EP2456562B1 - Hacheur aerodynamique pour la pulsation d'ecoulement de gaz - Google Patents

Hacheur aerodynamique pour la pulsation d'ecoulement de gaz Download PDF

Info

Publication number
EP2456562B1
EP2456562B1 EP10752083.5A EP10752083A EP2456562B1 EP 2456562 B1 EP2456562 B1 EP 2456562B1 EP 10752083 A EP10752083 A EP 10752083A EP 2456562 B1 EP2456562 B1 EP 2456562B1
Authority
EP
European Patent Office
Prior art keywords
flow
disk
obstructing means
chopper
flow device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10752083.5A
Other languages
German (de)
English (en)
Other versions
EP2456562A1 (fr
Inventor
Bertrand Rowe
Sebastien Morales
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite de Rennes 1
Original Assignee
Universite de Rennes 1
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite de Rennes 1 filed Critical Universite de Rennes 1
Publication of EP2456562A1 publication Critical patent/EP2456562A1/fr
Application granted granted Critical
Publication of EP2456562B1 publication Critical patent/EP2456562B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/02Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling time, or sequence, of delivery
    • B05B12/06Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling time, or sequence, of delivery for effecting pulsating flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/005Nozzles or other outlets specially adapted for discharging one or more gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/08Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape of pulsating nature, e.g. delivering liquid in successive separate quantities ; Fluidic oscillators
    • B05B1/083Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape of pulsating nature, e.g. delivering liquid in successive separate quantities ; Fluidic oscillators the pulsating mechanism comprising movable parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/218Means to regulate or vary operation of device
    • Y10T137/2185To vary frequency of pulses or oscillations

