EP2469047B1 - Centrale thermique et procédé de contrôle, régulation, et/ou surveillance d'un système comprenant une machine d'expansion - Google Patents

Centrale thermique et procédé de contrôle, régulation, et/ou surveillance d'un système comprenant une machine d'expansion Download PDF

Info

Publication number
EP2469047B1
EP2469047B1 EP10016063.9A EP10016063A EP2469047B1 EP 2469047 B1 EP2469047 B1 EP 2469047B1 EP 10016063 A EP10016063 A EP 10016063A EP 2469047 B1 EP2469047 B1 EP 2469047B1
Authority
EP
European Patent Office
Prior art keywords
steam
determined
expansion engine
physical parameter
live steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10016063.9A
Other languages
German (de)
English (en)
Other versions
EP2469047A1 (fr
Inventor
Richard Aumann
Andreas Schuster
Andreas Sichert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orcan Energy AG
Original Assignee
Orcan Energy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orcan Energy AG filed Critical Orcan Energy AG
Priority to EP10016063.9A priority Critical patent/EP2469047B1/fr
Priority to JP2013545111A priority patent/JP5745642B2/ja
Priority to PCT/EP2011/006492 priority patent/WO2012084242A1/fr
Priority to US13/994,902 priority patent/US9828883B2/en
Priority to CN201180062258.9A priority patent/CN103370500B/zh
Publication of EP2469047A1 publication Critical patent/EP2469047A1/fr
Application granted granted Critical
Publication of EP2469047B1 publication Critical patent/EP2469047B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/08Arrangement of sensing elements responsive to condition of working-fluid, e.g. pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/003Arrangements for measuring or testing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/72Application in combination with a steam turbine

