EP2460244B1 - Vorrichtung zur kompensation von in stromverläufen auftretenden oberschwingungen in einem hochspannungsnetz - Google Patents

Vorrichtung zur kompensation von in stromverläufen auftretenden oberschwingungen in einem hochspannungsnetz Download PDF

Info

Publication number
EP2460244B1
EP2460244B1 EP10732940.1A EP10732940A EP2460244B1 EP 2460244 B1 EP2460244 B1 EP 2460244B1 EP 10732940 A EP10732940 A EP 10732940A EP 2460244 B1 EP2460244 B1 EP 2460244B1
Authority
EP
European Patent Office
Prior art keywords
voltage
filter
manipulated
load
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10732940.1A
Other languages
English (en)
French (fr)
Other versions
EP2460244A2 (de
Inventor
Martin Pieschel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2460244A2 publication Critical patent/EP2460244A2/de
Application granted granted Critical
Publication of EP2460244B1 publication Critical patent/EP2460244B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1842Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
    • H02J3/1857Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters wherein such bridge converter is a multilevel converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Definitions

  • the invention relates to a device for compensating harmonics occurring in current profiles in a high-voltage network with a passive filter and a controllable voltage source which is connected in series and connectable to the high voltage network in parallel, a terminal voltage sensor for detecting a falling at the device from the ground potential Terminal voltage, a control unit that calculates a crizstellwoodsschreibsteil u h, m in response to a harmonic to be compensated, and connected to the control unit drive, which generates depending on an output side provided by the control unit actuating voltage variable u h drive signals for the controllable voltage source, so that the controllable voltage source provides a control voltage u H , which drives a filter current to suppress the detected harmonic.
  • the invention further relates to a method for compensating harmonics occurring in current profiles in a high-voltage network by means of a device having a passive filter and a controllable voltage source, which are connected in series and connected in parallel to the high-voltage network, in which the unwanted harmonic determined load current and determined in response to the determined harmonic an actuating voltage variable is calculated, wherein the controllable voltage source is controlled in dependence of the actuating voltage so that it generates a control voltage that drives a filter current, which deals with the harmonic of the Load current superimposed so that the harmonic is extinguished.
  • Such a device and such a method are for example from the DE 197 38 125 known.
  • the device described there and the method described there are used to compensate for network voltage distortions occurring in the network, said device having a series circuit of an active filter and a voltage source which is connected in parallel to a load.
  • a control unit is disclosed, which is supplied on the input side with a mains voltage space pointer, a Filterstromraumzweig Helper and a DC link voltage actual value, which is a measure of the energy stored in the DC voltage intermediate circuit of the controllable voltage source.
  • a device which is set up for the compensation of harmonics occurring in current profiles in a high-voltage network.
  • the device described there has a series connection of a filter network and a winding of a transformer. This series connection is connected in parallel to a load.
  • the capacitor winding is inductively coupled to a secondary winding which is connected on the alternating voltage side to a converter which is connected via a DC voltage intermediate circuit to a further converter which is coupled to a further AC voltage network.
  • the filter network includes several parallel passive filters.
  • the device provided in this way can be considered as a series circuit consisting of a filter network and a controllable Power source, to be considered.
  • the impedance of the filter network is estimated and the estimate adjusted to measurements using a recursive mathematical procedure.
  • a method for generating a set of control signals for a converter of an active filter for compensation of harmonics is described.
  • the current which comprises the harmonic to be compensated is measured.
  • the measured analog current signal is then digitized.
  • the fundamental component is removed from the measuring current.
  • a transformed control function of the PI controller is applied to the filtered current readings.
  • the output variables of the PI controllers used are then summed up, the sum being transmitted as setpoint current value to a control unit for controlling a controllable voltage source in the form of an IGBT converter.
  • the aforementioned device and the aforementioned method have the disadvantage that external influences such as a filter current impressed by the connected AC voltage network or the influence of further passive filters arranged in parallel on the control can be taken into account only with a high computational effort.
  • the object of the invention is therefore to provide a device and method of the type mentioned, which allow stable high-dynamic control of the harmonic compensation.
  • the invention solves this problem in that the control unit has a signal filter for removing a power-frequency component of the terminal voltage and addition means, which is adapted to add the filtered terminal voltage and the regulator actuating voltage magnitude while maintaining the actuating voltage U h , wherein Stromgeberstoff for providing load current measured values and filter current measured values, and the control unit for providing the controller actuating voltage variable has a state controller which has been designed according to a model of the dynamic characteristics of the passive filter based on the controller actuating voltage variable U h, m and the filter current measured values.
  • the invention solves this problem in that a voltage drop across the device relative to the ground potential u AF is detected, a mains frequency proportion of the terminal voltage from the detected terminal voltage by means of a signal filter to obtain a filtered terminal voltage u AF, f removed and the calculation of the actuating voltage variable u h takes place taking into account the filtered terminal voltage u AF, f .
  • a pilot control is provided with which the influences of a changing impedance of the connected AC voltage network as well as the influence of possibly existing parallel passive filters can be almost completely blanked out.
  • the transmission behavior of the passive filter, via which the control voltage source is connected to the AC voltage network, does not change due to the precontrol.
  • the control parameters can thus be designed for the passive filter without any stability problems occur. For high-voltage and extra-high voltage grids, direct feedforward control of the supply voltage is currently not technically feasible.
  • the current commercially available inverters do not have a sufficiently high control voltage.
