EP2462784A1 - Verfahren zum inbetriebsetzen einer entladungslampe sowie schaltungsanordnung zum betreiben einer solchen - Google Patents

Verfahren zum inbetriebsetzen einer entladungslampe sowie schaltungsanordnung zum betreiben einer solchen

Info

Publication number
EP2462784A1
EP2462784A1 EP10739332A EP10739332A EP2462784A1 EP 2462784 A1 EP2462784 A1 EP 2462784A1 EP 10739332 A EP10739332 A EP 10739332A EP 10739332 A EP10739332 A EP 10739332A EP 2462784 A1 EP2462784 A1 EP 2462784A1
Authority
EP
European Patent Office
Prior art keywords
current
potential
circuit
circuit arrangement
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10739332A
Other languages
English (en)
French (fr)
Other versions
EP2462784B1 (de
Inventor
Thomas Pollischansky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP2462784A1 publication Critical patent/EP2462784A1/de
Application granted granted Critical
Publication of EP2462784B1 publication Critical patent/EP2462784B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps

Definitions

  • the invention relates to a method for starting up a discharge lamp according to the preamble of claim 1. It also relates to a circuit arrangement for operating a discharge lamp according to the preamble of claim 3.
  • the invention relates to a circuit arrangement for operating a discharge lamp according to the preamble of patent claim 3, as used in the applicant's own house, and by which the method according to the preamble of claim 1 is implemented:
  • the circuit arrangement has a resonant circuit, with a capacitive element connected in parallel with the discharge lamp and an inductive element in series in front of the lamp and the capacitive element and behind a circuit point between two switches.
  • the switches typically designed as MOSFETs, are used to apply power to the resonant circuit.
  • the means for effecting comprise an application specific integrated circuit (ASIC), from which potential outputs are connected to the control inputs of MOSFETs.
  • ASIC application specific integrated circuit
  • the resonant circuit is there to provide for the provision of an ignition voltage across the electrodes of the lamp, ie parallel to the capacitive element of the resonant circuit.
  • the circuit arrangement for measuring the current intensity of a current flowing through one of the switches, and suitable means for determining the switching frequency define these during ignition as a function of the measured current intensity.
  • the electrodes Prior to the ignition of the discharge lamp, the electrodes, which are typically helical, are to be preheated. Preheating is accomplished by providing ohmic heat loss by sending a current through the electrodes. This is also done in the circuit arrangement by activating the switches and thereby charging the resonant circuit with alternating current. However, the frequency is different than when the lamp is lit.
  • the frequency of the alternating current during preheating was predetermined, and indeed to values above the resonant frequency of the resonant circuit.
  • the electrical parameters of electronic components may vary from item to item, even though a nominal value is desired per se. If, as before, the frequency during preheating is determined in advance, then The set preheating depends sensitive on the parameters of the electronic components, in particular of the capacitive element and the inductive element of the resonant circuit. It is then possible that a circuit arrangement is rejected as not sufficiently functioning in the production, even if all components work on their own and only parameter deviations are given in the components.
  • a regulation of the preheating current is known from some circuit arrangements.
  • the object of the present invention is to provide a method according to the preamble of patent claim 1, by which a discharge lamp is reliably put into operation, even if deviations in their electrical parameters are given in the electronic components used in this case. It is a further object of the present invention to provide a circuit arrangement for operating a discharge lamp according to the preamble of claim 3, which functions as reliably as the circuit arrangement from the applicant's home in its previous embodiment, but at the same time enables reliable preheating to ignite the lamp ,
  • the pre-heating is controlled to a predetermined current, in principle the same way as in the ignition, namely by the means for controlling the frequency are already activated before the ignition.
  • the measuring device is caused to obtain measured values for the current intensity and to transmit the means for controlling the frequency, which correspond to a current intensity which deviates in a predetermined manner from the current intensity measured during ignition.
  • the regulation is carried out on the basis of measured values for a first current strength and in a second situation the regulation on measured values for a second current intensity, in each case for the same actual current intensity.
  • the first situation is preferably that of the ignition, in which the actual current intensity is predetermined by the measured values.
  • the control can then take place on the basis of measured values which deviate from the actual current intensity in a predetermined manner.
  • the peak value of the current is measured. When this reaches a predetermined limit, the switching frequency of the half-bridge is increased.
  • Such an offset is approximately provided by the fact that a potential is applied during preheating at a circuit point which is not applied during ignition.
  • control means are provided according to the invention for influencing the measured values obtained by the means for measuring, so that when passing through a commissioning program at an appropriate time such influencing of the measured values can take place, namely in particular during preheating.
  • the control means comprises a source for providing a fixed potential (typically defined to ground) at a circuit point of the circuitry.
  • a fixed potential typically defined to ground
  • This can be z.
  • another output signal can be used which has a different potential during preheating than in the other operating states.
  • This is z.
  • the output RTPH on the Infineon control Asic ICV1FL02G By manipulating voltages dropping across resistors, and thus across these flowing currents, the measured current is also manipulated, with otherwise the same current flowing through one of the switches.
  • the means for measuring the current intensity comprise a voltage divider with two resistance elements. It is then sufficient to couple a circuit point between the two resistance elements via a further resistance element with the source in order to set the falling over the two resistive elements voltages in a different relationship.
  • the further resistance element preferably has a resistance which is at least 5 times and preferably at least 10 times as great as the maximum resistance of the two resistance elements. The reason for this is that excessively large additional currents are not to be generated, but merely the potential to be changed. that should. The greater the resistance of the further resistance element, the more the effect of a simple offset in the measurement of the current intensity is achieved.
