EP2453027B1 - Warmumgeformtes Produkt und Verfahren zu dessen Herstellung - Google Patents

Warmumgeformtes Produkt und Verfahren zu dessen Herstellung Download PDF

Info

Publication number
EP2453027B1
EP2453027B1 EP11188717.0A EP11188717A EP2453027B1 EP 2453027 B1 EP2453027 B1 EP 2453027B1 EP 11188717 A EP11188717 A EP 11188717A EP 2453027 B1 EP2453027 B1 EP 2453027B1
Authority
EP
European Patent Office
Prior art keywords
hot
steel product
manganese
product according
bainite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11188717.0A
Other languages
English (en)
French (fr)
Other versions
EP2453027A1 (de
Inventor
Hans Roelofs
Giovanni Mastrogiacomo
Ulrich Hugo Urlau
Francisca Garcia Caballero
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swiss Steel AG
Original Assignee
Swiss Steel AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swiss Steel AG filed Critical Swiss Steel AG
Priority to EP11188717.0A priority Critical patent/EP2453027B1/de
Priority to PL11188717T priority patent/PL2453027T3/pl
Publication of EP2453027A1 publication Critical patent/EP2453027A1/de
Application granted granted Critical
Publication of EP2453027B1 publication Critical patent/EP2453027B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to a method for producing a steel product according to the preamble of claim 1 and to a hot-formed product producible therewith.
  • the tempering treatment aims at a tempered martensitic steel structure and allows the setting of a high level of toughness with still good strength.
  • a broadly used tempered steel is the material 42CrMo4. At a tensile strength of about 1000 MPa, this steel still achieves a Charpy impact work (ISO-V at room temperature) of 200 J.
  • Annealing steels with a martensite and bainite mixed structure can also have good property combinations.
  • the WO 2007/017161 describes such a steel for thick-walled seamless tubes (with up to 30 mm wall thickness). After quenching (cooling rate> 30 K / s) from the forming heat, a dominant martensitic microstructure with up to 40% bainite is formed. Irrespective of the original austenite grain size (primary structure), the martensitic structure has a good notched impact strength as soon as the martensite grain size is ⁇ 3 ⁇ m.
  • EP 0 845 544 describes such a microalloyed bainitic steel with C ⁇ 0.12%, which has a tensile strength of more than 1000 MPa at room temperature.
  • the steel is austenitized again after rolling and then quenched at a cooling rate> 17 K / s. This cooling rate is still significantly higher than that of the air-cooled long products in conventional rolling mills.
  • EP 0 775 756 describes another bainitic-martensitic steel for the production of forgings.
  • the tensile strength should be> 1 000 MPa and the Charpy notched impact strength ISO-U is> 50 J / cm 2 (or impact strength ISO-U> 25 J).
  • the described steel composition necessarily requires an accelerated cooling from the forming heat, so that these values can be achieved.
  • the exemplary embodiments show that the cooling rate should be> 14 K / s.
  • This technical teaching can not be applied in conventional forging and hot rolling processes.
  • the implementation is limited to small components in which even in the core still large cooling rates can be achieved.
  • JP2007 284774 describes a similar bainitic steel for the production of wire rod, which is characterized by good fatigue properties and good cold workability.
  • an accelerated cooling is required from the forming heat.
  • the cooling rates of the embodiments are between 15 and 50 K / s. The achievable impact strength is not apparent from the description.
  • GB 2 297 094 describes a carbide-free bainitic steel that can be made from the forming heat cooled in air.
  • the steel is designed for the production of rails and is characterized by a good wear resistance and a good fatigue behavior.
  • the notched impact strength of the Material was not the focus of this development.
  • the Charpy impact work ISO-V at room temperature is only at 20 to 40 years.
  • the in CN 1 477 226 steel described after air cooling may contain the following mixed structure: granular bainite, lower bainite, martensite, retained austenite. It achieves a tensile strength of 850 to over 1,400 MPa. However, to give good toughness, the steel must be heat treated (annealed) after hot working. The carbon present then migrates into the present austenite films, and at a tensile strength of about 900 MPa, a Charpy impact toughness ISO-U greater than 110 J / cm 2 (or> 55 J) can be achieved.
  • the object of the invention is to provide an improved hot-worked steel product and a method for its production, with which in particular the above disadvantages are avoided.