  • the terminal voltage falling relative to the ground potential is detected and filtered, so that the mains frequency component, ie the proportion of the terminal voltage, which oscillates with the fundamental frequency of the mains frequency, is removed. Only the filtered connection voltage is used for pre-control.
  • the control unit which expediently has a so-called FPGA Field Programmable Gate Array as a reconfigurable logic module, is used to carry out the regulation. Of course, other logic devices are used. In addition to the calculation of the active control voltage, the control unit also assumes the stabilization of the capacitor voltage of the controllable voltage source, which will be discussed in more detail below.
  • current-measuring means are provided for providing load-current measured values i load and filter-current measured values i AF .
  • the current-measuring means are, for example, calibrated current sensors which provide analogue measured values. The measurements are conveniently sampled to obtain samples, and the samples are then digitized to provide digital load current readings and filter current readings, respectively. Deviating from this, the current-measuring means calculate the load current measured values or filter current measured values on the basis of other measured values. Even estimates, which are of course based on measured values, are possible within the scope of the invention.
  • the control unit for calculating the controller control voltage magnitude u h, m has a state controller which was designed according to a model of the dynamic properties of the passive filter.
  • correction means are provided to compensate for amplitude and phase changes caused by the controlled system.
  • the correction means comprise, for example, a suitable matrix with which phase rotations and amplitude changes caused by the controlled system can be taken into account.
  • the parameters which describe the desired value are expediently changed by the matrix operation such that the filter current impressed into the network has the desired phase position and amplitude.
  • the signal filter is a high-pass filter, a wedge filter or a band-stop filter.
  • the signal filter can be in the form of software either as a suitable circuit, that is to say as hardware or else as a digital filter.
  • the signal filter is a band-stop filter. Bandstop filters are well known to those skilled in the art, so this need not be discussed in detail.
  • a load current filter and / or a filter current filter is provided for filtering out a mains-frequency component from the load current measured values i Last or the filter current measured values i AF .
  • the term mains frequency component is to be understood as the proportion of a signal which has the fundamental frequency of the mains voltage of the connected AC voltage network. This is, for example, 50 Hz or 60 Hz.
  • the power-frequency component is the fundamental component of the respective measurement signal.
  • the controllable voltage source is a converter which has turn-off power semiconductors.
  • Each turn-off power semiconductor, a freewheeling diode is connected in parallel in opposite directions.
  • the converter is a self-commutated multistage converter here.
  • Such converters are also known as so-called multilevel converters. They have a series connection of bipolar submodules which comprise the phase module branches form.
  • the phase module branches are connected to a phase of the connected AC voltage network, wherein the passive filter is interposed.
  • the converter valves are connected to each other in delta or star connection.
  • Each bipolar submodule expediently has a capacitor and a power semiconductor circuit.
  • the power semiconductor circuit is for example a so-called H-bridge circuit, so that either the voltage drop across the energy store capacitor voltage, a zero voltage or the inverse capacitor voltage can be generated at the output terminals of each submodule.
  • a multi-stage inverter thus a variety of voltage levels can be generated.
  • the filtered terminal voltage u AF, f is added to the regulator manipulated voltage magnitude u h, m , the regulator manipulated voltage magnitude u h, m being calculated on the basis of a model of the passive filter.
  • the dynamic properties of the passive filter are expediently modeled on the basis of an actual state of the passive filter x k .
  • the actual state of the passive filter x k is described, for example, by voltages dropping across capacitors of the passive filter and by the currents flowing through inductances of the passive filter.
  • the said currents and / or voltages can either be measured directly or calculated or estimated on the basis of other measured values.
  • the dynamic behavior of the passive filter is expediently discrete at constant sampling times modeled by transformation matrices.
  • the underlying model is thus a time-discrete model, so that the differential equations usually used to calculate dynamic properties can be expressed as difference equations. This has the advantage that numerical solution methods can also be used for modeling.
  • the calculation can be performed before the controller implementation.
  • the compensation time of the regulation is in the range of a few milliseconds.
  • the signal filter is expediently a high-pass filter, a wedge filter or a band-stop filter, wherein the signal filter can be realized as hardware or as software.
  • FIG. 1 shows an embodiment of the device 1 according to the invention, which consists of a series circuit of a passive filter 2 and a controllable voltage source 3, which may also be referred to as an active filter.
  • the passive filter 2 has a capacitor C SK , an inductance L SK and a resistor R SK .
  • the device 1 is connected in parallel circuits with an AC voltage network 4.
  • the alternating voltage network 4 has a voltage source 5, at which the high voltage u Q drops, so that a load current i load is formed.
  • the alternating voltage network 4 has the inductance L q and the ohmic resistor R q .
  • the alternating voltage network 4 is used to supply various non-linear loads 6. Due to the non-linear behavior, the loads generate harmonics.
  • the mains voltage u Q drives a mains current i Q.
  • the harmonics should be compensated by the device 1.
  • the controllable voltage source 3 generates a control voltage u H , which drives a filter current i AF , which flows via the passive filter 2.
  • the control voltage u H is chosen so that the filter current i AF so superimposed with harmonic that the harmonic is extinguished.
  • a control device 7 which is provided with schematically illustrated current measuring sensors 8, 9 for providing the filter current measured values i AF and also for providing load current values i load .
  • a voltage sensor not shown in the figure, is provided for detecting a terminal voltage u AF , which drops at the connection point of the device 1 with the high-voltage network 4 with respect to the ground potential.
  • FIG. 2 shows the structure of the controllable voltage source 3 in more detail.
  • the controllable voltage source 3 consists of three phase module branches 10, 11, 12, each phase module branch 10, 11, 12 having a series arrangement of bipolar submodules 13.
  • Each bipolar submodule 13 has a capacitor 14 and a power semiconductor circuit 15, which is connected to the capacitor 14 to form a so-called full bridge circuit or H circuit.