Definitions

  • the present invention relates to a pulsed flow device. More particularly, the invention relates to a device for the flow of a supersonic flow.
  • the said invention proposes to provide a technical solution in the many areas where the flow of a gas or a liquid must be pulsed for the purposes of the process or to limit the consumption and size of the pumping means.
  • flows obtained by a Laval nozzle it is possible to generate a uniform supersonic jet at very low temperature (currently up to 20K) and stable over hydrodynamic times between 150 and 1000 microseconds.
  • the purpose of this invention is to solve problems related to the use of aerodynamic tools in research and development and industrial processes.
  • the present invention has its origin in the evolution of an experimental device dedicated to the study of reactional and collisional processes and to low temperature spectroscopy called CRESU [1] ( Uniform Supersonic Flow Reaction Kinetics ).
  • CRESU [1] Uniform Supersonic Flow Reaction Kinetics
  • This technique developed in the mid-1980s by BR Rowe, is based on the generation of a continuous, supersonic and uniform gas flow that constitutes a real ultracold chemical reactor without a wall. It consists of the use of a Laval nozzle (ie an axisymmetric profile composed of a convergent and a divergent) associated with large pumping capacities (33 000 m 3 / h) which generate, by an isentropic expansion, a uniform supersonic jet allowing to reach very low temperatures while remaining in gaseous phase.
  • Laval nozzle ie an axisymmetric profile composed of a convergent and a divergent
  • large pumping capacities 33 000 m 3 / h
  • Accessible temperatures are presently in the range 15-300 K for typical densities ranging from 10 16 to 10 17 cm -3 .
  • An essential aspect of the CRESU technique is that it makes it possible to work in conditions of local thermodynamic equilibrium (in particular for the rotational and spin-orbit states). It is also the only one that makes it possible to study neutral-neutral reactions at very low temperatures [2].
  • the CEA has also proposed a type of pulsed system (patent N ° US 7,093,774 B2 ) by the invention of Martin [8] for the purpose of allowing the injection of material into a facility for studying thermonuclear fusion plasmas on a principle of closure by a piston set in motion by compression.
  • the technical data showed that this system allowed a valve opening with a duration of 2 ms at an operating frequency of 10 Hz.
  • the first system to reproduce the CRESU technique in a pulsed version was developed by DB Atkinson and M. A Smith [9] and resides in a periodic filling of the tank via commercial pulsed valves.
  • Five other means of testing this principle have been developed at the international level (Smith, Arlington, USA, S. Leone, Berkeley University, USA, J. Troe, University of Goettingen, Germany, M. Pilling, University of Leeds, GB or high pressure M. Costes, University of Bordeaux). These test facilities remain nevertheless limited in temperature and are generally operational only above 50 K.
  • the solution is to reduce the size of the nozzle. tanks ( ⁇ 1cm 3 ).
  • Such a solution requires preparation in advance of the gas mixtures to be injected and their conditioning in a pre-tank in limited quantities.
  • this solution induces flow disturbances, the generator conditions of the reservoir being no longer clearly defined because of the high speed gradients in the small reservoir.
  • the cylinder system of Kenny and Woudenberg [4] has a geometry that is difficult to transpose in most applications.
  • the device according to the invention aims to maintain stable pressure and reservoir flow conditions while producing a uniform flow and without limiting the size of the tank.
  • the device according to the invention also has the objective of not having to prepare and condition in advance in pre-tanks the gas mixtures to be injected.
  • the subject of the invention is therefore a pulsed flow device according to claim 1.
  • the device according to the invention proposes to pulse the supersonic flows by a mechanical chopper type shutter on a flow section without resorting to pulsed injection into the reservoir which allows, at sufficiently high shutter frequency, obtain a pseudo stationary regime for all flow rate settings.
  • the general operating principle is to pulsate the flow by closing the passage section of the gas or liquid via an obstruction means, for example a perforated rigid disk rotating at high speed.
  • an obstruction means for example a perforated rigid disk rotating at high speed.
  • the system is installed on the divergent, the exact position depending on the geometry of the nozzle.
  • the rotation frequency is such that the reservoir conditions remain unchanged (P 0 , T 0 ) when the system reaches a pseudo-stationary regime.
  • This device can greatly reduce the average flow rate to be injected into the tank and thus reduce in the same proportions the pumping capacity necessary to maintain a low pressure in the expansion chamber.
  • the device according to the invention is not subject to flow disturbances such as those present in the state of the art.
  • the obstruction means is a rotary or reciprocating mechanical disk for opening and closing the flow.
  • the axis of rotation of the disk does not pass through an axis of flow flow, the disk having a hole, a rotation of the disk alternately bringing a full part of the disk and said hole opposite the flow.
  • the disk further includes a cut in an edge of said disk, said edge being opposite to the hole relative to the center of the disk.
  • the hole is preferably of oblong shape in this improvement.
  • the dynamic sealing system comprises a main seal, a secondary seal, an upstream ring and a seal compensating the movement variations of the chopper ensuring contact conditions between the chopper and the mechanical components profiling the flow.
  • One embodiment provides that the geometries of the dynamic sealing system and the obstruction means are adapted to the Laval nozzles, allowing in particular the retention of flow uniformity properties.
  • Another embodiment provides that the geometries of the dynamic sealing system and the obstruction means are adapted to planar and axisymmetric nozzle shapes.
  • the obstruction means is a plane plate in reciprocating motion.
  • the invention also relates to a use of a pulsed gas flow device according to the invention as aerodynamic windows or to protect optical passage elements of the optical window type.
  • a particular mode of use of the invention provides for the use of the device according to the invention in order to generate flows at very low temperatures.
  • the figure 1 represents a schematic perspective view comprising a part in transparency of a device according to the invention
  • the device comprises a portion 22 said main portion 22, a system 21 hashing and a reservoir 23 at the origin of the injection of gas into the flow device.
  • the hash system 21 is supported by the main portion 22 and includes a chopper 3, or disk or other means of alternative opening obstruction.
  • Said main portion 22 is fixed on a reservoir 23, said reservoir being at the origin of the injection into the gas flow device or any other element to be pulsed.
  • This main portion 22 consists of two main supports 1 and 2 rigid circular shape having for example a diameter of 340 mm and a thickness of 20 mm. These supports 1 and 2 are facing each other.
  • the respective centers of the main supports 1 and 2 are drilled to receive bases 12 and 19 containing the convergent and divergent profiles of the nozzles 13 and 18.
  • a bore 24 with a stop is machined to receive the bearings used for the rotation of the chopper axis 3.
  • two holes are drilled, intended to receive Socket bearings 4 in which will be positioned two major axes 5 mounted on the reservoir 23.
  • the main part 22 is mounted on the tank 23 of gas via the two axes 5. More particularly, the main part 22 is slidably mounted on these pins 5 in order to be connected to the tank 23.
  • the sliding assembly allows a displacement of the main portion 22 along these axes 5 and a facilitated clearance of said main portion 22 of the reservoir 23 and an easy change of said main portion 22 and / or the nozzle 13 and / or 18 according to the
  • On each of the main supports 1 and 2 there are also, at 85 mm from the center of said main supports 1 and 2, two cavities dedicated to the housing of a guiding system 6 with a chopper 3 bearing. guiding system 6 avoids any deviation of the chopper 3 when the latter is rotating.
  • the adjustment of the guide 6 is performed by micrometric screws fixed on the supports 1 and 2 which push the bearing mounts, the return against being provided by springs.
  • the two supports 1 and 2 are mounted face to face thanks to three positioning columns 7) of 20mm diameter, said columns 7 being for example nested in the faces 25 of the main supports respectively 1 and 2 vis-à-vis the one of the other.
  • This arrangement allows parallelism and alignment between the two supports 1 and 2.
  • the distance between the two supports 1 and 2 is minimized to optimize the accuracy of settings.
  • the main support 2 dedicated to the diverging portion of the nozzle 18 receives the fasteners of the motor 8 driving the chopper 3.
  • the chopper 3 is in the form of a disk 3.
  • the diameter of the chopper 3 is 240 mm, for a thickness of 1 to 2 mm.
  • An oblong hole 26 of variable arc length and diameter 12 mm is arranged at 90 mm from the center of the chopper 3.
  • a cut is made on an edge 27 opposite the oblong hole 26 relative to the center of the chopper 3. This cutout allows to balance the disk 3 despite the presence of the oblong hole 26. This maintenance of the balance avoids the unbalance and vibration of the disc 3 at high rotation speed. It should be noted that all the ribs provided are only indicative and obviously depend on the sizing of the installation and the desired performance.
  • the chopper 3 is such that the axis of rotation of said chopper is parallel to the flow and does not pass through said flow.
  • the chopper hole 26 is located at a distance from the center equal to a distance separating the chopper center 3 from the gas flow. This distance is in fact adapted to ensure an alternative look of the hole with the axis of the flow.
  • Edge cutting said chopper 3 is performed to balance the rotation of the chopper.
  • the cutout is arranged opposite the hole relative to the center of the chopper 3.
  • the figure 2 represents a cross-sectional view of a device according to the invention
  • the chopper 3 rotates between the convergent portion (12,13) and divergent (18,19) of the nozzle.
  • the chopper 3 is preferably thin and perfectly flat.
  • the chopper 3 can be monobloc, glass or ceramic.
  • Another solution is to use a disc 3 composed of a metal part (stainless steel, aluminum, ...) coated with a pure or filled Teflon deposit, PFA or a composite material, the properties of which are a compromise between good coefficient of friction and a high wear resistance.
  • the solution of a collage of several layers is remember because it allows to cumulate the properties of the constituents and to avoid the deformations due to the deposition process.
  • the chopper 3 On the main part 22, the chopper 3 is held between two cylindrical fastening parts 9 and 10. The two fasteners 9 and 10 are bored at their center. A transmission shaft 11 cooperating with the chopper 3 is inserted into these bores 9 and 10. The bores 9 and 10 and the shaft 11 are finely adjusted to allow the translation with a reduced clearance of the whole chopper 3 and allow the positioning between the convergent (12,13) and divergent (18,19) of the nozzle, as well as easy disassembly of the system 21 hash.
  • a first element called a convergent base 12
  • the converging base 12 comprises a complementary housing the upstream portion 13 of the nozzle, said housing is adapted to receive said upstream portion 13 of the nozzle. This mechanism is useful when changing the nozzle because it is then easy to replace a profile without disassembling the entire system.
  • the convergent base 12 is inserted into the main support 1 by the central bore and is fixed by screwing.
  • the nozzle 13 which under the effect of the upstream pressure and compression springs, abuts on the convergent base 12 ensuring the seal between the reservoir 22 and the expansion chamber through at one or two joints 14 on the smallest diameter of the upstream portion of the nozzle 13.
  • sealing system it is within the upstream portion of the nozzle 13 that is embedded the core of the sealing system of the device.
  • a sealing system can be as described below or any type known to those skilled in the art.
  • This sealing system ensures a seal in the device despite the presence of the chopper 3 and thus ensures that the pressure and flow conditions are not disturbed by a leakage.
  • the basic principle used to ensure a good seal is based on seals 15, 16 and 20 in dynamic regime with friction, that is to say in contact with the chopper 3 rotating while ensuring a good seal.
  • the technical solution consists in using mobile joints 15, 16 and 20 positioned abutting on the disc 3. To do this, an impression is made on the upstream part of the nozzle 13 as close as possible to the profile, intended to receive a bronze ring 17 on which will be mounted the main seal 15. This ring 17 carries the main chopper seal 15 in contact with the disc 3. Also, to reduce indirect leakage from the inside of the housing of the ring 17, is added on its inner axis secondary chopper seal 16. The contact force, which conditions the seal and the braking torque applied to the disc 3, is adjusted by a set of springs of different stiffness.
  • a seal is provided in the divergent portion of the nozzle in a manner quite similar to the seal described above: it integrates the divergent portion of the nozzle 18 and its base 19 for fixing on the main support 2, according to the same principle as previously.
  • the nozzle 18 is not movable, it is simply fixed in abutment on the divergent base 19 by screwing. In this part downstream of the disc, the sealing needs no longer exist.
  • the pressure difference between the tank and the chamber leads to the application of a force on the chopper which can then be veiled.
  • the same type of mobile joint 20 as on the upstream part of the nozzle is used.
  • An orifice is pierced on the chopper 3 opposite the optoelectronic sensor in a corresponding position at the beginning of the opening of the nozzle.
  • the collected signal is used to calculate the rotational speed of the disk 3.
  • this signal is used as a control driving any other type of synchronized system to the aerodynamic chopper, such as, for example, the triggering of laser shots .
  • the reservoir 23 comprises a gas under pressure at a certain temperature.
  • This reservoir 23 feeds the main part 22, and more particularly the upstream nozzle 13 with a certain flow rate.
  • Chopper 3 undergoes a high frequency rotation.
  • This high frequency rotation of the chopper 3 alternately releases and obstructs, at said high frequency, the flow according to whether the oblong hole 26 is respectively or opposite the flow.
  • the examples below give examples of values and measurements of operation or obtainable by the device according to the invention.
  • the first tests were carried out using the profile of a Laval nozzle operating in continuous mode with the following characteristics: an average flow temperature of 24K over a uniformity distance of 33 cm (196 ⁇ s), an instantaneous flow rate of 100 Standard liters / min, a tank pressure of 336 mbar and a chamber pressure of 0.63 mbar.
  • the tests carried out using the aerodynamic chopper allowed to generate a pulsed flow, stable over a distance of 45 cm (266 ⁇ s) at the temperature of 22K, with a pulse frequency of up to 20 Hz for pulses d a duration of 8 ms.
  • the figure 4 shows a rovibronic spectrum of the CN radical obtained by LIF (Laser Induced Fluorescence) and used to determine the rotational temperature of the flow.
  • LIF Laser Induced Fluorescence
  • the quality of the flows obtained by this device is excellent because well established over times ranging from a hundred microsecond to millisecond. It can even be superior to the stationary case by reducing turbulence in the tank.
  • Various modifications can be made to the aerodynamic chopper, with a view to adapting it to a geometry different from that of a Laval nozzle or to reducing the size of the system. The description given constitutes a basis for the technical solution and a non-limiting example with respect to the ribs of the system and the materials used.
  • the invention is an independent and compact apparatus that attaches to the tank of a global installation, which makes it easily transportable and adaptable.

