EP2464625A2 - Verfahren zur herstellung von diisocyanaten durch gasphasenphosgenierung - Google Patents

Verfahren zur herstellung von diisocyanaten durch gasphasenphosgenierung

Info

Publication number
EP2464625A2
EP2464625A2 EP10742484A EP10742484A EP2464625A2 EP 2464625 A2 EP2464625 A2 EP 2464625A2 EP 10742484 A EP10742484 A EP 10742484A EP 10742484 A EP10742484 A EP 10742484A EP 2464625 A2 EP2464625 A2 EP 2464625A2
Authority
EP
European Patent Office
Prior art keywords
gas phase
hydrogen chloride
phase phosgenation
chlorine
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10742484A
Other languages
English (en)
French (fr)
Inventor
Torsten Mattke
Gerhard Olbert
Carsten KNÖSCHE
Heiner Schelling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP10742484A priority Critical patent/EP2464625A2/de
Publication of EP2464625A2 publication Critical patent/EP2464625A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/10Preparation of derivatives of isocyanic acid by reaction of amines with carbonyl halides, e.g. with phosgene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/703Isocyanates or isothiocyanates transformed in a latent form by physical means
    • C08G18/705Dispersions of isocyanates or isothiocyanates in a liquid medium
    • C08G18/707Dispersions of isocyanates or isothiocyanates in a liquid medium the liquid medium being a compound containing active hydrogen not comprising water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the invention relates to a process for the preparation of diisocyanates by gas-phase phosgenation.
  • Diisocyanates are predominantly produced by phosgenation of the corresponding amines. This can be carried out both in the liquid and in the gas phase.
  • the gas phase phosgenation has in the technical implementation of the liquid phase phosgenation a number of advantages, in particular a higher selectivity, a lower HoId-up of toxic phosgene and lower investment and energy costs.
  • the two reactant streams, an amine-containing and a phosgene-containing reactant stream if they are not already in the gas phase, evaporated and brought to the reaction temperature of the gas phase phosgenation, from about 300 to 400 0 C.
  • the solution consists in a process for the preparation of diisocyanates by gas phase phosgenation starting from a reactant stream containing the corresponding diamines and a phosgene, wherein the reactant streams are separately transferred into the gas phase and preheated to the reaction temperature of the gas phase phosgenation, characterized in that the Waste heat from a plant for the production of chlorine is used by heterogeneously catalyzed oxidation of hydrogen chloride by the Deacon process.
  • the waste heat from a plant for the production of chlorine by heterogeneously catalyzed oxidation of hydrogen chloride can be used by the so-called Deacon process to the educt streams for the gas phase phosgenation for the production of diisocyanates to the required reaction temperature to bring from about 300 to 400 0 C.
  • the thermal coupling according to the invention of the Deacon process and the gas phase phosgenation is a technically simple, elegant solution because the temperature levels are similar, that is, the heat of reaction of the Deacon process can be used directly for heating the reactant streams for the gas phase phosgenation to diisocyanates.
  • a material coupling is possible:
  • the apparatus for example, when using molten salts as a heat carrier, be carried out in a lower pressure stage.
  • the waste heat that is to say the heat of reaction resulting from the heterogeneously catalyzed oxidation of hydrogen chloride from a Deacon process, is used for overheating and, if appropriate, evaporation of the educt streams of a gas phase phosgenation.
  • the invention is not limited to the specific implementation of the Deacon process; in particular, this can be carried out on a fixed or fluidized bed.
  • the amine preferably has a temperature in the range of 200 to 400 0 C.
  • the pressure of the added amine is preferably in the range between 0.05 to 3 bar absolute.
  • the temperature of the added phosgene is preferably in the range of 250 to 450 ° C.
  • the phosgene is usually heated prior to addition in a manner known to those skilled in the art.
  • an electric heating or a direct or indirect heating by combustion of a fuel is used.
  • the fuels used are usually fuel gases, for example natural gas.
  • By lowering the boiling temperature by lowering the pressure of the amine is also a heating, for Example by water vapor, possible.
  • the pressure of the water vapor is selected.