  • the power semiconductor circuit comprises four turn-off power semiconductors, each of which a freewheeling diode is connected in parallel, so that either the voltage drop across the capacitor 14 capacitor voltage u c , a zero voltage or an inverse capacitor voltage -u c can be generated at the output terminals of each submodule.
  • Switchable power semiconductors are, for example, IGBTs, GTOs or the like.
  • phase module branches 10, 11, 12 are connected on the one hand via the passive filter 2, each having a phase of the AC voltage network 4.
  • the phase module branches 10, 11, 12 are connected in star connection with each other. Notwithstanding this, it is also possible to interconnect the phase module branches in delta connection with one another.
  • FIG. 3 schematically shows the basic structure of the control device 7, wherein it is assumed that a total of ten Submodules 13 are to be regulated.
  • the control device 7 comprises a control unit 18, a stabilization unit 17 and a drive unit 19.
  • the above-illustrated part of the control means 7 serves to maintain the capacitor voltage u c and will be mentioned here only for the sake of completeness.
  • the capacitor voltage u c should correspond to a desired value u should be as close as possible.
  • a capacitor voltage difference is formed by an adder 16.
  • the stabilization unit 17 calculates charging voltages u charging , which can be positive as well as negative, wherein on the output side of the stabilization unit 17 ten charging voltages u charging are provided.
  • control unit 18 calculates from load current measured values i load , the detected filter current values i AF and measured terminal voltage values u AF, a regulator actuating voltage variable u h, m which is added to the charging voltages u charging with the aid of a further adding unit 16.
  • the added variables are fed to the input side of a drive unit 19 which generates a corresponding pulse pattern for the controllable voltage source of the controlled system 20. Then drops at the control voltage source 3, the desired control voltage u H.
  • FIG. 4 shows one opposite FIG. 3 a more detailed representation of a part of the control, which is performed by means of the control device 7.
  • the control unit 18 has a central unit 21 as well as an observation unit 22.
  • the observation unit 22 is on the input side with Stromgebeschn connected, the output side filter current measurements i AF provide.
  • the observation unit 22 receives a regulator actuating voltage magnitude u h, m which is calculated by the central unit 21 and provided at its output.
  • the observation unit 22 estimates the actual state of the passive filter 2 and provides a state vector x k at the sampling time k , which is supplied to the central unit 21 on the input side.
  • the state vector x k comprises, for example, the current through the coil L SK and the voltage drop across the capacitor C SK for describing the state of the passive filter 2.
  • the central unit 21 is supplied with the load current i Last , which contains the harmonic to be compensated with other input signals such as the measured terminal voltage u AF .
  • the central unit 21 generates on the output side an actuating voltage variable u h , which is supplied to the drive unit 19.
  • the drive unit 19 generates a pulse-width-modulated pulse pattern, so that an actuating voltage u H is provided at the controllable voltage source 3, which drives a filter current i AF to compensate for the undesired harmonic.
  • certain harmonics are selected. It is therefore made according to the invention a choice among the harmonics.
  • the fifth harmonic is to be compensated, ie an oscillation which oscillates at five times the frequency of the fundamental oscillation component of the voltage in the voltage network 4.
  • i contains load
  • f i load .
  • f t R ⁇ sin 5 ⁇ 100 ⁇ t
  • the structure of the modeling unit 18 is shown in more detail.
  • the metrological detected input signals u AF , i load and i AF are filtered by means of a band-stop filter 23.
  • the result is a filtered terminal voltage u AF, f , a filtered load current i load, f and a filtered filter current i AF, f .
  • the states x d and ⁇ d of an undamped fatigue oscillator with the resonant frequency of the harmonic to be compensated are calculated from the filtered load current i load, f with the aid of an observer 24. These states completely describe the harmonic.
  • these states x d and ⁇ d are converted into a corrected setpoint voltage u Soll, korr .
  • the application of the matrix V to the states x d and ⁇ d of the duration oscillator as a result provides a corrected setpoint voltage u Soll, Korr which leads to the negative output of a state controller K is added by means of an adder 16.
  • the application of the matrix V can also be considered as pre-control.
  • the dynamic behavior of the passive filter 3 is taken into account with the aid of the state controller K.
  • the state controller K has a matrix with suitably determined parameters. The method for determining these parameters is known to the person skilled in the art, so that at this point it need not be discussed in detail.
  • the filtered terminal voltage u AF, f is added to the regulator actuating voltage variable u h , m , resulting in the actuating voltage variable u h .
  • the manipulated voltage magnitude u h is supplied to the drive unit 19, which generates drive patterns of control signals for the power semiconductors of the controllable voltage source 3. At this then drops the control voltage U H.
  • the control voltage U H drives the filter current i AF , which destructively superimposes the unwanted harmonic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Power Conversion In General (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zur Kompensation von in Stromverläufen auftretenden Oberschwingungen in einem Hochspannungsnetz mit einem passiven Filter und einer steuerbaren Spannungsquelle, die miteinander in Reihe geschaltet und mit dem Hochspannungsnetz in Parallelschaltung verbindbar ist, einem Anschlussspannungssensor zum Erfassen einer an der Vorrichtung gegenüber dem Erdpotential abfallenden Anschlussspannung, einer Regelungseinheit, die in Abhängigkeit einer zu kompensierenden Oberschwingung eine Reglerstellspannungsgröße uh,m berechnet, und einer mit der Regelungseinheit verbundenen Ansteuerung, die in Abhängigkeit einer von der Regelungseinheit ausgangsseitig bereitgestellten Stellspannungsgröße uh Ansteuersignale für die steuerbare Spannungsquelle erzeugt, so dass die steuerbare Spannungsquelle eine Stellspannung uH bereitstellt, die einen Filterstrom zum Unterdrücken der erfassten Oberschwingung treibt.
  • Die Erfindung betrifft ferner ein Verfahren zur Kompensation von in Stromverläufen auftretenden Oberschwingungen in einem Hochspannungsnetz mittels einer Vorrichtung, die ein passives Filter und eine steuerbaren Spannungsquelle aufweist, die miteinander in Reihe geschaltet und in Parallelschaltung mit dem Hochspannungsnetz verbunden sind, bei dem ein die unerwünschte Oberschwingung enthaltender Laststrom ermittelt und in Abhängigkeit der ermittelten Oberschwingung eine Stellspannungsgröße berechnet wird, wobei die steuerbare Spannungsquelle in Abhängigkeit der Stellspannungsgröße angesteuert wird, so dass diese eine Stellspannung erzeugt, die einen Filterstrom treibt, der sich mit der Oberschwingung des Laststromes so überlagert, dass die Oberschwingung ausgelöscht wird.