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • X-Ray Techniques (AREA)

Description

  • La présente invention concerne un dispositif d'écoulement pulsé. Plus particulièrement l'invention concerne un dispositif d'écoulement d'un flux supersonique. La dite invention se propose de fournir une solution technique dans les nombreux domaines où l'écoulement d'un gaz, ou d'un liquide, doit être pulsé pour les besoins du processus ou pour limiter la consommation et la taille des moyens de pompage. Dans le cas d'écoulements obtenus par une tuyère de Laval, il est possible de générer un jet supersonique uniforme à très basse température (actuellement jusqu'à 20K) et stable sur des temps hydrodynamiques compris entre 150 et 1000 microsecondes. Cette invention a pour but de résoudre des problèmes liés à l'utilisation d'outils aérodynamiques en recherche et développement et procédés industriels.
  • La présente invention trouve son origine dans l'évolution d'un dispositif expérimental dédié à l'étude des processus réactionnels et collisionnels et à la spectroscopie à basse température appelé CRESU[1](Cinétique de Réaction en Ecoulement Supersonique Uniforme). Cette technique développée au milieu des années 80 par B.R. Rowe est basée sur la génération d'un écoulement de gaz continu, supersonique et uniforme qui constitue un véritable réacteur chimique ultrafroid sans paroi. Elle consiste en l'utilisation d'une tuyère de Laval (c.-à-d. un profil axisymétrique composé d'un convergent et d'un divergent) associée à de grandes capacités de pompage (33 000 m3/h) qui génèrent, par une détente isentropique, un jet supersonique uniforme permettant d'atteindre des températures très basses tout en restant en phase gazeuse. Les températures accessibles sont comprises, actuellement, dans la gamme 15-300 K pour des densités typiques allant de 1016 à 1017 cm-3. Un aspect essentiel de la technique CRESU est qu'elle permet de travailler dans des conditions d'équilibre thermodynamique local (en particulier pour les états de rotation et de spin-orbite). Elle est aussi la seule permettant d'étudier les réactions neutre-neutre à très basses températures[2].
  • Néanmoins, cette technique comme tous les procédés utilisant des écoulements supersoniques, est confrontée à des inconvénients majeurs provenant de l'exigence de travailler avec des débits importants, typiquement de l'ordre de 50 Standard Litre/min, afin de conserver un coeur isentropique stable suffisamment longtemps. De ce fait, une grande capacité de pompage est indispensable pour maintenir une faible pression dans la chambre de détente. Ce pompage important entraîne une forte consommation de gaz qui rend difficile l'étude d'espèces chimiques coûteuses ou issues d'une synthèse.
  • Pour répondre à cette problématique, la perspective de pulser l'écoulement s'avère être une des meilleurs solutions. Amirav et al [3] ont décrit un appareillage en fente pulsée capable de générer un jet libre planaire pulsé dédié à l'étude spectroscopique. Un jet libre se caractérise par la détente d'un gaz par un simple orifice dans un environnement à basse pression sans être confiné par les parois d'une tuyère. Ce type de jet est simple à mettre en place car il ne nécessite pas la mise au point de tuyères au profil sophistiqué. Suite à ces travaux, Kenny et Woundenberg ont déposé un brevet[4] N° US 4 834 288 pour un appareil fonctionnant avec une fréquence de répétition de 12 Hz et une durée de pulsation de 120 microsecondes, basée sur la rotation de deux cylindres concentriques percés d'une fente de 0,2 mm de largeur et de 35 mm de longueur. Ce système a la possibilité d'être chauffé jusqu'à une température de 200 °C. Cet appareillage a été utilisé pour des études de spectroscopie en absorption et/ou en LIF (Laser Induced Fluorescence) sur des molécules organiques de grande taille[5]. L'utilisation de jet supersonique pour la spectroscopie est une méthode très répandue car elle permet de décongestionner les spectres par la relaxation des différents degrés de liberté des molécules. En effet, la mise en mouvement des molécules transforme l'énergie thermique en énergie cinétique dirigée ce qui entraine un abaissement de la température translationnelle et un resserrement de la distribution en vitesse des molécules. On assiste à une thermalisation par collision des états rotationnels et vibrationnels par transfert d'énergie vers la translation. Ces transfert d'énergie sont extrêmement rapides et permettent aux différents degrés de liberté, dans la première phase de la détente où les chocs sont nombreux, de s'équilibrer se traduisant par la thermalisation des différents états. La grande simplification spectrale induite dans les écoulements supersoniques, surtout dans le cas de spectre de molécules polyatomiques complexes, en ont fait un outil très populaire chez les spectroscopistes.
  • Un autre brevet N° US 5 295 509 , déposé par Suto et al [6] décrit un système de tuyère pulsée adapté à l'étude des réactions à basses températures et à l'utilisation de fort débit sans réduction des vitesses de pulsation. Ce système utilise deux membranes percées de multiples fentes où deux actionneurs piézoélectriques alimentés par un générateur de pulsation permettent de déplacer l'une des membranes. Ceci conduit au passage ou non du gaz dans la tuyère lors de l'alignement des fentes.
  • Okada et Takeuchi [7] ont développé un jet supersonique planaire pulsé utilisant un dispositif d'arbre à cames pour pulser l'injection de gaz dans le réservoir de la tuyère. Avec une épaisseur au col de 3 mm et une longueur de 500 mm pour une durée de pulse minimum de 25 ms, ce type d'instrument a été utilisé lors d'études spectroscopiques, le caractère planaire permettant d'augmenter le trajet optique et donc le nombre de molécules absorbantes.
  • Le CEA a également proposé un type de système pulsé (brevet N° US 7 093 774 B2 ) par l'invention de Martin [8] dans le but de permettre l'injection de matière dans une installation d'étude des plasmas de fusion thermonucléaire sur un principe de fermeture par un piston mise en mouvement par compression. Les données techniques ont montré que ce système autorisait une ouverture de soupape d'une durée de 2 ms à une fréquence de fonctionnement de 10 Hz.
  • Le premier système visant à reproduire la technique CRESU dans une version pulsée a été développé par D. B. Atkinson et M. A Smith [9] et réside en un remplissage périodique du réservoir via des vannes pulsées commerciales. Cinq autres moyens d'essais sur ce principe ont été développés au niveau international (M. Smith, Tucson, USA; S. Leone, Université de Berkeley, USA; J. Troe, Université de Goettingen, Allemagne; M. Pilling, Université de Leeds, GB ou à haute pression M. Costes, Université de Bordeaux). Ces moyens d'essais restent néanmoins limités en température et ne sont en général opérationnels qu'au dessus de 50 K.
  • Depuis son invention dans les années 80, la technique CRESU ainsi que ses versions pulsées ont apporté une forte contribution dans le domaine de la réactivité en phase gaz des milieux extrêmes[10-12]. Elles se sont également inscrites comme des outils aérodynamiques remarquables et au fort potentiel dans de nombreux domaines réclamant le recours à des écoulements à importants flux de gaz à haute vitesse. Malgré cela, aucune réelle adaptation complète du système CRESU n'a vu le jour pour permettre une forte démocratisation de la technique et sa transposition vers d'autres champs d'application.