  • a suitable vapor pressure of the water vapor is for example in the range of 40 to 100 bar. This results in a temperature of the water vapor in the range of 250 to 31 1 ° C.
  • the evaporation of the phosgene is generally carried out at much lower temperatures. For this reason, water vapor can generally be used to evaporate the phosgene.
  • the necessary overheating of the phosgene to heat it to reaction temperature is generally possible only by electrical heating or direct or indirect heating by combustion of a fuel.
  • the phosgene-containing reactant stream generally has a high phosgene content of almost 100 wt .-%, and in addition residues of in particular nickel and chlorine.
  • the diamine stream containing diamines contains the diamines corresponding to the desired diisocyanate target product.
  • the diamines must be vaporizable without decomposition. It is possible to use aliphatic, cycloaliphatic or aromatic diamines, preferably aliphatic diamines.
  • Both the phosgene and the diamines-containing educt stream may each be diluted with an inert gas.
  • Diamines which are used in the process according to the invention for the reaction to give the corresponding isocyanates are those in which the diamine, the corresponding intermediates and the corresponding isocyanates are present in gaseous form under the reaction conditions chosen. Preference is given to diamines which, during the duration of the reaction under the reaction conditions, amount to at most 2 Mole%, more preferably at most 1 mole% and most preferably at most 0.5 mole% decompose. Particularly suitable here are diamines, in particular diamines, based on aliphatic or cycloaliphatic hydrocarbons having 2 to 18 carbon atoms.
  • 1,6-diaminohexane 1,5-diaminopentane
  • 1,3-bis (aminomethyl) cyclohexane 1,3-bis (aminomethyl) cyclohexane
  • IPDA 1-amino-3,3,5-trimethyl-5-amino-methylcyclohexane
  • HDA 1,6-diaminohexane
  • aromatic amines can be used for the process according to the invention, which can be converted into the gas phase without significant decomposition.
  • TDA toluenediamine
  • 2,6-isomer or as a mixture thereof, for example as 80:20 to 65:35 (mol / mol) -
  • MDA Methylene (diphenyldiamine)
  • isomeric mixtures thereof Preferred among these are the diamines, more preferably 2,4- and / or 2,6-TDA or 2,4'- and / or 4,4'-MDA.
  • the invention is not limited to the specific implementation of the gas phase phosgenation. This can advantageously be carried out as described in EP 08 168 617.2 by adding the educts to the reactor via an ejector or also by cooling the reaction gas mixture of the gas phase phosgenation in a quench to add a liquid quench medium, as described in EP 08 168 617.2 ,
  • the two feed streams are preferred, that is, the diamine and the phosgene-containing feed stream to a temperature in the range of about 300 to 400 0 C, preferably to a temperature in the range of about 330-380 0 C, preheated.
  • reaction gas mixture of the heterogeneously catalyzed oxidation of hydrogen chloride by the Deacon process can be used directly as a heat transfer medium for indirect heat transfer to the educt streams for the gas phase phosgenation.
  • the temperature of the reaction gas mixture of the Deacon process for heating a secondary heat carrier, in particular a molten salt or water vapor, and to heat the starting materials for the gas phase phosgenation with the secondary heat carrier.
  • a secondary heat carrier in particular a molten salt or water vapor
  • the preheating and, if necessary, the conversion of the educt streams into the gas phase can be carried out in conventional evaporator constructions, such as falling film, thin film or climbing film evaporators.
  • the preheating and, if necessary, the transfer to the gas phase of the reactant streams in each case in a tube bundle heat exchanger wherein preferably the respective educt flow is passed through the tubes of the tube bundle heat exchanger and the reaction gas mixture from the Deacon process or a secondary heat carrier through the shell space around the pipes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Vorgeschlagen wird ein Verfahren zur Herstellung von Diisocyanaten durch Gasphasenphosgenierung ausgehend von einem die entsprechenden Diamine sowie einem Phosgen enthaltenden Eduktstrom, wobei die Eduktströme jeweils getrennt in die Gasphase übergeführt und auf die Reaktionstemperatur der Gasphasenphosgenierung vorerhitzt werden, das dadurch gekennzeichnet ist, dass hierfür die Abwärme aus einer Anlage zur Herstellung von Chlor durch heterogenkatalysierte Oxidation von Chlorwasserstoff nach dem Deacon-Verfahren genutzt wird.