  • Eine solche Vorrichtung und ein solches Verfahren sind beispielsweise aus der DE 197 38 125 bekannt. Die dort beschriebene Vorrichtung und das dort beschriebene Verfahren dienen zur Kompensation von im Netz auftretenden Netzspannungsverzerrungen, wobei die besagte Vorrichtung eine Reihenschaltung aus einem aktiven Filter und einer Spannungsquelle aufweist, die einer Last parallel geschaltet ist. Ferner ist eine Regelungseinheit offenbart, die eingangsseitig mit einem Netzspannungsraumzeiger, einem Filterstromraumzweigzeiger und einem Zwischenkreisspannungsistwert versorgt wird, der ein Maß für die im Gleichspannungszwischenkreis der steuerbaren Spannungsquelle gespeicherten Energie darstellt.
  • Aus dem Beitrag von Rastogi, M. et al. "Hybrid-Active Filtering of Harmonic Currents in Power Systems", IEEE Transactions on Power Delivery, IEEE Service Center, New York, US, Bd. 10, Nr. 4 vom 01.10.1995 auf den Seiten 1994 bis 2000 ist eine Vorrichtung bekannt, die zur Kompensation von in Stromverläufen auftretenden Oberschwingungen in einem Hochspannungsnetz eingerichtet ist. Die dort beschriebene Vorrichtung weist eine Reihenschaltung einer Filternetzwerk und einer Wicklung eines Transformators auf. Diese Reihenschaltung ist einer Last parallel geschaltet. Die Kondensatorwicklung ist mit einer Sekundärwicklung induktiv gekoppelt, die wechselspannungsseitig an einen Umrichter angeschlossen ist, der über einen Gleichspannungszwischenkreis mit einem weiteren Umrichter verbunden ist, der mit einem weiteren Wechselspannungsnetz gekoppelt ist. Der Filternetzwerk umfasst mehrere einander parallel geschaltete passive Filter. Die auf diese Weise bereitgestellte Vorrichtung kann als eine Reihenschaltung, bestehend aus einem Filternetzwerk sowie einer steuerbaren Stromquelle, betrachtet werden. Bei der Regelung der Stromspannungsquelle wird die Impedanz des Filternetzwerks abgeschätzt und der Schätzwert mit Hilfe ein rekursives mathematisches Verfahren an Messungen angepasst.
  • Aus der DE 102 44 056 B3 ist ein Verfahren zum Erzeugen eines Satzes von Steuersignalen für einen Umrichter eines aktiven Filters zur Kompensation von Oberschwingungen beschrieben. In einem ersten Schritt wird gemäß dem vorbekannten Verfahren der Strom, welcher die zu kompensierende Oberschwingung umfasst, gemessen. Das gemessene analoge Stromsignal wird anschließend digitalisiert. Dann wird der Grundschwingungsanteil aus dem Messstrom entfernt. Auf die gefilterten Strommesswerte wird eine transformierte Regelfunktion des PI-Reglers angewandt. Die Ausgangsgrößen der verwendeten PI-Regler werden anschließend aufsummiert, wobei die Summe als Sollstromwert an eine Regeleinheit zum Regeln einer steuerbaren Spannungsquelle in Form eines IGBT-Umrichters übertragen wird.
  • Weitere Regelungsverfahren sind in der DE 10 2004 019 518 A1 und in der WO99/67868 A3 beschrieben.
  • Die eingangs genannte Vorrichtung und das eingangs genannte Verfahren weisen den Nachteil auf, dass äußere Einflüsse wie beispielsweise ein von dem angeschlossenen Wechselspannungsnetz eingeprägter Filterstrom oder aber der Einfluss weiterer parallel angeordneter passiver Filter auf die Regelung nur unter hohem Rechenaufwand berücksichtigt werden können.
  • Aufgabe der Erfindung ist es daher, eine Vorrichtung und Verfahren der eingangs genannten Art bereitzustellen, die eine stabile hochdynamische Regelung der Oberschwingungskompensation ermöglichen.
  • Ausgehend von der eingangs genannten Vorrichtung löst die Erfindung diese Aufgabe dadurch, dass die Regelungseinheit einen Signalfilter zum Entfernen eines netzfrequenten Anteils aus der Anschlussspannung und Additionsmittel aufweist, die zum Addieren der gefilterten Anschlussspannung und der Reglerstellspannungsgröße unter Erhalt der Stellspannungsgröße Uh eingerichtet ist, wobei Stromgebermittel zum Bereitstellen von Laststrommesswerten und Filterstrommesswerten vorgesehen sind und die Regelungseinheit zum Bereitstellen der Reglerstellspannungsgröße ein Zustandsregler aufweist, der nach einem auf der Reglerstellspannungsgröße Uh,m und den Filterstrommesswerten basierenden Modell der dynamischen Eigenschaften des passiven Filters ausgelegt wurde.
  • Ausgehend von dem eingangs genannten Verfahren löst die Erfindung diese Aufgabe dadurch, dass eine an der Vorrichtung gegenüber dem Erdpotential abfallende Anschlussspannung uAF erfasst wird, ein netzfrequenter Anteil der Anschlussspannung aus der erfassten Anschlussspannung mittels eines Signalfilters unter Gewinnung einer gefilterten Anschlussspannung uAF,f entfernt wird und die Berechnung der Stellspannungsgröße uh unter Berücksichtigung der gefilterten Anschlussspannung uAF,f erfolgt.
  • Erfindungsgemäß ist eine Vorsteuerung bereitgestellt, mit der die Einflüsse einer sich ändernden Impedanz des angeschlossenen Wechselspannungsnetzes sowie der Einfluss möglicherweise vorhandener paralleler passiver Filter nahezu komplett ausgeblendet werden können. Das Übertragungsverhalten des passiven Filters, über das die Steuerspannungsquelle mit dem Wechselspannungsnetz verbunden ist, ändert sich auf Grund der Vorsteuerung nicht. Die Regelparameter können somit auf das passive Filter ausgelegt werden, ohne dass Stabilitätsprobleme auftreten. Für Hoch- und Höchstspannungsnetze ist eine direkte Vorsteuerung der Anschlussspannung derzeit technisch nicht realisierbar. Die derzeitig marktüblichen Umrichter weisen keine ausreichend hohe Stellspannung auf. Erfindungsgemäß wird daher die am Anschlusspunkt des passiven Filters an das Wechselspannungsnetz die gegenüber dem Erdpotential abfallende Anschlussspannung erfasst und gefiltert, so dass der netzfrequente Anteil, also der Anteil der Anschlussspannung, der mit der Grundschwingung der Netzfrequenz schwingt, entfernt ist. Nur die gefilterte Anschlussspannung wird zur Vorsteuerung eingesetzt.
  • Zum Durchführen der Regelung dient die Regelungseinheit, welche zweckmäßigerweise einen so genannten FPGA Field Programmable Gate Array als rekonfigurierbaren Logikbaustein aufweist. Selbstverständlich sind auch andere Logikbausteine einsetzbar. Neben der Berechnung der aktiven Stellspannung übernimmt die Regelungseinheit auch die Stabilisierung der Kondensatorspannung der steuerbaren Spannungsquelle, worauf im Folgenden noch eingegangen werden wird.
  • Erfindungsgemäß sind Stromgebermittel zum Bereitstellen von Laststrommesswerten iLast und Filterstrommesswerten iAF vorgesehen. Die Stromgebermittel sind beispielsweise geeichte Stromsensoren, die analoge Messwerte bereitstellen. Die Messwerte werden zweckmäßigerweise unter Gewinnung von Abtastwerten abgetastet und die Abtastwerte anschließend digitalisiert, wodurch digitale Laststrommesswerte bzw. Filterstrommesswerte bereitgestellt sind. Abweichend hiervon berechnen die Stromgebermittel die Laststrommesswerte bzw. Filterstrommesswerte anhand anderer Messwerte. Auch Schätzungen, die selbstverständlich auf Messwerten basieren, sind im Rahmen der Erfindung möglich.