  • the cooling from the forming heat is carried out so that the temperature range between 600 and 400 ° C with a cooling rate of 0.1 to 4.0 K / s is passed.
  • the mass number Bs used in the above condition corresponds to a known empirical approach for the bainite start temperature in Kelvin [ W. Steven, and AJ Haynes, JISI 183, pp. 349-359 (1956 )].
  • the alloying components are chosen so that at normal cooling rates from 0.1 to 8.0 K / s rolling heat always a bainitic-martensitic microstructure results with tensile strength of 900 to 1400 MPa, without costly alloying elements and / or special Facilities for accelerated cooling from the rolling heat must be used.
  • the Charpy ISO-V impact test at room temperature is> 100 years.
  • the lower limit of the carbon content to 0.03 wt .-% is ensured in combination with manganese, chromium and molybdenum that there are no ferrite in the structure. Ferrite levels affect both the strength level and the impact strength of the product.
  • the upper limit of the carbon to 0.20 wt .-% ensures that the tensile strength does not rise above 1400 MPa. Higher strength values degrade machinability in the downstream drawing or machining process. Higher carbon contents also promote the formation of carbides, which adversely affects ductility.
  • the lower limit of 2.00% by weight in manganese ensures that a bainite start temperature below 800 K can be achieved without expensive alloying additions. These deep bainite start temperature ensures a fine steel structure, which consists predominantly of lower bainite.
  • a manganese content of at least 2.55% by weight is used. In particular, it is proven to use a manganese content of at least 2.80 wt .-%, for example, about 3.0 wt .-%.
  • Molybdenum suppresses the grain boundary segregation of embrittling elements such as phosphorus.
  • An addition of at least 0.15 wt .-% molybdenum thus improves the tempering resistance of the steel. If no downstream heat treatment takes place, the addition of molybdenum is not mandatory.
  • the hot-worked steel product has a molybdenum content of 0.15 to 0.50% by weight.
  • Chromium may be alloyed in place of manganese to adjust the bainite start temperature.
  • the use of chromium is more expensive than the use of manganese. Since manganese segregates strongly, it may nevertheless make sense for certain applications to replace part of the manganese with chromium. Since chromium increases the risk for the formation of chromium-rich nitrides and carbides, which can lead to a deterioration of the toughness, the chromium content is limited to 2.0% by weight.
  • the addition of silicon is not necessary to achieve the desired properties.
  • a metered addition of silicon suppresses carbide formation.
  • a preferred embodiment of the product according to the invention therefore contains 0.40 to 0.80% by weight of silicon.
  • Nickel improves Charpy impact strength at low temperatures. In general, the properties are sufficient without addition of nickel. For cost reasons, the nickel content is limited to 1.0 wt .-%.
  • Phosphorus is a steel pest. It goes to the Austenitkorngrenzen and weakens the structure. For this reason, the phosphorus content was limited to 0.035 wt .-%.
  • ferrite formation should be avoided as far as possible. This can be ensured by a sufficiently rapid cooling of the hot-formed product. If the cooling rate is insufficient, addition of boron may additionally be provided. Boron goes to the austenite grain boundaries and suppresses ferrite formation. In this case, a boron content of 10 to 50 ppm is sufficient.
  • the low transformation temperature ensures a very fine microstructure, which is decisive for achieving the high notched impact strength.
  • a sufficiently fine microstructure is achieved if the mean grain size of the dominant bainitic secondary microstructure is less than 5 ⁇ m.
  • the grain size is defined by the linear distance between grain boundaries.
  • the crystallographic orientation at the grain boundary should change by more than 15 °.
  • a too low selected Bs temperature slows the kinetics of bainite formation. It produces significantly less bainite and the structure becomes dominant martensitic.
  • the Bs temperature should therefore be above 700 K.
  • the bainite start temperature should preferably be between 750 and 800 K. Austenite is not completely transformed into bainite during structural transformation.
  • Austenite which does not convert to bainite during hot-dip cooling, is either stabilized to a sufficient carbon content or converts to martensite at lower temperatures. At a mean carbon content of 0.03 wt% in the steel, it is expected that there will be no retained austenite in the structure and the resulting martensite may be up to 40%.
  • the manganese content of the steel is more than 2.0% by weight, a microscopically uneven manganese distribution in the industrially produced product is to be expected (segregation zones). For this reason, the transformation behavior of austenite during cooling from hot working may vary locally. Thus, isolated grains of ferrite, granular bainite or upper bainite can not be completely excluded. As long as their ingredients are small, they will not affect the good properties of the product. Therefore, up to 10% granular or upper bainite and up to 2% ferrite are permissible for the product produced according to the invention.
