EP2464496A1 - Rasoir électrique possédant une capacité de formation d'image - Google Patents

Rasoir électrique possédant une capacité de formation d'image

Info

Publication number
EP2464496A1
EP2464496A1 EP09787534A EP09787534A EP2464496A1 EP 2464496 A1 EP2464496 A1 EP 2464496A1 EP 09787534 A EP09787534 A EP 09787534A EP 09787534 A EP09787534 A EP 09787534A EP 2464496 A1 EP2464496 A1 EP 2464496A1
Authority
EP
European Patent Office
Prior art keywords
power
image
communication
digital
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09787534A
Other languages
German (de)
English (en)
Inventor
Yehuda Binder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
May Patents Ltd
Original Assignee
May Patents Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by May Patents Ltd filed Critical May Patents Ltd
Publication of EP2464496A1 publication Critical patent/EP2464496A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26BHAND-HELD CUTTING TOOLS NOT OTHERWISE PROVIDED FOR
    • B26B19/00Clippers or shavers operating with a plurality of cutting edges, e.g. hair clippers, dry shavers
    • B26B19/38Details of, or accessories for, hair clippers, or dry shavers, e.g. housings, casings, grips, guards
    • B26B19/46Details of, or accessories for, hair clippers, or dry shavers, e.g. housings, casings, grips, guards providing for illuminating the area to be shaved or clipped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26BHAND-HELD CUTTING TOOLS NOT OTHERWISE PROVIDED FOR
    • B26B19/00Clippers or shavers operating with a plurality of cutting edges, e.g. hair clippers, dry shavers
    • B26B19/38Details of, or accessories for, hair clippers, or dry shavers, e.g. housings, casings, grips, guards
    • B26B19/48Accessory implements for carrying out a function other than cutting hair, e.g. attachable appliances for manicuring

