EP2453853A1 - Vorrichtung für die ophthalmologische laserchirurgie - Google Patents

Vorrichtung für die ophthalmologische laserchirurgie

Info

Publication number
EP2453853A1
EP2453853A1 EP09778679A EP09778679A EP2453853A1 EP 2453853 A1 EP2453853 A1 EP 2453853A1 EP 09778679 A EP09778679 A EP 09778679A EP 09778679 A EP09778679 A EP 09778679A EP 2453853 A1 EP2453853 A1 EP 2453853A1
Authority
EP
European Patent Office
Prior art keywords
contact surface
eye
laser radiation
position measurement
measurement data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09778679A
Other languages
English (en)
French (fr)
Inventor
Peter Riedel
Christof Donitzky
Klaus Vogler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wavelight GmbH
Original Assignee
Wavelight GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wavelight GmbH filed Critical Wavelight GmbH
Publication of EP2453853A1 publication Critical patent/EP2453853A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/009Auxiliary devices making contact with the eyeball and coupling in laser light, e.g. goniolenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/00872Cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00825Methods or devices for eye surgery using laser for photodisruption
    • A61F9/00836Flap cutting

Definitions

  • the invention relates to a device for ophthalmic laser surgery.
  • Pulsed laser radiation is used in numerous techniques of treating the human eye.
  • the eye to be treated is pressed against a transparent contact element, which with its eye-facing contact surface forms a reference surface for the positioning of the beam focus in the z-direction (meaning the direction of propagation of the laser beam according to conventional notation).
  • treatment techniques which serve to produce sections (incisions) in the eye tissue by means of focused femtosecond laser radiation frequently make use of such contact elements as a reference for the laser focus.
  • the cut or the individual photodisruption (the production of cuts in the human eye by means of pulsed femtosecond laser radiation is based regularly on the effect of the so-called laser-induced optical breakthrough to a Photodisruption leads) is located at the desired position in the depth of the eye tissue.
  • Laser-produced sections are used, for example, in the case of the so-called Fs-LASIK, in which an anterior cover disc of the cornea known as flap is cut free by femtosecond laser radiation in order subsequently to resemble as in the classical LASIK technique (LASIK: Laser In Sito Keratomi- leusis) to flap the still hanging in a hinge area ⁇ hinge) on the remaining corneal flap and to edit the thus exposed tissue ablating by means of UV laser radiation.
  • Another application for the attachment of intra-osseous sections in ocular tissue is the so-called corneal lenrequestingextraction, in which within the corneal tissue a lenticular disc is completely cut out by means of femtosecond laser radiation.
  • This slice is then removed through an additional cut led out to the ocular surface (the additional incision is made either by means of a scalpel or likewise by means of femtosecond laser radiation). Also at Corneal transplants (keratoplasty), the corneal incision can be performed using focused pulsed laser radiation.
  • the contact element carrying the contact surface is often a disposable article that must be replaced before each treatment.
  • Certain manufacturing tolerances can not be ruled out regularly in the manufacture of the contact elements, even with the greatest precision of manufacture. Therefore, after an exchange of the contact element, the z-position of the eye-facing contact surface - albeit only slightly - be different than in the previously used contact element.
  • the smallest possible focal diameter is sought in order to limit the photodisruptive effect locally as closely as possible.
  • Modern devices for example, work with focus diameters in the low single-digit ⁇ range.
  • a corresponding precision is desired for the cutting in the z-direction. This requires a correspondingly high manufacturing accuracy of the contact element, which, however, can not always be guaranteed. With reduced manufacturing precision of the contact element, therefore, the problem arises in the z-direction imprecise cut in Korneagewebe.
  • the object of the invention is to provide a device for ophthalmic laser surgery, which allows a high-precision laser treatment of an eye.
  • a device for ophthalmic laser surgery comprising a contact surface for forming a system to be treated eye, components for providing focused pulsed treatment laser radiation and for directing the same through the contact surface through the eye, a measuring device for position measurement of Contact surface based on the propagation direction of the treatment laser radiation, wherein the measuring device provides position measurement data, which are representative of the measured position of the contact surface at least one point thereof, and connected to the measuring device electronic evaluation and control arrangement, which is adapted to the focus location the treatment laser radiation depending on the position measurement data set.
  • the invention makes it possible to determine or / and check the position of the contact surface in the z direction (corresponding to the propagation direction of the treatment laser radiation) and to correct suitable control parameters of the laser beam.
  • Device dependent on the measured position of the contact surface For example, the z-position of the contact surface is measured with respect to a given reference point in a fixed coordinate system of the laser-surgical device. Depending on the manufacturing accuracy, a different z-position of the contact surface in the coordinate system can result for different contact elements.
  • These deviations take into account the evaluation and control unit in the focus control of the treatment laser radiation, so that an actual to be realized in the eye pattern or a pattern of photodisruptions to be realized at the desired location in the depth of the eye (ie at the desired location in z- Direction). In this way, high-precision cutting depths are possible, for example, in the production of a LASIK flap, in corneal lenticular extractions or in keratoplastics.
  • the measuring device can be configured to perform a position measurement of the contact surface at several different points of the same.
  • the contact surface By scanning the contact surface at several points of the same, it is possible to detect their angular position in space (angularity relative to the beam axis) in addition to determining the z-position of the contact surface. Because it can not be ruled out that the mentioned manufacturing tolerances also relate to the relative angular position of the eye-facing contact surface relative to a predetermined mounting surface of the contact element.
  • the manufacturing tolerances need not be equal everywhere in an orthogonal to the z-direction x-y plane, which is why a multi-point sampling of the contact surface an individual correction of the z-position of the focus location for different locations within the x-y plane is possible.
  • the measuring device is preferably a coherence-optical interferometric measuring device and has an optical interferometer for this purpose.
  • the contact surface will often be part of an interchangeable disposable component.
  • the invention does not require a disposable character of the element carrying the contact surface.
  • the invention is equally applicable in embodiments with permanently installed or at least reusable contact surface.
  • the contact surface is preferably formed by a transparent applanation plate or a transparent contact glass.
  • Applanation plates have at least on her eye-facing plate side a flat applanation surface, with which a leveling of the front of the eye is achieved.
  • the use of applanation plates for referencing the eye to be treated is usually favorable from the viewpoint of a high beam quality of the laser radiation. Nevertheless, it is equally possible within the scope of the invention to use as the contact element a contact lens with a typically concave or convex-shaped eye-facing lens surface.
  • the advantage of such contact glasses is z. B. a lesser increase in intraocular pressure when pressed against the eye.
  • the contact surface is formed in a preferred embodiment of a transparent contact element, which is part of a patient with a focusing lens of the device, in particular interchangeable coupled patient adapter.