  • Toutes les inventions précédemment citées ont en commun une difficulté fondamentale d'établir des conditions non stationnaires strictement identiques à celles de l'écoulement stationnaire en raison du temps de remplissage du réservoir. Typiquement, les dispositifs cités ci-dessus ne permettent pas d'obtenir un écoulement uniforme avec des conditions de pression et de débit d'alimentation de la tuyère stables sans consommation excessive de gaz ; le réservoir devant être régulièrement rempli, il ne peut alimenter l'écoulement en conservant des conditions d'injection dans le dispositif stables.
  • Pour atteindre le point de fonctionnement de la tuyère (c.-à-d. les conditions de pression et de débit stable conduisant un écoulement uniforme) dans un temps raisonnable, actuellement entre 5 et 10 ms, la solution consiste à réduire la taille de réservoirs (~1cm3). Une telle solution impose une préparation à l'avance des mélanges de gaz à injecter ainsi que leur conditionnement dans un pré-réservoir dans des quantités limitées. De plus cette solution induit des perturbations d'écoulement, les conditions génératrices du réservoir n'étant plus clairement définis du fait des forts gradients de vitesse dans le petit réservoir. Le système à cylindres de Kenny et Woudenberg [4] présente une géométrie difficilement transposable dans la plupart des applications.
  • Le dispositif selon l'invention a pour but de conserver des conditions de pression et de débit du réservoir stables tout en produisant un écoulement uniforme et ce sans limiter la taille du réservoir. Le dispositif selon l'invention a en outre pour objectif de ne pas avoir à préparer et conditionner à l'avance dans des pré-réservoirs les mélanges de gaz à injecter.
  • L'invention a donc pour objet un dispositif d'écoulement pulsé selon la revendication 1.
  • Le dispositif selon l'invention se propose de pulser les écoulements supersoniques par un obturateur mécanique de type hacheur sur une section d'écoulement sans avoir recours à l'injection pulsée dans le réservoir ce qui permet, à fréquence d'obturation suffisamment élevée, d'obtenir un régime pseudo stationnaire pour tous les réglages de débits.
  • Le principe de fonctionnement général consiste à pulser l'écoulement par l'obturation de la section de passage du gaz ou du liquide via un moyen d'obstruction, par exemple un disque rigide perforé tournant à grande vitesse. Dans le cas d'une tuyère de Laval, le système est installé sur le divergent, la position exacte dépendant de la géométrie de la tuyère. La fréquence de rotation est telle que les conditions de réservoir restent inchangées (P0, T0) quand le système atteint un régime pseudo-stationnaire. Ce dispositif permet de réduire fortement le débit moyen à injecter dans le réservoir et ainsi de réduire dans les mêmes proportions les capacités de pompage nécessaires pour conserver une basse pression dans la chambre de détente. De plus, le dispositif selon l'invention n'est pas sujet à des perturbations d'écoulement telles que celles présentes dans l'état de la technique.
  • Dans une variante de l'invention le moyen d'obstruction est un disque mécanique rotatif ou à mouvement alternatif permettant d'ouvrir et de fermer l'écoulement.
  • Avantageusement, dans un perfectionnement, l'axe de rotation du disque ne passe pas par un axe d'écoulement du flux, le disque comportant un trou, une rotation du disque amenant alternativement une partie pleine du disque et ledit trou en regard de l'écoulement. Le disque comporte en outre une coupe dans un bord dudit disque, ledit bord étant opposé au trou par rapport au centre du disque.
  • Le trou est préférentiellement de forme oblongue dans ce perfectionnement.
  • Avantageusement, le système d'étanchéité dynamique comporte un joint principal, un joint secondaire, une bague amont et un joint compensant les variations de mouvement du hacheur garantissant les conditions de contact entre le hacheur et les composants mécaniques profilant l'écoulement.
  • Un mode de réalisation prévoit que les géométries du système d'étanchéité dynamique et du moyen d'obstruction sont adaptées aux tuyères de Laval, permettant en particulier la conservation des propriétés d'uniformité des écoulements.
  • Un autre mode de réalisation prévoit que les géométries du système d'étanchéité dynamique et du moyen d'obstruction sont adaptées aux tuyères de formes planaires et axisymétriques.
  • Dans une variante, le moyen d'obstruction est une plaque plane en mouvement alternatif.
  • L'invention a aussi pour objet une utilisation d'un dispositif d'écoulement pulsé de gaz selon l'invention comme fenêtres aérodynamiques ou pour protéger des éléments de passage optiques du type fenêtre optique.
  • Un mode d'utilisation particulier de l'invention prévoit l'utilisation du dispositif selon l'invention afin de générer des écoulements à très basses températures.
  • La présente invention est maintenant décrite à l'aide d'exemples uniquement illustratifs et nullement limitatifs de la portée de l'invention, et à partir des illustrations ci-jointes, dans lesquelles :
    • La figure 1 représente une vue en perspective schématique comportant une partie en transparence d'un dispositif selon l'invention ;
    • La figure 2 représente une vue en coupe transversale d'un dispositif selon l'invention ;
    • La figure 3 représente une comparaison des différentes techniques utilisées pour caractériser, en température, le jet pulsé obtenu à l'aide du hacheur aérodynamique ;
    • La figure 4 montre un spectre rovibronique du radical CN obtenu par LIF « (Laser Induced Fluorescence » en anglais) et utilisé pour déterminer la température rotationnelle de l'écoulement.
  • La figure 1 représente une vue en perspective schématique comportant une partie en transparence d'un dispositif selon l'invention
  • Les dimensions données ci après le sont à titre d'exemple et ne sont nullement limitatives de la portée de l'invention, pouvant être adaptées par l'homme de l'art en fonction des applications. L'exemple donné ci-dessous est donné pour un écoulement pulsé de gaz, mais l'invention s'applique de manière identique à un écoulement d'un autre type qu'un écoulement pulsé de gaz, par exemple un écoulement de liquide.
  • Le dispositif comprend une partie 22 dite partie principale 22, un système 21 de hachage et un réservoir 23 à l'origine de l'injection de gaz dans le dispositif d'écoulement.
  • Le système 21 de hachage est supporté par la partie principale 22 et comprend un hacheur 3, ou disque ou tout autre moyen d'obstruction à ouverture alternative.
  • Ladite partie principale 22 est fixée sur un réservoir 23, ledit réservoir étant à l'origine de l'injection dans le dispositif d'écoulement de gaz ou tout autre élément devant être pulsé. Cette partie principale 22 est constituée de deux supports principaux 1 et 2 rigides de forme circulaire ayant par exemple un diamètre 340 mm et une épaisseur 20 mm. Ces supports 1 et 2 sont en regard l'un de l'autre. Dans le cas d'une tuyère de Laval, les centres respectifs des supports principaux 1 et 2 sont percés pour accueillir des socles 12 et 19 contenant les profils convergents et divergents des tuyères 13 et 18. A une distance de 90 mm des centres des supports principaux 1 et 2, un alésage 24 avec butée est usiné afin de recevoir les roulements utilisés pour la rotation de l'axe du hacheur 3. A 140 mm des centres des supports principaux 1 et 2, deux trous sont percés, destinés à recevoir des roulements à douille 4 dans lesquelles viendront se positionner deux grands axes 5 montés sur le réservoir 23.