Description

Verfahren zur Herstellung von Diisocyanaten durch Gasphasenphosgenierung Beschreibung Die Erfindung betrifft ein Verfahren zur Herstellung von Diisocyanaten durch Gasphasenphosgenierung.
Diisocyanate werden überwiegend durch Phosgenierung der entsprechenden Amine hergestellt. Diese kann sowohl in der Flüssig- als auch in der Gasphase durchgeführt werden. Die Gasphasenphosgenierung weist in der technischen Umsetzung über die Flüssigphasenphosgenierung eine Reihe von Vorteilen auf, insbesondere eine höhere Selektivität, ein niedrigerer HoId-Up an toxischem Phosgen sowie niedrigere Investiti- ons- und Energiekosten. Bei der Gasphasenphosgenierung werden die beiden Eduktströme, ein aminhaltiger und ein phosgenhaltiger Eduktstrom, sofern sie nicht bereits in der Gasphase vorliegen, verdampft und auf die Reaktionstemperatur der Gasphasenphosgenierung, von etwa 300 bis 4000C, gebracht. Diese Überhitzung und gegebenenfalls Verdampfung erfolgt nach dem Stand der Technik indirekt, beispielsweise über eine elektrische Be- heizung, über Verbrennungsgase oder über hochgespannten Wasserdampf. Gegebenenfalls ist ein in der Regel flüssiger Wärmeträger, beispielsweise eine Salzschmelze, dazwischengeschaltet. Die Bereitstellung der Hochtemperaturwärme nach den bekannten Verfahren ist jedoch sehr kostenintensiv. Es war daher Aufgabe der Erfindung, ein Verfahren zur Herstellung von Diisocyanaten durch Gasphasenphosgenierung der entsprechenden Amine zur Verfügung zu stellen, bei dem die für die Erhitzung und gegebenenfalls Verdampfung der Eduktströme erforderliche Wärme in technisch einfacher Weise, mit niedrigeren Investitions- und Energiekosten, zur Verfügung gestellt wird.
Die Lösung besteht in einem Verfahren zur Herstellung von Diisocyanaten durch Gasphasenphosgenierung ausgehend von einem die entsprechenden Diamine sowie einem Phosgen enthaltenden Eduktstrom, wobei die Eduktströme jeweils getrennt in die Gasphase übergeführt und auf die Reaktionstemperatur der Gasphasenphosgenie- rung vorerhitzt werden, dadurch gekennzeichnet, dass hierfür die Abwärme aus einer Anlage zur Herstellung von Chlor durch heterogen katalysierte Oxidation von Chlorwasserstoff nach dem Deacon-Verfahren genutzt wird. Es wurde gefunden, dass in vorteilhafter Weise die Abwärme aus einer Anlage zur Herstellung von Chlor durch heterogen katalysierte Oxidation von Chlorwasserstoff nach dem so genannten Deacon-Verfahren genutzt werden kann, um die Eduktströme für die Gasphasenphosgenierung zur Herstellung von Diisocyanaten auf die erforderli- che Reaktionstemperatur, von etwa 300 bis 4000C zu bringen. Die erfindungsgemäße wärmetechnische Kopplung des Deacon-Verfahrens und der Gasphasenphosgenierung ist eine technisch einfache, elegante Lösung, weil die Temperaturniveaus ähnlich sind, das heißt die Reaktionswärme des Deacon-Verfahrens unmittelbar zur Aufheizung der Eduktströme für die Gasphasenphosgenierung zu Diisocyanaten genutzt werden kann. Darüber hinaus ist auch eine stoffliche Kopplung möglich:
Bei der Gasphasenphosgenierung fällt neben dem Hauptprodukt, den Diisocyanaten, auch Chlorwasserstoff an. Dieser kann als Edukt in einem Deacon-Verfahren zu Chlor oxidiert werden. Durch die Kopplung von Deacon-Verfahren und Gasphasenphosge- nierung können Investitionskosten für die wärmetechnische Peripherie in beiden Verfahren eingespart werden. Gegebenfalls können die Apparate, beispielsweise bei Nutzung von Salzschmelzen als Wärmeträger, in geringerer Druckstufe ausgeführt werden. Erfindungsgemäß wird die Abwärme, das heißt die bei der heterogen katalysierten O- xidation von Chlorwasserstoff anfallende Reaktionswärme aus einem Deacon- Verfahren für die Überhitzung und gegebenenfalls Verdampfung der Eduktströme einer Gasphasenphosgenierung genutzt. Die Erfindung ist nicht eingeschränkt bezüglich der konkreten Durchführung des Deacon-Verfahrens; insbesondere kann dieses an einem Fest- oder Wirbelbett durchgeführt werden.
Das Amin weist vorzugsweise eine Temperatur im Bereich von 200 bis 4000C auf. Der Druck des zugegebenen Amins liegt dabei vorzugsweise im Bereich zwischen 0,05 bis 3 bar absolut. Die Temperatur des zugegebenen Phosgens liegt vorzugsweise im Bereich von 250 bis 450°C. Hierzu wird das Phosgen üblicherweise vor Zugabe in dem Fachmann bekannter Weise erwärmt. Zur Erwärmung des Phosgens und des Amins und zur Verdampfung des Amins wird zum Beispiel eine elektrische Beheizung oder eine direkte oder indirekte Aufheizung durch Verbrennung eines Brennstoffs eingesetzt. Als Brennstoffe werden üblicherweise Brenngase, beispielsweise Erdgas, eingesetzt. Durch die Absenkung der Siedetemperatur durch Absenkung des Drucks des Amins ist jedoch auch eine Beheizung, zum Beispiel durch Wasserdampf, möglich. In Abhängigkeit von der Siedetemperatur des Amins wird hierbei der Druck des Wasserdampfes ausgewählt. Ein geeigneter Dampfdruck des Wasserdampfes liegt zum Beispiel im Bereich von 40 bis 100 bar. Daraus ergibt sich eine Temperatur des Wasserdampfes im Bereich von 250 bis 31 1 °C.
Im Allgemeinen ist es erforderlich, das Amin mehrstufig auf die Reaktionstemperatur zu erwärmen. Im Allgemeinen wird das Amin hierzu zunächst vorgewärmt, dann verdampft und anschließend überhitzt. Im Allgemeinen erfordert die Verdampfung die längsten Verweilzeiten und führt so zu Zersetzungen des Amins. Um dies zu minimie- ren, ist eine Verdampfung bei niedrigeren Temperaturen, wie es sich zum Beispiel durch den niedrigeren Druck ergibt, vorteilhaft. Um nach der Verdampfung das verdampfte Amin auf Reaktionstemperatur zu überhitzen, ist im Allgemeinen eine Beheizung mit Wasserdampf nicht ausreichend. Zur Überhitzung wird daher üblicherweise eine elektrische Beheizung oder eine direkte oder indirekte Aufheizung durch Verbren- nung eines Brennstoffs eingesetzt.
Im Unterschied zur Verdampfung des Amins erfolgt die Verdampfung des Phosgens im Allgemeinen bei deutlich niedrigeren Temperaturen. Aus diesem Grund kann zur Verdampfung des Phosgens im Allgemeinen Wasserdampf eingesetzt werden. Jedoch ist auch die notwendige Überhitzung des Phosgens, um dieses auf Reaktionstemperatur zu erwärmen, im Allgemeinen nur durch eine elektrische Beheizung oder eine direkte oder indirekte Aufheizung durch Verbrennung eines Brennstoffes möglich.