  • the invention further provides a method for the laser treatment of an eye, comprising the steps:
  • the position measurement data for a measured position of the contact surface may be representative at several different locations thereof.
  • FIG. 1 shows a highly schematic representation of an exemplary embodiment of a device for ophthalmic laser surgery.
  • the laser surgical device is designated generally by 10. It contains an Fs laser 12, which emits pulsed laser radiation with pulse durations in the range of femtoseconds.
  • the laser radiation propagates along an optical beam path 14 and finally reaches an eye 16 to be treated.
  • different Dene components arranged for guiding and shaping the laser radiation.
  • these components comprise a focusing objective 18 (for example an F-theta objective) and a scanner 20 arranged upstream of the objective 18, by means of which the laser radiation provided by the laser 12 can be deflected in a plane (xy plane) orthogonal to the beam path 14.
  • a focusing objective 18 for example an F-theta objective
  • a scanner 20 arranged upstream of the objective 18, by means of which the laser radiation provided by the laser 12 can be deflected in a plane (xy plane) orthogonal to the beam path 14.
  • a drawn coordinate system illustrates this plane as well as one through the direction of the
  • the scanner 20 is constructed, for example, in a manner known per se from a pair of galvanometrically controlled deflection mirrors which are each responsible for the beam deflection in the direction of one of the axes spanning the x-y plane.
  • a central evaluation and control unit 22 controls the scanner 20 in accordance with a control program stored in a memory 24, which implements a sectional profile to be generated in the eye 16 (represented by a three-dimensional pattern of sampling points at which a photodisruption is to be effected in each case).
  • the mentioned components for guiding and shaping the laser radiation include at least one controllable optical element 26 for z-adjustment of the beam focus of the laser radiation.
  • this optical element is formed by a lens.
  • a suitable actuator 28 is used, which in turn is controlled by the evaluation and control unit 22.
  • the lens 26 can be moved mechanically along the optical beam path 14.
  • a controllable liquid lens of variable refractive power With unchanged z-position and otherwise unchanged setting of the focusing lens 18 can be achieved by moving a longitudinally adjustable lens or by refractive power variation of a liquid lens, a z-displacement of the beam focus. It is understood that for z-adjustment of the beam focus, other components are conceivable, such as a deformable mirror.
  • the focusing objective 18 is coupled to a patient adapter 30, which serves to establish a mechanical coupling between the eye 16 and the focusing objective 18.
  • a patient adapter 30 which serves to establish a mechanical coupling between the eye 16 and the focusing objective 18.
  • the suction ring and the patient adapter 30 form a defined mechanical interface, which allows a coupling of the patient adapter 30 to the suction ring.
  • the patient adapter 30 serves as a support for a transparent contact element 32, which in the example shown is designed as a plane-parallel applanation plate.
  • the patient adapter 30 comprises, for example, a cone sleeve body, on whose narrower (in the drawing lower) sleeve end the applanation plate 32 is arranged.
  • the wider (in the drawing upper) sleeve end of the patient adapter 30 is attached to the focusing lens 18 and there has suitable formations that allow an optionally releasable fixation of the patient adapter 30 to the focusing lens 18.
  • the applanation plate 32 is a critical article from the point of view of hygiene and therefore it is expedient to replace it after each treatment.
  • the applanation plate 32 can be exchangeably attached to the patient adapter 30.
  • the patient adapter 30 together with the applanation plate 32 form a disposable unit, to which the applanation plate 32 can be permanently connected to the patient adapter 30.
  • the eye-facing underside of the applanation plate 32 forms a flat contact surface 34 against which the eye 16 is pressed in preparation for the treatment. This causes a planarization of the anterior surface of the eye with simultaneous deformation of the cornea of the eye 16, designated 36.
  • the contact surface 34 In order to be able to use the contact surface 34 as a reference for the z-control of the beam focus, it is necessary to know its z-position in the coordinate system of the laser-surgical device. Due to unavoidable manufacturing tolerances can not be ruled out that when installing different applanation plates or different patient adapter 30, which are each equipped with a applanation plate 32, the z-position and possibly also the angular position of the contact surface 34 shows more or less significant fluctuations. As far as this swan Ignored in the z-control of the beam focus, there are unwanted errors in the actual position of the incisions produced in the eye 16.
  • the laser surgical device 10 contains a coherence-optical interferometric measuring device 38, for example an OLCR measuring device (OLCR: Optical Low Coherence Reflectrometry), which emits a measuring beam, which is coupled into the beam path 14 by means of an immovably arranged, semitransparent deflecting mirror 40 which also the treatment laser radiation of the laser 12 is running.
  • the measuring device 38 brings the generated measuring beam into interference with a reflection beam returning from the eye 16. From the interference measurement data obtained in this regard, the z-position of the contact surface 34 within the coordinate system of the laser-surgical device can be determined. Therefore, one can the interference measurement data as
  • the evaluation and control unit 22 receives the interference measurement data from the measuring device 38 and calculates therefrom the z-position of that point of the contact surface 34 at which the measuring beam impinged or through which the measuring beam passed. In the subsequent laser treatment of the eye 16, the evaluation and control unit 22 takes into account the thus determined actual z-position of the contact surface 34 in the z-control of the beam focus, in such a way that the incision actually at the intended position in the depth of the cornea is produced. For this purpose, the evaluation and control unit 22 references the z-position of the beam focus to be set to the measured z-position of the contact surface 34.
  • the measuring beam emitted by the measuring device 38 passes through the scanner 20.
  • the scanner module 20 could also include a second separate scanner for the OLCR alone, which works much faster with smaller mirrors.
  • the concrete scanner mirror of the measuring device 38 can also be arranged separately in the first beam path 14a of the OLCR (not shown in FIG. 1). Such a scanning of the contact surface 34 by the measuring beam and consequently a z-measurement of the contact surface 34 at different locations thereof is possible.
  • the scanner may include a pair of mirrors or a deflection unit operating according to another deflection technique, which is used jointly for the x-y deflection of the laser radiation and of the measurement beam.
  • the scanner 20 may include separate mirror pairs or generally separate deflection units, one of which is used for x-y deflection of the laser radiation and the other for x-y deflection of the measurement beam.
  • the deflecting unit for the measuring beam could be equipped with smaller, faster movable mirrors than the deflecting unit for the laser radiation.
  • a deflection unit for the measuring beam can be arranged in that part of the beam path of the measuring beam that lies in front of the deflection mirror 40. This part is designated 14a in FIG.
  • the scanner 20 may lie in the direction of propagation of the laser radiation in front of the deflection mirror 40 and accordingly a z-measurement of the contact surface 34 may be possible only at a single location.
  • the evaluation and control unit 22 can calculate a global z-correction measure which is equally used in the z-control of the beam focus for all locations in the x-y plane.
  • the reference numeral 42 denotes a further immovable deflection mirror, which serves to guide the treatment laser radiation.