  • the room temperature Charpy impact values determined at nine melts are in Fig. 1 as a function of the bainite start temperature Bs (determined according to Steven & Hayns). It has been discovered that the melts with Bs ⁇ 800 K always have a good notched impact strength.
  • Carbon, manganese, molybdenum were used in the trial melts to adjust the Bs temperature. No chromium and nickel were alloyed. The measured chromium and nickel contents (as accompanying elements or impurities in the steel) were between 0.05 and 0.09 wt .-%.
  • the three steels according to the invention (“steels 7 to 9”) are compared with the six non-novel steels ("steels 1 to 6") in Tables 1 and 2.
  • the properties and the microstructure of the non-inventive steel 2 are similar to steel 1.
  • the bainite start temperature is slightly lower and the microstructure is accordingly somewhat finer ( Fig. 3 ).
  • the structure consists predominantly of a carbide-free granular bainite.
  • the quantitative microstructure analysis (using X-ray diffraction for austenite and quantitative SEM analysis for ferrite, bainite and M / A phase fractions) revealed the following microstructural composition: 80% bainite (dominant granular), 17% martensite and 3% retained austenite.
  • the microstructure changes from granular bainite to pale lower bainite.
  • LOM micrograph
  • the much finer microstructure can be seen ( Fig. 5 ).
  • the strength increases markedly compared to steels 1 and 2, but the impact value remains low.
  • Reason for the unsatisfactory toughness are coarse grains of granular, upper bainite, which are embedded in a matrix of fine lower bainite.
  • the structure consists of 87% bainite, 10% martensite and 3% retained austenite.
  • the microstructure is not as fine as it appears in the LOM or in the scanning electron microscope.
  • EBSD Electro Back Scattering Diffraction
  • Fig. 7 shows the structure of the inventive steel 7 compared to the steel 6.
  • the structure has become even finer in steel 7.
  • the quantitative analysis gives the following structure composition: 70 to 72% lower bainite and 28 to 30% self-tempered martensite. Rough structural components such as ferrite or granular upper bainite are missing.
  • the mean grain size determined by EBSD is correspondingly small. It is 4.51 ⁇ m ( ⁇ 1.09 ⁇ m) and thus only half the size of steel 6.

Description

    Technisches Gebiet
  • Die Erfindung betrifft ein Verfahren zur Herstellung eines Stahlprodukts gemäss dem Oberbegriff des Anspruchs 1 sowie ein damit herstellbares warmumgeformtes Produkt.
  • Stand der Technik
  • Für massive Bauteile, die dynamisch oder schlagartig beansprucht werden, sind hohe Anforderungen an die Duktilität des eingesetzten Stahls gestellt. Aus diesem Grund werden die Endeigenschaften des Werkstoffs in der Regel über eine Wärmebehandlung eingestellt. Die Vergütungsbehandlung zielt auf ein angelassenes martensitisches Stahlgefüge und erlaubt die Einstellung eines hohen Zähigkeitsniveaus bei gleichzeitig noch guter Festigkeit. Ein breit eingesetzter Vergütungsstahl ist der Werkstoff 42CrMo4. Dieser Stahl erreicht bei einer Zugfestigkeit von ca. 1'000 MPa noch eine Charpy-Kerbschlagarbeit (ISO-V bei Raumtemperatur) von 200 J.
  • Vergütungsstähle mit einem Mischgefüge aus Martensit und Bainit können ebenfalls gute Eigenschaftskombinationen aufweisen. Die WO 2007/017161 beschreibt einen solchen Stahl für dickwandige Nahtlos-Rohre (mit bis zu 30 mm Wandstärke). Nach dem Abschrecken (Abkühlrate > 30 K/s) aus der Umformhitze entsteht ein dominant martensitisches Gefüge mit bis zu 40 % Bainit. Das martensitische Gefüge weist unabhängig von der ursprünglichen Austenitkorngrösse (Primärgefüge) eine gute Kerbschlagzähigkeit auf, sobald die Martensit-Korngrösse <3 µm beträgt.