Definitions

  • the present invention relates generally to electric shavers having electronic imaging functions.
  • Razors are known as a bladed tool primarily used in the shaving off of unwanted body hair.
  • Electric shavers are known as an alternative to razors for removal of hair and / or slicing hair down to the level of the skin. Such shavers are commonly used by men to remove their facial hair (such as beard, mustache and whiskers) and by women to remove their leg, underarm and other hair.
  • Electric shavers also known as 'electric razors' or 'electric dry shavers', commonly include of a set of oscillating or rotating blades, which are held behind a perforated metal foil that prevents the blades from coming into contact with the skin, hi some designs a rotary type of shaver is used, wherein the blades are circular having a circular motion, while other shavers use oscillating blades. Blade movement is powered by a small DC motor, commonly powered by rechargeable batteries. Some electric shavers are plugged directly into an AC outlet to be powered therefrom.
  • FIG 1 shows an example of an electric shaver 10 using a straight cutting mechanism.
  • Front view 12 of the shaver 10 shows a foil 15 covering the blades, an on/off switch 16 and an enclosure 17.
  • View 11 is a side view and view 19 is a rear view of the shaver 10.
  • View 13 is a top view of the foil 15 which is usually in contact with the skin and the hair.
  • View 14 is a bottom view showing a connector 18 for connecting to a power source, such as AC power 115VAC/60Hz (as in North America) or 220VAC/50Hz common in Europe.
  • the shaver 10 parts are supported in an enclosure 17, which may be an integrally molded body frame.
  • the casing enclosing the frame and supported parts can be molded of plastic or can be a sheet metal body, or any other suitable synthetic resin material.
  • the enclosure 17, which is commonly hand-held, is shown as a rectangular, 'box-like' enclosure having four walls, which is commonly used with straight cutting systems. Cylindrical cases are also known and commonly used with rotary-type electric shavers.
  • Figure 2 illustrates schematically a simplified general block diagram of an electric shaver powered by a battery or cell.
  • the battery 24 powers a DC electric motor 26, which is mechanically coupled via mechanical coupling 27 for driving power to rotate or oscillate blades included in a cutter mechanism 28, thus cutting the hair via a foil such as foil 15 shown in Figure 1.
  • the coupling 27 may be a shaft or a transmission gear.
  • An on/off switch 25 (corresponding to the switch 16 in Figure 1) allows the user to start and stop the operation of the electrical shaver, hi many designs the battery 24 used is a rechargeable battery such as a nickel-cadmium battery.
  • a battery charger 23 employed for charging the battery while not in use.
  • the battery charger or power supply 23 is commonly fed by domestic AC power through AC plug 21 and cord 22, and commonly includes a step-down transformer.
  • the charging associated components, such as the charger 23, the AC plug 21, and the cable 22, are housed in a separate enclosure, and connected via a connector (such as jack socket or receptacle 18 in Figure 1) to the electric shaver assembly, housing the electric cell or cells 24, the motor 26 and the cutting mechanism 28).
  • a connector such as jack socket or receptacle 18 in Figure 1
  • the shaving area refers to the skin surface area that is of interest to user for shaving, either required to be shaved, under shaving or after being shaved.
  • a method and apparatus for using digital imaging or digital photography of the shaving area is described.
  • Digital camera functionality is added to an portably hand-held housing of an electric shaver, allowing the shaving area image (either as still image or as video) to be captured, stored, manipulated and displayed on a display unit.
  • the image capturing hardware is integrated with the electric shaver, and the image captured is reconstructed faithfully and displayed on a display unit for the user to view.
  • the shaving improvement can benefit human hair removal such as facial or leg hair removal.
  • the image capturing hardware integrated with the electric shaver contains a photographic lens (through a lens opening) focusing the required image onto an image sensor.
  • the image is converted into a digital format by an image sensor AFE (Analog Front End) and an image processor.
  • the display unit uses a display interface to convert the digital image to a signal suitable to be displayed on the screen of the display.
  • the display unit is integrated with the electric shaver.
  • the display can be of a flip type, wherein the screen can be extended for user view only when required, and folded otherwise.
  • the display unit is a separate device housed within a separate enclosure.
  • the digital data representing the captured image is transmitted over a communication medium to the display unit.
  • the display unit receives the digital data from the communication medium and displays it.
  • the electric shaver includes a transmitter (or a transceiver) for transmitting the digital data to the communication medium
  • the display unit includes a receiver (or a transceiver) for receiving the digital data from the communication medium.
  • the video signal is carried in an analog form over the communication medium, respectively using an analog transmitter and an analog receiver.
  • the communication between the electric shaver assembly and the display unit can be non- conductive over-the-air wireless, using radio, audio or light based communication, and use various WLAN, WPAN and other technologies.
  • the wireless communication may use a spread-spectrum signal such as multi-carrier (e.g. OFDM, DMT and CDMA), or a single carrier (narrow-band) signal.
  • Each of the wireless signals or the wireless communication links above may be WPAN, WLAN, WMAN, WAN, BWA, LMDS, MMDS, WiMAX, HIPERMAN, IEEE802.16, Bluetooth, IEEE802.15, IEEE802.il (such as a, b and g), UWB, ZigBee and cellular such as GSM, GPRS, 2.5G, 3G, UMTS, DCS, PCS and CDMA.
  • each of the frequency bands above may be part of the ISM frequency bands.
  • Such communication can use a conductive medium such as cables or wires, or any other metallic medium.
  • Standard PAN or LAN cabling and protocols may be used, such as Ethernet 10/100/lOOOBaseT.
  • powerline communication is used wherein the AC power wiring is used as the communication medium.
  • a lossy or non-lossy compression of the image information is used for reducing the memory size and reducing the data rate required for the transmission over the communication medium.
  • video compression functionality is added to the shaver, and a video de-compressor is added to the display unit for reconstructing the original signal.
  • one or more light sources are added for better illumination of the photographed area or the shaving area.
  • each image capturing mechanism containing a lens and image sensor, allowing for capturing of larger shaving area.
  • each such image capturing can be mounted on a different wall or side of the electric shaver.
  • the lens is mounted in the cutter side of the shaver, which is in direct contact with the skin surface during shaving.
  • digital image processing is used to analyze the captured image and notify the user (on the display or otherwise) of the results of such analysis. Individual hairs as well as hairy areas can be identified and marked.
  • zooming and still image capturing features are provided, as well as other features commonly associated with still digital cameras and video cameras such as camcorders.
  • Other controls such as brightness may also be provided.
  • buttons and switches located as part of the electric shaver, or as part of the display unit or in both.
  • Various visual indicators can also be employed.
  • the camera added hardware in the shaver is powered from the same power source as the shaver itself, such as a battery (either primary or rechargeable) or from a domestic AC power.
  • the display unit may be powered locally from a battery or from the AC power.
  • the cable connecting between the electric shaver and the display unit (for example serving as the communication medium) can also be used to concurrently carry power either from the shaver to power the display unit or from the display unit to power the electric shaver unit.
  • a single cable is used to connect the display unit with the electric shaver.
  • the cable simultaneously carries both the communication signal for displaying the captured image on the display, and a power signal.
  • the power signal can be fed from the display unit to power the electric shaver and its camera module, or alternately fed from the shaver to power the display unit.
  • Carrying both the power and data signals over the same cable can make use of distinct separated wire sets, each set dedicated to one type of a signal. Alternatively, the same wires can carry both signals each over a different frequency band (FDM) or using phantom technique.
  • FDM frequency band
  • the captured image is transmitted from the electric shaver using a standard analog or digital video interface, thus allowing the displaying of the video on standard and common video equipment.
  • an electrically operated hair removing device for removing hair from a skin area, containing a casing, the casing further including a camera module for imaging at least part of the skin area, the camera module containing an optical lens for focusing received light mechanically oriented to guide the image of at least part of the skin area, a photosensitive image sensor array disposed approximately at an image focal point plane of the optical lens for capturing the image and producing electronic image information representing the image, and an analog to digital (A/D) converter coupled to the image sensor for generating digital data representation of the image.
  • the image sensor may be based on Charge-Coupled Devices (CCD) or Complementary Metal-Oxide-Semiconductor (CMOS).
  • CMOS Complementary Metal-Oxide-Semiconductor
  • the device may further contain an electric motor and a cutter driven by the motor, and may be power fed from a battery that is rechargeable or a primary type.
  • the device may be operative to transmit the image digital data representation over a communication medium, and in such case may contain a port for coupling a signal to the communication medium, an image processor coupled to the analog to digital converter and for generating a digital data video signal carrying a digital data video according to a digital video format, and a transmitter coupled between the port and the image processor for transmitting the digital data video signal to the communication medium.
  • the digital video format may be based on one out of: TIFF (Tagged Image File Format), RAW format, AVT, DV, MOV, WMV, MP4, DCF (Design Rule for Camera Format), ITU-T H.261, ITU-T H.263, ITU-T H.264, ITU-T CCIR 601, ASF, Exif (Exchangeable Image File Format) and DPOF (Digital Print Order Format) standards.
  • the device may be operative to compress the digital data video, and in such a case may further contain a video compressor coupled between the analog to digital (A/D) converter and the transmitter for compressing the digital data video before transmission to the communication medium.
  • the compression may be based on intraframe or interframe compression, and can further be lossy or non-lossy compression.
  • the communication over the communication medium may be half-duplex or full-duplex, and the device may further contain a receiver coupled to the port for receiving information from the communication medium.
  • the compression is based on a standard compression algorithm that is one or more out of JPEG (Joint Photographic Experts Group) and MPEG (Moving Picture Experts Group), ITU-T H.261, ITU-T H.263, ITU-T H.264 and ITU-T CCIR 601.
  • JPEG Joint Photographic Experts Group
  • MPEG Motion Picture Experts Group
  • the compression can be based on ADV212 JPEG 2000 Video Codec, available from Analog Devices, Inc., from Norwood, MA, U.S.A.
  • the device casing further contains a battery, and the camera module is power fed from the battery.
  • the device is operative to be powered from AC power, thus further contains an AC power plug for connecting to an AC power outlet for AC power feeding therefrom, and a power supply connected to the AC power plug to be power fed by the AC power, and the camera module is connected to be powered from the power supply.
  • the power supply may include a step-down transformer and an AC/DC converter for DC powering the camera module.
  • the device further contains a display for displaying the captured image, the display may be mechanically attached to the casing and coupled to the analog to digital converter for visual displaying of the image representation.
  • the device may include a standard analog video interface, and in such a case the transmitter is an analog video driver, the analog video interface may be substantially based on one or more out of NTSC, PAL or SECAM formats, analog RGB and S-video, and the port is a coaxial or a RF connector.
  • a standard digital video interface is employed, wherein the transmitter is a digital video driver and the port is a digital data connector.
  • the digital video interface may be substantially based on one or more out of USB, SDI (Serial Digital Interface), FireWire, HDMI (High-Definition Multimedia Interface), DVI (Digital Visual Interface), UDI (Unified Display Interface), DisplayPort, Digital Component Video and DVB.
  • SDI Serial Digital Interface
  • FireWire HDMI
  • HDMI High-Definition Multimedia Interface
