flammschutzmittel
WO1996018672A2 (de) Mit kohlendioxid getriebener schaum aus styrolpolymeren
DE19710442A1 (de) Expandierbare Styrolpolymerisate
DE10306891A1 (de) Transparente Blockcopolymere aus Vinylaromaten und Dienen
EP0767213B1 (de) Thermoplastische Formmassen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120427

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130802

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131213