  • La partie principale 22 est montée sur le réservoir 23 de gaz par l'intermédiaire des deux axes 5. Plus particulièrement, la partie principale 22 est montée par coulissement sur ces axes 5 afin d'être raccordée au réservoir 23. Le montage par coulissement permet un déplacement de la partie principale 22 le long de ces axes 5 et un dégagement facilité de ladite partie principale 22 du réservoir 23 ainsi qu'un changement aisé de ladite partie principale 22 et/ou de la tuyère 13 et/ou 18 en fonction des besoins d'utilisation.. Sur chacun des supports principaux 1 et 2, se trouvent également, à 85 mm du centre desdits supports principaux 1 et 2, deux empreintes consacrées au logement d'un système de guidage 6 à roulement du hacheur 3. Ce système de guidage 6 évite toute déviation du hacheur 3 lorsque ce dernier est en rotation. Le réglage du guidage 6 est effectué par des vis micrométriques fixées sur les supports 1 et2 qui viennent pousser les montures des roulements, le contre rappel étant assuré par des ressorts.
  • Les deux supports 1 et 2 sont montés face à face grâce à trois colonnes de positionnement 7)de 20mm de diamètre, lesdites colonnes 7 étant par exemple emboîtées dans les faces 25 des supports principaux respectivement 1 et 2 en vis-à-vis l'une de l'autre. Cet agencement permet le parallélisme et l'alignement entre les deux supports 1 et 2. La distance entre les deux supports 1 et 2 est minimisée pour optimiser la précision des réglages. Enfin, le support principal 2 dédié à la partie divergente de la tuyère 18 reçoit les fixations du moteur 8 entraînant le hacheur 3.
  • Le hacheur 3 se présente sous la forme d'un disque 3. Le diamètre du hacheur 3 est de 240 mm, pour une épaisseur de 1 à 2 mm. Un trou oblong 26 de longueur d'arc variable et de diamètre 12 mm est agencé à 90 mm du centre du hacheur 3. Une découpe est réalisée sur un bord 27 opposé au trou oblong 26 par rapport au centre du hacheur 3. Cette découpe permet d'équilibrer le disque 3 malgré la présence du trou oblong 26. Ce maintien de l'équilibre évite le balourd et les vibrations du disque 3 à haute vitesse de rotation. Il est à préciser que toutes les côtes fournies ne sont qu'indicatives et dépendent évidemment du dimensionnement de l'installation et des performances désirées. Typiquement, le hacheur 3 est tel que l'axe de rotation dudit hacheur est parallèle à l'écoulement et ne passe pas par ledit écoulement. Le trou 26 du hacheur est situé à une distance du centre égale à une distance séparant le centre du hacheur 3 de l'écoulement du gaz. Cette distance est en effet adaptée pour assurer une mise en regard alternative du trou avec l'axe de l'écoulement. La découpe en bord dudit hacheur 3 est réalisée afin d'équilibrer la rotation du hacheur. La découpe est agencée à l'opposé du trou par rapport au centre du hacheur 3.
  • La figure 2 représente une vue en coupe transversale d'un dispositif selon l'invention
  • Suivant le principe de fonctionnement rappelé ci-après, le hacheur 3 tourne entre la partie convergente (12,13) et divergente (18,19) de la tuyère. Pour éviter la rupture de profil qui conduirait à détruire les caractéristiques de l'écoulement, le hacheur 3 est de préférence mince et parfaitement plan. Le hacheur 3 peut être monobloc, en verre ou en céramique. Une autre solution est d'utiliser un disque 3 composés d'une partie métallique (Inox, Aluminium, ...) recouverte d'un dépôt de Téflon pur ou chargé, de PFA ou d'une matière composite, dont les propriétés sont un compromis entre bon coefficient de frottement et une importante tenue à l'usure. Dans certains cas, la solution d'un collage de plusieurs couches est à retenir car elle permet de cumuler les propriétés des constituants et d'éviter les déformations dues au procédé de dépôt.
  • Sur la partie principale 22, le hacheur 3 est maintenu entre deux pièces cylindriques de fixation 9 et 10. Les deux pièces de fixation 9 et 10 sont alésées en leur centre. Un axe de transmission 11 coopérant avec le hacheur 3 est inséré dans ces alésages 9 et 10. Les alésages 9 et 10 et l'arbre 11 sont ajustés finement pour permettre la translation avec un jeu réduit de tout le hacheur 3 et autoriser le positionnement entre le convergent (12,13) et le divergent (18,19) de la tuyère, ainsi qu'un démontage facilité du système 21 de hachage.
  • Un premier élément, nommé socle convergent 12, comporte des griffes de serrage 28. Ces griffes de serrage 28 coopèrent avec le réservoir 23 afin d'assurer le montage de la partie principale 22 sur le réservoir 23. Le socle convergeant 12 comporte un logement complémentaire de la partie amont 13 de la tuyère, ledit logement est apte à recevoir ladite partie amont 13 de la tuyère. Ce mécanisme trouve son utilité lors du changement de tuyère car il est alors aisé de remplacer un profil sans démonter tout le système. Le socle convergent 12 s'insère dans le support principal 1 par l'alésage central et est fixé par vissage. Dans ce socle 12, on vient positionner la tuyère 13 qui sous l'effet de la pression amont et de ressorts de compression, vient se mettre en butée sur le socle convergent 12 assurant l'étanchéité entre le réservoir 22 et la chambre de détente grâce à un où deux joints 14 sur le plus petit diamètre de la partie amont de la tuyère 13.
  • C'est au sein de la partie amont de la tuyère 13 qu'est embarqué le coeur du système d'étanchéité du dispositif. Un tel système d'étanchéité peut être comme décrit ci-après ou de n'importe quel type connu de l'homme du métier. Ce système d'étanchéité permet d'assurer une étanchéité dans le dispositif malgré la présence du hacheur 3 et assure ainsi que les conditions de pression et de débit ne soient pas perturbées par un défaut d'étanchéité. Le principe de base utilisé pour assurer une bonne étanchéité repose sur des joints 15, 16 et 20 en régime dynamique avec frottement, c'est-à-dire en contact avec le hacheur 3 en rotation tout en assurant une bonne étanchéité.
  • La solution technique consiste à utiliser des joints mobiles 15, 16 et 20 se positionnant en butée sur le disque 3. Pour ce faire, on réalise, sur la partie amont de la tuyère 13 au plus près du profil, une empreinte destinée à recevoir une bague en bronze 17 sur laquelle sera monté le joint d'étanchéité principal 15. Cette bague 17 porte le joint hacheur principal 15 en contact avec le disque 3. Aussi, pour réduire les fuites indirectes par l'intérieur du logement de la bague 17, on adjoint sur son axe intérieur le joint hacheur secondaire 16. La force de contact, qui conditionne l'étanchéité et le moment de freinage appliqué sur le disque 3, est réglée par un jeu de ressorts de différentes rigidités.
  • Une étanchéité est assurée dans la partie divergente de la tuyère de manière assez similaire à l'étanchéité décrite ci-dessus : elle intègre la partie divergente de la tuyère 18 et son socle 19 de fixation sur le support principal 2, suivant le même principe que précédemment. Dans ce cas, la tuyère 18 n'est pas mobile, elle est simplement fixée en butée sur le socle divergent 19 par vissage. Dans cette partie en aval du disque, les besoins d'étanchéité n'existent plus. Cependant, en position fermée, la différence de pression entre le réservoir et la chambre, conduit à l'application d'une force sur le hacheur qui peut alors se voiler. Le même type de joint mobile 20 que sur la partie amont de la tuyère est donc utilisé.