  • Erfindungsgemäß weist die Regelungseinheit zum Berechnen der Reglerstellspannungsgröße uh,m einen Zustandsregler auf, der nach einem Modell der dynamischen Eigenschaften des passiven Filters ausgelegt wurde, auf. Vorteilhafterweise sind Korrekturmittel zum Ausgleich von Amplituden- und Phasenveränderungen vorgesehen, die durch die Regelstrecke verursacht sind. Die Korrekturmittel umfassen beispielsweise eine zweckmäßige Matrix, mit welcher Phasendrehungen und Amplitudenveränderungen, die durch die Regelstrecke verursacht werden, berücksichtigt werden können. Hierzu werden die Parameter, welche die Sollgröße beschreiben, durch die Matrixoperation zweckmäßigerweise so verändert, dass der in das Netz eingeprägte Filterstrom die gewünschte Phasenlage und Amplitude aufweist.
  • Vorteilhafterweise ist der Signalfilter ein Hochpass, ein Keilfilter oder eine Bandsperre. Der Signalfilter kann zudem entweder als zweckmäßige Schaltung, also als Hardware oder aber auch als digitaler Filter, in Form von Software vorliegen. Vorteilhafterweise ist der Signalfilter eine Bandsperre. Bandsperren sind dem Fachmann auf diesem Gebiet bestens bekannt, so dass hierauf nicht detailliert eingegangen zu werden braucht.
  • Gemäß einer diesbezüglich zweckmäßigen Weiterentwicklung ist ein Laststromfilter und/oder einen Filterstromfilter zum Herausfiltern eines netzfrequenten Anteils aus den Laststrommesswerten iLast bzw. den Filterstrommesswerten iAF vorgesehen. Unter dem Begriff netzfrequenter Anteil ist im Rahmen der Erfindung der Anteil eines Signals zu verstehen, der die Grundfrequenz der Netzspannung des angeschlossenen Wechselspannungsnetzes aufweist. Diese beträgt beispielsweise 50 Hz oder 60 Hz. Mit anderen Worten ist der netzfrequente Anteil der Grundschwingungsanteil des jeweiligen Messsignals.
  • Vorteilhafterweise ist die steuerbare Spannungsquelle ein Umrichter, der über abschaltbare Leistungshalbleiter verfügt. Jedem abschaltbaren Leistungshalbleiter ist eine Freilaufdiode gegensinnig parallel geschaltet. Gemäß einer bevorzugten Ausgestaltung ist hier der Umrichter ein selbstgeführter mehrstufiger Umrichter. Solche Umrichter sind auch als so genannte Multilevelumrichter bekannt. Sie weisen eine Reihenschaltung aus bipolaren Submodulen auf, welche die Phasenmodulzweige ausbilden. Die Phasenmodulzweige sind mit einer Phase des angeschlossenen Wechselspannungsnetzes verbunden, wobei der passive Filter zwischengeschaltet ist. Darüber hinaus sind die Stromrichterventile miteinander in Dreieck- oder Sternschaltung verbunden. Jedes bipolare Submodul weist zweckmäßigerweise einen Kondensator sowie eine Leistungshalbleiterschaltung auf. Die Leistungshalbleiterschaltung ist beispielsweise eine so genannte H-Brücken-schaltung, so dass an den Ausgangsklemmen eines jeden Submoduls entweder die an dem Energiespeicher abfallende Kondensatorspannung, eine Nullspannung oder aber die inverse Kondensatorspannung erzeugbar ist. Mit einem solchen mehrstufigen Umrichter können somit eine Vielzahl von Spannungsstufen erzeugt werden.
  • Gemäß einer bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens wird die gefilterte Anschlussspannung uAF,f zu der Reglerstellspannungsgröße uh,m hinzuaddiert, wobei die Reglerstellspannungsgröße uh,m auf der Grundlage eines Modells des passiven Filters berechnet wird.
  • Die dynamischen Eigenschaften des passiven Filters werden zweckmäßigerweise ausgehend von einem Ist-Zustand des passiven Filters x k modelliert. Der Ist-Zustand des passiven Filters x k wird beispielsweise durch an Kondensatoren des passiven Filters abfallende Spannungen und durch die durch Induktivitäten des passiven Filters fließende Ströme beschrieben. Die besagten Ströme und/oder Spannungen können entweder direkt gemessen oder aber aufgrund von anderen Messwerten berechnet oder geschätzt werden. Somit sind die Regelung und der Aufwand des erfindungsgemäßen Verfahrens noch weiter vereinfacht.
  • Das dynamische Verhalten des passiven Filters wird zweckmäßigerweise diskret zu konstanten Abtastzeitpunkten mit Hilfe von Transformationsmatrizen modelliert. Das hierbei zugrunde liegende Modell ist somit ein zeitdiskretes Modell, so dass die üblicherweise zu berechnenden dynamischen Eigenschaften verwendeten Differenzialgleichungen als Differenzengleichungen ausgedrückt werden können. Dies hat den Vorteil, dass auch numerische Lösungsverfahren zur Modellierung eingesetzt werden können. Die Berechung kann vor der Reglerimplementierung durchgeführt werden. Die Kompensationszeit der Regelung liegt im Bereich weniger Millisekunden.
  • Zweckmäßigerweise wird die Reglerstellspannungsgröße uh,m gemäß der Formel u h , m = V _ x d x ˙ d k K _ i AF u C k
    Figure imgb0001
    berechnet, wobei V eine Rotations- und Skalierungsmatrix und K eine Verstärkungsmatrix ist.
  • Wie bereits weiter oben ausgeführt wurde, ist der Signalfilter zweckmäßigerweise ein Hochpass, ein Keilfilter oder eine Bandsperre, wobei der Signalfilter als Hardware oder als Software realisiert sein kann.
  • Weitere zweckmäßige Ausgestaltungen und Vorteile der Erfindung sind Gegenstand der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung unter Bezug auf die Figuren der Zeichnung, wobei gleiche Bezugszeichen auf gleiche Figurenverweisen und wobei
  • Figur 1
    ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung schematisch verdeutlicht,
    Figur 2
    die steuerbare Spannungsquelle der Vorrichtung gemäß Figur 1 schematisch zeigt,
    Figur 3
    die Grundstruktur der Regelung schematisch darstellt,
    Figur 4
    eine weitere schematische Darstellung zum Verständnis der Regelungseinheit zeigt und
    Figur 5
    ein Teil der Regelungseinheit genauer schematisch verdeutlicht.
  • Figur 1 zeigt ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung 1, die aus einer Reihenschaltung eines passiven Filters 2 sowie einer steuerbaren Spannungsquelle 3 besteht, die auch als aktives Filter bezeichnet werden kann. Das passive Filter 2 verfügt über einen Kondensator CSK, eine Induktivität LSK sowie über einen ohmschen Widerstand RSK. Die Vorrichtung 1 ist in Parallelschaltungen mit einem Wechselspannungsnetz 4 verbunden. Das Wechselspannungsnetz 4 verfügt über eine Spannungsquelle 5, an der die Hochspannung uQ abfällt, so dass ein Laststrom iLast entsteht. Das Wechselspannungsnetz 4 weist die Induktivität Lq sowie den ohmschen Widerstand Rq auf. Das Wechselspannungsnetz 4 dient zur Versorgung verschiedener nichtlinearer Lasten 6. Durch das nichtlineare Verhalten erzeugen die Lasten Oberschwingungen. Die Netzspannung uQ treibt einen Netzstrom iQ. Die Oberschwingungen sollen durch die Vorrichtung 1 kompensiert werden. Hierzu erzeugt die steuerbare Spannungsquelle 3 eine Stellspannung uH, die einen Filterstrom iAF treibt, der über das passive Filter 2 fließt. Dabei ist die Stellspannung uH so gewählt, dass sich der Filterstrom iAF so mit Oberschwingung überlagert, dass die Oberschwingung ausgelöscht wird. Zur Regelung der steuerbaren Spannungsquelle 3 dient eine Regelungseinrichtung 7, die mit schematisch dargestellten Strommesssensoren 8, 9 zum Bereitstellen der Filterstrommesswerte iAF sowie über zum Bereitstellen von Laststromwerte iLast eingerichtet ist. Ferner ist ein figürlich nicht dargestellter Spannungssensor zum Erfassen einer Anschlussspannung uAF vorgesehen, die am Verbindungspunkt der Vorrichtung 1 mit dem Hochspannungsnetz 4 gegenüber dem Erdpotential abfällt.