  • the circuit arrangement comprises, as is known per se from the prior art, an application-specific circuit which has two potential outputs for driving the switches and a potential input belonging to the means for measuring and, for example, the circuit point is coupled between the two resistive elements.
  • a third potential output is provided or used, which serves to provide the source.
  • the third potential output is coupled to ground via a zener diode, to which a capacitive element is preferably connected in parallel. It then flows from the potential output current via the zener diode, and the voltage dropping at this voltage is then regarded as stable, so that a stable voltage source is provided, that is, the potential at the circuit point of the circuit arrangement is particularly well defined.
  • Fig. 1 shows the circuit diagram of a circuit arrangement for a
  • Discharge lamp according to the prior art shows a circuit diagram for a discharge lamp, as realized according to a first embodiment of the invention
  • FIG. 3 shows a circuit diagram for a discharge lamp, as realized according to a second embodiment of the invention.
  • Fig. 4 is two graphs illustrating the advantages of the invention over the prior art.
  • a capacitive element Ci is connected in parallel.
  • the two electrodes Eli and El 2 of the lamp LP are coupled to the two sides of a capacitor Ci.
  • an inductive element L is switched.
  • the electrode EI2 is coupled to a potential V via a capacitive element C2, via a capacitive element C3 to ground.
  • Two switches Qi and Q2, which are designed as MOSFETs, can couple the series connection of inductive element and discharge lamp or capacitive element Ci to the potential V.
  • the resonant circuit with the elements L and Ci is used in particular when igniting the discharge lamp LP.
  • the resonant circuit is brought close or in resonance, so that very high voltages between the electrodes Eli and El 2 are applied, so that it comes to the ignition of the discharge lamp.
  • the switch Q 2 connects the inductive element L via a resistor element R3 to ground. Parallel with the resistor element R3, a voltage divider with the resistor elements R 4 and R 5 is provided, and the circuit point between these two resistance elements R 4 and R 5 is connected to a potential input El of the application-specific circuit.
  • the potential input allows the measurement of the voltage drop across the resistor R 5 and thus the current of the current flowing through the switch Q 2 current.
  • the frequency of the opening and closing of the switches Qi and Q 2 is then determined in the application-specific circuit 100.
  • the value measured at the potential input for the potential or the voltage dropping to ground therefore determines the output potentials at the potential outputs A1 and A2 and their frequency.
  • the electrodes Eli and El 2 must be preheated.
  • the control that is used when the discharge lamp LP is ignited is not yet used.
  • a specific frequency is provided for the current intensity with which the outputs A1 and A2 are applied during preheating. It turns then a certain alternating current, which is used as a preheating current.
  • the disadvantage here is that scatters and fluctuations in the parameters of the capacitive element Ci and the inductive element L are not taken into account.
  • FIG. 4 shows on the basis of the curve 10 that, for example, when the capacitive element Ci varies between 4 and 5.5 nF Preheating current can vary between over 600 and 425 mA. This variation is too high for practical applications.
  • a further potential output A3 is provided, which is coupled via a resistance element Re to the circuit point between the resistance elements R 4 and R 5 , ultimately with the potential input El. If the resistance element R3 has a resistance of 1 ⁇ , the resistance elements R 4 and R 5 each have resistances of 1 k ⁇ , so Re is to be selected, for example, with a resistance of 10 k ⁇ .
  • a potential of 12 V is applied to ground at the potential output A3, when typically a voltage of 2 V drops across the resistance elements R 4 and R 5 , then an offset results at the potential at the node between see the resistance elements R 4 and R 5 .
  • the control threshold for the current is reduced by this offset.
  • the application-specific circuit 100 ' is equal to the application-specific circuit 100, the potential output A3 is additionally used. If the potential of 12 V is applied during preheating at the potential output A3, but the potentials detected above the potential input El are still measured in the interior of the application-specific circuit 100 'and the control takes place as a function of these measured values, the offset in the measured values control to a different current than would be the case if the potential at the potential output A3 is not applied.
  • the preheating current can thus be in a defined ratio to the ignition current.
  • the potential is now applied to the potential output A3, then it is regulated to a specific preheating current.
  • no potential is applied so that the circuit point between the resistance elements R 4 and R 5 remains unaffected.
  • a control of the ignition current in a conventional manner. It can be seen from the curve 12 in FIG. 4 that the same preheating current almost always flows through the regulation of the preheating current, even in the case of larger fluctuations in the value of the capacitance of the capacitive element Ci. This is exactly the desired effect.
  • the components of the control loop typically have a lower tolerance than the components L and Ci. Notwithstanding the embodiment according to FIG. 2, it can be provided according to FIG. 3 that an application-specific circuit 100 'is used which is not necessarily suitable as a voltage source. Then, the potential output A3 via a resistor element R 7 and a parallel circuit of a Zener diode and a capacitive element C 4 are coupled to ground, simultaneously via the resistor element Rs to the node between the resistive elements R 4 and R 5 . When a potential is applied to the potential output A3, then a current flows via the zener diode Z, and the voltage dropping across it is sufficiently stable to provide a type of voltage source, ie a fixed potential. In the embodiments according to FIGS.
  • the invention uses the intelligence of the application-specific circuit, as known from the prior art.
  • the intelligence is used in the prior art to control to a certain current at the ignition of the lamp LP.
  • the same intelligence can also be used to regulate to a specific current during preheating.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

In Schaltungsanordnungen bisher verwendeter Art wird beim Zünden einer Entladungslampe (LP) eine Stromstärke gemessen und durch Variation der Frequenz dieses Zündstroms geregelt. Dieselbe Art der Regelung wird nun auch zum Einstellen des Vorheizstroms eingesetzt. Hierbei werden die Messwerte für die Stromstärke beim Vorheizen in vorbestimmter Weise manipuliert, ansonsten wird derselbe Regelkreis in einem applikationsspezifischen Schaltkreis (100') eingesetzt.