Der Phosgen enthaltende Eduktstrom weist in der Regel einen hohen Phosgengehalt, von nahezu 100 Gew.-% auf, und daneben Reste von insbesondere Nickel und Chlor.
Der Diamine enthaltende Edukstrom enthält die dem gewünschten Diisocyanat- Zielprodukt entsprechenden Diamine. Die Diamine müssen ohne Zersetzung verdampfbar sein. Es können aliphatische, cycloaliphatische oder aromatische Diamine, bevorzugt aliphatische Diamine eingesetzt werden.
Sowohl der Phosgen als auch der Diamine enthaltende Eduktstrom können jeweils mit einem Inertgas verdünnt sein. Diamine, die bei dem erfindungsgemäßen Verfahren zur Reaktion zu den korrespondierenden Isocyanaten eingesetzt werden, sind solche, bei denen das Diamin, die korrespondierenden Zwischenprodukte und die korrespondierenden Isocyanate bei den gewählten Reaktionsbedingungen gasförmig vorliegen. Bevorzugt sind Diamine, die sich während der Dauer der Reaktion unter den Reaktionsbedingungen zu höchstens 2 Mol-%, besonders bevorzugt zu höchstens 1 Mol-% und ganz besonders bevorzugt zu höchstens 0,5 Mol-% zersetzen. Besonders geeignet sind hier Diamine, insbesondere Diamine, auf Basis von aliphatischen oder cycloaliphatischen Kohlenwasserstoffen mit 2 bis 18 Kohlenstoffatomen. Beispiele hierfür sind 1 ,6-Diaminohexan, 1 ,5- Diaminopentan, 1 ,3-Bis(aminomethyl)cyclohexan, 1-Amino-3,3,5-trimethyl-5-amino- methylcyclohexan (IPDA) und 4,4-Diaminodicyclohexylmethan. Bevorzugt verwendet wird 1 ,6-Diaminohexan (HDA).
Ebenfalls können für das erfindungsgemäße Verfahren aromatische Amine verwendet werden, die ohne signifikante Zersetzung in die Gasphase überführt werden können.
Beispiele für bevorzugte aromatische Amine sind Toluylendiamin (TDA), als 2,4- oder
2,6-lsomer oder als Gemisch davon, beispielsweise als 80:20 bis 65:35 (Mol/Mol)-
Gemisch, Diaminobenzol, 2,6-Xylidin, Naphthyldiamin (NDA) und 2,4'- oder 4,4'-
Methylen(diphenyldiamin) (MDA) oder Isomerengemische davon. Bevorzugt sind unter diesen die Diamine, besonders bevorzugt sind 2,4- und/oder 2,6-TDA oder 2,4'- und/oder 4,4'-MDA.
Die Erfindung ist nicht eingeschränkt bezüglich der konkreten Durchführung der Gasphasenphosgenierung. Diese kann vorteilhaft wie in EP 08 168 617.2 durchgeführt werden, indem die Edukte über einen Ejektor dem Reaktor zugegeben werden oder auch indem, wie in EP 08 168 617.2 beschrieben, das Reaktionsgasgemisch der Gasphasenphosgenierung in einem Quench zur Zugabe eines flüssigen Quenchmedi- ums abgekühlt wird. Bevorzugt werden die beiden Eduktströme, das heißt der Diamin sowie der Phosgen enthaltende Eduktstrom auf eine Temperatur im Bereich von ca. 300 bis 4000C, bevorzugt auf eine Temperatur im Bereich von ca. 330 bis 3800C, vorerhitzt.
Vorteilhaft kann das Reaktionsgasgemisch der heterogen katalysierten Oxidation von Chlorwasserstoff nach dem Deacon-Verfahren unmittelbar als Wärmeträger zur indirekten Wärmeübertragung auf die Eduktströme für die Gasphasenphosgenierung genutzt werden.