Definitions

  • the present invention relates to the control or regulation and / or monitoring of a device with an expansion machine, the live steam of a working medium is supplied, which is expanded in the expansion machine to Abdampf.
  • ORC Organic Rankine Cycle
  • the working medium is brought to a working pressure by a feed pump, and it is supplied to it in a heat exchanger energy in the form of heat, which is provided by a combustion or a waste heat flow available.
  • the working fluid flows via a pressure tube to an ORC turbine, where it is expanded to a lower pressure.
  • the expanded working medium vapor flows through a condenser, in which a heat exchange between the vaporous working medium and a cooling medium takes place, after which the condensed working medium is returned by a feed pump to the evaporator in a cyclic process.
  • WO 01/92689 A1 A method for operating a steam turbine is described, in which a mass flow is controlled based on the measurement of an enthalpy difference at measuring points before and after the turbine, wherein a measurement of the temperature takes place before and after the turbine.
  • the precise monitoring and control of the expansion machine is essential for efficient operation and, depending on the working medium and thermodynamic parameters of the same, a particular challenge.
  • the determination of the physical parameters of the expander machine supplied live steam of the working medium is of particular importance.
  • the live steam parameters such as the live steam entropy and live steam enthalpy, are determined as functions of the determined temperature and / or of the determined pressure of the live steam.
  • ORC systems it may be advantageous in terms of their efficiency that at the beginning of the relaxation of the working medium in the expansion machine, this medium is in a two-phase state.
  • the enthalpy can not be determined directly from the pressure and the temperature of the partially vaporized working medium, because in the wet steam area the enthalpy of fresh enthalpy and enthalpy in addition to pressure and / or temperature also depends on the vapor content.
  • the vapor content can not be readily determined.
  • the expansion machine with a working medium in the supercritical region near the critical point in the vicinity of which the density of vapor and liquid at the same temperature approach asymptotically operated, the live steam parameters can only be determined with great inaccuracies of pressure and / or temperature the isobars are approximately horizontal at the critical point. In the vicinity of the critical point, even very small temperature changes lead to very large enthalpy and entropy changes.
  • An organic working medium is provided as the working medium, and the expansion machine is operated as part of an Organic Rankine Cycle (ORC) process for generating electrical energy.
  • ORC Organic Rankine Cycle
  • the working media are all "dry media” used in conventional ORC systems, such as R245fa, "wet” media, such as ethanol or “isentropic media", such as R134a.
  • silicone-based synthetic working media such as GL160 can be used.
  • the device may be a steam power plant, in particular an Organic Rankine Cycle steam power plant, or a component thereof.
  • the ORC system itself can be, for example, a geothermal or solar thermal system or also have the combustion of fossil fuels as a heat source.
  • the device may in particular comprise means for supplying the live steam to the expansion machine and the control / monitoring / monitoring may in particular comprise the control / monitoring / monitoring of the live steam to the expansion machine.
  • the device may in particular be part of a steam power plant or a steam power plant in which the working fluid is supplied after passing through an evaporator of the expansion machine, which may be in particular a turbine.
  • the apparatus may include the evaporator and feeders to the evaporator and to the expansion machine.
  • the apparatus may further comprise a condenser for liquefying the exhaust steam and a feed pump for supplying the liquefied working medium to the evaporator.
  • the control / regulation can therefore relate in total to the control / regulation of the transport of the working medium in the device, wherein in particular the mass flow rate of the working medium, for example by appropriate control of the feed pump, can be controlled / regulated.
  • the operation of the expansion machine and / or the evaporator may be controlled according to the method of the invention based on the at least one specific physical parameter of the live steam.
  • the working medium is an organic medium which is vaporized in an evaporator as part of an Organic Rankine Cycle (ORC) process and then fed to the expansion machine.
  • ORC Organic Rankine Cycle
  • the process according to the invention is of particular importance for ORC plants, since here the working medium advantageously approaches the expansion machine in two phases or, in particular, in the supercritical region, but near the critical point in the vicinity of which the density of the liquid phase and of the gaseous phase of the working medium approach each other asymptotically. is supplied.
  • the method may include the step of determining the working medium pressure ratio applied to the expansion machine and the mass flow of the working medium.
  • determining the isentropic efficiency of the expansion machine is based on the determined applied pressure ratio of the working fluid and mass flow of the working fluid.
  • the isentropic efficiency may depend on the speed of the expansion machine.
  • the method may further comprise the step of determining the speed of the expander machine, and in this case determining the isentropic efficiency of the expander machine based on the determined speed of the expander machine. This is particularly advantageous when the expansion machine is a piston expansion machine, a scroll expander or a screw expander.
  • the method may include modeling the operation of the expander with the working fluid based on thermodynamic equations and empirically determined parameter quantities, and determining the efficiency of the expander based on the result of modeling the operation of the expander.
  • the at least one particular physical parameter of the live steam used for the control of the apparatus may be the (specific) enthalpy and / or (specific) entropy and / or the volume ratio of gaseous to liquid phase and / or the density ratio from gaseous to liquid phase of the live steam.
  • particularly suitable parameters for the live steam are obtained for the control / regulation / monitoring.
  • the at least one specific physical parameter of the exhaust steam may include the temperature and / or pressure thereof.
  • the step of determining the temperature of the live steam may be based on the determined temperature and pressure of the exhaust steam.