Description

Beschreibung
Verfahren zum Inbetriebsetzen einer Entladungslampe sowie Schaltungsanordnung zum Betreiben einer solchen
Technisches Gebiet
Die Erfindung betrifft ein Verfahren zum Inbetriebsetzen einer Entladungslampe gemäß dem Oberbegriff des An- spruchs 1. Sie betrifft auch eine Schaltungsanordnung zum Betreiben einer Entladungslampe nach dem Oberbegriff von Anspruch 3.
Stand der Technik
Die Erfindung geht von einer Schaltungsanordnung zum Betreiben einer Entladungslampe nach dem Oberbegriff von Patentanspruch 3 aus, wie sie im Hause der Anmelderin verwendet wird, und durch welche das Verfahren gemäß dem Oberbegriff des Anspruchs 1 umgesetzt wird:
Die Schaltungsanordnung weist einen Resonanzkreis auf, mit einem parallel zur Entladungslampe geschalteten kapa- zitiven Element und einem induktiven Element in Reihe vor der Lampe und dem kapazitiven Element und hinter einem Schaltungspunkt zwischen zwei Schaltern. Die Schalter, typischerweise als MOSFETs ausgebildet, dienen zum Beaufschlagen des Resonanzkreises mit Strom. Durch geeignete Mittel wird bewirkt, dass die beiden Schalter in einander abwechselnder Folge schließen und wieder öffnen, wobei die Schaltfrequenz vorgegeben ist. Typischerweise umfassen die Mittel zum Bewirken einen applikationsspezifischen integrierten Schaltkreis (Asic, application speci- fic integrated circuit) , von dem Potenzialausgänge mit den Steuereingängen von MOSFETs verbunden sind. Der Resonanzkreis ist dazu da, für das Bereitstellen einer Zündspannung über den Elektroden der Lampe, also parallel zum kapazitiven Element des Resonanzkreises, zu sorgen. Er wird hierzu über eine Halbbrückenschaltung mit einer Rechteckspannung beaufschlagt, um in Schwingung in oder nahe Resonanz versetzt zu werden. Damit die Zündspannung definiert eingestellt wird, erfolgt eine Regelung auf eine vorbestimmte Stromstärke des Wechselstroms unter Varianz der Frequenz der Rechteckspannung. Hierzu sind in der Schaltungsanordnung Mittel zum Messen der Stromstärke eines über einen der Schalter fließenden Stroms vorgesehen, und geeignete Mittel zum Festlegen der Schaltfrequenz legen diese beim Zünden in Abhängigkeit von der gemessenen Stromstärke fest. Vor dem Zünden der Entladungslampe sind die Elektroden, welche typischerweise wendeiförmig sind, vorzuheizen. Das Vorheizen geschieht durch Bereitstellen einer ohmschen Verlustwärme, indem ein Strom durch die Elektroden gesandt wird. Dies erfolgt in der Schaltungsanordnung eben- falls durch Ansteuern der Schalter und dadurch Beaufschlagung des Resonanzkreises mit Wechselstrom. Die Frequenz ist hierbei aber anders als beim Zünden der Lampe.
Bei bisher im Hause der Anmelderin verwendeten Schaltungsanordnungen war die Frequenz des Wechselstroms beim Vorheizen vorab festgelegt, und zwar auf Werte über der Resonanzfrequenz des Resonanzkreises.
Die elektrischen Parameter von elektronischen Bauelementen können von Exemplar zu Exemplar variieren, auch wenn an sich ein nominaler Wert gewünscht ist. Wird nun wie bisher die Frequenz beim Vorheizen vorab festgelegt, so hängt der eingestellte Vorheizstrom empfindlich von den Parametern der elektronischen Bauelemente ab, insbesondere des kapazitiven Elements und des induktiven Elements des Resonanzkreises. Es ist dann möglich, dass eine Schaltungsanordnung als nicht ausreichend funktionierend bei der Produktion ausgesondert wird, auch wenn an sich alle Bauteile für sich funktionieren und nur Parameterabweichungen in den Bauteilen gegeben sind.
Eine Regelung des Vorheizstroms ist von manchen Schal- tungsanordnungen bekannt.
Darstellung der Erfindung
Die Aufgabe der vorliegenden Erfindung ist es, ein Verfahren nach dem Oberbegriff des Patentanspruchs 1 bereitzustellen, durch das eine Entladungslampe zuverlässig in Betrieb gesetzt wird, auch wenn in den hierbei verwende- ten elektronischen Bauelementen Abweichungen in ihren e- lektrischen Parametern gegeben sind. Es ist ferner Aufgabe der vorliegenden Erfindung, eine Schaltungsanordnung zum Betreiben einer Entladungslampe nach dem Oberbegriff des Patentanspruchs 3 bereitzustellen, die zum Zünden der Lampe so zuverlässig funktioniert wie die Schaltungsanordnung aus dem Hause der Anmelderin in ihrer bisherigen Ausführungsform, die aber gleichzeitig ein zuverlässiges Vorheizen ermöglicht.
Diese Aufgabe wird bei einem Verfahren mit den Merkmalen des Oberbegriffs des Anspruchs 1 durch die Merkmale des
Kennzeichens des Patentanspruchs 1 gelöst, und bei einer
Schaltungsanordnung mit der Merkmalen gemäß dem Oberbe- griff des Anspruchs 3 durch die Merkmale des kennzeichnenden Teils des Anspruchs 3 gelöst.