Abstract

Eine Vorrichtung für die ophthalmologische Laserchirurgie umfasst eine Kontaktfläche (34) zur formenden Anlage eines zu behandelnden Auges (16), Komponenten (12, 18, 20, 26, 40, 42) zur Bereitstellung fokussierter gepulster Behandlungs-Laserstrahlung und zum Richten derselben durch die Kontaktfläche hindurch auf das Auge, eine Messeinrichtung (38) zur Positionsvermessung der Kontaktfläche bezogen auf die Ausbreitungsrichtung der Behandlungs-Laserstrahlung, wobei die Messeinrichtung Positionsmessdaten bereitstellt, welche für die gemessene Position der Kontaktfläche an mindestens einer Stelle derselben repräsentativ sind, und eine mit der Messeinrichtung verbundene elektronische Auswerte- und Steueranordnung (22), welche dazu eingerichtet ist, den Fokusort der Behandlungs-Laserstrahlung abhängig von den Positionsmessdaten einzustellen. Durch Positionsvermessung der Kontaktfläche (34) ermöglicht die laserchirurgische Vorrichtung die Kompensation unvermeidlicher Fertigungstoleranzen eines die Kontaktfläche bildenden Kontaktelements (32) und damit eine präzise Referenzierung der Augenvorderfläche gegenüber der laserchirurgischen Vorrichtung.