  • DVI Digital Visual Interface
  • UDI Unified Display Interface
  • DisplayPort Digital Component Video
  • DVB Digital Component Video
  • the communication medium is free air propagation of electromagnetic radio-frequency waves
  • the port is an antenna for transmitting the wireless signal to the air
  • the transceiver is a wireless transceiver.
  • Such wireless communication and the wireless signal may be based on standard WPAN (Wireless Personal Area Network) or WLAN (Wireless Local area Network) technologies, and may substantially conform to at least one of the following standards: WMAN, WAN, BWA, LMDS, MMDS, WiMAX, HIPERMAN, IEEE802.16, Bluetooth, IEEE802.15, UWB (Ultra-Wide-band), ZigBee, cellular, IEEE802.il, WirelessHD, GSM, GPRS, 2.5G, 3G, UMTS, DCS, PCS and CDMA.
  • the communication medium is a wired medium
  • the port is a connector
  • the transmitter is a wired transmitter adapted to transmit digital data to the wired medium.
  • the communication over the wired medium may be according to a wired PAN (Personal Area Network) or a LAN (Local area Network) standard, and may further be based on serial or parallel transmission.
  • the wired medium may be a LAN cable substantially according to EIT/TIA-568 or EIA/TIA-570 containing a UTP (unshielded Twisted Pair) or STP (Shielded Twisted Pair).
  • the connector is an RJ-45 type
  • the communication over the .cable may substantially conform to IEEE802.3 Ethernet lOBaseT or 100BaseTX or lOOOBaseT
  • the transmitter may be a LAN transceiver.
  • the wired transmitter and the connector substantially conform to one out of IEEEl 394, USB (Universal Serial Bus), EIA/TIA- 232 and IEEE1284.
  • the communication medium is a cable
  • the port is a connector
  • the transmitter is a wired transmitter adapted to transmit digital data to the wired medium.
  • the cable concurrently carries a power signal
  • the device is at least in part powered from the power signal.
  • the power signal may be a DC (Direct Current) power signal, or an AC (Alternating Current) power signal.
  • the cable may contain multiple insulated wires, and the power signal may be carried over dedicated wires distinct from the wires carrying the communication signal. In the case wherein the cable contains multiple insulated wires, and the wires are used to simultaneously carry both power and communication signals, the power and communication signals are carried over the same wires.
  • the power may be a DC power carrying over a phantom channel over the wires.
  • the cable may be a LAN cable substantially according to EIT/TIA-568 or EIA/TIA-570 and containing UTP or STP twisted-pairs
  • the connector may be RJ-45 type
  • the communication over the cable may substantially conform to IEEE802.3 Ethernet lOBaseT, 100BaseTX, or lOOOBaseT
  • the transmitter may be a LAN transceiver
  • the power may be carried over the cable substantially according to IEEE802.3af or IEEE802.3at standards.
  • the power and communication signals may be carried over the same wires using Frequency Division Multiplexing (FDM), wherein the power signal is carried over a power frequency, and wherein the communication signal is carried over a communication frequency band distinct and above the power frequency.
  • FDM Frequency Division Multiplexing
  • the device may further include a low pass filter coupled between the connector and the transmitter for substantially passing only the power frequency, for powering the transmitter from the power signal.
  • Such device may also further include a high pass filter coupled between the connector and the transmitter for substantially passing only the communication frequency band, for passing the communication signal between the connector and the transmitter.
  • the connector may be an AC power plug for connecting to AC power wiring
  • the transmitter may be part of a powerlines modem, such as HomePlug or UPB.
  • the device further contains an additional optical lens for focusing received light mechanically oriented to guide the image of at least part of the skin area, an additional photosensitive image sensor array disposed approximately at an image focal point plane of the additional optical lens for capturing the image and producing additional electronic image information representing the image, and an additional analog to digital (AfD) converter coupled to the additional image sensor for generating an additional digital data representation of the image.
  • the device may further include a multiplexer coupled to the analog to digital converters for generating a multiplexed signal containing the digital data representation of the images, a port for coupling a signal to the communication medium, and a transmitter coupled between the port and the image processor for transmitting the multiplexed signal to the communication medium.
  • the device further contains a digital image processor for processing the digital data representation of the image.
  • the digital image processor may be operative to identify individual hair or a hairy area in the captured image, and the device may be further operative to generate a digital data representation of the image wherein the individual hairs or the hairy area are marked.
  • the device further includes a light source for providing an illumination.
  • the light source may be mechanically mounted for illumination of at least part of the skin area captured by the optical lens and image sensor, and can be an LED (Light Emitting Diode).
  • Figure 2 illustrates schematically a simplified general functional block diagram of a prior art electric shaver
  • Figure 3 illustrates schematically a simplified general functional block diagram of an electric shaver according to the invention
  • Figure 4 illustrates schematically a simplified general functional block diagram of a display unit according to the invention
  • FIGS. 5 and 5a illustrate schematically views of an electric shaver according to the invention
  • Figure 6 illustrates schematically a system including an electric shaver and a display unit according to the invention
  • Figure 7 illustrates schematically a human male facial shaving using an electric shaver and a display unit according to the invention
  • Figure 8 illustrates schematically a human female leg shaving using an electric shaver and a display unit according to the invention
  • Figure 9 illustrates schematically a simplified general functional block diagram of an electric shaver according to the invention.
  • Figure 10 illustrates schematically a simplified general functional block diagram of a display unit according to the invention
  • Figure 11 illustrates schematically a system including an electric shaver and a display unit according to the invention
  • Figure 11a illustrates schematically a human male facial shaving using an electric shaver and a display unit according to the invention
  • Figure 1 Ib illustrates schematically a human female leg shaving using an electric shaver and a display unit according to the invention
  • Figure 12 illustrates schematically a simplified general functional block diagram of an electric shaver according to the invention
  • Figure 13 illustrates schematically views of an electric shaver according to the invention
  • Figure 14 illustrates schematically a simplified general functional block diagram of an electric shaver according to the invention
  • Figure 15 illustrates schematically a simplified general functional block diagram of a display unit according to the invention
  • Figure 16 illustrates schematically a system including an electric shaver and a display unit according to the invention
  • Figure 17 illustrates schematically views displayed on the display unit according to the invention.
  • Figure 18 illustrates schematically views displayed on the display unit according to the invention.
  • Figure 19 illustrates schematically views displayed on the display unit according to the invention.
  • Figure 20 illustrates schematically a simplified general functional block diagram of an electric shaver according to the invention
  • Figure 21 illustrates schematically views of an electric shaver according to the invention
  • Figure 22 illustrates schematically views of an electric shaver according to the invention
  • Figure 23 illustrates schematically a simplified general functional block diagram of a display unit according to the invention.
  • Figure 24 illustrates schematically a simplified general functional block diagram of an electric shaver according to the invention.
  • Figure 25 illustrates schematically a system including an electric shaver and a display unit according to the invention.
  • Figure 26 illustrates a perspective view of an electric shaver according to the invention
  • Figure 27 illustrates a perspective view of an electric shaver according to the invention.
  • FIG 3 illustrates schematically a simplified general block diagram of an electric shaver including a digital camera module 31 according to one embodiment of the invention.
  • the digital camera module 31 functions to receive visual information, such as the skin surface to be shaved, that was shaved, or the present shaving area, and interpret it as an electronic video signal to be remotely displayed by a display unit.
  • the camera module can take still photographs, video streams or both.
  • the electric shaver 30 shown in Figure 3 includes the electrical shaver 20 described in Figure 2, added with digital camera functionality 31.
  • the same enclosure such as housing 17 shown in Figure 1 is used to house both the electric shaver and the digital camera functions.
  • the electric shaver 30 will have the same 'look and feel' of a common electric shaver.
  • the digital camera 31 includes lens 39 (or few lenses) for focusing the received light onto a small semiconductor sensor 32.
  • the sensor 32 commonly includes a panel with a matrix of tiny light-sensitive diodes (photocells), converting the image light to electric charges and then to electric signals, thus creating a video picture or a still image by recording the light intensity.
  • Charge- Coupled Devices (CCD) and CMOS (Complementary Metal-Oxide-Semiconductor) are commonly used as the light-sensitive diodes. Linear or area arrays of light-sensitive elements may be used, and the light sensitive sensors may support monochrome (black & white), color or both.
  • the CCD sensor KAI-2093 Image Sensor 1920 (H) X 1080 (V) Interline CCD Image Sensor or KAF-50100 Image Sensor 8176 (H) X 6132 (V) Full-Frame CCD Image Sensor can be used, available from Image Sensor Solutions, Eastman Kodak Company, Rochester, New York.
  • An image processor block 46 receives the analog signal from the image sensor.
  • the Analog Front End (AFE) in the block 46 filters, amplifies and digitizes the signal, using an analog-to-digital (A/D) converter.
  • the AFE further provides correlated double sampling (CDS), and provides a gain control to accommodate varying illumination conditions.
  • CDS correlated double sampling
  • a CCD AFE Analog Front End
  • the block 46 further contains a digital image processor, which receives the digital data from the ATE, and processes this digital representation of the image to handle various industry-standards, and to execute various computations and algorithms.
  • additional image enhancements may be performed by the block 46 such as generating greater pixel density or adjusting color balance, contrast and luminance. Further, the block 46 may perform other data management functions and processing on the raw digital image data.
  • Digital Media System-on-Chip device TMS320DM357 from Texas Instruments Incorporated of Dallas Texas, U.S.A. is an example of a device implementing in a single chip (and associated circuitry) part or all of the image processor 46, part or all of the video compressor 33 and part or all of transceiver 34.
  • color filters may be placed between the imaging optics and the photosensor array to achieve desired color manipulation.
  • the block 46 converts the raw data received from the photosensor array 32 into a color- corrected image in a standard image file format.
  • a transmitter or transceiver 34 is disposed between the medium 37 and the image processor 46.
  • the transceiver 34 also includes isolation magnetic components (e.g. transformer-based), balancing, surge protection, and other suitable components required for providing a proper and standard interface via a port 38.
  • the port 38 will contain a connector and the port further contains protection circuitry for accommodating transients, over- voltage and lightning, and any other protection means for reducing or eliminating the damage from an unwanted signal over the wired medium.
  • a band pass filter may also be used for passing only the required communication signals, and rejecting or stopping other signals in the described path.
  • a transformer may be used for isolating and reducing common-mode interferences.
  • a wiring driver and wiring receivers may be used in order to transmit and receive the appropriate level of signal to and from the wired medium.
  • An equalizer may also be used in order to compensate for any frequency dependent characteristics of the wired medium.
  • the communication over the communication medium 37 can be bi-directional, such as half-duplex or full-duplex, or one-way, wherein the shaver only transmits the image to the display unit.
  • the port 38 couples to the communication medium 37, and may be a connector in case of wired medium such as a cable or wires, or an antenna in the case of radio-frequency over-the-air wireless transmission.