  • Eine weitere Absenkung der Abkühlrate (aus der Umformwärme) führt zu dominant bainitischen Gefügen. Entsprechende Patentveröffentlichungen beziehen sich insbesondere auf Schmiedeteile und Schienen. Das resultierende Bainit-Gefüge ist in der Regel sehr kerbempfindlich, so dass die Charpy-Kerbschlagzähigkeit typischerweise an Proben mit U-Kerbe ermittelt wird.
  • In EP 0 845 544 wird ein solcher mikrolegierter bainitischer Stahl mit C ≤ 0.12 % beschrieben, der bei Raumtemperatur eine Zugfestigkeit von über 1'000 MPa aufweist. Um die gewünschten Eigenschaften zu erreichen, wird der Stahl nach der Walzung wieder austenitisiert und anschliessend mit einer Abkühlrate > 17 K/s abgeschreckt. Diese Abkühlrate liegt immer noch deutlich über denjenigen der an Luft abgekühlten Langprodukte in konventionellen Walzwerken.
  • EP 0 775 756 beschreibt einen weiteren bainitisch-martensitischen Stahl für die Herstellung von Schmiedeteilen. Nach dem Schmieden soll die Zugfestigkeit > 1'000 MPa betragen und die Charpy-Kerbschlagzähigkeit ISO-U ist > 50 J/cm2 (bzw. Kerbschlagarbeit ISO-U > 25 J). Die beschriebene Stahlzusammensetzung erfordert jedoch zwingend eine beschleunigte Abkühlung aus der Umformhitze, damit diese Werte erreichbar sind. Die Ausführungsbeispiele zeigen, dass die Abkühlrate > 14 K/s sein soll. Diese technische Lehre lässt sich in konventionellen Schmiede- und Warmwalzprozessen nicht anwenden. Ausserdem beschränkt sich die Umsetzung auf kleine Bauteile, bei denen auch im Kern noch grosse Kühlraten erreicht werden können.
  • JP2007 284774 beschreibt einen ähnlichen bainitischen Stahl zur Herstellung von Walzdraht, der sich durch gute Ermüdungseigenschaften und durch eine gute Kaltumformbarkeit auszeichnet. Zur Erreichung des erfindungsgemässen Gefüges wird wiederum eine beschleunigte Abkühlung aus der Umformhitze verlangt. Die Abkühlraten der Ausführungsbeispiele liegen zwischen 15 und 50 K/s. Die erreichbare Kerbschlagzähigkeit geht aus der Beschreibung nicht hervor.
  • GB 2 297 094 beschreibt einen karbid-freien bainitischen Stahl, der aus der Umformhitze an Luft abgekühlt hergestellt werden kann. Der Stahl ist für die Herstellung von Schienen konzipiert und zeichnet sich durch eine gute Verschleissbeständigkeit und ein gutes Ermüdungsverhalten aus. Die Kerbschlagzähigkeit des Werkstoffs stand bei dieser Entwicklung nicht im Vordergrund. Die Charpy-Kerbschlagarbeit ISO-V bei Raumtemperatur liegt nur bei 20 bis 40 J.
  • Der in CN 1 477 226 beschriebene Stahl kann nach der Luftabkühlung folgende Mischgefüge enthalten: granularer Bainit, unterer Bainit, Martensit, Restaustenit. Er erreicht eine Zugfestigkeit von 850 bis über 1'400 MPa. Damit eine gute Zähigkeit resultiert, muss der Stahl nach der Warmumformung jedoch nochmals wärmebehandelt (angelassen) werden. Der vorhandene Kohlenstoff wandert dann in die vorliegenden Austenitfilme, und bei einer Zugfestigkeit von ca. 900 MPa lässt sich eine Charpy-Kerbschlagzähigkeit ISO-U von über 110 J/cm2 (oder > 55 J) erreichen.
  • Obwohl die Eigenschaften der bainitisch-martensitischen Stähle bisher vielversprechend sind, liegt bislang keine Beschreibung für die Herstellung massiver Bauteile (Durchmesser bzw. Wandstärke > 10 mm) vor, mit der
    • nach Luftabkühlung aus der Umformhitze bei Raumtemperatur Charpy-Kerbschlagzähigkeiten an V-gekerbten Proben von > 100 J erreichbar sind
    • für ein breites Spektrum an Bauteil-Abmessungen bzw. Walzabmessungen konstante Eigenschaften erreicht werden können.
    Darstellung der Erfindung
  • Aufgabe der Erfindung ist es, ein verbessertes warmumgeformtes Stahlprodukt sowie ein Verfahren zu dessen Herstellung bereitzustellen, mit dem insbesondere die obigen Nachteile vermieden werden.