Description

Vorrichtung für die ophthalmologische Laserchirurgie
Die Erfindung betrifft eine Vorrichtung für die ophthalmologische Laserchirurgie.
Gepulste Laserstrahlung kommt bei zahlreichen Techniken der Behandlung des menschlichen Auges zum Einsatz. Bei einigen dieser Techniken wird das zu behandelnde Auge gegen ein transparentes Kontaktelement gedrückt, das mit seiner augenzugewandten Kontaktfläche eine Referenzfläche für die Positionierung des Strahlfokus in z-Richtung (gemeint ist hiermit gemäß üblicher Notation die Ausbreitungsrichtung des Laserstrahls) bildet. Insbesondere Behandlungstechniken, die der Erzeugung von Schnitten (Inzisionen) im Augengewebe mittels fokussierter Femtosekunden-Laserstrahlung dienen, bedienen sich häufig solcher Kontaktelemente als z- Referenz für den Laserfokus. Indem das Kontaktelement so gegen das Auge gedrückt wird, dass sich eine anschmiegende flächige Anlage des Auges an der augenzugewandten Kontaktfläche des Kontaktelements einstellt, gibt das Kontaktelement die z-Lage der Augenvorderfläche vor. Durch Referenzierung des Strahlfokus in z- Richtung gegenüber dieser Kontaktfläche des Kontaktelements ist dann sichergestellt, dass der Schnitt bzw. die einzelne Photodisruption (die Schnitterzeugung im menschlichen Auge mittels gepulster Femtosekunden-Laserstrahlung beruht regelmäßig auf dem Effekt des sogenannten laserinduzierten optischen Durchbruchs, der zu einer Photodisruption führt) an der gewünschten Position in der Tiefe des Augengewebes liegt.
Lasertechnisch erzeugte Schnitte kommen beispielsweise bei der sogenannten Fs- LASIK vor, bei der ein in der Fachwelt als Flap bezeichnetes anteriores Deckelscheib- chen der Kornea mittels Femtosekunden-Laserstrahlung freigeschnitten wird, um anschließend wie bei der klassischen LASIK-Technik (LASIK: Laser In Sito Keratomi- leusis) den noch in einem Scharnierbereich {hinge) am restlichen Korneagewebe hängenden Flap zur Seite zu klappen und das so freigelegte Gewebe mittels UV- Laserstrahlung ablatierend zu bearbeiten. Ein anderer Anwendungsfall für die Anbringung intragewebl icher Schnitte im Augengewebe ist die sogenannte korneale Lentitelextraktion, bei der innerhalb des Korneagewebes ein linsenförmiges Scheibchen mittels Femtosekunden-Laserstrahlung rundum herausgeschnitten wird. Dieses Scheibchen wird anschließend durch einen zur Augenoberfläche herausgeführten zusätzlichen Schnitt entnommen (der zusätzliche Schnitt wird entweder mittels eines Skalpells oder ebenfalls mittels Femtosekunden-Laserstrahlung erzeugt). Auch bei Hornhauttransplantationen (Keratoplastik) kann die Schnitterzeugung in der Kornea mittels fokussierter gepulster Laserstrahlung durchgeführt werden.
Aus Hygienegründen ist das die Kontaktfläche tragende Kontaktelement oftmals ein Wegwerfartikel, der vor jeder Behandlung auszutauschen ist. Gewisse Fertigungstoleranzen sind bei der Herstellung der Kontaktelemente auch bei größter Fertigungspräzision regelmäßig nicht auszuschließen. Daher kann nach einem Austausch des Kontaktelements die z-Lage der augenzugewandten Kontaktfläche - wenn auch nur geringfügig - anders sein als bei dem zuvor benutzten Kontaktelement. Bei Laserbehandlungen mittels fokussierter Femtosekunden-Laserstrahlung werden möglichst kleine Fokusdurchmesser angestrebt, um die photodisruptive Wirkung lokal möglichst eng zu begrenzen. Moderne Geräte arbeiten beispielsweise mit Fokusdurchmessern im niedrigen einstelligen μιτι-Bereich. Eine entsprechende Präzision ist für die Schnittführung in z-Richtung erwünscht. Dies verlangt eine entsprechend hohe Fertigungsgenauigkeit des Kontaktelements, die jedoch nicht immer gewährleistet werden kann. Bei verminderter Fertigungspräzision des Kontaktelements stellt sich deshalb das Problem einer in z-Richtung unpräzisen Schnittführung im Korneagewebe.
Aufgabe der Erfindung ist es, eine Vorrichtung für die ophthalmologische Laserchirurgie bereitzustellen, welche eine hochpräzise Laserbehandlung eines Auges ermöglicht.
Zur Lösung dieser Aufgabe ist erfindungsgemäß eine Vorrichtung für die ophthalmologische Laserchirurgie vorgesehen, umfassend eine Kontaktfläche zur formenden Anlage eines zu behandelnden Auges, Komponenten zur Bereitstellung fokussierter gepulster Behandlungs-Laserstrahlung und zum Richten derselben durch die Kontaktfläche hindurch auf das Auge, eine Messeinrichtung zur Positionsvermessung der Kontaktfläche bezogen auf die Ausbreitungsrichtung der Behandlungs- Laserstrahlung, wobei die Messeinrichtung Positionsmessdaten bereitstellt, welche für die gemessene Position der Kontaktfläche an mindestens einer Stelle derselben repräsentativ sind, und eine mit der Messeinrichtung verbundener elektronische Auswerte- und Steueranordnung, welche dazu eingerichtet ist, den Fokusort der Behandlungs-Laserstrahlung abhängig von den Positionsmessdaten einzustellen.
Die Erfindung ermöglicht eine Ermittlung oder/und Überprüfung der Position der Kontaktfläche in z-Richtung (entsprechend der Ausbreitungsrichtung der Behandlungs-Laserstrahlung) sowie eine Korrektur geeigneter Steuerparameter der Laser- vorrichtung abhängig von der gemessenen Position der Kontaktfläche. Die z-Position der Kontaktfläche wird beispielsweise mit Bezug auf einen gegebenen Referenzpunkt in einem festen Koordinatensystem der laserchirurgischen Vorrichtung gemessen. Für unterschiedliche Kontaktelemente kann sich je nach Herstellungsgenauigkeit eine unterschiedliche z-Lage der Kontaktfläche in dem Koordinatensystem ergeben. Diese Abweichungen berücksichtigt die Auswerte- und Steuereinheit bei der Fokussteuerung der Behandlungs-Laserstrahlung, sodass ein im Auge zu realisierendes Schnittmuster bzw. ein zu realisierendes Muster von Photodisruptionen tatsächlich an der gewünschten Stelle in der Tiefe des Auges (also an der gewünschten Stelle in z- Richtung) liegt. Auf diese Weise sind hochpräzise Schnitttiefen beispielsweise bei der Herstellung eines LASIK-Flaps, bei kornealen Lentikelextraktionen oder bei Keratoplastiken möglich.
Gemäß einer Weiterbildung der Erfindung kann die Messeinrichtung dazu eingerichtet sein, eine Positionsvermessung der Kontaktfläche an mehreren verschiedenen Stellen derselben durchzuführen. Durch eine Abtastung der Kontaktfläche an mehrere Stellen derselben ist es möglich, zusätzlich zur Ermittlung der z-Lage der Kontaktfläche deren Winkellage im Raum (Winkeligkeit relativ zur Strahlachse) zu erfassen. Denn es kann nicht ausgeschlossen werden, dass die erwähnten Fertigungstoleranzen auch die relative Winkellage der augenzugewandten Kontaktfläche relativ zu einer vorbestimmten Montagefläche des Kontaktelements betreffen. Überdies müssen die Fertigungstoleranzen nicht überall gleich in einer zur z-Richtung orthogonalen x-y-Ebene sein, weswegen durch eine Mehrpunkt-Abtastung der Kontaktfläche eine individuelle Korrektur der z-Lage des Fokusorts für unterschiedliche Stellen innerhalb der x-y- Ebene möglich ist.