  • a controller 35 located within the camera module 31, may be based on a discrete logic or an integrated device, such as a processor, microprocessor or microcomputer, and may include a general-purpose device or may be a special purpose processing device, such as an ASIC, PAL, PLA, PLD, Field Programmable Gate Array (FPGA), Gate Array, or other customized oi ⁇ programmable device.
  • a memory is required.
  • the controller 35 commonly includes a memory that may include a static RAM (random Access Memory), dynamic RAM, flash memory, ROM (Read Only Memory), or any other data storage medium.
  • the memory may include data, programs, and / or instructions and any other software or firmware executable by the processor.
  • the control logic can be implemented in hardware or in software, such as a firmware stored in the memory.
  • the controller 35 controls and monitors the device operation, such as initialization, configuration, interface and commands.
  • the term "processor” is meant to include any integrated circuit or other electronic device (or collection of devices) capable of performing an operation on at least one instruction including, without limitation, reduced instruction set core (RISC) processors, CISC microprocessors, microcontroller units (MCUs), CISC-based central processing units (CPUs), and digital signal processors (DSPs).
  • RISC reduced instruction set core
  • MCUs microcontroller units
  • CPUs CISC-based central processing units
  • DSPs digital signal processors
  • the hardware of such devices may be integrated onto a single substrate (e.g., silicon "die"), or distributed among two or more substrates.
  • various functional aspects of the processor may be implemented solely as software or firmware associated with the processor.
  • Power to the digital camera module 31 is fed from the battery 24 via on/off switch 25a for its described functions such as for capturing, storing, manipulating, and transmitting the image.
  • the battery 24 power feeds the power supply 36, which provides needed voltages to all the camera module 31 components.
  • the power supply 36 contains a DC/DC converter.
  • the power supply 36 is power fed from the AC power supply via AC plug 21 and cord 22, and thus may include an AC/DC converter, for converting the AC power (commonly 115VAC/60Hz or 220VAC/50Hz) into the required DC voltage or voltages.
  • Such power supplies are known in the art and typically involves converting 120 or 240 volt AC supplied by a power utility company to a well-regulated lower voltage DC for electronic devices.
  • power supplies 36 and 23 are integrated into a single device or circuit, in order to share common circuits.
  • the power supplies 36 and 23 may include a boost converter, such as a buck boost converter, charge pump, inverter and regulators as known in the art, as required for conversion of one form of electrical power to another desired form and voltage. While both power supplies 23 and 36 (either separated or integrated) can be an integral part and housed within the shaver enclosure, they may be enclosed as a separate housing connected via cable to the shaver assembly.
  • each of the power supplies 23 and 36 may be a linear or switching type.
  • TIFF Tagged Image File Format
  • RAW Raster Image File Format
  • AVI Raster Image File Format
  • MOV Motion Picture Experts Group
  • WMV Wide Motion Picture Experts Group
  • DCF Design Rule for Camera Format
  • video data is compressed before transmission, in order to allow its transmission over a reduced bandwidth transmission system.
  • a video compressor 33 (or video encoder) is shown in Figure 3 disposed between the image processor 46 and the transceiver 34, allowing for compression of the digital video signal before its transmission over the communication medium 37.
  • Such compression can be lossy or lossless types.
  • Common compression algorithms are JPEG (Joint Photographic Experts Group) and MPEG (Moving Picture Experts Group).
  • JPEG Joint Photographic Experts Group
  • MPEG Motion Picture Experts Group
  • the above and other image or video compression techniques can make use of intraframe compression commonly based on registering the differences between part of single frame or a single image.
  • Interframe compression can further be used for video streams, based on registering differences between frames.
  • Other examples of image processing include run length encoding and delta modulation. Further, the image can be dynamically dithered to allow the displayed image to appear to have higher resolution and quality.
  • Single lens or a lens array 39 is positioned to collect optical energy representative of a subject or a scenery, and to focus the optical energy onto the photosensor array 32.
  • the photosensor array 32 is a matrix of photosensitive pixels, which generates an electric signal that is representative of the optical energy that is directed at the pixel by the imaging optics.
  • the image captured by the sensor 32 via the lens 39 is reconstructed and displayed in a display unit 40, which can be a separated device located at a place convenient to look at while shaving.
  • Figure 4 shows such a display unit 40.
  • the signal transmitted by the shaver / camera combined unit 30 is received from the communication medium 37 via the port 38.
  • a receiver or transceiver 34 is compatible with the shaver transmitter (or transceiver) and receives the digital data signal and feeds it to a video decompressor (or video decoder) 41.
  • the original data is reconstructed and fed to a display interface 42, for feeding to a display 45.
  • the display unit 40 is shown as being AC power fed via AC plug 21 and cord 22, feeding in turn the power supply 44, which may be similar or the same type as power supply 23, which in turn provides all required voltages required for the active components of the display unit 40.
  • a controller 43 which may be the same or similar to controller 35 above is used to control and monitor the device operation.
  • the display 45 may be a digital or analog video display, and may use technologies such as LCD (Liquid Crystal Display), TFT (Thin-Film Transistor), FED (Field Emission Display), CRT (Cathode Ray Tube) or any other electronic screen technology that visually shows information such as graphics or text.
  • an adaptor (not shown) is required in order to connect an analog display to the digital data.
  • the adaptor may convert to composite video (PAL, NTSC) or S-Video or HDTV signal.
  • a user interface 48 coupled to the control 43, may include various user operated switches to control the display operation.
  • Various user controls can be available to allow the user to control and effect the display unit 40 operations, such as an on/off switch, a reset button and others.
  • Other exemplary controls involve display associated settings such as contrast, brightness and zoom.
  • Figure 5 shows various views of an example of an electric shaver 60 according to one embodiment of the invention, based on shaver 10 shown in Figure 1.
  • View 52 is a front view of the shaver 60
  • view 51 is a side view
  • view 50 is a rear view of the shaver 60.
  • View 53 is a top view of the foil 15, which is usually in contact with skin and hair
  • view 54 is a bottom view showing connector 18 for connecting to a power source.
  • Figure 5 shows a lens 55, which corresponds to the lens 39 shown in Figure 3.
  • the lens 55 is housed and mechanically secured in a lens seating (or lens housing) 56, which is part of or secured to the enclosure 17, and keeps the lens 55 protected, in place, and directed towards the face while shaving.
  • the lens 55 focuses the image onto a sensor 32 via an aperture in the shaver external enclosure. While the lens 55 and the related support 56 are shown located on the rear of the shaver 60, it is apparent that they can be equally mounted on the front or on any one of the sides of the shaver 60. While the invention is shown in Figure 5 with respect to straight blades mechanism, it is apparent that the invention herein can equally apply to a rotary type electric shaver. While the lens 55 and its corresponding seating 56 are shown to protrude a little from the side of the shaver casing 17 shown in Figure 1, a recessed design wherein there is no such protruding can also be used.
  • the shaver with the camera module may preserve the general look and design of a conventional shaver without a camera, allowing the user to easily migrate to using the new functionality.
  • Figure 5 further shows various user controls that may be required for the proper operation of the combined shaver/camera 60.
  • An ON/OFF switch 57 corresponds to switch 25a in Figure 3, allowing the user to start or stop the camera module 31 operations.
  • Button 'FREEZE' 57 allows for capturing and freezing an image.
  • Sliding button 'ZOOM' 59 allows the zoom control of the camera operations.
  • FIG. 5 shows an example wherein the lens 55 is mounted on one of the sides of the shaver
  • the lens 55 is mounted on the top side of the shaver, as shown in views 68 in Figure 5a.
  • the lens 55 mounted in base 56 is shown recessed as part of the shaving foil, thus directly viewing the part that is shaved or about to be shaved.
  • a system 61 according to one embodiment of the invention includes both electric shaver 60 and display unit 63, as shown in Figure 6.
  • Display unit 63 corresponds to unit 40 shown in Figure 4.
  • Cable 64 is shown to connect shaver 60 and display unit 63, serving as the communication medium 37 (shown in Figure 3) for transmitting the image as a video stream from the shaver 60 to the display 63.
  • Display unit 63 is shown to be on a shelf in a bathroom, also containing a mirror 62, as is commonly available in a bathroom. The mirror 62 can supplement the view on the display 63 for better view of the skin shaving area.
  • the shaver 60 is shown used for facial shaving by a human male 71, and connected to display unit 63 via cable 64.
  • the lens 55 in the electric shaver 60 captures the surface area shown as 72, and transmits it to be displayed as image
  • the user can look at the display 73 located in front of him, thus and easily and clearly track and see the shaving area to be shaved 72 and the shaving results.
  • hair leg shaving of a female human is exampled as system 80 in Figure 8.
  • the shaver 60 is shown used for facial shaving by a human female 81, and connected to display unit 63 via cable 64.
  • the lens 55 in the electric shaver 60 captures the skin area shown as 82, and transmits it to be displayed as image 83 in the display unit 63.
  • the user can conveniently look at the image 83 located in front of him, and easily and clearly track and see the skin area to be shaved 82 and the shaving results.
  • the invention has been exampled above with regard to humans shaving hair, it is apparent that the invention equally applies to animals such as pets, wherein there is a need to shave or groom their hair. Further, the invention can be equally applied to any scenario wherein skincare is employed, requiring touching or close proximity with the sldn to be treated, such as depilation or epilation. In those cases, a camera module such as module 31 shown in Figure 3 (or module 121 shown in Figure 12) is added in order to allow easy and convenient view of the sldn area to be treated.
  • a camera module such as module 31 shown in Figure 3 (or module 121 shown in Figure 12) is added in order to allow easy and convenient view of the sldn area to be treated.
  • the electric shaver is cordless, thus untethered and fully portable.
  • the shaver is battery operated, thus powered from an internal battery during operation without the need to connect to a power source, such as AC power via a cord.
  • the image is transmitted over the air using radio frequency, thus obviating the need for a cable or any other conductor connecting the shaver and the display unit. It is apparent the radio communication of the image can be implemented also in the case of AC powered (via cable) shaver.
  • a cordless electric shaver 90 is shown in Figure 9, adapted from shaver 30 in Figure 3.
  • the shaver 90 is powered during shaving solely from battery 24, which may be a primary or secondary - rechargeable type.
  • the rechargeable battery can be charged, while not powered, while still in the shaver.
  • the communication medium 37 (shown in Figure 4) is over-the-air communication, using antenna 91 (serving as port 38) connected to wireless transceiver 92 (serving as transceiver 34).
  • display unit 40 shown in Figure 4 is adapted to support wireless communication.
  • a wireless system 110 is shown in Figure 11, adapted from system 61 in Figure 6, and comprising a wireless shaver 90 with antenna 91a shown (representing antenna 91 in Figure 9).
  • the antenna 91a is in communication with antenna 91b (corresponding to antenna 91 in Figure 10), which is part of display unit 100.
  • antennas 91 can be used. Among these are PCB printed antennas, chip antennas, as well as panel and dome antennas.
  • the antennas may be omni-directional or directional.
  • the antennas are coupled using mating coaxial connectors, such as SMA, F-Type, N-Type and IPX, providing both the electrical connection as well as the mechanical attachment.
  • mating coaxial connectors such as SMA, F-Type, N-Type and IPX, providing both the electrical connection as well as the mechanical attachment.
  • the antenna connection allows for easy disconnection and connection by means of snapping or screwing.
  • a WLAN communication link is used to interconnect two or more isolated (W)PAN (Wireless Personal Area Network) systems.
  • W Wireless Personal Area Network
  • the reach of a PAN is typically a few meters, hence such networks are confined to a limited space, such as in-room communication.
  • IEEE 802.15 is the working group of the IEEE 802, which specializes in Wireless PAN (WPAN) standards.