  • De plus, il est à noter l'installation sur la tranche du support principal 2 en face du hacheur 3, d'une pièce destinée à recevoir une fourche optique constituée d'un émetteur et récepteur infrarouge. Un orifice est percé sur le hacheur 3 face au capteur optoélectronique dans une position correspondante au début de l'ouverture de la tuyère. En fonctionnement, le signal recueilli est utilisé pour calculer la vitesse de rotation du disque 3. De manière générale, ce signal est exploité en tant que commande pilotant tout autre type de système synchronisé au Hacheur aérodynamique comme, par exemple, le déclenchement de tirs lasers.
  • En fonctionnement, le réservoir 23 comporte un gaz sous pression à une certaine température. Ce réservoir 23 alimente la partie principale 22, et plus particulièrement la tuyère amont 13 avec un certain débit. Le hacheur 3 subit une rotation à haute fréquence. Cette rotation à haute fréquence du hacheur 3 alternativement libère et obstrue, à ladite haute fréquence, l'écoulement selon que le trou oblong 26 respectivement est ou n'est pas en vis-à-vis de l'écoulement. Cette obstruction à haute fréquence de l'écoulement par le hacheur 3, par exemple sur une plage de fréquences allant de 10 à 100Hz, permet d'obtenir un écoulement pulsé tout en conservant les conditions de pression et de température du réservoir 23, le réservoir 23 n'ayant pas à avoir une taille réduite ni à être rempli en cours d'utilisation. Les exemples ci après donnent des exemples de valeurs et mesures de fonctionnement ou pouvant être obtenues par le dispositif selon l'invention.
  • Les premiers tests ont été réalisés en utilisant le profil d'une tuyère de Laval fonctionnant en mode continu avec les caractéristiques suivantes : une température moyenne d'écoulement de 24K sur une distance d'uniformité de 33 cm (196 µs), un débit instantané de 100 Standard litres/min, une pression de réservoir de 336 mbar et une pression de chambre de 0.63 mbar. Les essais réalisés à l'aide du hacheur aérodynamique ont permis de générer un écoulement pulsé, stable sur une distance de 45 cm (266 µs) à la température de 22K, à une fréquence de pulsation allant jusqu'à 20 Hz pour des impulsions d'une durée de 8 ms. On peut constater que le passage au mode pulsé (disque tournant à 10 Hz) a permis une réduction en débit de gaz d'un facteur 8 (de 100 S.I.m-1 en continu à 12 S.I.m-1 en pulsé). Il est dorénavant possible de faire fonctionner cette tuyère avec une capacité de pompage de ~ 1300m3/h alors qu'elle nécessitait ~ 10 400 m3/h en CRESU continu.
    La figure 3 représente une comparaison de différentes techniques utilisées pour caractériser, en température, le jet pulsé obtenu à l'aide du dispositif selon l'invention:
  • (Sur la figure 3, le zéro de l'axe des abscisses correspond à la sortie de la tuyère de Laval)
    • ▪ La courbe (a) illustre les résultats issus d'une simulation numérique de type résolution en temps des équations de Navier Stokes en 2-D pour ce profil de tuyère.
    • ▪ La courbe (b) expose les résultats issus de mesure de pression d'impact en tube de Pitot à différentes positions dans l'axe de la tuyère. La particularité de ces mesures Pitot émane du fait que chaque point de la courbe de pression d'impact est obtenu en prenant une valeur moyenne du maximum sur le plateau de courbes représentant l'impulsion de pression d'impact en fonction du temps, identique à celles des figures (e) et (f).
    • ▪ Les points (c) représentent des mesures de température rotationnelle obtenues par spectroscopie du radical CN (étude de la distribution de population de la branche R du spectre) en fonction de la position de la tuyère.
    • ▪ Les points (d) représentent des mesures de température rotationnelle obtenues par spectroscopie du radical CN (étude de la distribution de population de la branche P du spectre) en fonction de la position de la tuyère.
    • ▪ Les graphiques (e) et (f) montrent des impulsions de pression d'impact à différentes positions (le temps en milliseconde est représenté en abscisse).
  • La figure 4 montre un spectre rovibronique du radical CN obtenu par LIF (Laser Induced Fluorescence) et utilisé pour déterminer la température rotationnelle de l'écoulement.
  • Les résultats exposés démontrent un excellent accord entre le jet obtenu en mode pulsé à partir du hacheur aérodynamique comparé à celui issu d'un écoulement CRESU classique.
  • La qualité des écoulements obtenus par ce dispositif est excellente car bien établis sur des temps allant de la centaine de microseconde à la milliseconde. Elle peut même être supérieure au cas stationnaire par réduction des turbulences dans le réservoir. Diverses modifications peuvent être apportées au hacheur aérodynamique, en vue de son adaptation à une géométrie différente de celle d'une tuyère de Laval ou à des besoins de réduction en taille du système. La description donnée constitue une base à la solution technique et un exemple non limitatif par rapport aux côtes du système et aux matériaux utilisés.
  • L'invention est un appareillage indépendant et compact qui se fixe sur le réservoir d'une installation globale, ce qui la rend facilement transportable et adaptable.
  • Références :
    1. [1] Dupeyrat, G., J.B. Marquette, and B.R. Rowe, Design and testing of axisymmetric nozzles for ion molecule reaction studies between 20 K and 160 K. The Physics of fluids, 1985. 28: p. 1273-1279.
    2. [2] Smith, I.W.M. and B.R. Rowe, Reaction kinetics at very low temperatures: Laboratory studies and interstellar chemistry. Acc. Chem. Res., 2000. 33(5): p. 261-268.
    3. [3] Amirav, A., U. Even, and J. Jortner, Absorption-Spectroscopy of Ultracold Large Molecules in Planar Supersonic Expansions. Chemical Physics Letters, 1981. 83(1): p. 1-4.
    4. [4] J. E. KENNY, T.W., PULSED SLIT NOZZLE FOR GENERATION OF PLANAR SUPERSONIC JETS. US Patent, 1989. N° 4 834 288 .
    5. [5] Amirav, A., U. Even, and J. Jortner, Spectroscopy of the Fluorene Molecule in Planar Supersonic Expansions. Chemical Physics, 1982. 67(1): p. 1-6.
    6. [6] SUTO, PULSE NOZZLE. US Patent, 1994. N° 5 295 509
    7. [7] Okada, Y., et al., Cam-driven pulsed Laval nozzle with a large optical path length of 50 cm. Review of Scientific Instruments, 1996. 67(9): p. 3070-3072.
    8. [8] MARTIN, G., DEVICE FOR INJECTING A PULSED SUPERSONIC GAS STREAM. US Patent, 2006. N° 7 093 774 B2 .
    9. [9] Atkinson, D.B. and M.A. Smith, Design and Characterization of Pulsed Uniform Supersonic Expansions for Chemical Applications. Review of Scientific Instruments, 1995. 66(9): p. 4434-4446.
    10. [10] Berteloite, C., et al., Low temperature (39 K - 298 K) kinetics study of the reactions of C4H radical with various hydrocarbons observed in Titan's atmosphere. Icarus, 194, (2), 746-757. (2008 ). Icarus, 2008. 194(2): p. 746-757.
    11. [11] Sims, I.R., et al., Ultra-low temperature kinetics of neutral-neutral reactions : The technique, and results for the reactions CN + O2 down to 13 K and CN + NH3 down to 25 K. J. Chem. Phys, 1994. 100(6): p. 4229-4241.
    12. [12] Chastaing, D., et al., Rate coefficients for the reactions of C(P-3(J)) atoms with C2H2, C2H4, CH3C=CHand H2C=C=CH2 at temperatures down to 15 K. Astron. Astrophys., 2001. 365(2): p. 241-247.