Besonders vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen. Erfindungsgemäß wird auch beim Vorheizen auf eine vorbestimmte Stromstärke geregelt, und zwar auf grundsätzlich dieselbe Art und Weise wie beim Zünden, nämlich indem die Mittel zum Steuern der Frequenz bereits vor dem Zündvorgang aktiviert werden. Da nun aber auf eine andere Strom- stärke geregelt werden soll, wird bewirkt, dass die Messeinrichtung Messwerte für die Stromstärke gewinnt und den Mitteln zum Steuern der Frequenz übergibt, welche einer Stromstärke entsprechen, die von der beim Zünden gemessenen Stromstärke in vorbestimmter Weise abweicht. Es wird also in einer ersten Situation die Regelung aufgrund von Messwerten für eine erste Stromstärke und in einer zweiten Situation die Regelung auf Messwerte für eine zweite Stromstärke vorgenommen, und zwar jeweils für dieselbe tatsächliche Stromstärke. Anknüpfend an die Verfahren des Standes der Technik ist bevorzugt die erste Situation die des Zündens, in der durch die Messwerte die tatsächliche Stromstärke vorbestimmt abgebildet wird. Beim Vorheizen kann dann die Regelung aufgrund von Messwerten erfolgen, die von der tatsächlichen Stromstärke in vorbestimmter Weise abweichen. Typischerweise wird der Spitzenwert des Stroms gemessen. Wenn dieser einen vorgegebenen Grenzwert erreicht, wird die Schaltfrequenz der Halbbrücke erhöht.
Es wird somit insbesondere beim Vorheizen die Messung der
Stromstärke bewusst verfälscht. Im einfachsten Fall wird einfach ein Versatz (Offset) aufgeprägt. Dann bewirkt der Regelkreis, dass sich eine um diesen Versatz verschiedene Stromstärke tatsächlich einstellt, als es sonst der Fall wäre beziehungsweise beim Zünden der Fall ist.
Ein solcher Versatz wird näherungsweise dadurch bereitge- stellt, dass beim Vorheizen an einem Schaltungspunkt ein Potenzial angelegt wird, welches beim Zünden nicht angelegt wird.
Es ist auf diese Weise möglich, die bereits bekannte Schaltungsanordnung zu nutzen, die den Regelkreis auf- weist, der beim Zünden der Lampe eingesetzt wird, und derselbe Regelkreis kann dann auch zur Regelung des Vorheizstroms eingesetzt werden. Dadurch wird ein Synergieeffekt erzielt, es muss für die Regelung des Vorheizstroms nicht eigens ein gesonderter Regelkreis bereitge- stellt werden. Ein auf dem Markt befindliches Steuer- ASIC, das keine Eigenschaft zur Regelung des Vorheizstroms aufweist, kann mit der erfindungsgemäßen Schaltung den Vorheizstrom regeln.
Bei der Schaltungsanordnung nach dem Oberbegriff von Pa- tentanspruch 3 sind erfindungsgemäß Steuermittel zum Beeinflussen der von den Mitteln zum Messen gewonnenen Messwerte bereitgestellt, so dass bei Durchlaufen eines Inbetriebsetzungsprogrammes zu einem geeigneten Zeitpunkt eine solche Beeinflussung der Messwerte erfolgen kann, nämlich insbesondere beim Vorheizen.
Bevorzugt weisen die Steuermittel eine Quelle zum Bereitstellen eines festen Potenzials (definiert typischerweise gegenüber Masse) an einem Schaltungspunkt der Schaltungsanordnung auf. Dies kann z. B. ein Ausgang zum Ansteuern einer transformatorischen Vorheizung mit Mosfet-Schalter sein. Alternativ kann ein anderes Ausgangssignal benützt werden, das während der Vorheizung ein anderes Potenzial als in den sonstigen Betriebszuständen hat. Dies ist z. B. der Ausgang RTPH beim Infineon-Steuer-Asic ICV1FL02G. Durch Manipulation von an Widerständen abfallenden Spannungen und somit über diesen fließenden Strömen wird auch die gemessene Stromstärke manipuliert, und dies bei ansonsten gleicher Stromstärke, die über den einen der Schalter fließt. Es kann somit über den einen der Schal- ter eine bestimmte Stromstärke fließen und bei Nichtbe- reitstellen des festen Potenzials ein erster Wert für die Stromstärke gemessen werden, und bei Bereitstellen des festen Strompotenzials ein zweiter Wert für die Stromstärke gemessen werden. Dies ist genau das Ziel, um die- jenige Elektronik benutzen zu können, die auf eine vorbestimmte Stromstärke einstellt. Dann kann durch Manipulation der Messwerte für die Stromstärke derselbe Regelkreis sowohl beim Vorheizen als auch beim Zünden benutzt werden . In einfacher Weise umfassen die Mittel zum Messen der Stromstärke einen Spannungsteiler mit zwei Widerstandselementen. Es genügt nun, einen Schaltungspunkt zwischen den beiden Widerstandselementen über ein weiteres Widerstandselement mit der Quelle zu koppeln, um die über die beiden Widerstandselemente abfallenden Spannungen in ein anderes Verhältnis zu setzen. Das weitere Widerstandselement hat bevorzugt einen Widerstand, der zumindest 5-mal und bevorzugt zumindest 10-mal so groß ist wie der größte Widerstand der beiden Widerstandselemente. Grund hierfür ist, dass nicht übermäßig große Zusatzströme erzeugt werden sollen, sondern lediglich das Potenzial geändert wer- den soll. Je größer der Widerstand des weiteren Widerstandselements, desto mehr wird die Wirkung eines einfachen Versatzes bei der Messung der Stromstärke erzielt.