In einer weiteren Ausführungsform ist es möglich, die Temperatur des Reaktionsgas- gemisches des Deacon-Verfahrens zur Erwärmung eines sekundären Wärmeträgers zu nutzen, insbesondere einer Salzschmelze oder von Wasserdampf, und die Edukte für die Gasphasenphosgenierung mit dem sekundären Wärmeträger aufzuheizen. Die Vorerhitzung und, sofern erforderlich, die Überführung der Eduktströme in die Gasphase kann in üblichen Verdampferkonstruktionen, wie Fallfilm-, Dünnschicht- oder Kletterfilmverdampfern durchgeführt werden. In einer Ausführungsform erfolgt die Vorerhitzung und, sofern erforderlich, die Überführung in die Gasphase der Eduktströme jeweils in einem Rohrbündelwärmetauscher, wobei bevorzugt der jeweilige Eduktstrom durch die Rohre des Rohrbündelwärmetauschers geleitet wird und das Reaktionsgasgemisch aus dem Deacon-Verfahren oder ein sekundärer Wärmeträger durch den Mantelraum um die Rohre.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Diisocyanaten durch Gasphasenphosgenierung ausgehend von einem die entsprechenden Diamine sowie einem Phosgen ent- haltenden Eduktstrom, wobei die Eduktströme jeweils getrennt in die Gasphase übergeführt und auf die Reaktionstemperatur der Gasphasenphosgenierung vorerhitzt werden, dadurch gekennzeichnet, dass hierfür die Abwärme aus einer Anlage zur Herstellung von Chlor durch heterogen katalysierte Oxidation von Chlorwasserstoff nach dem Deacon-Verfahren genutzt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Eduktströme der Gasphasenphosgenierung jeweils getrennt auf eine Temperatur im Bereich von ca. 300 bis 4000C, bevorzugt auf eine Temperatur im Bereich von ca. 360 bis 3800C vorerhitzt werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Herstellung von Chlor durch heterogen katalysierte Oxidation von Chlorwasserstoff in einer Wirbelschicht erfolgt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Reaktionsgasgemisch aus der Herstellung von Chlor durch heterogen katalysierte Oxidation von Chlorwasserstoff nach dem Deacon-Verfahren unmittelbar als Wärmeträger zur indirekten Wärmeübertragung auf die Eduktströme der Gasphasenphosgenierung genutzt wird.
5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als Wärmeträger zur indirekten Wärmeübertragung auf die Eduktströme der Gasphasenphosgenierung ein sekundärer Wärmeträger genutzt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Überführung in die Gasphase und Vorerhitzung der Eduktströme jeweils in einem Rohrbündelwärmetauscher erfolgt, wobei der jeweilige Eduktstrom durch die Rohre und das Reaktionsgasgemisch der heterogen katalysierten Oxidation von Chlorwasserstoff zu Chlor nach dem Deacon-Verfahren oder ein sekundärer Wärmeträger durch den Mantelraum um die Rohre geleitet wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der sekundäre Wärmeträger eine Salzschmelze ist. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der sekundäre Wärmeträger Wasserdampf ist.
EP10742484A 2009-08-11 2010-08-10 Verfahren zur herstellung von diisocyanaten durch gasphasenphosgenierung Withdrawn EP2464625A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10742484A EP2464625A2 (de) 2009-08-11 2010-08-10 Verfahren zur herstellung von diisocyanaten durch gasphasenphosgenierung