Claims (9)

  1. Dispositif d'écoulement pulsé d'un flux de gaz, comportant
    - une injection continue de gaz dans le dispositif alimentée par un réservoir (23),
    - un moyen d'obstruction alternatif ou rotatif permettant d'ouvrir et de fermer l'écoulement de gaz ,
    - le moyen d'obstruction étant combiné à un système d'étanchéité dynamique de manière étanche autour de l'écoulement,
    caractérisé en ce que le moyen d'obstruction ouvre et ferme par obstruction l'écoulement à des fréquences élevées à l'aide d'une rotation haute fréquence dudit moyen d'obstruction, la haute fréquence de rotation du moyen d'obstruction étant telle que les conditions de température et de pression du réservoir sont conservées, et en ce que le système d'étanchéité dynamique comporte un joint principal (15), un joint secondaire (16), une bague amont (17) et un joint (20) compensant les variations de mouvements du moyen d'obstrution, garantissant les conditions de contact entre le moyen d'obstruction et les composants mécaniques profilant l'écoulement.
  2. Dispositif d'écoulement selon la revendication 1 caractérisé en ce que le moyen d'obstruction est un disque mécanique rotatif ou à mouvement alternatif permettant d'ouvrir et de fermer l'écoulement.
  3. Dispositif d'écoulement selon la revendication 2 caractérisé en ce qu'un axe de rotation du disque ne passe pas par un axe d'écoulement du flux, le disque comportant
    - un trou situé sur le disque à une distance du centre du disque égale à une distance séparant le centre du disque de l'axe d'écoulement,
    - une coupe dans un bord dudit disque, ledit bord étant opposé au trou par rapport au centre du disque.
  4. Dispositif d'écoulement selon la revendication 3 caractérisé en ce que le trou est de forme oblongue.
  5. Dispositif d'écoulement selon l'une des revendications précédentes caractérisé en ce que les géométries du système d'étanchéité dynamique et du moyen d'obstruction sont adaptées aux tuyères de Laval.
  6. Dispositif d'écoulement selon l'une des revendications précédentes caractérisé en ce que les géométries du système d'étanchéité dynamique et du moyen d'obstruction sont adaptées aux tuyères de formes planaires et axisymétriques.
  7. Dispositif d'écoulement selon la revendication 1 caractérisé en ce que le moyen d'obstruction est une plaque plane en mouvement alternatif.
  8. Utilisation d'un dispositif d"écoulement selon l'une des revendications 1 à 7 pour protéger des fenêtres optiques.
  9. Utilisation d'un dispositif d'écoulement selon l'une des revendications 1 à 7 pour générer des écoulements à très basses températures.
EP10752083.5A 2009-07-24 2010-07-22 Hacheur aerodynamique pour la pulsation d'ecoulement de gaz Not-in-force EP2456562B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0903663A FR2948302B1 (fr) 2009-07-24 2009-07-24 Hacheur aerodynamique pour la pulsation d'ecoulement de gaz
PCT/FR2010/051557 WO2011018571A1 (fr) 2009-07-24 2010-07-22 Hacheur aerodynamique pour la pulsation d'ecoulement de gaz