  • WPAN systems include:
  • Bluetooth which according to IEEE 802.15.1 standard, for example, operates over license-free ISM band at 2.45 GHz.
  • An ad-hoc network of computing devices using Bluetooth technology protocols is known as piconet.
  • Ultra-Wide-band (UWB) which according to the IEEE 802.15.3 standard, for example, uses a wavelet (sometimes referred to as wireless USB).
  • UWB or impulse radio transmitters emit short pulses approaching a Gaussian monocycle with tightly controlled pulse-to-pulse intervals.
  • ZigBee which according to IEEE 802.15.4 standard, for example, offers low data rate and low power consumption.
  • IEEE 802.1 Ia commonly considered as WLAN (Wireless Local Area Network), but since it works in 5GHz spectrum its reach is considerably limited, thus IEEE802.11a may also be considered as WPAN.
  • WLAN technologies e.g. WiFi
  • IEEE 802.11b which describes a communication using the 2.4GHz frequency band and supporting a communication rate of 1 lMb/s
  • IEEE 802.1 Ia uses the 5GHz frequency band to carry 54MB/s
  • IEEE 802.1 Ig uses the 2.4 GHz band to support 54Mb/s.
  • IEEE 802.11 The Institute of Electrical and Electronic Engineers (IEEE) 802.11 standard group, branded as WiFi by the Wi-Fi Alliance of Austin, Texas, USA.
  • IEEE 802.11b describes a communication using the 2.4GHz frequency band and supporting communication rate of l lMb/s
  • IEEE 802.11a uses the 5GHz frequency band to carry 54MB/s
  • IEEE 802.1 Ig uses the 2.4 GHz band to support 54Mb/s. This is described in an Intel White Paper entitled "54 Mbps IEEE 802.11 Wireless LAN at 2.4 GHz”, and a chip-set is described in an Agere Systems White Paper entitled “802.11 Wireless Chip Set Technology White Paper", both of these documents being incorporated herein by reference.
  • Such a 802.11 supporting transceiver block 34 may be implemented using WaveLANTM WL60040 Multimode Wireless LAN media Access Controller (MAC) from Agere Systems of Allentown, PA U.S.A., whose a product brief is incorporated herein by reference, which is part of a full chip-set as described in WaveLANTM 802.1 la/b/g Chip Set document from Agere Systems of Allentown, PA U.S.A., which is incorporated herein by reference. Reference is made to the manufacturer's data sheet Agere Systems, WaveLANTM WL60040 Multimode Wireless LAN Media Access Controller (MAC), Product Brief August 2003 PB03-164WLAN, which is incorporated herein by reference.
  • MAC Multimode Wireless LAN media Access Controller
  • Some wireless technologies in particular microwave signals used in the WAN and MAN arenas, are using frequencies above 2-3GHz where the radio path is not reflected or refracted to any great extent. Propagation in such frequencies requires a Line-of-Sight (LOS) relying on a line of sight between the transmitting antenna and the receiving antenna. Using this concept allows for NLOS (Non-LOS) wireless networks to interconnect over a LOS-based communication link.
  • the wireless technology implemented may use either licensed frequency bands or unlicensed frequency bands, such as the frequency bands utilized in the Industrial, scientific and Medical (ISM) frequency spectrum.
  • ISM Industrial, scientific and Medical
  • a band 902-928 MHz
  • B band 2.4-2.484 GHz
  • C band 5.725- 5.875 GHz
  • Overlapping and / or similar bands are used in different regions such as Europe and Japan.
  • cellular technologies can also be used, commonly using licensed spectrum.
  • Such digital technologies include GSM (Global System for Mobile Communications), GPRS (General Packet Radio Service), CDMA (Code Division Multiple Access), EDGE (Enhanced Data Rates for GSM Evolution), 3GSM, DECT (Digital Enhanced Cordless Telecommunications), Digital AMPS (per IS-136/TDMA, for example) and iDEN (Integrated Digital Enhanced Network).
  • the service carried over the cellular network may be voice, video or digital data such as the recently introduced EVDO (Evolution Data Only).
  • a WirelessHD standard based wireless communication is employed, which is based on the 7GHz of continuous bandwidth around the 60GHz radio frequency and allows for uncompressed, digital transmission.
  • Digital cameras utilizing wireless communication are disclosed in U.S. Patent 6,535,243 to Tullis entitled: “Wireless Hand-Held Digital Camera", U.S. Patent 6,552,743 to Rissman entitled: “Digital Camera-Ready Printer”, U.S. Patent 6,788,332 to Cook entitled: “Wireless Imaging Device and System", and in U.S. Patent 5,666,159 to Parulsld et al.
  • the advantage of using wireless communication is exampled as system 111 in Figure 11a, when compared to system 70 in Figure 7.
  • the shaver 90 is shown used for facial shaving by a human male 71, which is portable and not tethered.
  • display unit 100 is not connected using any cable to the shaver, thus the need to use a cable 64 is obviated.
  • the lens 55 in the electric shaver 90 captures the skin area shown as 72, and transmits it wirelessly to be displayed as image 73 in the display unit 100. The user can look at the display 100 located in front of him, and easily and clearly track and see the skin area to be shaved 72 and the shaving results.
  • wireless operation is exampled for hair leg shaving of a female human as system 112 in Figure lib.
  • the shaver 90 is shown used for leg shaving by a human female 81, and a display unit 100.
  • the lens 55 in the electric shaver 90 captures the skin area shown as 82, and transmits it to be displayed as image 83 in the display unit 100.
  • the user can conveniently look at the display 100 located in front of her, and easily and clearly track and see the skin area to be shaved 82 and the shaving results, without the need for the cable 64 shown for system 80 in Figure 8.
  • communication based on electromagnetic waves in various parts of the electromagnetic spectrum can be used for communication.
  • low-frequency electromagnetic radiation can be used to transmit audio-frequency signals over short distances without a carrier.
  • Radio-frequency transmission is a special case of this general electromagnetic transmission.
  • light is also a special case of electromagnetic radiation, but is herein treated separately because of the characteristics of light are distinctly different from those of electromagnetic transmission in other usable parts of the electromagnetic spectrum.
  • Non-wired communication accomplished by light can be used for the above transmission.
  • the most popular is infrared (IR) based communication, but ultraviolet may also be used.
  • IR infrared
  • Most such systems require substantially ⁇ line-of- sighf access.
  • the antenna 91a in the shaver 90 is replaced with light emitter (e.g. LEDs), and the antenna 91b in the display unit 100 will be replaced with light detectors (e.g. photoelectric cell), and the communication over the air relies on the propagation of light.
  • light emitter e.g. LEDs
  • light detectors e.g. photoelectric cell
  • sound-based communication over space may be used, wherein the transceivers 92 use microphones and speakers, and the communication relies on the propagation of sound waves through the air in the space.
  • Either audible sound (20-20,000 Hz band), or inaudible sound (ultrasonic, above 20,000 Hz; or infrasonic, below 20 Hz) can be used.
  • the antenna 91 will be substituted with a microphone or a similar device converting the sound signal into an electrical signal, and a speaker or a similar device for generating the audio signal and transmitting it to the air.
  • a transducer combining into a single device both the speaker and the microphone functionalities may also be used.
  • Figure 12 shows an electric shaver 120 according to one embodiment of the invention having a camera module 121.
  • Light sources 123a and 123b are shown connected to be power fed from the power supply 36.
  • the light sources 123a and 123b preferably are directed to illuminate the shaving area of the skin, and in particular the area captured and transmitted via the camera module 121 thus allowing better visualization for the user in general, and aiding to the brightness and quality of the image captured by lenses 39a and 39b and sensor 32, thus resulting in a better image displayed by the display unit 40. Further, such illumination may be useful in the case of lack of external light availability while shaving.
  • a semiconductor light source such as a Light-Emitting-Diode (LED) is used, having small form factor and high efficiency.
  • LED Light-Emitting-Diode
  • any type of visible electric light emitter such as a flashlight, an incandescent lamp and compact fluorescent lamps can be used. While Figure 12 shows two such light sources 123a and 123b, it is apparent that a single one can be used, as well as three or more such light sources. Further, an on/off switch can be used to control the light sources 123a and 123b, either together or individually, allowing the user to use the light only when required.
  • a razor including lighting means is disclosed in U.S. Patent Application 2008/0028616 to KWAK entitled: “Shaver with Lighting Means”.
  • Electric shavers containing illumination means are disclosed in U.S. Patent 6,871,402 to Bader et al. entitled: “Electrically driven Hair Removal Device”, and in U.S. Patent 5,920,988 to Momose entitled: “Electric Shaver”, which are both incorporated in their entirety for all purposes as if fully set forth herein.
  • Electric shaver 120 is shown in Figure 12 to only use the AC power via the power supply 23, without the use of any battery.
  • the AC plug 21 has to be plugged to an AC outlet to be powered therefrom during the shaver 120 operation.
  • the battery operated device either primary or rechargeable
  • shaver 120 in Figure 12 is shown to have a single on/off switch 25 for powering both the motor and associated cutting mechanism and the camera module 121.
  • two such switches can be used, one dedicated to the shaver basic function only, while the other allows for the camera operation, thus providing more flexibility to the user.
  • Lens 39a and 39b are respectively associated with sensors 32a and 32b, which in turn respectively connects to image processors 46a and 46b.
  • the video compressors 33a and 33b respectively, compress the data received from processors 46a and 46b.
  • two transceivers each of the same as transceiver 34, for example
  • two ports each of the same type as port 38, for example
  • two communication mediums can be employed, each carrying solely the image corresponding to the respective lens.
  • the same medium can be used using Frequency Division / Domain Multiplexing (FDM).
  • FDM Frequency Division / Domain Multiplexing
  • each signal is carried in a dedicated frequency band, distinct from the other signals concurrently carried over the same medium.
  • the signals are combined onto the medium and separated from the medium using various filtering schemes, employed in the multiplexer 122.
  • the multiple images are carried using Time Domain / Division Multiplexing (TDM), as exampled in Figure 12.
  • TDM Time Domain / Division Multiplexing
  • the digital data stream from the video compressors 33a and 33b is multiplexed into a single stream by the multiplexer 122, serving as a time multiplexer.
  • the combined signal is then fed to the single transceiver 34 for transmitting onto the medium.
  • a de-multiplexer is used in the display unit 40, separating the streams and converting into images or video streams to be displayed.
  • Multiple displays (each same as display 45 shown in Figure 4) can be used, each displaying the respective images captured. Alternatively, a single display 45 is used. In this case, the images can then be displayed one at a time, or together in various locations over the screen as side-by-side.
  • the display unit 40 may include an image processor for properly combining the separate images to build one image containing all information.
  • Using two or more image capturing components can further be used to provide stereoscopic video, allowing 3-D or any other stereoscopic view of the content, or other methods of improving the displayed image quality of functionality.
  • Figure 13 shows various views of an example of an electric shaver 135 (corresponding to shaver 120 in Figure 12) according to one embodiment of the invention.
  • View 132 is a front view of the shaver 135, view 131 is a side view and view 130 is a rear view of the shaver 135.
  • View 133 is a top view of the foil 15, which is usually in contact with the skin and the hair, and view 134 is a bottom view.
  • the electric shaver 135 is shown as having lenses 55a, 55b, 55c and 55d respectively based in lenses housings 56a, 56b, 56c and 56d, each in a separate wall of the casing.
  • Light sources e.g. LEDs
  • 123a and 123b respectively seated in housings 136a and 136b, are also shown on the wide sides of the casing, respectively adjacent to Lens bases 56a and 56b.
  • a non-visible spectrum can be equally used, such as infrared and ultraviolet.
  • the infrared image is captured, and is converted to a visible image on the display.
  • such technique can be used to easily distinguish the skin and the hair, as they are having different temperature and thus distinct infrared signature.
  • the sensor 32 is sensitive to the non-visible part of the light spectrum (e.g. infrared), and the light emitters 123a and 123b are illuminating using the corresponding light spectrum, such as infrared light sources.
  • Powerline communication is known in the art for using the AC power wires in a building for digital data communication.
  • Traditional approaches to powerline communication include applications such as control of lighting and appliances, as well as sending data or broadband data, video or audio.