In der bevorzugten Ausführungsform umfasst die Schal- tungsanordnung wie an sich aus dem Stand der Technik bekannt einen applikationsspezifischen Schaltkreis, der zwei Potenzialausgänge für die Ansteuerung der Schalter aufweist und einen Potenzialeingang, der den Mitteln zum Messen zugehörig ist und zum Beispiel mit dem Schaltungs- punkt zwischen den beiden Widerstandselementen gekoppelt ist. Im Rahmen der Erfindung wird ein dritter Potenzialausgang vorgesehen beziehungsweise genutzt, der zur Bereitstellung der Quelle dient.
Da manche applikationsspezifischen Schaltkreise nicht un- bedingt die ideale Spannungsquelle sind, ist bei einer bevorzugten Ausführungsform der dritte Potenzialausgang über eine Zenerdiode mit Masse gekoppelt, wobei zu dieser parallel bevorzugt zusätzlich ein kapazitives Element geschaltet ist. Es fließt dann von dem Potenzialausgang Strom über die Zenerdiode, und die an dieser abfallende Spannung ist dann als stabil anzusehen, so dass eine stabile Spannungsquelle vorgesehen ist, also das Potenzial an dem Schaltungspunkt der Schaltungsanordnung dadurch besonders gut definiert ist.
Kurze Beschreibung der Zeichnung (en) Im Folgenden soll die Erfindung anhand zweier Ausführungsbeispiele näher erläutert werden. Es zeigt:
Fig. 1 den Schaltplan einer Schaltungsanordnung für eine
Entladungslampe gemäß dem Stand der Technik, Fig. 2 einen Schaltplan für eine Entladungslampe, wie er gemäß einer ersten Ausführungsform der Erfindung realisiert ist,
Fig. 3 einen Schaltplan für eine Entladungslampe, wie er gemäß einer zweiten Ausführungsform der Erfindung realisiert ist, und
Fig. 4 zwei Graphen zur Veranschaulichung der Vorteile der Erfindung gegenüber dem Stand der Technik.
Bevorzugte Ausführung der Erfindung
Zu einer Entladungslampe LP, zum Beispiel einer Nieder- druckentladungslampe, ist parallel ein kapazitives Element Ci geschaltet. Die beiden Elektroden Eli und El2 der Lampe LP sind mit den beiden Seiten eines Kondensators Ci gekoppelt. In Reihe zur Lampe LP und damit auch des kapazitiven Elements Ci ist ein induktives Element L geschal- tet. Die Elektrode EI2 ist über ein kapazitives Element C2 mit einem Potenzial V gekoppelt, über ein kapazitives Element C3 mit Masse. Zwei Schalter Qi und Q2, die als MOSFETs ausgebildet sind, können die Reihenschaltung aus induktivem Element und Entladungslampe beziehungsweise kapazitivem Element Ci mit dem Potenzial V koppeln
(Schalter Qi) oder mit Masse koppeln (Schalter Q2) . Die
Steuereingänge der Schalter sind über Widerstandselemente
Ri beziehungsweise R2 mit Potenzialausgängen Al, A2 eines applikationsspezifischen Schaltkreises 100 gekoppelt. In dem Schaltkreis vorgesehene Mittel steuern die Schalter Qi und Q2 genau abwechselnd an, so dass abwechselnd ein Laden und Entladen des Kondensators Ci aus dem Potenzial V über den Schalter Qi beziehungsweise zur Masse über den Schalter Q2 erfolgt. Da die Elemente L und Ci einen Resonanzkreis bilden, kann die Stromstärke des über die E- lektroden Eli und El2 der Lampe LP fließenden Stroms empfindlich eingestellt werden. Dies erfolgt durch Variation der Frequenz durch geeignete Mittel im integrierten Schaltkreis 100.
Der Resonanzkreis mit den Elementen L und Ci wird insbesondere beim Zünden der Entladungslampe LP genutzt. Der Resonanzkreis wird nahe oder in Resonanz gebracht, so dass äußerst hohe Spannungen zwischen den Elektroden Eli und El2 anliegen, damit es zur Zündung der Entladungslampe kommt .
In dieser Phase des Zündens ist es wichtig, dass vorbestimmte Spannungen abfallen. Hierzu wird auf die Strom- stärke geregelt. Der Schalter Q2 verbindet das induktive Element L über ein Widerstandselement R3 mit Masse. Parallel zum Widerstandselement R3 ist ein Spannungsteiler mit den Widerstandselementen R4 und R5 bereitgestellt, und der Schaltungspunkt zwischen diesen beiden Wider- Standselementen R4 und R5 ist mit einem Potenzialeingang El des applikationsspezifischen Schaltkreises verbunden. Der Potenzialeingang ermöglicht die Messung der über dem Widerstandselement R5 abfallenden Spannung und damit der Stromstärke des über den Schalter Q2 fließenden Stroms. In Abhängigkeit von der so gemessenen Spannung wird dann im applikationsspezifischen Schaltkreis 100 die Frequenz des Öffnens und Schließens der Schalter Qi und Q2 bestimmt. Der am Potenzialeingang gemessene Wert für das Potenzial beziehungsweise die gegenüber Masse abfallende Spannung bestimmt daher die