  • Gelöst werden diese Aufgaben durch das im Anspruch 1 definierte Verfahren sowie durch das im Anspruch 5 definierte warmumgeformte Stahlprodukt.
  • Die nachfolgenden Gehaltsangaben in Prozent (%) bzw. in Teilen pro Million ("parts per million, ppm") beziehen sich - sofern nicht ausdrücklich anders angegeben - auf Gewichtsanteile.
  • Beim erfindungsgemässen Verfahren zur Herstellung eines Stahlprodukts wird ein Stahl mit einem Gewichtsanteil von:
    • 0.03 bis 0.20 % Kohlenstoff (C),
    • 2.00 % bis 4.00 % Mangan (Mn),
    • 0.05 bis 2.00 % Chrom (Cr),
    • 0.05 bis 1.00% Nickel (Ni),
    • bis zu 0.035% Phosphor (P),
    • bis zu 0.5% Molybdän (Mo),
    • bis zu 0.02% Stickstoff (N),
    • bis zu 0.04% Aluminium (Al),
    • bis zu 0.005% Bor (B),
    • bis zu 0.10% Titan (Ti),
    • bis zu 0.8% Silizium (Si),
    der Rest Eisen sowie stahlübliche Beimengungen,
    einer Warmumformung bei 900 bis 1300°C unterzogen und danach an Luft abkühlt, wobei die mittlere Austenitkorngrösse nach dem letzten Warmumformungschritt kleiner ist als 50 µm und wobei die Abkühlung aus der Umformhitze an ruhender oder bewegter Luft so geschieht, dass der Temperaturbereich zwischen 800 und 500°C mit einer Kühlrate von 0.1 bis 8.0 K/s durchlaufen wird.
  • Die Abkühlung aus der Umformhitze wird so durchgeführt, dass der Temperaturbereich zwischen 600 und 400°C mit einer Kühlrate von 0.1 bis 4.0 K/s durchlaufen wird.
  • Die prozentualen Gewichtsanteile x(i) von Kohlenstoff, Mangan, Chrom, Nickel und Molybdän erfüllen dabei die folgende Bedingung: 700 < Bs = 1 103 270 x C 90 x Mn 70 x Cr 37 x Ni 83 x Mo < 800
    Figure imgb0001
  • Hierdurch wird erreicht, dass nach Luftabkühlung aus einem Temperaturbereich von 900 bis 1'300°C folgende Gefügebestandteile vorliegen:
    • 60 bis 95% unterer Bainit,
    • bis zu 10% granularer oder oberer Bainit,
    • bis zu 40% Martensit,
    • bis zu 20% Restaustenit, und
    • bis zu 2% Ferrit.
  • Die in obiger Bedingung verwendete Masszahl Bs entspricht einem an sich bekannten Erfahrungsansatz für die Bainit-Starttemperatur in Kelvin [W. Steven, and A.J. Haynes, JISI 183, pp. 349-359 (1956)].
  • Bei dem erfindungsgemäss hergestellten Produkt sind die Legierungskomponenten so gewählt, dass bei üblichen Abkühlraten aus der Walzhitze von 0.1 bis 8.0 K/s immer ein bainitisch-martensitisches Gefüge mit Zugfestigkeitsniveau von 900 bis 1'400 MPa resultiert, ohne dass kostspielige Legierungselemente und/oder spezielle Einrichtungen zur beschleunigten Abkühlung aus der Walzhitze verwendet werden müssen. Die Charpy-ISO-V Kerbschlagarbeit bei Raumtemperatur ist > 100 J.
  • Durch die untere Begrenzung des Kohlenstoffgehalts auf 0.03 Gew.-% wird in Kombination mit Mangan, Chrom und Molybdän sichergestellt, dass keine Ferritanteile im Gefüge vorliegen. Ferritanteile beeinträchtigen sowohl das Festigkeitsniveau wie auch die Kerbschlagzähigkeit des Produkts.
  • Durch die obere Begrenzung des Kohlenstoffs auf 0.20 Gew.-% wird gewährleistet, dass die Zugfestigkeit nicht über 1'400 MPa ansteigt. Höhere Festigkeitswerte verschlechtern die Bearbeitbarkeit im nachgelagerten Ziehprozess oder Zerspanungsprozess. Höhere Kohlenstoffgehalte fördern ausserdem die Bildung von Karbiden, was die Duktilität nachteilig beeinflusst.