  • the method according to the invention comprises the step of determining (for example measuring) the pressure of the live steam, which is different from the at least one physical parameter of the live steam determined on the basis of the determined at least one physical parameter of the exhaust steam, and it becomes at least determines a physical parameter of the live steam based on the determined pressure of the live steam (different from this parameter).
  • the parameters of the exhaust steam can be determined by measuring at corresponding measuring points of the device.
  • the thermal power plant may be an ORC power plant in which an organic working fluid is vaporized in a heat exchanger and then supplied to the expansion machine to be liquefied after expansion by a condenser and returned to the heat exchanger in the course of an ORC cycle by a feed pump to be fed.
  • the heat exchanger can be acted upon by a flue gas, which is produced for example by the combustion of fossil fuels.
  • At least one physical parameter of the exhaust steam is determined in order to determine with its help physical parameters of the live steam.
  • FIG. 1 the pressure and the temperature of the exhaust steam measured at measuring points, or taken as information directly from the power electronics / MCR technology.
  • a working medium is supplied in the form of live steam 1 to an expansion machine 2, for example a turbine, and the mechanical energy obtained by the expansion of the live steam of the working medium is converted into electrical energy 3 by a generator.
  • measuring points for measuring various parameters are shown.
  • the pressure of the live steam 1 at a live steam pressure measuring point 4 is measured.
  • the Abdampfdruckmessstelle 5 and the Abdampftemperatur Wegstelle 6 provide the pressure or the temperature of the expanded exhaust steam 1 'of the working fluid ready.
  • the speed of the expansion machine at the measuring point 7 is measured. From the measurement data thus obtained, the isentropic efficiency of the expansion machine and the Control or regulation, for example, the supply of live steam to the expansion machine, required physical parameters of the live steam can be determined.
  • the enthalpy or the volume ratio of gaseous to liquid phase and / or the vapor content (quotient of the mass of the vapor fraction and the total mass) or the density ratio of gaseous to liquid phase of the live steam can be determined using the parameters measured at the measuring points 4-7 .
  • the determination of the physical parameters of the live steam in particular allows the control or regulation of the mass flow of the working medium to a heat exchanger (evaporator) such that at the end of the expansion process just saturated steam is reached.
  • FIG. 2 an example according to the invention for the semi-empirical modeling of an expansion machine is illustrated, by which the determination of relevant physical parameters of the live steam from the determination of physical parameters of the exhaust steam is exemplified.
  • the flow of the working medium through the expansion machine is divided into different types of state change thereof, which are determined by different parameters.
  • the expander can be modeled using seven parameters to be empirically determined.
  • This adiabatic pressure loss 10 is essentially determined by the inlet cross section, which is thus used as the first empirical parameter in the modeling.
  • isobaric cooling (FD1 ⁇ FD2) of the working medium According to the heat transfer capacity of the live steam as a second empirical parameter isobaric cooling (FD1 ⁇ FD2) of the working medium.
  • the working medium then undergoes an isentropic expansion in a first stage A according to the built-in volume ratio, which is to be considered as the third empirical parameter.
  • Volumetric expansion machines have a built-in volume ratio. It's going to be steam in one Chamber is included, which is expanded and ejected after opening the chamber. The volume ratio is the quotient of the volume of the steam when opening the chamber and the volume of the vapor when closing the chamber.
  • a design-related post-expansion or recompression of the exhaust steam ( ⁇ AD2) is taken into account in a second stage B.
  • the heat transfer capacity of the exhaust steam As the fourth empirical parameter, either the heating or cooling of the expanded exhaust steam (AD2 ⁇ AD1) then occurs.
  • a proportion of the live steam after isobaric cooling (FD2) also contributes to the flow of the working medium after the expansion, which flows past the expansion stage as a leakage mass flow at the rate m Lekage according to a leakage cross section as the fifth empirical parameter.
  • the heat loss Q FD over the isothermal shell of the expansion machine according to the heat transfer capacity of the isobar cooled live steam (FD2) is taken into account as the sixth empirical parameter.
  • the seventh empirical parameter takes into account a mechanical loss moment ⁇ mech of the expansion machine.
  • the working medium finally leaves the expansion machine as Abdampf AD.
  • measured values are recorded in relevant operating ranges. Then, for different speeds from the live steam pressure and the Abdampfparametern, as for example, according to FIG. 1 determine the isentropic efficiency of the expander on the basis of thermodynamic model equations well known to those skilled in the art. With the aid of the specific efficiency, it is then possible to draw conclusions about the relevant live steam parameters, such as entropy and enthalpy, or even temperature.
  • the following iterative method for determining relevant live steam parameters is useful.
  • the pressure and the temperature of the exhaust steam determined, for example, measured. From this, the entropy of the exhaust steam can be determined.
  • live steam parameters such as the steam content of the live steam and the entropy of the same, are determined.
  • the iterated isentropic efficiency ⁇ (1 + n) is determined using the speed, the steam content of the live steam and the temperatures and pressures of both the live steam and the exhaust steam.
  • the iterated isentropic efficiency ⁇ (1 + n) is used to determine the new values for the live steam parameters, such as the steam content of the live steam and its entropy. Steps 3 and 4 must be iterated until a desired predetermined accuracy has been achieved for the live steam parameters to be determined.
  • the isentropic efficiency is i.a. depends on several parameters. Thus, it can be determined as a function of the rotational speed, the live steam parameter, the exhaust steam parameter but also the geometry of the expansion machine, as is familiar to the person skilled in the art.
  • the isentropic efficiency can be determined, for example, by numerical simulation, in particular fluid mechanical simulation calculations. Alternatively, it can be determined empirically by a compensation function based on measured values or semi-empirically by a parameterization of determination equations, wherein parameters are generated from measured values. These methods for determining isentropic efficiency are well known to those skilled in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Claims (10)