Ausgangspotenziale an den Potenzialausgängen Al und A2 und deren Frequenz. Vor dem Zünden müssen die Elektroden Eli und El2 vorgeheizt werden. Im Stand der Technik wird hierbei noch nicht die Regelung benutzt, die beim Zünden der Entladungslampe LP eingesetzt wird. Stattdessen ist im appli- kationsspezifischen Schaltkreis 100 eine bestimmte Frequenz für die Stromstärke vorgesehen, mit der die Ausgänge Al und A2 beim Vorheizen beaufschlagt werden. Es stellt sich dann ein bestimmter Wechselstrom ein, der als Vorheizstrom benutzt wird. Nachteilig hierbei ist, dass Streuungen und Schwankungen bei den Parametern des kapazitiven Elements Ci und des induktiven Elements L nicht Rechnung getragen werden. Weicht zum Beispiel die tatsächliche Kapazität Ci vom Sollwert stark ab, so kommt es zu einer starken Verfäl- schung des Vorheizstroms: Fig. 4 zeigt anhand der Kurve 10, dass zum Beispiel bei Variation des kapazitiven Elements Ci zwischen 4 und 5,5 nF der Vorheizstrom zwischen über 600 und 425 mA variieren kann. Diese Variation ist für praktische Anwendungen zu hoch. Bei der Erfindung wird ein weiterer Potenzialausgang A3 bereitgestellt, der über ein Widerstandselement Re mit dem Schaltungspunkt zwischen den Widerstandselementen R4 und R5, letztlich also mit dem Potenzialeingang El gekoppelt ist. Hat das Widerstandselement R3 einen Widerstand von 1 Ω, haben die Widerstandselemente R4 und R5 jeweils Widerstände von 1 kΩ, so ist Re zum Beispiel mit einem Widerstand von 10 kΩ zu wählen. Legt man nun am Potenzialausgang A3 ein Potenzial von 12 V gegenüber Masse an, wenn typischerweise an den Widerstandselementen R4 und R5 eine Spannung von 2 V abfällt, dann ergibt sich ein Versatz (Offset) am Potenzial an dem Schaltungspunkt zwi- sehen den Widerstandselementen R4 und R5. Die Regelschwelle für den Strom reduziert sich um diesen Versatz. Der applikationsspezifische Schaltkreis 100' ist gleich dem applikationsspezifischen Schaltkreis 100, der Poten- zialausgang A3 wird zusätzlich genutzt. Wenn nun beim Vorheizen an dem Potenzialausgang A3 das Potenzial von 12 V angelegt wird, im Inneren des applikationsspezifischen Schaltkreises 100' aber die über dem Potenzialeingang El erfassten Potenziale weiterhin gemessen werden und die Regelung in Abhängigkeit von diesen Messwerten erfolgt, so erfolgt aufgrund des Versatzes in den Messwerten eine Regelung auf eine andere Stromstärke, als es der Fall wäre, wenn das Potenzial am Potenzialausgang A3 nicht anliegt. Durch geeignete Wahl des Potenzials am Potenzialausgang A3 und des Widerstandselements Re passend zu den Widerstandselementen R4 und R5 kann somit der Vorheizstrom in einem definierten Verhältnis zum Zündstrom stehen. Beim Vorheizen wird nun das Potenzial am Potenzialausgang A3 angelegt, dann wird auf einen bestimmten Vorheizstrom geregelt. Beim Zünden wird kein Potenzial mehr angelegt, damit der Schaltungspunkt zwischen den Widerstandselementen R4 und R5 unbeeinflusst bleibt. Dann erfolgt eine Regelung auf den Zündstrom in an sich bekannter Weise. An der Kurve 12 in Fig. 4 ist zu erkennen, dass durch die Regelung des Vorheizstroms auch bei größeren Schwankungen im Wert der Kapazität des kapazitiven Elements Ci nahezu stets derselbe Vorheizstrom fließt. Dies ist genau der gewünschte Effekt. Die Komponenten des Regelkreises haben typischerweise eine geringere Toleranz als die Bauteile L und Ci . Abweichend zu der Ausführungsform gemäß Fig. 2 kann gemäß Fig. 3 vorgesehen sein, dass ein applikationsspezifischer Schaltkreis 100' benutzt wird, der nicht unbedingt als Spannungsquelle tauglich ist. Dann kann der Potenzialaus- gang A3 über ein Widerstandselement R7 und eine Parallelschaltung aus einer Zenerdiode und eines kapazitiven Elements C4 mit Masse gekoppelt werden, gleichzeitig über das Widerstandselement Rs mit dem Schaltungspunkt zwischen den Widerstandselementen R4 und R5. Bei Anlegen ei- nes Potenzials am Potenzialausgang A3 fließt dann ein Strom über die Zenerdiode Z, und die an dieser abfallende Spannung ist ausreichend stabil, damit eine Art Spannungsquelle bereitgestellt wird, also ein festes Potenzial. Die Erfindung nutzt in den Ausführungsformen gemäß Fig. 2 und Fig. 3 die Intelligenz des applikationsspezifischen Schaltkreises, wie sie aus dem Stand der Technik bekannt ist. Die Intelligenz dient im Stand der Technik zur Regelung auf eine bestimmte Stromstärke bei der Zündung der Lampe LP. Durch die Erweiterung des applikationsspezifischen Schaltkreises 100 zum applikationsspezifischen Schaltkreis 100' und die Verschaltung gemäß Fig. 2 oder Fig. 3 kann dieselbe Intelligenz auch zum Regeln auf eine bestimmte Stromstärke beim Vorheizen genutzt werden.