  • Die untere Begrenzung in Mangan auf 2.00 Gew.-% stellt sicher, dass eine Bainitstarttemperatur unter 800 K ohne teure Legierungszusätze erreichbar ist. Diese tiefe Bainitstarttemperatur gewährleistet ein feines Stahlgefüge, welches dominant aus unterem Bainit besteht. Gemäss einer bevorzugten Ausführungsform wird ein Mangangehalt von mindestens 2.55 Gew.-% verwendet. Insbesondere bewährt es sich, einen Mangangehalt von mindestens 2.80 Gew.-%, beispielsweise ungefähr 3.0 Gew.-% zu verwenden.
  • Eine weitere Zugabe von Mangan senkt die Bainit-Starttemperatur nochmals ab. Das Bainitgebiet engt sich ein und der resultierenden Bainitanteil nimmt zugunsten von Restaustenit und Martensit ab. Bei Überschreitung der oberen Begrenzung in Mangan liegt das gewünschte bainitische Gefüge nicht mehr vor. Das Gefüge wird dann dominant martensitisch sein.
  • Molybdän unterdrückt die Korngrenzensegregation von versprödenden Elementen wie Phosphor. Eine Zugabe von mindestens 0.15 Gew.-% Molybdän verbessert somit die Anlassbeständigkeit des Stahls. Falls keine nachgelagerte Wärmebehandlung stattfindet, ist die Zugabe von Molybdän nicht zwingend erforderlich.
  • Ein Molybdängehalt über 0.5 Gew.-% fördert die Bildung von kohlenstoffreichen Martensitinseln. Diese führen zu einer markanten Verschlechterung der Zähigkeit des Stahls. Aus diesem Grund soll der Molybdängehalt maximal 0.5 Gew.-% betragen. Vorteilhafterweise weist das warmumgeformte Stahlprodukt einen Molybdängehalt von 0.15 bis 0.50 Gew.-% auf.
  • Chrom kann an Stelle von Mangan zulegiert werden, um die Bainitstarttemperatur einzustellen. Die Verwendung von Chrom ist jedoch kostspieliger als die Verwendung von Mangan. Da Mangan stark seigert, kann es für gewisse Anwendungen dennoch sinnvoll sein, einen Teil des Mangans durch Chrom zu ersetzen. Da Chrom das Risiko für die Bildung von chromreichen Nitriden und Karbiden erhöht, was zu einer Verschlechterung der Zähigkeit führen kann, wird der Chromgehalt auf 2.0 Gew.% begrenzt.
  • Die Zugabe von Silizium ist nicht notwendig, um die gewünschten Eigenschaften zu erreichen. Eine dosierte Zugabe von Silizium unterdrückt die Karbidbildung. Eine bevorzugte Ausführung des erfindungsgemäss hergestellten Produkts enthält deshalb 0.40 bis 0.80 Gew.-% Silizium.
  • Nickel verbessert die Charpy-Kerbschlagzähigkeit bei tiefen Temperaturen. In der Regel reichen die Eigenschaften auch ohne Nickelzugabe aus. Aus Kostengründen wird der Nickelgehalt auf 1.0 Gew.-% begrenzt.
  • Die Zugabe von Aluminium ist für die erfindungsgemässe Herstellung des Produkts nicht zwingend. Falls eine spätere Wärmebehandlung des Produkts, z.B. eine Einsatzhärtung zur Einstellung einer verschleissfesten Oberfläche, notwendig ist, dann kann die Austenitkornstabilität über eine Aluminiumzugabe gewährleistet werden. In diesem Fall sind Aluminiumgehalte von 0.02 bis 0.04 Gew.% üblich.
  • Phosphor ist ein Stahlschädling. Es geht an die Austenitkorngrenzen und schwächt das Gefüge. Aus diesem Grund wurde der Phosphorgehalt auf 0.035 Gew.-% begrenzt.
  • Da sich schon geringfügige Ferritanteile negativ auf die Kerbschlagzähigkeit auswirken können, soll die Ferritbildung möglichst vermieden werden. Durch eine ausreichend schnelle Abkühlung des warmumgeformten Produkts kann dies gewährleistet werden. Falls die Abkühlrate nicht ausreicht, kann zusätzlich eine Zugabe von Bor vorgesehen werden. Bor geht an die Austenitkorngrenzen und unterdrückt die Ferritbildung. In diesem Fall ist einen Borgehalt 10 bis 50 ppm ausreichend.