  • Powerline command communication systems include for example X-IO, CEBus (Consumer Electronics Bus per EIA-600 standard), and Lonworks.
  • the HomePlug organization is an industry trade group for powerline communication including various entities to define powerline communication specifications.
  • HomePlug 1.0 is a specification for a home networking technology that connects devices to each other through power lines in a home.
  • HomePlug certified products connect PCs and other devices that use Ethernet, USB, and 802.11.
  • Many devices made by alliance members have HomePlug built in and connect to a network upon plugging the device into a wall socket in a home with other HomePlug devices.
  • Signal interference, from surge protectors, extension cords, outlet strips and/or other proximately located devices, including the high-frequency signals, is an on-going concern of the HomePlug alliance.
  • HomePlug AV HPAV is a new generation of technology from the HomePlug Powerline Alliance.
  • HPAV can be for example embedded in consumer electronics or computing products, and provides high-quality, multi-stream, entertainment-oriented networking over existing AC wiring. Users can avoid having to install new wires in their premises by using devices having built-in HomePlug technology.
  • HPAV uses advanced PHY and MAC technologies that provide a 200 Mbps (million bits per second) class powerline network for inter alia video, audio and data.
  • the Physical (PHY) Layer utilizes this 200 Mbps channel rate to provide a 150 Mbps information rate to provide communications over noisy power line channels.
  • PHY Physical
  • powerline and “powerline communications” refer to any technology that is used to transfer data or signals over a power distribution system, including without limitation UPB, HomePlug, HomePlug a/v, and X-10 technologies.
  • the term “UPB” or Universal Powerline Bus refers to one exemplary instance of technologies which impose digital or analog signals or pulses onto AC waveforms or DC power delivery systems, such as for example the well known UPB approach set forth in "Universal Powerline Bus: The UPB System Description", Version 1.1 dated Sep. 19, 2003, incorporated herein by reference in its entirety.
  • the term “HomePlug” as used herein is meant specifically to include devices and systems compliant with the HomePlug.TM. Powerline Alliance Specification for powerline-based home networks (including the more recent HomePlug AJV), and generally to include all other comparable devices adapted for powerline networking.
  • powerline communication is used for the interconnection between the electric shaver and the display unit, such as HomePlug based communication.
  • One advantage in such a configuration is that only a single power cable is used, carrying both the AC power and the communication signal.
  • a shaver 140 is shown in Figure 14.
  • a low pass filter 141 is disposed between the AC power plug 21 and the power supply 23, for passing only the AC power signal, such as the 50Hz or the 60Hz.
  • Such a low pass filter 141 also stops and exhibits high impedance in the digital data frequency band, thus reducing impedance loading at this frequency band.
  • Transceiver 34 of Figure 12 is replaced with a powerline modem, connected to the AC power wires via a high pass filter 142, which passes only the digital data frequency band, hence allowing only the digital data signal to pass, while stopping the AC power.
  • the modem is a HomePlug compliant modem, and the communication (physical layer and higher protocol layers) is implemented according to the HomePlug specification standard.
  • such modem can be based on INT6000 ⁇ omePlug AV High-Speed Powerline Solution' available from Intellon Corporation, headquartered in Orlando, Florida, U.S.A.
  • display unit 150 shown in Figure 15, is also adapted to support powerline communication, in order to communicate with a mating electric shaver 140 of Figure 14.
  • Low pass filter 141 is added between the AC power plug 21 and the power supply 44.
  • the transceiver 34 is replaced with a powerline modem, connected to the AC power wires via high pass filter 142, which passes only the digital data frequency band, hence allowing only the digital data signal to pass, while stopping the AC power.
  • the modem is a HomePlug compliant modem, and the communication (physical layer and higher protocol layers) is implemented according to the HomePlug specification standard.
  • FIG. 16 An illustration of a powerline based system is shown as system 160 in Figure 16.
  • the shaver 140 is AC power fed from a mains outlet 163a, via plug-in unit 162a and cord 161a.
  • the plug-in components 162a can be just an AC power plug 21 and the cord may be power cable 22 disclosed above. Alternatively, part or all of power supplies 23 and 36 can also be integrated into the plug in device 162a.
  • the display unit 150 is AC power fed from a mains outlet 163b, via plug-in unit 162b and cord 161b.
  • the plug-in component 162b can be just an AC power plug 21 and the cord may be power cable 22 disclosed above. Alternatively, part or all of power supplies 23 and 36 can also be integrated into the plug in device 162b. While the shaver 140 and the display unit 150 are fed via the AC power system, the AC power wiring is also used as the communication medium as described above, obviating the need for additional cables to be connected between those devices.
  • transceiver 34 is a fiber optic transceiver
  • port 38 is a fiber optic connector.
  • wiring and 'cable' in this application should be interpreted to include networks based on non-conductive medium such as fiber-optics cabling.
  • a dedicated cable 64 is connected between the electric shaver 60 and the display unit 63.
  • the cable 64 serves as the wired communication medium 37, connected to via a connector serving as the port 38.
  • Such wired medium 37 may be a UTP, STP, coaxial cable, a telephone wire pair, a CATV coaxial cable, AC power wire pair and LAN cable, such as Category 5 or Category 6.
  • a suitable connector 38 may be used for connecting to the specific type of the wired medium, such as a coaxial connector for connecting to a coaxial cable and a telephone connector for connecting to a telephone wire pair.
  • the wired medium may be a single non-used twisted-pair in a LAN cable, or two such pairs connected in parallel, hi another aspect of the present invention, the wired medium is using a phantom channel formed between two wire pairs, such as two twisted wire pairs in a LAN cable used in Ethernet lOBaseT, 100BaseTX or lOOOBaseT. Similarly, any PAN, LAN, MAN or WAN wiring may be used as the wired medium.
  • transceiver 34 is adapter to be a wired modem or a wired transceiver suitable for transmitting and receiving over the appropriate wiring used.
  • the communication over such cable can be proprietary or preferably using an industry standard communication, wherein the connections of the shaver and of the display unit to the cable are based on standard connectors and interfaces.
  • the communication may be based on a parallel scheme, wherein multiple wires are used to concurrently carry the digital data, thus allowing a higher transfer rate of the information.
  • serial communication is used, allowing for few conductors to be used and smaller footprint connectors requiring the usage of less pins and contacts.
  • Ethernet PHY i.e. Ethernet physical layer or Ethernet transceiver
  • LAN83C180 10/100 Fast Ethernet PHY Transceiver or "LAN91C111 10/100 Non-PCI Ethernet Single Chip MAC + PHY” available from SMSC - Standard Microsystems Corporation of Hauppauge, NY U.S.A.
  • the transceiver 34 may also contains isolation magnetic components (e.g. transformer-based), balancing components, surge protection hardware, and a port 38 is a LAN connector (commonly RJ-45) required for providing a proper and standard interface via connector 34.
  • standard cabling is used, such as standard LAN cabling.
  • Category 5 cabling ('structured wiring') or any other wiring according to EIT/TIA-568 and EIA/TIA-570 can be used.
  • Such LAN cabling involves wire pairs that may be UTP or STP.
  • category 3, 4, 5e, 6, 6e and 7 cables may be equally used.
  • Such configuration is described, for example, in EIT/TIA-568 and EIA/TIA-570.
  • any wired interface other than Ethernet 10/ 100BaseT described above, being proprietary or standard, packet or synchronous, serial or parallel, may be equally used, such as IEEE 1394, USB (Universal Serial Bus), EIA/TIA-232, PCI (Peripheral Component Interconnect), PCMCIA (Personal Computer Memory Card international Association), or IEEE1284, but not limited to the aforementioned.
  • multiple such interfaces (being of the same type or mixed) may also be used.
  • a tethered portable electronic camera connectable to a computer is disclosed in U.S.
  • Electric shavers comprising illumination means are disclosed in U.S. Patent 6,871,402 to Bader et al. entitled: “Electrically driven Hair Removal Device”, and in U.S. Patent 5,920,988 to Momose entitled: “Electric Shaver”, which are both incorporated in their entirety for all purposes as if fully set forth herein.
  • a digital electronic camera which can accept various types of input/output cards or memory cards is disclosed in U.S.
  • Patent 7,432,952 to Fukuoka entitled: "Digital Image Capturing Device having an Interface for Receiving a Control Program”
  • a disk drive assembly for transferring images out of an electronic camera
  • U.S. Patent 5,138,459 to Roberts et al. entitled: "Electronic Still Video Camera with Direct Personal Computer (PC) Compatible Digital Format Output”
  • PC Personal Computer
  • image processing is employed, such as digital image processing and other techniques applying various computer algorithms to the image captured and represented as a two-dimensional signal data.
  • the results can be provided to the user in various ways, such as to be presented on the display of the display unit.
  • the individual hairs are detected and identified.
  • Such 'hair recognition' can make use of the different colors or brightness of the hair versus the skin. For example, a black colored hair can be identified and recognized over a light-color (e.g. white) skin.
  • pattern recognition algorithms can be used based on the characteristic of the hair, such as being long and having straight or curled pattern.
  • a camera with human face detection means is disclosed in U.S. Patent 6,940,545 to Ray et al., entitled: "Face Detecting Camera and Method", which is incorporated in its entirety for all purposes as if fully set forth herein.
  • FIG. 17 An example of image processing feature is shown in Figure 17.
  • View 170 shows the display before any processing, with the goal of faithfully reflecting the situation on the skin to be shaved or re-shaved.
  • Several individual hairs are shows as 172a, 172b and 172c, which need to be shortened or cut as part of the shaving (for example, due to being too long).
  • the 'hair recognition' image processing algorithms identify the individual hair that needs to be shaved, and marks them on the screen of the display unit, allowing the user easy identification of places and locations that need to be shaved.
  • Such view 171 is shown, wherein the individual hairs are marked by a circle around them, such as circles 182a, 182b, 182c and 182d, or alternatively as bolded and thicker objects shown as 183a, 183b, 183c and 183d.
  • the image processing is used to suggest areas that require shaving or re- shaving.
  • Figure 18 shows a view 180 captured and displayed, wherein the right side contains hair that need to be removed, while the left side 173 shows no hair to be cut.
  • the algorithm will identify and mark the area to be shaved so it can be easily identified by the user, and this may be presented on the screen of the display unit as colored area 184 shown in view 181.
  • zooming functionality which is known in the art for cameras.
  • the zoom functions allow for decreasing or narrowing of the apparent angle of a view, thus allowing scaling up the image size and magnifying for better view of a smaller area.
  • a mechanical or optical zoom is obtained by varying the focal length using a mechanical assembly for physically moving the lens or lenses as required.
  • a small motor is used for moving the lens. Such a motor is added to shaver 30, power fed from the power supply 36, and driving and adjusting the camera optics as required for gaining optical resolution.
  • digital zoom is used, wherein no mechanical moving or camera optics are required, but rather, image processing techniques and algorithms are used to resize the displayed smaller area over the display. Interpolation is commonly required as part of the image processing.
  • An example of zoom functionality is shown in Figure 19, showing an original (pre-zoom) view 190, with an area of interest shown as 191. After the zoom operation, the former area 192 is scaled to fit the whole display area.
  • Digital (or electronic) zoom as well as other image processing functionalities can be implemented by a separate processor located in the electric shaver 30 or in the display unit 40, wherein the processor in disposed in the image data flow, or as a replacement to the video compressor 33 or video compressor 41. Further, the required functionalities may be used by two image processors, one in the shaver 30 and one in the display unit 40. Alternatively, the image processing can be integrating within the image processor 46, or as part of the display interface 42, or in both.
  • the zoom control by the user is being part of the shaver 30, as shown by the sliding switch 59 as part of view 50 in Figure 5. Alternatively, or in addition, the zoom control by the user can make use of buttons or other controls implemented as part of the display unit.