Claims

Ansprüche
1. Verfahren zum Inbetriebsetzen einer Entladungslampe
(LP) , bei dem zum Zünden der Lampe ein Resonanzkreis (L, Ci) durch Beaufschlagung mit Wechselstrom in Schwingung in oder nahe Resonanz versetzt wird und hierbei eine Regelung auf eine vorbestimmte Stromstärke unter Variation der Frequenz des Wechselstroms erfolgt, wobei hierfür eine Messeinrichtung für die Stromstärke Messwerte an Mittel zum Steuern der Frequenz übergibt, die die Frequenz in Abhängigkeit von den Messwerten festlegen, und wobei vor dem Anlegen der Zündspannung ein Vorheizen der Elektroden der Lampe durch Beaufschlagung des Resonanzkreises mit Wechselstrom einer anderen Frequenz als beim Zünden der Lampe erfolgt, dadurch gekennzeichnet, dass beim Vorheizen auf eine vorbestimmte Stromstärke geregelt wird, indem die Mittel zum Steuern der Frequenz bereits aktiviert sind und bewirkt wird, dass die Messeinrichtung Messwerte für die Stromstärke gewinnt und den Mitteln zum Steuern übergibt, welche einer Strom- stärke entsprechen, die von der Stromstärke in vorbestimmter Weise abweicht, welche beim Zünden durch Messwerte angegeben wird.
2. Verfahren nach Anspruch 1, bei dem beim Vorheizen an einem Schaltungspunkt ein Potenzial angelegt wird, welches beim Zünden nicht angelegt wird oder ein Potenzial nicht angelegt wird, welches beim Zünden angelegt wird.
3. Schaltungsanordnung zum Betreiben einer Entladungslampe (LP) mit einem parallel zur Entladungslampe geschalteten kapazitiven Element (Ci) und einem induktiven Element (L) in Reihe vor der Entladungslampe (LP) und dem kapazitiven Element (Ci) , so dass ein
Resonanzkreis gebildet ist, und mit zwei Schaltern
(Qi/ Q2) zum Beaufschlagen des Resonanzkreises mit
Strom, mit Mitteln (100') zum Bewirken des Schließens der beiden Schalter in einander abwechselnder Folge mit einer Schaltfrequenz, mit Mitteln (R3, R4, R5; 100') zum Messen der Stromstärke eines über einen der Schalter (Q2) fließenden Stroms und mit Mitteln (100') zum Festlegen der Schaltfrequenz in Abhängigkeit von der gemessenen Stromstärke, gekennzeichnet durch Steuermittel (A3) zum Beeinflussen der von den Mitteln zum Messen gewonnen Messwerte.
4. Schaltungsanordnung nach Anspruch 3, bei der die Steuermittel eine Quelle (A3) zum Bereitstellen eines festen Potenzials an einen Schaltungspunkt der Schal- tungsanordnung umfassen.
5. Schaltungsanordnung nach Anspruch 4, bei der die Mittel zum Messen einen Spannungsteiler mit zwei Widerstandselementen (R4, R5) aufweisen, und wobei ein Schaltungspunkt zwischen den beiden Widerstandsele- menten (R4, R5) über ein weiteres Widerstandselement (R6; R7, Rs) mit der Quelle (A3) gekoppelt ist.
6. Schaltungsanordnung nach Anspruch 5, bei der das weitere Widerstandselement (R6) einen Widerstand hat, der zumindest fünfmal so groß ist wie der größte Widerstand der beiden Widerstandselemente (R4, R5) .
7. Schaltungsanordnung nach einem der Ansprüche 4 bis 6, mit einem applikationsspezifischen Schaltkreis, der zwei Potenzialausgänge (Al, A2) für die Ansteuerung der Schalter, einen Potenzialeingang (El) der Mittel (100') zum Messen und einen dritten Potenzialausgang (A3) zur Bereitstellung der Quelle aufweist.
8. Schaltungsanordnung nach Anspruch 7, bei der der dritte Potenzialausgang (A3) über einen Widerstand
(R7), über eine Zenerdiode (Z) und bevorzugt zusätzlich einem parallel zur Zenerdiode (Z) geschalteten kapazitiven Element (C4) mit Masse gekoppelt ist.
EP10739332.4A 2009-08-07 2010-07-23 Verfahren zum inbetriebsetzen einer entladungslampe sowie schaltungsanordnung zum betreiben einer solchen Not-in-force EP2462784B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910036645 DE102009036645A1 (de) 2009-08-07 2009-08-07 Verfahren zum Inbetriebsetzen einer Entladungslampe sowie Schaltungsanordnung zum Betreiben einer solchen
PCT/EP2010/060716 WO2011015468A1 (de) 2009-08-07 2010-07-23 Verfahren zum inbetriebsetzen einer entladungslampe sowie schaltungsanordnung zum betreiben einer solchen