  1. Procédé de commande ou régulation et/ou de surveillance d'un dispositif avec une machine à expansion (2), qui est utilisé dans un procédé à cycle organique de Rankine pour produire de l'énergie électrique, dans lequel la machine à expansion (2) reçoit de la vapeur vive (1) d'un fluide de travail organique dans la plage de vapeur humide, qui se détend dans la machine à expansion (2) pour former de la vapeur d'échappement, comprenant les étapes suivantes :
    détermination d'au moins un paramètre physique de la vapeur d'échappement ;
    détermination d'au moins un paramètre physique de la vapeur vive (1) sur base dudit au moins un paramètre physique déterminé de la vapeur d'échappement ; et
    commande ou régulation et/ou surveillance du dispositif sur base dudit au moins un paramètre physique déterminé de la vapeur vive (1) ; et
    détermination du rendement isentropique de la machine à expansion (2), dans lequel la détermination dudit au moins un paramètre physique de la vapeur vive (1) s'effectue sur base du rendement déterminé de la machine à expansion (2).
  2. Procédé selon revendication 1, comprenant en outre l'étape de détermination du rapport de pression du fluide de travail adjacent à la machine à expansion (2) et du débit massique du fluide de travail, et dans lequel se produit la détermination du rendement isentropique de la machine à expansion (2) sur base du rapport de pression adjacent déterminé du fluide de travail ainsi que du débit massique du fluide de travail.
  3. Procédé selon revendication 1, dans lequel la machine à expansion (2) est une machine volumétrique, en particulier une machine à expansion à piston, une machine à expansion à rotor ou une machine à expansion à vis, et comprenant en outre l'étape de détermination de la fréquence de rotation de la machine à expansion (2), et dans lequel la détermination du rendement isentropique de la machine à expansion (2) s'effectue sur base de la fréquence de rotation déterminée de la machine à expansion (2).
  4. Procédé selon l'une des revendications 1 à 3, comprenant l'étape de modélisation du fonctionnement de la machine à expansion (2) avec le fluide de travail sur base d'équations thermodynamiques et de grandeurs de paramètre déterminées empiriquement, et dans lequel le rendement de la machine à expansion (2) est établi sur base du résultat de la modélisation du fonctionnement de la machine à expansion (2).
  5. Procédé selon l'une des revendications précédentes, dans lequel ledit au moins un paramètre physique déterminé de la vapeur d'échappement comprend la température et/ou la pression de la vapeur d'échappement.
  6. Procédé selon revendication 5, comprenant l'étape de détermination de la température de la vapeur vive (1) sur base de la température déterminée et de la pression déterminée de la vapeur d'échappement.
  7. Procédé selon l'une des revendications précédentes, comprenant en outre l'étape de détermination de la pression de la vapeur vive (1), qui diffère dudit au moins un paramètre physique de la vapeur vive (1) déterminé sur base dudit au moins un paramètre physique déterminé de la vapeur d'échappement, et dans lequel la détermination dudit au moins un paramètre physique de la vapeur vive (1) s'effectue sur base de la pression déterminée de la vapeur vive (1).
  8. Procédé selon l'une des revendications précédentes, dans lequel ledit au moins un paramètre physique déterminé de la vapeur vive (1) comprend l'enthalpie et/ou l'entropie et/ou le rapport volumétrique de la phase gazeuse à la phase liquide et/ou le titre de vapeur et/ou le rapport de densité de la phase gazeuse à la phase liquide de la vapeur vive.
  9. Procédé selon l'une des revendications précédentes, dans lequel le dispositif est une centrale thermique à vapeur, en particulier une centrale thermique à vapeur à cycle organique de Rankine, ou encore un composant d'une telle centrale.
  10. Centrale thermique comportant
    une machine à expansion (2) qui peut être utilisée pour la production d'énergie électrique dans un procédé à cycle organique de Rankine, qui reçoit de la vapeur vive (1) d'un fluide de travail organique dans la plage de vapeur humide, qui se détend dans la machine à expansion (2) pour former de la vapeur d'échappement ; et
    une commande ou une régulation ;
    dans laquelle
    la commande ou régulation est conçue pour déterminer au moins un paramètre physique de la vapeur d'échappement ;
    déterminer au moins un paramètre physique de la vapeur vive (1) sur base dudit au moins un paramètre physique déterminé de la vapeur d'échappement ; et
    commander ou réguler et/ou surveiller la centrale thermique sur base dudit au moins un paramètre physique déterminé de la vapeur vive (1) ;
    dans laquelle
    la commande ou régulation est conçue pour déterminer le rendement isentropique de la machine à expansion (2) et pour déterminer ledit au moins un paramètre physique de la vapeur vive (1) sur base du rendement déterminé de la machine à expansion (2).
EP10016063.9A 2010-12-23 2010-12-23 Centrale thermique et procédé de contrôle, régulation, et/ou surveillance d'un système comprenant une machine d'expansion Active EP2469047B1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10016063.9A EP2469047B1 (fr) 2010-12-23 2010-12-23 Centrale thermique et procédé de contrôle, régulation, et/ou surveillance d'un système comprenant une machine d'expansion
JP2013545111A JP5745642B2 (ja) 2010-12-23 2011-12-21 膨張機関の生蒸気の決定
PCT/EP2011/006492 WO2012084242A1 (fr) 2010-12-23 2011-12-21 Détermination de la vapeur vive d'une machine à détente
US13/994,902 US9828883B2 (en) 2010-12-23 2011-12-21 Live steam determination of an expansion engine
CN201180062258.9A CN103370500B (zh) 2010-12-23 2011-12-21 膨胀发动机的直接蒸汽确定