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09167604 2009-08-11
PCT/EP2010/061574 WO2011018443A2 (de) 2009-08-11 2010-08-10 Verfahren zur herstellung von diisocyanaten durch gasphasenphosgenierung
EP10742484A EP2464625A2 (de) 2009-08-11 2010-08-10 Verfahren zur herstellung von diisocyanaten durch gasphasenphosgenierung

Publications (1)

Publication Number Publication Date
EP2464625A2 true EP2464625A2 (de) 2012-06-20

Family

ID=43426102

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10742484A Withdrawn EP2464625A2 (de) 2009-08-11 2010-08-10 Verfahren zur herstellung von diisocyanaten durch gasphasenphosgenierung

Country Status (7)

Country Link
US (1) US8716517B2 (de)
EP (1) EP2464625A2 (de)
JP (1) JP5666584B2 (de)
KR (1) KR20120041257A (de)
CN (1) CN102471243A (de)
BR (1) BR112012002910A2 (de)
WO (1) WO2011018443A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8981145B2 (en) 2010-03-18 2015-03-17 Basf Se Process for preparing isocyanates

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9321720B2 (en) 2010-10-14 2016-04-26 Basf Se Process for preparing isocyanates
US8969615B2 (en) 2011-03-31 2015-03-03 Basf Se Process for preparing isocyanates
US10590069B2 (en) * 2017-10-06 2020-03-17 International Business Machines Corporation Pinene-derived diisocyanates
WO2022106716A1 (en) 2020-11-23 2022-05-27 Basf Se Process for producing isocyanates
CN112724045B (zh) * 2021-01-05 2022-01-28 安徽东至广信农化有限公司 一种制备二异氰酸酯的方法及其装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959202A (en) * 1989-05-31 1990-09-25 Medalert Incorporated Recovery of chlorine from hydrogen chloride by carrier catalyst process
US5639436A (en) 1995-09-21 1997-06-17 University Of Southern California Exothermic two-stage process for catalytic oxidation of hydrogen chloride
JP4785515B2 (ja) * 2005-12-08 2011-10-05 住友化学株式会社 塩素の製造方法
DE502007001903D1 (de) 2006-01-27 2009-12-17 Basf Se Verfahren zur herstellung von chlor
US20070261437A1 (en) * 2006-05-12 2007-11-15 Boonstra Eric F Enhanced process for the purification of anhydrous hydrogen chloride gas
DE102006022447A1 (de) * 2006-05-13 2007-11-15 Bayer Materialscience Ag Verfahren zur gekoppelten Herstellung von Chlor und Isocyanaten
JP2010508374A (ja) 2006-11-07 2010-03-18 ビーエーエスエフ ソシエタス・ヨーロピア イソシアネートの製造方法
DE102006058634A1 (de) 2006-12-13 2008-06-19 Bayer Materialscience Ag Verfahren zur Herstellung von Isocyanaten in der Gasphase
DE102006058633A1 (de) * 2006-12-13 2008-06-19 Bayer Materialscience Ag Verfahren zur Herstellung von Isocyanaten in der Gasphase
DE102007018014A1 (de) 2007-04-17 2008-10-23 Bayer Materialscience Ag Wärmeintegration in einem Deacon-Prozess
DE102007020444A1 (de) * 2007-04-27 2008-11-06 Bayer Materialscience Ag Verfahren zur Oxidation eines Chlorwasserstoffenthaltenden Gasgemisches
WO2009027232A1 (de) 2007-08-30 2009-03-05 Basf Se Verfahren zur herstellung von isocyanaten
WO2009027234A1 (de) 2007-08-30 2009-03-05 Basf Se Verfahren zur herstellung von isocyanaten
BRPI0816892A2 (pt) 2007-09-19 2015-03-24 Basf Se Processo para preparar diisocianatos
US8765996B2 (en) 2008-07-23 2014-07-01 Basf Se Process for preparing isocyanates
ATE550317T1 (de) 2008-08-07 2012-04-15 Basf Se Verfahren zur herstellung von aromatischen isocyanaten
EP2349986B1 (de) 2008-10-15 2013-04-24 Basf Se Verfahren zur herstellung von isocyanaten
EP2364294B1 (de) 2008-11-07 2013-07-03 Basf Se Verfahren zur herstellung von isocyanaten
WO2010057909A1 (de) 2008-11-19 2010-05-27 Basf Se Verfahren zur herstellung eines isocyanats
WO2010063665A1 (de) 2008-12-03 2010-06-10 Basf Se Verfahren zur herstellung von isocyanaten
CN102341369B (zh) 2009-03-06 2015-11-25 巴斯夫欧洲公司 用于制备异氰酸酯的方法和装置
US9006481B2 (en) 2009-03-20 2015-04-14 Basf Se Process and apparatus for preparing isocyanates
US8759568B2 (en) 2009-04-08 2014-06-24 Basf Se Process for preparing isocyanates