  • Figur 2 zeigt den Aufbau der steuerbaren Spannungsquelle 3 genauer. Es ist erkennbar, dass die steuerbare Spannungsquelle 3 aus drei Phasenmodulzweigen 10, 11, 12 besteht, wobei jeder Phasenmodulzweig 10, 11, 12 eine Reihenschaltung aus bipolaren Submodulen 13 aufweist. Jedes bipolare Submodul 13 verfügt über einen Kondensator 14 sowie über eine Leistungshalbleiterschaltung 15, die mit dem Kondensator 14 zu einer so genannten Vollbrückenschaltung oder H-Schaltung verschaltet ist. Mit anderen Worten umfasst die Leistungshalbleiterschaltung vier abschaltbare Leistungshalbleiter, denen jeweils eine Freilaufdiode parallel geschaltet ist, so dass an den Ausgangsklemmen eines jeden Submoduls entweder die an dem Kondensator 14 abfallende Kondensatorspannung uc, eine Nullspannung oder aber eine inverse Kondensatorspannung -uc erzeugbar ist. Abschaltbare Leistungshalbleiter sind beispielsweise IGBTs, GTOs oder dergleichen.
  • Die Phasenmodulzweige 10, 11, 12 sind einerseits über das passive Filter 2 mit jeweils einer Phase des Wechselspannungsnetzes 4 verbunden. Andererseits sind die Phasenmodulzweige 10, 11, 12 in Sternschaltung miteinander verbunden. Abweichend hiervon ist es auch möglich, die Phasenmodulzweige in Dreieckschaltung miteinander zu verschalten.
  • Figur 3 zeigt schematisch den Grundaufbau der Regelungseinrichtung 7, wobei davon ausgegangen wird, dass insgesamt zehn Submodule 13 zu regeln sind. Die Regelungseinrichtung 7 umfasst eine Regelungseinheit 18, eine Stabilisierungseinheit 17 und eine Ansteuereinheit 19. Der oben dargestellte Teil der Regelungseinrichtung 7 dient zur Aufrechterhaltung der Kondensatorspannung uc und soll hier nur der Vollständigkeit halber erwähnt werden. Die Kondensatorspannung uc soll einem Sollwert usoll möglichst entsprechen. Hierzu wird eine Kondensatorspannungsdifferenz von einem Addierer 16 gebildet. Ingesamt ergeben sich zehn Spannungsdifferenzen, welche der Stabilisierungseinheit 17 zugeführt werden. Die Stabilisierungseinheit 17 berechnet Ladespannungen uLaden, die positiv aber auch negativ sein können, wobei ausgangsseitig der Stabilisierungseinheit 17 zehn Ladespannungen uLaden bereitgestellt sind.
  • Im unteren Teil der Darstellung von Figur 3 ist dargestellt, dass die Regelungseinheit 18 aus Laststrommesswerten iLast, den erfassten Filterstromwerten iAF und gemessenen Anschlussspannungswerten uAF eine Reglerstellspannungsgröße uh,m berechnet, die mit Hilfe einer weiteren Addiereinheit 16 den Ladespannungen uLaden hinzuaddiert wird. Die addierten Größen werden einer Ansteuereinheit 19 eingangsseitig zugeleitet, die ein entsprechendes Pulsmuster für die steuerbare Spannungsquelle der Regelstrecke 20 erzeugt. Daraufhin fällt an der Steuerspannungsquelle 3 die gewünschte Stellspannung uH ab.
  • Figur 4 zeigt eine gegenüber Figur 3 genauere Darstellung eines Teils der Regelung, die mit Hilfe der Regelungseinrichtung 7 durchgeführt wird. Hierbei wurden die aufsummierten Ladespannungen uLaden aus Gründen der Übersicht fortgelassen. Es ist erkennbar, dass die Regelungseinheit 18 über eine Zentraleinheit 21 sowie über eine Beobachtungseinheit 22 verfügt. Die Beobachtungseinheit 22 ist eingangsseitig mit Stromgebemitteln verbunden, die ausgangsseitig Filterstrommesswerte iAF bereitstellen. Als zweites Eingangssignal erhält die Beobachtungseinheit 22 eine Reglerstellspannungsgröße uh,m die von der Zentraleinheit 21 berechnet und an deren Ausgang bereitgestellt ist. Auf der Grundlage des Filterstromes iAF und der Reglerstellspannungsgröße uh,m schätzt die Beobachtungseinheit 22 den Ist-Zustand des passiven Filters 2 und stellt einen Zustandsvektor x k im Abtastzeitpunkt k bereit, welcher der Zentraleinheit 21 eingangsseitig zugeführt wird. Der Zustandsvektor x k umfasst beispielsweise den Strom durch die Spule LSK und den Spannungsabfall über dem Kondensator CSK zur Beschreibung des Zustandes des passiven Filters 2. Weiterhin wird die Zentraleinheit 21 mit dem Laststrom iLast, welcher die zu kompensierende Oberschwingung enthält, versorgt sowie mit weiteren Eingangssignalen wie der gemessenen Anschlussspannung uAF. Wie bereits erläutert wurde, erzeugt die Zentraleinheit 21 ausgangsseitig eine Stellspannungsgröße uh, welche der Ansteuereinheit 19 zugeführt wird. Die Ansteuereinheit 19 erzeugt ein pulsweitenmoduliertes Pulsmuster, so dass an der steuerbaren Spannungsquelle 3 eine Stellspannung uH bereitgestellt ist, welche einen Filterstrom iAF zur Kompensation der unerwünschten Oberschwingung treibt. Im Rahmen der Erfindung, werden bestimmte Oberschwingungen ausgewählt. Es wird erfindungsgemäß daher eine Auswahl unter den Oberschwingungen getroffen.
  • Im Folgenden soll die fünfte Oberschwingung kompensiert werden, also eine Schwingung, welche mit der fünffachen Frequenz des Grundschwingungsanteils der Spannung im Spannungsnetz 4 schwingt.
  • Somit enthält iLast,f i Last , f t = R sin 5 100 πt
    Figure imgb0002
  • Am Ausgang der Regelstrecke 20 kommt es jedoch zu einem Filterstrom iAF von i AF t = A R sin 500 πt + ϕ ,
    Figure imgb0003
    wobei sich für den untersuchten Saugkreis mit LSK = 4,883 mH, RSK=0,854 Ohm und CSK=43,841 µF die Parameter A=0,018 und ϕ =-157,2565° ergeben.
  • In Figur 5 ist die Struktur der Modellierungseinheit 18 noch genauer dargestellt. Zunächst werden die messtechnischen erfassten Eingangssignale uAF, iLast und iAF mit Hilfe einer Bandsperre 23 gefiltert. Es ergibt sich eine gefilterte Anschlussspannung uAF,f, ein gefilterter Laststrom iLast,f sowie ein gefilterter Filterstrom iAF,f. Wie bereits erläutert wurde, werden aus dem gefilterten Laststrom iLast,f mit Hilfe eines Beobachters 24 die Zustände xd und d eines ungedämpften Dauerschwingers mit der Resonanzfrequenz der zu kompensierenden Oberschwingung berechnet. Diese Zustände beschreiben die Oberschwingung vollständig. Mit Hilfe eines Korrekturgliedes V werden diese Zustände xd und d zu einer korrigierten Sollspannung uSoll, korr umgerechnet. Im Ausführungsbeispiel gemäß der Figuren 4 und 5 ist die Korrektureinheit V eine Matrixeinheit, wobei die Matrix V _ = 1 A cos ϕ , 1 Ω sin ϕ
    Figure imgb0004
    lautet mit Ω = 500π. Wie bereits ausgeführt wurde, stellt die Anwendung der Matrix V auf die Zustände xd und d des Dauerschwingers als Ergebnis eine korrigierte Sollspannung uSoll,Korr bereit, die zu dem negativen Ausgang eines Zustandsreglers K mit Hilfe eines Addierers 16 hinzuaddiert wird. Insoweit kann die Anwendung der Matrix V auch als Vorsteuerung betrachtet werden.
  • In dem im Zusammenhang mit Figur 4 beschriebenen Beispiel wird die Matrix zu V _ = 51,23582 ; 0, 0136734 .
    Figure imgb0005
  • Ausgehend von dem mit Hilfe der Beobachtungseinheit 22 auf der Grundlage von iAF,f und uAF,f geschätzten Ist-Zustand des passiven Filters xk wird mit Hilfe des Zustandsreglers K das dynamischen Verhalten des passiven Filters 3 berücksichtigt. Hierzu weist der Zustandsregler K eine Matrix mit zweckmäßig bestimmten Parametern auf. Das Verfahren zum Bestimmen dieser Parameter ist dem Fachmann bekannt, so dass an dieser Stelle hierauf nicht detailliert eingegangen zu werden braucht.
  • Da die Reglerstellspannungsgröße uh,m zurückgeführt wird, bilden die Beobachtungseinheit 22, der Zustandsregler K und der Addierer 16 einen geschlossenen Regelkreis.
  • Zu der Reglerstellspannungsgröße uh,m wird die gefilterten Anschlussspannung uAF,f hinzuaddiert, woraus sich die Stellspannungsgröße uh ergibt. Die Stellspannungsgröße uh wird der Ansteuerungseinheit 19 zugeführt, die Ansteuerungsmuster von Steuerungssignalen für die Leistungshalbleiter der steuerbaren Spannungsquelle 3 erzeugt. An dieser fällt dann die Stellspannung UH ab. Die Stellspannung UH treibt den Filterstrom iAF, welcher die unerwünschte Oberschwingung destruktiv überlagert.