  • Video is known also as the technology of electronically capturing, recording, processing, storing, transmitting and reconstructing a sequence of still images representing scenes in motion.
  • Most video cameras have the capability of capturing and storing a single (still) picture.
  • Such functionality can also be beneficial in the system above, wherein a user operated button 'FREEZE' shown as 58 in Figure 5, being part of the user interface 47, can be used to take a single shot to get a momentary image to be stored and displayed in the display unit.
  • Such still image allows the user to carefully analyze the image that is frozen and unchanged.
  • buttons and switches can be implemented using buttons and switches. Implementing these functions can be solely within the shaver, solely within the display unit or split between both devices.
  • the user control in the form of buttons and switches on the shaver itself, as part of user interface 47 and managed by the controller 35.
  • the communication channel over the communication medium 37 is used to transmit the proper signals to the display unit. Further, these control data can be multiplexed and sent with the image digital data, using the same transceiver 34.
  • buttons and switches and / or touch screen can be located on the display unit, as part of user interface 48 and managed by the controller 43.
  • the function is implemented in hardware or software, which are in full or in part executed in the electric shaver unit
  • the communication channel over the communication medium 37 is used to transmit the proper signals to the display unit.
  • the control data can be multiplexed and sent with the image digital data, using the same transceiver 34. Further, some of the control can be in the shaver and some in the display unit.
  • the mechanical movement of the cutters 28 and the spinning of the motor 26, added to the general inherent stability caused by the human holding the shaver, may induce instability causing the display image to move and be instable, thus effecting the displaying quality and burdening the user looking at the image on the display.
  • the optical section of the shaver which includes the lens 39 and sensor 32, are mounted to the frame or the shaver using vibration isolators or vibration suppressors, to reduce the vibration effect on the captured image.
  • various digital image techniques are used to stabilize the displayed image, such as by filtering and other known image processing techniques. Improving the vibration generated by the mechanical system may also aid to reduce the effect on the optical system thus improving the user experience.
  • image processing functions may include adjusting color balance, gamma and luminance, filtering pattern noise, filtering noise using Wiener filter, changing zoom factors, recropping, applying enhancement filters, applying smoothing filters, applying subject-dependent filters, and applying coordinate transformations.
  • Other enhancements in the image data may include applying mathematical algorithms to generate greater pixel density or adjusting color balance, contrast and / or luminance.
  • FIG. 20 shows a block diagram of a shaver 200 integrally including a camera and a display module 201.
  • the digital representation of the image captured from the image processor 46 is fed directly to the display interface 42 and then to the display 45, which provides image visualization.
  • the control function 35, the user interface 47 and the power supply 36 need to be adapted to support the added functionality of the display unit.
  • FIG. 21 An example of a physical view of the shaver 200 is shown as shaver 210 in Figure 21, adapted from Figure 5.
  • Figure 21 shows various views of an example of the electric shaver 210 according to one embodiment of the invention.
  • View 213 is a front view of the shaver 210
  • view 212 is a side view
  • view 211 is a rear view of the shaver 210.
  • View 214 is a top view of the foil 15, which is usually in contact with the skin and the hair
  • view 215 is a bottom view showing connector 18 for connecting to a power source.
  • the display 45 is shown attached and as an integral part of the shaver enclosure. In one embodiment, the display can be folded, for example in order to allow small packaging and small space for storing.
  • the display 45 is shown folded in views 220 in Figure 22.
  • the display unit is adapted to drive power to the cable for powering the electric shaver.
  • Such power can be used only for powering the camera module and related functionalities, or for fully powering the electric shaver, including its motor 26 driving the cutters 28.
  • a display unit 230 adapted to supply power over the cable is shown in Figure 23.
  • a power / data combiner unit is disposed, connected between the transceiver 34 and the power supply 44.
  • the power from the power supply 44 required to power the shaver is fed to the combiner 232 through the connection 233.
  • the communication signal to or from the transceiver 34 is also connected to the combiner 232.
  • the power signal and the digital data communication signal are combined by the combiner 232 and the combined signal is coupled to the cable via a connector 231.
  • a corresponding electric shaver 240 is shown as shaver 240 in Figure 24.
  • Connector 243 is used to connect to the cable carrying both power and communication signals.
  • the incoming power is separated by the power/data splitter 244 and fed to the power supply 242 in the camera module 241.
  • the power / data splitter 244 serves as the mating and complementary unit for the combiner 232.
  • the power supply 242 is adapted to power both the motor 26 (via the battery 24, if required, or otherwise directly without any battery in between) and the camera module 241 from the power signal carried over the cable.
  • the power / data splitter is further operating to transparently pass the communication signal between the cable (via connector 243) and the transceiver 34.
  • FIG. 25 An exemplary system 250 is shown in Figure 25.
  • a single cable 251 is shown to connect between the display unit 230 and the electric shaver 240 described above, carrying both power and digital data signals.
  • the display unit 230 is AC power fed via cable 161b connected to AC power outlet 163 via a connector or plug-in power supply 162. Further, the AC power connection is also used to power the electric shaver 240 via cable 251, shown connecting the shaver 240 via connector 243 and to the connector 231 in the display unit 230.
  • only a single cable 251 is conveniently connected to the shaver 240.
  • the power and communication signals are carried over the single cable 251 using separated and dedicated conductors.
  • cable 251 may include four distinct wires, out of which two (or more) are used for carrying the communication signal, while the other two wires are used to carry the power signal from the display unit 230 to the shaver 240.
  • specific hardware for implementing the combiner 232 and the splitter 244 may not be required, since power connection will make use of separate pins and contacts in the connectors 231 and 243, while the communication signal will use distinct and different pins.
  • the power and communication signals are carried over the wires in the cable using Frequency Division Multiplexing (FDM, a.k.a. Frequency Domain Multiplexing).
  • FDM Frequency Division Multiplexing
  • the power and the communications signals are carried each in its frequency band (or a single frequency) distinct from each other.
  • the power signal can be a DC (Direct Current) power (effectively OHz), while the communication signal is carried over the lOOHz-lOMHz (or 4-30MHz) frequency band, which is distinct and above the DC power frequency.
  • a relatively high voltage such as a 120VDC can be used in order to compensate for the wiring resistance caused voltage drops.
  • safety standards such as UL / EEC 60950 and EN60950 may limit the voltage level in many applications to 60VDC.
  • a telephony common 48VDC voltage level may also be used.
  • AC power signal may be used, such as 50Hz or 60Hz.
  • the combiner 232 and splitter 244 in such environment are implemented using set of filters.
  • a low pass filter (LPF) similar to filter 141 described above can be used in the power path, connecting the cable to the power supply 44 or 242, passing only the DC power or low-frequency AC signals.
  • An high pass filter (HPF) similar to filter 142 described above can be used in the communication path, connecting the cable to the transceiver 34 in both the shaver 240 and the display unit 230.
  • PoE Power over Ethernet
  • IEEE802.3af and IEEE802.3at also explained in US Patent 6,473,609 to Lehr et al titled: "Structure Cabling System”, which describes a method to carry power over LAN wiring, using the spare pairs and the phantom mechanism.
  • the latter makes use of center-tap transformers.
  • the powering scheme described above may use this standard as well as using non-standard proprietary powering schemes.
  • USB Universal Serial Bus
  • the invention has been exampled above with regard to processing, compressing and decompressing, transmitting, receiving and displaying the image in a represented as a digital data, it will be appreciated that the invention equally applies to the case wherein the image is in full or in part of the system is carried, processed, compressed and decompressed, transmitted, received and displayed as analog video signal.
  • the transceiver 34 will be an analog transceiver and the image will be carried in an analog form over the communication medium 37.
  • the communication can be wireless through the air such as using radio-frequency, or over metallic medium such as wires.
  • the camera module 31 or the display unit 40 may include visual indicators for allowing the user to easily observe the module status.
  • Such indicators may be LEDs (Light Emitting Diode) known in the art, and are coupled to be controlled by the control 35 in the shaver 30 or by the control 43 in the display unit 40, and can further be part of user interface functionality 47 or 48.
  • the visual indicators may be used to indicate the following module status:
  • the visual indicator may be used to indicate the existence of power in the module to power its internal active circuits. Various techniques have been described above for powering a module. Regardless of the power source to the module (as described above), such indication will ensure that indeed power reaches the module. Such indication is commonly marked as TOWER" or ⁇ 0N ⁇
  • the indicator can be coupled directly to the power signal feeding the module or alternatively coupled to the power supply output. In the latter case, the indicator is used to indicate both the power signal availability and the proper operation of the internal power supply 36 or 44.
  • a visual indicator may also be used to indicate the proper operation of part or all of the electronic circuits integrated within the module.
  • the electronic circuits within the module may support self-test or any other built-in diagnostics means, wherein the test results will be signaled by a visual indicator.
  • the module may indicate the availability and the status of the communication.
  • two communication links may be involved.
  • One communication link refers to the availability of a data communication signal over the communication medium 37 so as to indicate that transceiver 34 receives a valid communication signal.
  • the other communication link involves the communication between the shaver and the display unit.
  • Such status indication can be based on a "Link Pulse" mechanism commonly used in Ethernet DEEE802.3 10/lOOBaseT based networks.
  • the above various states may be each represented by a single dedicated single-state indicator.
  • known techniques are commonly used in order to combine signals. Such techniques may use different colors (of the same indicator), different intensity levels, variable duty-cycle and so forth. While visual indicators have been described, other indicating methods may be used such as audible tones (as stand alone or combined with visual).
  • the electric shaver outputs a standard video signal, which can be displayed using any displaying device that supports this video interface.
  • a standard television set can be as a display apparatus.
  • the transceiver 234 and connector 38 are adapted to output this standard video signal.
  • Such analog interfaces can be composite video such as NTSC, PAL or SECAM formats.
  • analog RGB, VGA (Video Graphics Array), SVGA (Super Video Graphics Array), SCART, S-video and other standard analog interfaces can be used.
  • Connector 38 will be implemented as suitable standard analog video connector.
  • F-Type, BNC (Bayonet Neill-Concelman), RCA, and similar RF /coax connectors can be used.
  • An electric shaver 260 is shown in Figure 26, including F-Type connector 261 for connecting to a standard analog video displaying device.
  • a standard digital video interface is used.
  • the transceiver 34 and connector 38 are adapted to support the digital video interface.
  • a IEEE1394 interface also known as FireWire.TM.
  • FireWire.TM. is used, as shown for electric shaver 270 is shown in Figure 27, including an IEEE 1394 connector 271 for connecting to a standard digital video displaying device.
  • Other digital interfaces that can be used are USB, SDI (Serial Digital Interface), Fire Wire, HDMI (High- Definition Multimedia Interface), DVI (Digital Visual Interface), UDI (Unified Display Interface), DisplayPort, Digital Component Video and DVB (Digital Video Broadcast).