Die Messeinrichtung ist vorzugsweise eine kohärenzoptische interferometrische Messeinrichtung und besitzt hierzu ein optisches Interferometer.
Die Kontaktfläche wird häufig Teil einer austauschbar angeordneten Wegwerfkomponente sein. Es ist freilich zu betonen, dass die Erfindung keinen Wegwerfcharakter des die Kontaktfläche tragenden Elements voraussetzt. Die Erfindung ist gleichermaßen einsetzbar bei Ausgestaltungen mit fest eingebauter oder zumindest mehrfach verwendbarer Kontaktfläche.
Die Kontaktfläche ist bevorzugt von einer transparenten Applanationsplatte oder einem transparenten Kontaktglas gebildet. Applanationsplatten besitzen zumindest auf ihrer augenzugewandten Plattenseite eine ebene Applanationsfläche, mit der eine Einebnung der Augenvorderseite erzielt wird. Die Verwendung von Applanationsplat- ten zur Referenzierung des zu behandelnden Auges ist regelmäßig günstig unter dem Gesichtspunkt einer hohen Strahlqualität der Laserstrahlung. Dennoch ist es im Rahmen der Erfindung gleichermaßen möglich, als Kontaktelement ein Kontaktglas mit einer typischerweise konkav oder konvex geformten augenzugewandten Linsenfläche zu verwenden. Der Vorteil solcher Kontaktgläser ist z. B. ein geringerer Anstieg des Augeninnendrucks beim Andrücken an das Auge.
Die Kontaktfläche ist bei einer bevorzugten Ausgestaltung von einem transparenten Kontaktelement gebildet, welches Teil eines mit einem Fokussierobjektiv der Vorrichtung insbesondere austauschbar gekoppelten Patientenadapters ist.
Nach einem weiteren Gesichtspunkt ist erfindungsgemäß ferner ein Verfahren zur Laserbehandlung eines Auges vorgesehen, umfassend die Schritte:
- Herstellen eines formenden Anlagekontakts zwischen dem Auge und einer Kontaktfläche,
- Bereitstellen fokussierter gepulster Behandlungs-Laserstrahlung und Richten derselben durch die Kontaktfläche hindurch auf das Auge,
- Erzeugen von Positionsmessdaten, welche für eine gemessene Position der Kontaktfläche an mindestens einer Stelle derselben bezogen auf die Ausbreitungsrichtung der Behandlungs-Laserstrahlung repräsentativ sind, und
- Einstellen des Fokusorts der Behandlungs-Laserstrahlung abhängig von den erzeugten Positionsmessdaten.
Auch bei dem Verfahrensaspekt können die Positionsmessdaten für eine gemessene Position der Kontaktfläche an mehreren verschiedenen Stellen derselben repräsentativ sein.
Die Erfindung wird nachfolgend anhand der beigefügten einzigen Zeichnung weiter erläutert. Die dort gezeigte Fig. i steiit stark schematisiert ein Ausführungsbeispiel einer Vorrichtung für die ophthalmologische Laserchirurgie dar. Die laserchirurgische Vorrichtung ist allgemein mit 10 bezeichnet. Sie enthält einen Fs-Laser 12, welcher gepulste Laserstrahlung mit Pulsdauern im Bereich von Femtosekunden abgibt. Die Laserstrahlung breitet sich längs eines optischen Strahlengangs 14 aus und gelangt schließlich auf ein zu behandelndes Auge 16. In dem Strahlengang 14 sind verschie- dene Komponenten zur Führung und Formung der Laserstrahlung angeordnet. Insbesondere umfassen diese Komponenten ein Fokussierobjektiv 18 (beispielsweise ein F-Theta-Objektiv) sowie einen dem Objektiv 18 vorgeschalteten Scanner 20, mittels dessen die von dem Laser 12 bereitgestellte Laserstrahlung in einer zum Strahlengang 14 orthogonalen Ebene (x-y-Ebene) ablenkbar ist. Ein eingezeichnetes Koordinatensystem veranschaulicht diese Ebene sowie eine durch die Richtung des
Strahlengangs 14 definierte z-Achse. Der Scanner 20 ist beispielsweise in an sich bekannter Weise aus einem Paar galvanometrisch gesteuerter Ablenkspiegel aufgebaut, welche jeweils für die Strahlablenkung in Richtung einer der die x-y-Ebene aufspannenden Achsen verantwortlich sind. Eine zentrale Auswerte- und Steuereinheit 22 steuert den Scanner 20 nach Maßgabe eines in einem Speicher 24 gespeicherten Steuerprogramms, welches ein in dem Auge 16 zu erzeugendes Schnittprofil (repräsentiert durch ein dreidimensionales Muster von Abtastpunkten, an denen jeweils eine Photodisruption zu bewirken ist) implementiert.
Des weiteren beinhalten die erwähnten Komponenten zur Führung und Formung der Laserstrahlung mindestens ein steuerbares optisches Element 26 zur z-Verstellung des Strahlfokus der Laserstrahlung. Im gezeigten Beispielfall ist dieses optische Element von einer Linse gebildet. Zur Steuerung der Linse 26 dient ein geeigneter Aktu- ator 28, der seinerseits durch die Auswerte- und Steuereinheit 22 gesteuert ist.
Beispielsweise kann die Linse 26 mechanisch längs des optischen Strahlengangs 14 verfahrbar sein. Alternativ ist es vorstellbar, eine steuerbare Flüssiglinse variabler Brechkraft zu verwenden. Bei unveränderter z-Position und auch ansonsten unveränderter Einstellung des Fokussierobjektivs 18 lässt sich durch Verfahren einer längsverstellbaren Linse oder durch Brechkraftvariation einer Flüssiglinse eine z- Verlagerung des Strahlfokus erreichen. Es versteht sich, dass zur z-Verstellung des Strahlfokus auch andere Komponenten vorstellbar sind, etwa ein verformbarer Spiegel. Wegen seiner vergleichsweise höheren Trägheit ist es zweckmäßig, mit dem Fokussierobjektiv 18 nur eine anfängliche Grundeinstellung des Strahlfokus (d.h. Fokussierung auf eine vorgegebene z-Referenzposition) vorzunehmen, die durch das Schnittprofil vorgegebenen z-Verlagerungen des Strahlfokus jedoch durch eine außerhalb des Fokussierobjektivs 18 angeordnete Komponente mit kürzerer Reaktionsgeschwindigkeit zu bewerkstelligen.
Auf der Seite des Strahlaustritts ist das Fokussierobjektiv 18 mit einem Patientenadapter 30 gekoppelt, welcher zur Herstellung einer mechanischen Kopplung zwischen dem Auge 16 und dem Fokussierobjektiv 18 dient. Üblicherweise wird bei Behandlungen der hier betrachteten Art ein in der Zeichnung nicht näher dargestellter, für sich jedoch bekannter Saugring auf das Auge aufgesetzt und dort durch Saugkraft fixiert. Der Saugring und der Patientenadapter 30 bilden eine definierte mechanische Schnittstelle, welche eine Ankopplung des Patientenadapters 30 an den Saugring gestattet. Diesbezüglich kann beispielsweise auf die internationale Patentanmeldung PCT/EP2008/006962 verwiesen werden, deren Gesamtinhalt hiermit durch Verweis einbezogen wird.