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
UNBEKANNTER AUTOR: "Rohrbündelwärmeüberträger", WIKIPEDIA, DIE FREIE ENZYKLOPAEDIE, 28 March 2005 (2005-03-28), Retrieved from the Internet <URL:https://web.archive.org/web/20050328170740/http://de.wikipedia.org/wiki/Rohrbündelwärmeübertrager> [retrieved on 20160204] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8981145B2 (en) 2010-03-18 2015-03-17 Basf Se Process for preparing isocyanates

Also Published As

Publication number Publication date
CN102471243A (zh) 2012-05-23
WO2011018443A2 (de) 2011-02-17
WO2011018443A3 (de) 2011-04-21
BR112012002910A2 (pt) 2016-04-05
JP5666584B2 (ja) 2015-02-12
US20120142959A1 (en) 2012-06-07
KR20120041257A (ko) 2012-04-30
US8716517B2 (en) 2014-05-06
JP2013501747A (ja) 2013-01-17

Similar Documents

Publication Publication Date Title
EP2408738B1 (de) Verfahren zur herstellung von isocyanaten
EP2751073B1 (de) Verfahren zur herstellung von isocyanaten
EP1935876B1 (de) Verfahren zur Herstellung von Isocyanaten in der Gasphase
EP1616857B2 (de) Verfahren zur Herstellung von Polyisocyanaten durch adiabate Phosgenierung von primären Aminen
EP2349986B1 (de) Verfahren zur herstellung von isocyanaten
EP2403826B1 (de) Verfahren und vorrichtung zur herstellung von isocyanaten
EP2417100B1 (de) Verfahren zur herstellung von isocyanaten
EP2539314B1 (de) Verfahren zur herstellung von isocyanaten in der gasphase
DE3714439A1 (de) Verfahren zur herstellung von (cyclo)aliphatischen diisocyanaten
EP2364294B1 (de) Verfahren zur herstellung von isocyanaten
EP2627629B1 (de) Verfahren zur herstellung von isocyanaten
EP2464625A2 (de) Verfahren zur herstellung von diisocyanaten durch gasphasenphosgenierung
EP2028179A1 (de) Herstellung von isocyanaten mit niedrigen chlorgehalten
EP2062876B1 (de) Verfahren zur Herstellung aromatischer Diisocyanate in der Gasphase
EP2451774B1 (de) Verfahren zur herstellung von isocyanaten in der gasphase
EP2547652A1 (de) Verfahren zur herstellung von isocyanaten
EP3500553B1 (de) Verfahren zur herstellung eines isocyanats und mindestens eines weiteren chemischen produkts in einem produktionsverbund
EP2566844B1 (de) Verfahren zur herstellung von isocyanaten in der gasphase
WO2004056760A1 (de) Verfahren zur herstellung von (cyclo)aliphatischen isocyanaten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120308

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140207

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160826