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10016063.9A EP2469047B1 (fr) 2010-12-23 2010-12-23 Centrale thermique et procédé de contrôle, régulation, et/ou surveillance d'un système comprenant une machine d'expansion

Publications (2)

Publication Number Publication Date
EP2469047A1 EP2469047A1 (fr) 2012-06-27
EP2469047B1 true EP2469047B1 (fr) 2016-04-20

Family

ID=43971207

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10016063.9A Active EP2469047B1 (fr) 2010-12-23 2010-12-23 Centrale thermique et procédé de contrôle, régulation, et/ou surveillance d'un système comprenant une machine d'expansion

Country Status (5)

Country Link
US (1) US9828883B2 (fr)
EP (1) EP2469047B1 (fr)
JP (1) JP5745642B2 (fr)
CN (1) CN103370500B (fr)
WO (1) WO2012084242A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6502014B2 (ja) * 2014-01-24 2019-04-17 日立造船株式会社 廃熱回収装置
EP3375990B1 (fr) * 2017-03-17 2019-12-25 Orcan Energy AG Surveillance sur la base de modèle de l'état de fonctionnement d'une machine à détente
CN110454769B (zh) * 2019-08-23 2020-11-13 广西电网有限责任公司电力科学研究院 一种大型发电机组高背压汽动给水泵控制系统与控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4549503A (en) * 1984-05-14 1985-10-29 The Babcock & Wilcox Company Maximum efficiency steam temperature control system
US4827429A (en) * 1987-06-16 1989-05-02 Westinghouse Electric Corp. Turbine impulse chamber temperature determination method and apparatus
US5003782A (en) * 1990-07-06 1991-04-02 Zoran Kucerija Gas expander based power plant system
EP1285150B1 (fr) * 2000-05-31 2006-07-12 Siemens Aktiengesellschaft Procede et dispositif pour faire fonctionner une turbine a vapeur a plusieurs niveaux au ralenti ou a faible charge
US20030213245A1 (en) * 2002-05-15 2003-11-20 Yates Jan B. Organic rankine cycle micro combined heat and power system
US7971449B2 (en) * 2004-08-14 2011-07-05 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Heat-activated heat-pump systems including integrated expander/compressor and regenerator
GB2457266B (en) * 2008-02-07 2012-12-26 Univ City Generating power from medium temperature heat sources