Der Patientenadapter 30 dient als Träger für ein transparentes Kontaktelement 32, welches im gezeigten Beispielfall als planparallele Applanationsplatte ausgebildet ist. Der Patientenadapter 30 umfasst beispielsweise einen Kegelhülsenkörper, an dessen schmälerem (in der Zeichnung unterem) Hülsenende die Applanationsplatte 32 angeordnet ist. Im Bereich des breiteren (in der Zeichnung oberen) Hülsenendes ist der Patientenadapter 30 dagegen an das Fokussierobjektiv 18 angesetzt und besitzt dort geeignete Formationen, die eine gewünschtenfalls lösbare Fixierung des Patientenadapters 30 an dem Fokussierobjektiv 18 gestatten.
Weil sie während der Behandlung in Kontakt mit dem Auge 16 gelangt, ist die Applanationsplatte 32 ein unter dem Gesichtspunkt der Hygiene kritischer Artikel, der deshalb zweckmäßigerweise nach jeder Behandlung auszuwechseln ist. Hierzu kann die Applanationsplatte 32 auswechselbar an dem Patientenadapter 30 angebracht sein. Alternativ kann der Patientenadapter 30 zusammen mit der Applanationsplatte 32 eine Wegwerfeinheit bilden, wozu die Applanationsplatte 32 unlösbar mit dem Patientenadapter 30 verbunden sein kann.
Jedenfalls bildet die augenzugewandte Unterseite der Applanationsplatte 32 eine ebene Kontaktfläche 34, gegen welche zur Vorbereitung der Behandlung das Auge 16 gedrückt wird. Dies bewirkt eine Einebnung der Augenvorderfläche unter gleichzeitiger Verformung der mit 36 bezeichneten Kornea des Auges 16.
Um die Kontaktfläche 34 als Referenz für die z-Steuerung des Strahlfokus nutzen zu können, ist es nötig, ihre z-Lage in dem Koordinatensystem der laserchirurgischen Vorrichtung zu kennen. Aufgrund unvermeidlicher Fertigungstoleranzen kann nicht ausgeschlossen werden, dass bei Einbau unterschiedlicher Applanationsplatten bzw. unterschiedlicher Patientenadapter 30, die jeweils mit einer Applanationsplatte 32 bestückt sind, die z-Lage und unter Umständen auch die Winkellage der Kontaktfläche 34 mehr oder weniger signifikante Schwankungen zeigt. Soweit diese Schwan- kungen bei der z-Steuerung des Strahlfokus unberücksichtigt bleiben, ergeben sich unerwünschte Fehler bei der tatsächlichen Lage der erzeugten Inzisionen im Auge 16.
Deshalb enthält die laserchirurgische Vorrichtung 10 eine kohärenzoptische interfe- rometrische Messeinrichtung 38, beispielsweise eine OLCR-Messeinrichtung (OLCR: Optical Low Coherence Reflectrometry), welche einen Messstrahl aussendet, der mittels eines unbeweglich angeordneten, halbdurchlässigen Umlenkspiegels 40 in den Strahlengang 14 eingekoppelt wird, in dem auch die Behandlungs-Laserstrahlung des Lasers 12 läuft. Die Messeinrichtung 38 bringt den erzeugten Messstrahl mit einem vom Auge 16 zurückkommenden Reflektionsstrahl in Interferenz. Aus den diesbezüglich gewonnenen Interferenzmessdaten kann die z-Position der Kontaktfläche 34 innerhalb des Koordinatensystems der laserchirurgischen Vorrichtung ermittelt werden. Deshalb kann man die Interferenzmessdaten auch als
Positionsmessdaten bezeichnen. Die Auswerte- und Steuereinheit 22 erhält die Interferenzmessdaten von der Messeinrichtung 38 und berechnet hieraus die z-Lage derjenigen Stelle der Kontaktfläche 34, an welcher der Messstrahl auftraf bzw. durch welche der Messstrahl hindurchging. Bei der folgenden Laserbehandlung des Auges 16 berücksichtigt die Auswerte- und Steuereinheit 22 die so ermittelte tatsächliche z- Lage der Kontaktfläche 34 bei der z-Steuerung des Strahlfokus, und zwar so, dass die Inzision tatsächlich an der beabsichtigten Position in der Tiefe der Kornea 36 erzeugt wird. Hierzu referenziert die Auswerte- und Steuereinheit 22 die einzustellende z-Position des Strahlfokus auf die gemessene z-Position der Kontaktfläche 34.
Im gezeigten Beispielfall durchläuft der von der Messeinrichtung 38 ausgesendete Messstrahl den Scanner 20. Dies ermöglicht es, die Ablenkfunktion des Scanners 20 auch für den Messstrahl zu nutzen. Das Scannermodul 20 könnte auch einen zweiten separaten Scanner allein für das OLCR enthalten, der mit kleineren Spiegeln ausgestattet deutlich schneller arbeitet. Die konkreten Scannerspiegel der Messeinrichtung 38 kann aber auch separat im 1. Strahlgang 14a des OLCR angeordnet sein (in Fig. 1 nicht eingezeichnet). Es ist so eine Abtastung der Kontaktfläche 34 durch den Messstrahl und folglich eine z-Vermessung der Kontaktfläche 34 an unterschiedlichen Stellen derselben möglich. Auf diese Weise kann eine Tabelle oder eine andere geeignete Datenstruktur erzeugt werden, die für unterschiedliche Positionen in der x-y- Ebene die dort jeweils gemessene z-Position der Kontaktfläche 34 oder einen abhängig von der lokal gemessenen z-Position der Kontaktfläche 34 berechneten z- Korrekturwert angibt, der von der Auswerte- und Steuereinheit 22 bei der z- Steuerung des Strahlfokus berücksichtigt wird. Ist beispielsweise das Schnittprofil durch eine Tabelle definiert, die für jede zu erzeugende Photodisruption deren z- Position mit Bezug auf einen bekannten, vorbestimmten Punkt in dem Koordinatensystem der laserchirurgischen Vorrichtung angibt, so kann die Auswerte- und Steuereinheit 22 anhand solcher z-Korrekturwerte die Tabelle für das Schnittprofil geeignet korrigieren.
In einer Ausgestaltung kann der Scanner ein Spiegelpaar oder eine nach einer anderen Ablenktechnik arbeitende Ablenkeinheit enthalten, das bzw. die gemeinsam zur x-y-Ablenkung der Laserstrahlung und des Messstrahls genutzt wird. In einer anderen Ausgestaltung kann der Scanner 20 gesonderte Spiegelpaare oder allgemein gesonderte Ablenkeinheiten enthalten, von denen die eine zur x-y-Ablenkung der Laserstrahlung und die andere zur x-y-Ablenkung des Messstrahls verwendet wird. Die Ablenkeinheit für den Messstrahl könnte beispielsweise mit kleineren, schneller bewegbaren Spiegeln ausgestattet sein als die Ablenkeinheit für die Laserstrahlung. In noch einer anderen Ausgestaltung kann eine Ablenkeinheit für den Messstrahl in demjenigen Teil des Strahlengangs des Messstrahls angeordnet sein, der vor dem Umlenkspiegel 40 liegt. Dieser Teil ist in Fig. 1 mit 14a bezeichnet.
Es versteht sich, dass in noch einer alternativen Ausgestaltung der Scanner 20 in Ausbreitungsrichtung der Laserstrahlung vor dem Umlenkspiegel 40 liegen kann und dementsprechend eine z-Vermessung der Kontaktfläche 34 nur an einer einzigen Stelle möglich sein kann. In diesem Fall kann von der Auswerte- und Steuereinheit 22 ein globales z-Korrekturmaß berechnet werden, das bei der z-Steuerung des Strahlfokus für alle Orte in der x-y-Ebene gleichermaßen angewendet wird.
Mit dem Bezugszeichen 42 ist ein weiterer unbeweglicher Umlenkspiegel bezeichnet, welcher der Führung der Behandlungs-Laserstrahlung dient.