Claims (12)

  1. Vorrichtung (1) zur Kompensation von in Stromverläufen auftretenden Oberschwingungen in einem Hochspannungsnetz (4) mit einem passiven Filter (2) und einer steuerbaren Spannungsquelle (3), die miteinander in Reihe geschaltet und mit dem Hochspannungsnetz (4) in Parallelschaltung verbindbar sind, einem Anschlussspannungssensor zum Erfassen einer an der Vorrichtung (1) gegenüber dem Erdpotential abfallenden Anschlussspannung (uAF), einer Regelungseinheit (18), die in Abhängigkeit einer zu kompensierenden Oberschwingung eine Reglerstellspannungsgröße (uh,m) berechnet, und einer mit der Regelungseinheit (18) verbundenen Ansteuerung (19), die in Abhängigkeit einer von der Regelungseinheit (18) ausgangsseitig bereitgestellten Stellspannungsgröße (uh) Ansteuersignale für die steuerbare Spannungsquelle erzeugt, so dass die steuerbare Spannungsquelle (3) eine Stellspannung (UH) bereitstellt, die einen Filterstrom (iAF) zum Unterdrücken der erfassten Oberschwingung treibt,
    dadurch gekennzeichnet, dass
    die Regelungseinheit (18) einen Signalfilter (23) zum Entfernen eines netzfrequenten Anteils aus der Anschlussspannung (uAF)und Additionsmittel (16) aufweist, die zum Addieren der gefilterten Anschlussspannung (uAF,f) und der Reglerstellspannungsgröße (uh,m) unter Erhalt der Stellspannungsgröße (uh) eingerichtet ist, wobei Stromgebermittel zum Bereitstellen von Laststrommesswerten (iLast) und Filterstrommesswerten (iAF) vorgesehen sind und die Regelungseinheit (18) zum Bereitstellen der Reglerstellspannungsgröße (uh,m) einen Zustandsregler (K) aufweist, der auf Basis der Reglerstellspannungsgröße (uh,m) und der Filterstrommesswerte (iAF) mit Hilfe eines Modells der dynamischen Eigenschaften des passiven Filters eine Regelung durchführt, und ein Beobachter (24) auf Basis der Laststrommesswerte (iLAST) Zustände (xd, d ) eines ungedämpften Dauerschwingers mit der Resonanzfrequenz einer zu kompensierenden Oberschwingung berechnet und ein Korrekturmittel (V) aus diesen Zuständen eine korrigierte Sollspannung (usoll,korr) ermittelt, welche ein Addierer (16) zu dem negativen Ausgang des Zustandsreglers (K) hinzuaddiert und dadurch die Reglerstellspannungsgröße (uh,m) bildet.
  2. Vorrichtung (1) nach Anspruch 1,
    dadurch gekennzeichnet, dass
    der Signalfilter ein Hochpass, ein Keilfilter oder eine Bandsperre (23) ist.
  3. Vorrichtung (1) nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    ein Laststromfilter und/oder ein Filterstromfilter (23) zum Herausfiltern eines netzfrequenten Anteils aus den Laststrommesswerten (iLast) beziehungsweise den Filterstrommesswerten (iAF) vorgesehen sind/ist.
  4. Vorrichtung (1) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Korrekturmittel (V) zum Ausgleich von Amplituden- und Phasenänderungen dient, die durch die Regelstrecke (20) verursacht sind.
  5. Vorrichtung (1) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die steuerbare Spannungsquelle über einen Umrichter (3) mit abschaltbaren Leistungshalbleitern verfügt.
  6. Vorrichtung (1) nach Anspruch 5,
    dadurch gekennzeichnet, dass
    der Umrichter ein selbstgeführter mehrstufiger Umrichter (3) ist.
  7. Verfahren zur Kompensation von in Stromverläufen auftretenden Oberschwingungen in einem Hochspannungsnetz (4) mittels einer Vorrichtung (1), die ein passives Filter (2) und eine steuerbaren Spannungsquelle (3) aufweist, die miteinander in Reihe geschaltet und in Parallelschaltung mit dem Hochspannungsnetz (4) verbunden sind, bei dem ein die unerwünschte Oberschwingung enthaltender Laststrom (iLast) ermittelt und in Abhängigkeit der ermittelten Oberschwingung eine Stellspannungsgröße (uh) berechnet wird, wobei die steuerbare Spannungsquelle (3) in Abhängigkeit der Stellspannungsgröße (uh) angesteuert wird, so dass diese eine Stellspannung (UH) erzeugt, die einen Filterstrom (iAF) treibt, der sich mit der Oberschwingung des Laststromes (iLast) so überlagert, dass die Oberschwingung ausgelöscht wird,
    dadurch gekennzeichnet, dass
    eine an der Vorrichtung (1) gegenüber dem Erdpotential abfallende Anschlussspannung (uAF) erfasst wird, ein netzfrequenter Anteil der Anschlussspannung aus der erfassten Anschlussspannung (uAF)mittels eines Signalfilters (23) unter Gewinnung einer gefilterten Anschlussspannung (uAF,f) entfernt wird, die Stellspannungsgröße (uh) unter Berücksichtigung der gefilterten Anschlussspannung (uAF,f) berechnet wird, die gefilterte Anschlussspannung (uAF,f) zu einer Reglerstellspannungsgröße (uh,m) hinzuaddiert wird, und mittels eines Zustandsreglers (K) auf Basis der Reglerstellspannungsgröße (uh,m) und der Filterstrommesswerte (iAF) mit Hilfe des Modells der dynamischen Eigenschaften des passiven Filters (2) eine Regelung durchgeführt wird, und auf Basis der Laststrommesswerte (iLAST) mit Hilfe eines Beobachters (24) Zustände (xd, d ) eines ungedämpften Dauerschwingers mit der Resonanzfrequenz einer zu kompensierenden Oberschwingung berechnet werden und aus diesen Zuständen eine korrigierte Sollspannung (usoll,korr) ermittelt wird, die zu dem negativen Ausgang des Zustandsreglers (K) hinzuaddiert und dadurch die Reglerstellspannungsgröße (uh,m) gebildet wird.
  8. Verfahren nach Anspruch 7,
    dadurch gekennzeichnet, dass
    die dynamischen Eigenschaften des passiven Filters (2) ausgehend von einem Ist-Zustand ( x k ) des passiven Filters (2) modelliert werden.
  9. Verfahren nach Anspruch 8,
    dadurch gekennzeichnet, dass
    der Ist-Zustand ( x k ) des passiven Filters (2) mit Hilfe von ermittelten Strömen durch Induktivitäten des passiven Filters (2) und/oder Spannungen, die über den Komponenten des passiven Filters abfallen, festgelegt wird.
  10. Verfahren nach einem der Ansprüche 7 bis 9,
    dadurch gekennzeichnet, dass
    das dynamische Verhalten des passiven Filters (2) zeitdiskret zu konstanten Abtastzeitpunkten (k) mit Hilfe von Transformationsmatrizen modelliert wird.
  11. Verfahren nach einem der Ansprüche 7 bis 10,
    dadurch gekennzeichnet, dass
    sich der modellierte Stellgrößenanteil (uh,m) gemäß der Formel u h , m = V _ x d x ˙ d k K i AF u C k
    Figure imgb0006
    wobei V eine Rotations- und Skalierungsmatrix und K eine Verstärkungsmatrix sind.
  12. Verfahren nach einem der Ansprüche 7 bis 11,
    dadurch gekennzeichnet, dass
    der Signalfilter ein Hochpass, ein Keilfilter oder eine Bandsperre (23) ist.
EP10732940.1A 2009-07-30 2010-07-13 Vorrichtung zur kompensation von in stromverläufen auftretenden oberschwingungen in einem hochspannungsnetz Not-in-force EP2460244B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009036002A DE102009036002A1 (de) 2009-07-30 2009-07-30 Vorrichtung zur Kompensation von in Stromverläufen auftretenden Oberschwingungen in einem Hochspannungsnetz
PCT/EP2010/060008 WO2011012436A2 (de) 2009-07-30 2010-07-13 Vorrichtung zur kompensation von in stromverläufen auftretenden oberschwingungen in einem hochspannungsnetz