Publications (2)

Publication Number Publication Date
EP2462784A1 true EP2462784A1 (de) 2012-06-13
EP2462784B1 EP2462784B1 (de) 2013-10-02

Family

ID=43127796

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10739332.4A Not-in-force EP2462784B1 (de) 2009-08-07 2010-07-23 Verfahren zum inbetriebsetzen einer entladungslampe sowie schaltungsanordnung zum betreiben einer solchen

Country Status (6)

Country Link
US (1) US9125282B2 (de)
EP (1) EP2462784B1 (de)
CN (1) CN102474967A (de)
AU (1) AU2010280882A1 (de)
DE (1) DE102009036645A1 (de)
WO (1) WO2011015468A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021155002A (ja) * 2020-03-30 2021-10-07 本田技研工業株式会社 車両

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2264596B (en) * 1992-02-18 1995-06-14 Standards Inst Singapore A DC-AC converter for igniting and supplying a gas discharge lamp
US6008593A (en) * 1997-02-12 1999-12-28 International Rectifier Corporation Closed-loop/dimming ballast controller integrated circuits
JP2002500819A (ja) * 1998-04-02 2002-01-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 回路装置
US5973455A (en) * 1998-05-15 1999-10-26 Energy Savings, Inc. Electronic ballast with filament cut-out
US7459867B1 (en) * 2007-05-11 2008-12-02 Osram Sylvania Inc. Program start ballast

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011015468A1 *

Also Published As

Publication number Publication date
WO2011015468A1 (de) 2011-02-10
AU2010280882A1 (en) 2012-03-22
DE102009036645A1 (de) 2011-02-17
US20120133297A1 (en) 2012-05-31
US9125282B2 (en) 2015-09-01
EP2462784B1 (de) 2013-10-02
CN102474967A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
DE602005005822T2 (de) Schaltkreis und adaptives Verfahren zum Antrieb einer Halbbrückenschaltung
EP2000010B1 (de) Ausschaltzeitregelung eines inverters zum betreiben einer lampe
DE2712369C2 (de) Oszillator zur Erzeugung von Rechteckimpulsen
DE102010038557B4 (de) Verfahren und Schaltungsanordnung zur Diagnose einer Halbbrücke
DE102007059709B4 (de) Kapazitiver Sensor
EP1269561B1 (de) Bauelement mit einer integrierten hochfrequenzschaltung
EP3269038B1 (de) Oszillator und induktiver näherungsschalter
DE69513646T2 (de) Schaltung zum Betreiben von Entladungslampen mit vorgeheizten Wendeln
DE19527736C1 (de) Schaltungsanordnung zur Ansteuerung eines dem Speisekreis einer elektrischen Last zugeordneten MOS-Feldeffekttransistors
DE102017126060B4 (de) Ansteuerschaltung für ein transistorbauelement
EP0965827B1 (de) Schaltungsanordnung zur Messung piezoelektrischer Signale mit einer Ruhespannung für den Bereichskondensator
EP2462784B1 (de) Verfahren zum inbetriebsetzen einer entladungslampe sowie schaltungsanordnung zum betreiben einer solchen
DE69616483T2 (de) Schaltungsanordnung
WO2017081272A1 (de) Ansteuerschaltung und verfahren zur ansteuerung eines piezoelektrischen transformators
DE10240167C5 (de) Schaltungsanordnung mit einem Leistungstransistor und einer Ansteuerschaltung für den Leistungstransistor
DE10012082A1 (de) Schaltungsanordnung und Verfahren zum Einstellen des Lichtstromes von Lampen
DE102010002711A1 (de) Einstellbare Übertrageranordnung
EP1526623B1 (de) Elektrische Schaltung zur Einschaltstrombegrenzung
DE2320656A1 (de) Signalerzeugungsschaltung mit temperaturkompensation
DE102009047714A1 (de) Schaltungsanordnung und Verfahren zum Betreiben mindestens einer Entladungslampe
EP0774705A2 (de) Hysteresebehaftete Komparatorschaltung zur Verwendung bei einer Spannungsregelungsschaltung
WO2001069986A1 (de) Verfahren und schaltungsanordnung zur erzeugung einer zündspannung für leuchtstofflampen
CH678127A5 (de)
EP0563765B1 (de) Schaltungsanordnung zur Erzeugung eines elektrischen Spannungs-Sollwertes in Abhängigkeit von einer elektrischen Steuerspannung
EP1026510A2 (de) Vorrichtung zur Überprüfung eines Elektrolyt-Kondensators und Verfahren zur ÜberprÜfung eines Elektrolyt-Kondensators

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130513

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 635154

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010004942

Country of ref document: DE

Effective date: 20131128

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140102

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010004942

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

26N No opposition filed

Effective date: 20140703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010004942

Country of ref document: DE

Effective date: 20140703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140723

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140103

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140731

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100723

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 635154

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150723

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170724

Year of fee payment: 8

Ref country code: FR

Payment date: 20170724

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131002

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010004942

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190201

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731