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

L'invention porte sur un système et sur un procédé pour améliorer le rasage en fournissant une visibilité améliorée de la zone de peau à raser. Une caméra numérique (55, 56) est intégrée dans le rasoir électrique (60) pour capturer une image rapprochée de la zone de rasage et pour l'afficher sur une unité d'affichage. L'unité d'affichage peut faire partie intégrante du boîtier du rasoir électrique ou être logée dans un dispositif séparé qui reçoit l'image via un canal de communication. Le canal de communication peut être sans fil (en utilisant une liaison radio, audio ou la lumière), ou être à fil, par exemple une communication de câblage dédiée ou une communication utilisant la ligne d'alimentation. Une source lumineuse est utilisée pour mieux éclairer la zone de rasage. Des techniques de compression vidéo et de traitement d'image numérique sont utilisées pour assurer des résultats de rasage améliorés. Le milieu de communication à fil peut être utilisé simultanément pour transmettre l'énergie de l'ensemble rasoir électrique à l'unité d'affichage ou de l'unité d'affichage au rasoir électrique.
EP09787534A 2009-08-13 2009-08-13 Rasoir électrique possédant une capacité de formation d'image Withdrawn EP2464496A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IL2009/000798 WO2011018781A1 (fr) 2009-08-13 2009-08-13 Rasoir électrique possédant une capacité de formation d'image

Publications (1)

Publication Number Publication Date
EP2464496A1 true EP2464496A1 (fr) 2012-06-20

Family

ID=41786074

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09787534A Withdrawn EP2464496A1 (fr) 2009-08-13 2009-08-13 Rasoir électrique possédant une capacité de formation d'image

Country Status (3)

Country Link
EP (1) EP2464496A1 (fr)
CN (1) CN102470532B (fr)
WO (1) WO2011018781A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105283276B (zh) * 2013-05-30 2018-08-07 皇家飞利浦有限公司 用于护理毛发和/或皮肤的设备和系统
EP3065918B2 (fr) * 2013-11-06 2021-09-29 Koninklijke Philips N.V. Système et procédé pour traiter une partie d'un corps
US11433561B2 (en) * 2013-11-06 2022-09-06 Koninklijke Philips N.V. System and a method for treating a part of a body
US10694827B2 (en) * 2014-07-29 2020-06-30 Conair Corporation Hair-removal system
RU2718036C2 (ru) * 2015-04-28 2020-03-30 Конинклейке Филипс Н.В. Устройство для ухода за внешностью
CN111493505A (zh) * 2015-06-12 2020-08-07 高露洁-棕榄公司 电动牙刷、刷子单元以及用于操作电动牙刷的方法
CN105479501A (zh) * 2016-01-12 2016-04-13 中山市德斯邦电子科技有限公司 带有照相功能的剃须器
CN108242530B (zh) * 2016-12-23 2022-02-22 北京好风光储能技术有限公司 一种锂浆料电池及其负极片
WO2018050570A1 (fr) * 2016-09-14 2018-03-22 Koninklijke Philips N.V. Système de soin de l'apparence avec éclairage adaptatif et procédé d'utilisation
ES1193360Y (es) * 2017-09-26 2018-01-04 Almonte Richard David Amaro Sistema de visualizacion para dispositivos esteticos
US11529745B2 (en) 2018-06-08 2022-12-20 BIC Violex Single Member S.A. Smart shaving accessory
EP3632634A1 (fr) * 2018-10-04 2020-04-08 Koninklijke Philips N.V. Appareil de soins personnels
CN109591058A (zh) * 2018-12-06 2019-04-09 宁波宝尼尔厨具电器有限公司 胡须浓度测量平台
EP3800644A1 (fr) * 2019-10-02 2021-04-07 Koninklijke Philips N.V. Détermination d'un emplacement d'un dispositif

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB888373A (en) * 1958-03-04 1962-01-31 William Brian Henniker Improvements in electric dry shavers
US5274735A (en) 1991-12-16 1993-12-28 Sanyo Electric Co., Ltd. Electric shaver
JPH1147463A (ja) 1997-08-04 1999-02-23 Izumi Prod Co 電気かみそり
US7764380B2 (en) * 2004-04-20 2010-07-27 Koninklijke Philips Electronics N.V. Hair detection device
DE102005030533A1 (de) * 2005-06-30 2007-01-04 Rapp, Wilhelm, Dipl.-Ing. Rasierer mit Beleuchtung
US20090189972A1 (en) * 2005-07-12 2009-07-30 Harris Michael D System and method for video medical examination and real time transmission to remote locations
IE20060420A1 (en) * 2006-06-06 2008-02-06 John Mary Ryan An electric shaver
CN200969651Y (zh) * 2006-11-06 2007-10-31 张国栋 模具监视器
WO2009076162A2 (fr) * 2007-12-05 2009-06-18 Thomas Hanson Système et appareil de coiffage
CN201161398Y (zh) * 2008-01-30 2008-12-10 徐一渠 带镜电动剃须刀

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011018781A1 *

Also Published As

Publication number Publication date
WO2011018781A1 (fr) 2011-02-17
CN102470532A (zh) 2012-05-23
CN102470532B (zh) 2016-01-27

Similar Documents

Publication Publication Date Title
US12075139B2 (en) Electric shaver with imaging capability
EP2464496A1 (fr) Rasoir électrique possédant une capacité de formation d'image

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120312

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130214

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160301