Publications (2)

Publication Number Publication Date
EP2460244A2 EP2460244A2 (de) 2012-06-06
EP2460244B1 true EP2460244B1 (de) 2018-05-09

Family

ID=43524899

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10732940.1A Not-in-force EP2460244B1 (de) 2009-07-30 2010-07-13 Vorrichtung zur kompensation von in stromverläufen auftretenden oberschwingungen in einem hochspannungsnetz

Country Status (3)

Country Link
EP (1) EP2460244B1 (de)
DE (1) DE102009036002A1 (de)
WO (1) WO2011012436A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11231014B2 (en) 2020-06-22 2022-01-25 General Electric Company System and method for reducing voltage distortion from an inverter-based resource

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013174420A1 (en) * 2012-05-22 2013-11-28 Abb Research Ltd Current injection in a cascaded two-level inverter
WO2014154290A1 (en) * 2013-03-28 2014-10-02 Abb Technology Ltd Method for controlling a chain-link converter
FR3018647B1 (fr) * 2014-03-11 2016-02-26 Renault Sas Procede et systeme de commande d'une machine electrique triphasee de vehicule automobile.
WO2016082878A1 (en) * 2014-11-27 2016-06-02 Abb Technology Ltd Method and device for damping voltage harmonics in a multilevel power converter

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5751138A (en) * 1995-06-22 1998-05-12 University Of Washington Active power conditioner for reactive and harmonic compensation having PWM and stepped-wave inverters
US5757099A (en) * 1996-03-01 1998-05-26 Wisconsin Alumni Research Foundation Hybrid parallel active/passive filter system with dynamically variable inductance
DE19738125C2 (de) * 1997-09-01 2001-01-25 Siemens Ag Verfahren und Vorrichtung zur Kompensation von in einem Netz auftretenden Netzspannungsverzerrungen
DE19827755A1 (de) 1998-06-23 2000-03-02 Siemens Ag Hybridfilter für ein Wechselspannungsnetz
TWI247475B (en) * 2002-03-11 2006-01-11 Uis Abler Electronics Co Ltd An active harmonic suppression equipment and control algorithm
DE10244056B3 (de) 2002-09-10 2004-01-08 Frako Kondensatoren- Und Anlagenbau Gmbh Verfahren zum Erzeugen eines Satzes von Steuersignalen für einen Umrichter eines aktiven Filters zur Kompensation von Oberschwingungen und anderen Schwingungen und Vorrichtung zur Durchführung derselben
FI118784B (fi) * 2004-01-27 2008-03-14 Abb Oy Menetelmä ja järjestely verkkovaihtosuuntaajan yhteydessä
DE102004019518A1 (de) 2004-04-22 2005-12-01 Abb Research Ltd. Verfahren und Vorrichtung zur optimierten Regelung von Oberschwingungen
TWI236792B (en) * 2004-08-30 2005-07-21 Uis Abler Electronics Co Ltd Active equipment for harmonic suppression

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11231014B2 (en) 2020-06-22 2022-01-25 General Electric Company System and method for reducing voltage distortion from an inverter-based resource

Also Published As

Publication number Publication date
WO2011012436A2 (de) 2011-02-03
WO2011012436A3 (de) 2012-08-30
EP2460244A2 (de) 2012-06-06
DE102009036002A8 (de) 2011-06-01
DE102009036002A1 (de) 2011-03-03

Similar Documents

Publication Publication Date Title
EP2534748B1 (de) Regelung eines modularen umrichters mit verteilten energiespeichern mit hilfe eines beobachters für die ströme und einer schätzereinheit für die zwischenkreisenergie
EP2460244B1 (de) Vorrichtung zur kompensation von in stromverläufen auftretenden oberschwingungen in einem hochspannungsnetz
EP2375552A1 (de) Verfahren zur Betriebsführung eines Wechselrichters
EP2436092B1 (de) Vorrichtung zur kompensation von oberschwingungen
EP3308442B1 (de) Verfahren zur rechnergestützten parametrierung eines umrichters in einem stromnetz
EP2437383A2 (de) Module für ein aktives Netzfilter und aktives Netzfilter
WO2015063098A1 (de) Wechselrichter und detektionsverfahren für einen wechselrichter zur erkennung eines netzfehlers
EP1708349A1 (de) Stromregelung eines Netzparallelen Spannungsumrichters
EP0208088B1 (de) Vorrichtung zur Erzeugung eines symmetrischen dreiphasigen Spannungssystems mit belastbarem Null-Leiter
EP2481146B1 (de) Verfahren zum regeln eines umrichters und anordnung zur regelung eines umrichters
EP4046268A1 (de) Bestimmung von filterparametern in einem wechselrichter
DE69216074T2 (de) Störungsverminderung in einem versorgungsnetz
DE102014200018A1 (de) Stromrichter und Stromrichterverbund
DE102019124090A1 (de) Ladevorrichtung, welche zum verringern eines leckstroms niedriger frequenz imstande ist
DE3429116A1 (de) Verfahren und schaltungsanordnung zur dynamischen blindleistungskompensation und symmetrierung mit kompensationsstromrichtern
EP2526604B1 (de) Verfahren zum betreiben eines dreiphasigen umrichters in dreieckschaltung und symmetriereinrichtung für einen solchen umrichter
EP2425522B1 (de) Verfahren zum regeln eines umrichters unter berücksichtigung von stell- und messverzögerungen mit hilfe eines beobachters
EP2534749B1 (de) Regelung eines modularen umrichters mit verteilten energiespeichern mit hilfe eines beobachters für die ströme und einer schätzereinheit für die zwischenkreisenergie
DE202021106321U1 (de) Dreiphasiger Verbindungskonverter und sein Steuersystem für den eigenständigen hybriden AC-DC Mikronetzbetrieb
EP3236568A1 (de) Verfahren zum betrieb eines wechselrichtersystems und nach dem verfahren arbeitendes wechselrichtersystem
AT521666A1 (de) Verfahren und Vorrichtung zur Kompensation von Störgrößen
EP0663713A1 (de) Verfahren zur adaptiven Kompensation der Rückwirkungen einer nichtlinearen Last sowie Vorrichtung zur Durchführung des Verfahrens
DE112004001647B4 (de) Übertragung elektrischer Leistung von einer Primärseite zu einer Sekundärseite eines Umformers
AT521551A1 (de) Vorrichtung zur Stabilisierung sowie zum Filtern von Störungen bei einem Mehrphasen-Wechselspannungsnetz
EP2639955A2 (de) Verfahren zum Regeln eines selbstgeführten Stromrichters

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120117

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PIESCHEL, MARTIN

R17D Deferred search report published (corrected)

Effective date: 20120830

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H02J 3/01 20060101AFI20171117BHEP

Ipc: H02J 3/24 20060101ALI20171117BHEP

Ipc: H02J 3/18 20060101ALI20171117BHEP

INTG Intention to grant announced

Effective date: 20171218

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 998388

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010014959

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180509

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180809

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180810

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010014959

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180713

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

26N No opposition filed

Effective date: 20190212

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180713

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 998388

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180909

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010014959

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220818 AND 20220824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220822

Year of fee payment: 13

Ref country code: DE

Payment date: 20220617

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220721

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010014959

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731