Publications (2)

Publication Number Publication Date
EP2456562A1 EP2456562A1 (fr) 2012-05-30
EP2456562B1 true EP2456562B1 (fr) 2016-06-08

Family

ID=41683047

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10752083.5A Not-in-force EP2456562B1 (fr) 2009-07-24 2010-07-22 Hacheur aerodynamique pour la pulsation d'ecoulement de gaz

Country Status (5)

Country Link
US (1) US8870159B2 (fr)
EP (1) EP2456562B1 (fr)
CA (1) CA2768864A1 (fr)
FR (1) FR2948302B1 (fr)
WO (1) WO2011018571A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016008644A1 (de) * 2016-07-15 2018-01-18 Dürr Systems Ag Mischventil
CN114486160B (zh) * 2021-12-30 2023-07-14 中国航天空气动力技术研究院 一种高焓流场热化学非平衡辨识分析方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US917970A (en) * 1908-09-05 1909-04-13 James G Smith Oil-gate.
GB781383A (en) * 1954-11-15 1957-08-21 Bryan Donkin Co Ltd Improvements in or relating to gate valves
US3249117A (en) * 1962-06-07 1966-05-03 Grove Valve & Regulator Co Gate valve
US3497177A (en) * 1967-11-02 1970-02-24 Eldon E Hulsey Seat and seal assembly for valves
US3972507A (en) * 1975-06-09 1976-08-03 M & J Valve Company Valve construction
US4234525A (en) * 1979-03-13 1980-11-18 Piterskikh Georgy P Apparatus for spraying fluid and paste-like materials
US4434967A (en) * 1982-08-23 1984-03-06 Axelson, Inc. Valve self-relieving seats
DE3326797A1 (de) * 1983-07-26 1985-02-07 Silo Verfahrens AG, Zug Schiebereinrichtung
US4645179A (en) 1985-10-01 1987-02-24 Baker Cac Gate valve seal system
US4834288A (en) 1987-01-05 1989-05-30 Tufts University Pulsed slit nozzle for generation of planar supersonic jets
US5090661A (en) * 1990-09-28 1992-02-25 Foster Oilfield Equipment Co. Gate valve
JP2532907Y2 (ja) * 1992-02-10 1997-04-16 動力炉・核燃料開発事業団 幅広パルスノズル
GB9813172D0 (en) * 1998-06-19 1998-08-19 Hart Robert Gate Valve
FR2850298B1 (fr) 2003-01-28 2005-03-04 Commissariat Energie Atomique Dispositif d'injection d'un flux de gaz supersonique pulse
FR2915550B1 (fr) * 2007-04-27 2012-05-11 Snecma Vanne a clapet pour un systeme de refroidissement dans une turbomachine

Also Published As

Publication number Publication date
FR2948302B1 (fr) 2012-11-30
CA2768864A1 (fr) 2011-02-17
WO2011018571A1 (fr) 2011-02-17
US8870159B2 (en) 2014-10-28
EP2456562A1 (fr) 2012-05-30
FR2948302A1 (fr) 2011-01-28
US20120125463A1 (en) 2012-05-24

Similar Documents

Publication Publication Date Title
Motylewski et al. Cavity ring down spectroscopy on radicals in a supersonic slit nozzle discharge
CN104458634A (zh) 一种用于气体检测的脉冲式多通道光声光谱装置
EP2456562B1 (fr) Hacheur aerodynamique pour la pulsation d'ecoulement de gaz
EP3756004B1 (fr) Procede d'analyse d'hydrocarbures
EP1888250A2 (fr) Nebuliseur a debit nanometrique d'un effluent liquide et installation de nebulisation comportant un tel nebuliseur.
CA2929171A1 (fr) Cellule d'echantillonnage de volume reduit pour spectroscopie
FR2763693A1 (fr) Reacteur pour analyse d'echantillons multiples
FR2860731A1 (fr) Appareil de mixage d'un analyseur chimique ou biochimique avec entrainement pendulaire d'une pipette
EP3181235B1 (fr) Procede pour controler la divergence d'un jet de particules sous vide avec une lentille aerodynamique et lentille aerodynamique associee
FR2797956A1 (fr) Dispositif de detection et d'analyse par ablation laser et transfert vers une trappe ionique d'un spectrometre, procede mettant en oeuvre ce dispositif et utilisations particulieres du procede
WO2011035897A1 (fr) Procede de stabilisation de la longueur d'une cavite optique
Chan et al. A gasket-type standard leak element using femtosecond laser micromachining
EP0354861B1 (fr) Dispositif, application et procédé de fabrication d'un régulateur de très faible débit gazeux à vitesse d'écoulement sonique pour les mesures d'adsorption et de désorption gazeuse
Newnham et al. Doppler‐limited spectroscopy at cryogenic temperatures: Application of collisional cooling
EP2877825B1 (fr) Cellule de mesure calorimetrique haute pression
WO2004044541A1 (fr) Dispositif de mesure d'un flux thermique
Cronin et al. Acoustic levitation as an IR spectroscopy sampling technique
FR3017950A1 (fr) Dispositif d'analyse de gaz a tres forte sensibilite
EP0133390A1 (fr) Buse de pulvérisation à fente réglable pour liquide ou produit pâteux
CA2835021A1 (fr) Procede de mesure de la viscosite d'un fluide et viscosimetre
Gusev Precision adjustable vacuum leaks of gas and vapour microflows for control over leakage of energy objects (brief review)
FR3140888A1 (fr) Procede de depot de revetement
EP0957352A1 (fr) Dispositif tournant pour la mesure des caractéristiques aérodynamiques d'une paroi et sa méthode
Crofton et al. Development and characterization of a particle-impact ignition facility
EP3227015A1 (fr) Dispositif pour la synthèse et l'étude de composés sous températures et pressions contrôlées

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B05B 12/06 20060101ALI20150921BHEP

Ipc: B05B 1/08 20060101ALI20150921BHEP

Ipc: B05B 1/00 20060101AFI20150921BHEP

INTG Intention to grant announced

Effective date: 20151015

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 804822

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010033943

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160908

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 804822

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160909

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161008

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161010

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010033943

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20170309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160722

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160608

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210729

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210720

Year of fee payment: 12

Ref country code: DE

Payment date: 20210712

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010033943

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220722

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230201