Also Published As

Publication number Publication date
US9828883B2 (en) 2017-11-28
US20160356184A1 (en) 2016-12-08
JP2014500438A (ja) 2014-01-09
EP2469047A1 (fr) 2012-06-27
CN103370500B (zh) 2016-01-20
WO2012084242A1 (fr) 2012-06-28
JP5745642B2 (ja) 2015-07-08
CN103370500A (zh) 2013-10-23

Similar Documents

Publication Publication Date Title
EP2567074A2 (fr) Régulation d'un processus cyclique thermique
EP2188499B1 (fr) Procédé et dispositif permettant de transformer l'énergie thermique d'une source de chaleur basse température en énergie mécanique
EP2229524B1 (fr) Procédé de récupération de pertes de chaleur d'un moteur à combustion interne
WO2009109311A2 (fr) Procédé de production d'énergie a partir d'un courant de gaz d'échappement, et véhicule à moteur correspondant
EP2520771B1 (fr) Procédé et dispositif de chauffage rapide de lubrifiant pour machines d'expansion lubrifiées
WO2012097964A2 (fr) Lubrification de machines à expansion volumétriques
EP2469047B1 (fr) Centrale thermique et procédé de contrôle, régulation, et/ou surveillance d'un système comprenant une machine d'expansion
EP2937527A1 (fr) Réglage de vapeur humide de système orc : réglage indirect d'humidité spécifique x<1 par réglage de niveau de remplissage
WO2015149916A1 (fr) Procédé permettant de faire fonctionner un système pour un circuit fermé thermodynamique, dispositif de commande pour un système d'un circuit fermé thermodynamique, système, et ensemble composé d'un moteur à combustion interne et d'un système
WO2015090647A2 (fr) Dispositif et procédé permettant de faire fonctionner des machines à expansion volumétrique
DE102005049215A1 (de) Verfahren und Vorrichtung zur Gewinnung von mechanischer oder elektrischer Energie aus Wärme
WO2015090648A1 (fr) Procédé de régulation sans capteur d'un condenseur permettant d'optimiser la puissance de systèmes orc
EP2937630B1 (fr) Procédé de fonctionnement d'un système pour un cycle fermé thermodynamique doté d'un évaporateur à plusieurs flux, dispositif de commande pour un système, système pour un cycle fermé thermodynamique doté d'un évaporateur à plusieurs flux et agencement d'un moteur à combustion interne et d'un système
DE102010056586A1 (de) Anordnung zur Verdampfung von flüssigen Erdgas
EP3366894B1 (fr) Dispositif de convertissement de l'énergie thermique
DE102019122087A1 (de) Energierückgewinnungsanlage mit Koppelkreislauf
EP2762691B1 (fr) Installation ORC avec production de chaleur améliorée
DE102016007186A1 (de) Vorrichtung und Verfahren zum Betrieb eines Abwärmenutzungssystems
DE102016004402A1 (de) Vorrichtung zum Umwandeln von thermischer Energie
WO2013056987A2 (fr) Procédé et dispositif de production de courant
DE102016204405A1 (de) Vorrichtung zur Energieerzeugung, insbesondere ORC-Anlage
DE102016010093A1 (de) Vorrichtung und Verfahren als CO2-Antriebsturbine mittels der Nutzung der thermischen Energien einer Wärmepumpe
EP3000993A1 (fr) Dispositif de production d'energie, en particulier installation orc
EP2564280A1 (fr) Procédé de diagnostic thermodynamique en ligne d'une installation technique de grande taille
DE102011121736A1 (de) Anordnung einer Vorrichtung zur energetischen Kopplung von Kompressionswärme und Entspannungskälte und Verfahren zur energetischen Nutzung dieses Kopplungsprinzips in thermodynamischen Prozessen

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121212

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ORCAN ENERGY GMBH

17Q First examination report despatched

Effective date: 20140507

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ORCAN ENERGY AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151028

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 792688

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010011462

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160721

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160822

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010011462

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

26N No opposition filed

Effective date: 20170123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161223

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161223

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 792688

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161223

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101223

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231222

Year of fee payment: 14

Ref country code: IT

Payment date: 20231227

Year of fee payment: 14

Ref country code: FR

Payment date: 20231220

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231222

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231221

Year of fee payment: 14