Claims

Ansprüche
1. Vorrichtung für die ophthalmologische Laserchirurgie, umfassend
- eine Kontaktfläche zur formenden Anlage eines zu behandelnden Auges,
- Komponenten zur Bereitstellung fokussierter gepulster Behandlungs-Laserstrahlung und zum Richten derselben durch die Kontaktfläche hindurch auf das Auge,
- eine Messeinrichtung zur Positionsvermessung der Kontaktfläche bezogen auf die Ausbreitungsrichtung der Behandlungs-Laserstrahlung, wobei die Messeinrichtung Positionsmessdaten bereitstellt, welche für die gemessene Position der Kontaktfläche an mindestens einer Stelle derselben repräsentativ sind,
- eine mit der Messeinrichtung verbundene elektronische Auswerte- und Steueranordnung, welche dazu eingerichtet ist, den Fokusort der Behandlungs-Laserstrahlung abhängig von den Positionsmessdaten einzustellen.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Messeinrichtung dazu eingerichtet ist, eine Positionsvermessung der Kontaktfläche an mehreren verschiedenen Stellen derselben durchzuführen.
3. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Messeinrichtung ein optisches Interferometer umfasst.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kontaktfläche Teil einer austauschbar angeordneten Wegwerfkomponente ist.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kontaktfläche von einer transparenten Applanationsplatte oder einem transparenten Kontaktglas gebildet ist.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kontaktfläche von einem transparenten Kontaktelement gebildet ist, welches Teil eines mit einem Fokussierobjektiv der Vorrichtung gekoppelten Patientenadapters ist.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Pulsdauer der Behandlungs-Laserstrahlung im Femtosekundenbe- reich liegt.
8. Verfahren zur Laserbehandlung eines Auges, umfassend die Schritte:
- Herstellen eines formenden Anlagekontakts zwischen dem Auge und einer Kontaktfläche,
- Bereitstellen fokussierter gepulster Behandlungs-Laserstrahlung und Richten derselben durch die Kontaktfläche hindurch auf das Auge,
- Erzeugen von Positionsmessdaten, welche für eine gemessene Position der Kontaktfläche an mindestens einer Stelle derselben bezogen auf die Ausbreitungsrichtung der Behandlungs-Laserstrahlung repräsentativ sind,
- Einstellen des Fokusorts der Behandlungs-Laserstrahlung abhängig von den erzeugten Positionsmessdaten.
9. Verfahren nach Anspruch 8, wobei die Positionsmessdaten für eine gemessene Position der Kontaktfläche an mehreren verschiedenen Stellen derselben repräsentativ sind.
EP09778679A 2009-09-23 2009-09-23 Vorrichtung für die ophthalmologische laserchirurgie Withdrawn EP2453853A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2009/006879 WO2011035793A1 (de) 2009-09-23 2009-09-23 Vorrichtung für die ophthalmologische laserchirurgie

Publications (1)

Publication Number Publication Date
EP2453853A1 true EP2453853A1 (de) 2012-05-23

Family

ID=41665113

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09778679A Withdrawn EP2453853A1 (de) 2009-09-23 2009-09-23 Vorrichtung für die ophthalmologische laserchirurgie

Country Status (9)

Country Link
US (1) US20120172853A1 (de)
EP (1) EP2453853A1 (de)
JP (1) JP2013505088A (de)
KR (1) KR20120085236A (de)
CN (1) CN102470047A (de)
AU (1) AU2009352961A1 (de)
CA (1) CA2768282A1 (de)
TW (1) TW201117788A (de)
WO (1) WO2011035793A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8465477B2 (en) 2009-12-07 2013-06-18 Wavelight Ag Apparatus for laser surgical ophthalmology
US8733934B2 (en) 2011-05-16 2014-05-27 Wavelight Gmbh Instrument for examining or machining a human eye
US10219948B2 (en) * 2016-02-24 2019-03-05 Perfect Ip, Llc Ophthalmic laser treatment system and method
US10456240B2 (en) * 2017-11-24 2019-10-29 Rxsight, Inc. Patient interface for light adjustable intraocular lens irradiation system
CN108508622A (zh) * 2018-03-12 2018-09-07 广东欧珀移动通信有限公司 激光投射模组、深度相机和电子装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008040436A1 (de) * 2006-09-29 2008-04-10 Carl Zeiss Meditec Ag Vorrichtung und verfahren zur materialverarbeitung unter verwendung eines transparenten kontaktelements

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5549632A (en) * 1992-10-26 1996-08-27 Novatec Laser Systems, Inc. Method and apparatus for ophthalmic surgery
US6137585A (en) * 1998-05-15 2000-10-24 Laser Diagnostic Technologies, Inc. Method and apparatus for recording three-dimensional distribution of light backscattering potential in transparent and semi-transparent structures
AUPP420298A0 (en) * 1998-06-17 1998-07-09 Lions Eye Institute Of Western Australia Incorporated, The Z axis tracker
US6992765B2 (en) * 2002-10-11 2006-01-31 Intralase Corp. Method and system for determining the alignment of a surface of a material in relation to a laser beam
US8088124B2 (en) 2007-01-19 2012-01-03 Technolas Perfect Vision Gmbh System and method for precise beam positioning in ocular surgery
EP2194904A4 (de) 2007-09-10 2013-03-13 Alcon Lensx Inc Gerät, systeme und techniken als schnittstellenverbindung mit einem auge in der laserchirurgie

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008040436A1 (de) * 2006-09-29 2008-04-10 Carl Zeiss Meditec Ag Vorrichtung und verfahren zur materialverarbeitung unter verwendung eines transparenten kontaktelements

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2011035793A1 *

Also Published As

Publication number Publication date
TW201117788A (en) 2011-06-01
AU2009352961A1 (en) 2012-03-01
CA2768282A1 (en) 2011-03-31
WO2011035793A1 (de) 2011-03-31
JP2013505088A (ja) 2013-02-14
CN102470047A (zh) 2012-05-23
US20120172853A1 (en) 2012-07-05
KR20120085236A (ko) 2012-07-31

Similar Documents

Publication Publication Date Title
EP2231084B1 (de) Laserkorrektur von sehfehlern an der natürlichen augenlinse
DE60126019T2 (de) Vorrichtung zur patientenspezifischen Anpassung einer Hornhautkorrektur
EP2445461B1 (de) Vorrichtung für die ophthalmologische laserchirurgie
EP2521519B1 (de) Ophthalmologisches lasersystem
WO2011042031A1 (de) Vorrichtung für die ophthalmologische laserchirurgie
EP2133048B1 (de) Apparat zur Ankopplung eines Elementes an das Auge
EP3225221B1 (de) Vorrichtung und verfahren zur materialbearbeitung mittels laserstrahlung
EP1889588B1 (de) Verbessertes Augenkontaktelement
EP1834615B1 (de) Steuerprogramm für die ophthalmologische Chirurgie
DE10237945A1 (de) Laserbasierte Vorrichtung zur nichtmechanischen, dreidimensionalen Trepanation bei Hornhauttransplantationen
WO2010142311A1 (de) Einrichtung für die laserchirurgische ophthalmologie
EP2654636B1 (de) Vorrichtung zur materialbearbeitung eines werkstücks und verfahren zum kalibrieren einer solchen vorrichtung
EP3454802B1 (de) Planungseinrichtung und verfahren zum erzeugen von steuerdaten für eine behandlungsvorrichtung zur augenchirurgie
EP3912607B1 (de) Verfahren zum bereitstellen von steuerdaten für einen augenchirurgischen laser einer behandlungsvorrichtung
EP2453853A1 (de) Vorrichtung für die ophthalmologische laserchirurgie
EP2482770B1 (de) Vorrichtung für die ophthalmologische laserchirurgie
WO2010115441A1 (de) Optisches abbildungssystem, insbesondere in einer laserchirurgischen einrichtung für die ophthalmologie
DE19943735B4 (de) Vorrichtung zur Bestrahlung des Auges
DE102021116497A1 (de) Verfahren zur Steuerung eines augenchirurgischen Lasers, Behandlungsvorrichtung, Computerprogramm sowie computerlesbares Medium
DE102008017772B4 (de) Vorrichtung zum Ausbilden von Schnittflächen in einem transparentem Material
DE102013204496A1 (de) Erzeugung gekrümmter Schnitte im Inneren der Augenhornhaut
EP3490513B1 (de) Ophthalmologische lasertherapie mit nachführsystem
DE102020104683A1 (de) Behandlungsvorrichtung für die Abtrennung eines Volumenkörpers aus einem Auge, Verfahren, Computerprogramm sowie computerlesbares Medium
DE102020104681A1 (de) Behandlungsvorrichtung für die Abtrennung eines Volumenkörpers aus einem Auge, Verfahren, Computerprogramm sowie computerlesbares Medium
WO2021048114A1 (de) Augenchirurgische behandlungsvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140403

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150818