  • Eine Zugabe von 0.03 bis 0.10 Gew.-% Titan stellt sicher, dass der im flüssigen Stahl gelösten Stickstoff von bis zu 0.02 Gew.-% während der Erstarrung des Stahls in Form von Titankarbonitriden ausgeschieden wird. Dies ist die Voraussetzung dafür, dass elementares Bor an die Austenitkorngrenzen gelangen kann und nicht in Form von Bornitriden vorliegt. Falls kein Bor zulegiert wird, muss keine Titanzugabe vorgesehen werden.
    Die chemische Zusammensetzung des Stahls ist so zu wählen, dass nach der Abkühlung an Luft ein Gefüge entsteht, welches dominant aus unterem Bainit besteht. Dies wird bevorzugt dadurch erreicht, dass die Bainit-Starttemperatur Bs niedrig genug eingestellt wird. Aus diesem Grund soll die Bs-Temperatur nicht mehr als 800 K betragen. Die tiefe Umwandlungstemperatur gewährleistet eine sehr feine Gefügestruktur, was für die Erreichung der hohen Kerbschlagzähigkeit entscheidet ist.
    Eine ausreichend feine Gefügestruktur ist erreicht, wenn die mittlere Korngrösse des dominant bainitischen Sekundärgefüges kleiner ist als 5 µm. Die Korngrösse ist dabei über den linearen Abstand zwischen Korngrenzen definiert. Die kristallografische Orientierung an der Korngrenze soll sich um mehr als 15° ändern.
    Eine zu tief gewählte Bs-Temperatur verlangsamt die Kinetik der Bainitbildung. Es entsteht deutlich weniger Bainit und das Gefüge wird dominant martensitisch. Die Bs-Temperatur soll deshalb über 700 K liegen. Damit sich möglichst viel Bainit einstellt, ist die Bainitstarttemperatur bevorzugt zwischen 750 und 800 K zu wählen.
    Der Austenit wird während der Gefügeumwandlung nicht vollständig in Bainit umgewandelt. Damit die Eigenschaften des unteren Bainits dominieren, soll jedoch mindestens 60% des Gefüges aus unterem Bainit bestehen.
    Der Austenit, der sich während der Abkühlung aus der Warmumformung nicht in Bainit umwandelt, ist entweder über einen ausreichenden Kohlenstoffgehalt stabilisiert oder er wandelt sich bei tieferen Temperaturen in Martensit um. Bei einem mittleren Kohlenstoffgehalt im Stahl von 0.03 Gew.-% wird im Gefüge voraussichtlich kein Restaustenit vorliegen und der resultierende Martensitanteil kann bis zu 40% betragen.
  • Bei einem Kohlenstoffgehalt von 0.2 Gew.-% wird ein Teil des Austenits während der Abkühlung aus der Warmumformung stabilisiert. Es können noch 20% Restaustenit im Endprodukt vorliegen.
  • Da der Mangangehalt des Stahls über 2.0 Gew.-% beträgt, ist mit einer mikroskopisch ungleichmässigen Manganverteilung im grosstechnisch hergestellten Produkt zu rechnen (Seigerungszonen). Aus diesem Grund kann das Umwandlungsverhalten des Austenits während der Abkühlung aus der Warmumformung lokal variieren. So können vereinzelte Körner aus Ferrit, granularem Bainit oder oberem Bainit nicht gänzlich ausgeschlossen werden. Solange deren Bestandteile gering sind, werden sie die guten Eigenschaften des Produkts nicht beeinträchtigen. Deshalb sind bis zu 10 % granularer oder oberer Bainit und bis zu 2 % Ferrit für das erfindungsgemäss hergestellte Produkt zulässig.
  • Kurze Beschreibung der Zeichnungen
  • Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnungen näher beschrieben, dabei zeigen:
  • Fig. 1
    die Abhängigkeit der ISO-V-Kerbschlagarbeit von der Bainit-Starttemperatur;
    Fig. 2
    ein Gefügebild (Ätzmittel: LePera) für einen 18 mm Stabstahl aus Stahl 1;
    Fig. 3
    ein Gefügebild (Ätzmittel: LePera) für einen 18 mm Stabstahl aus Stahl 2;
    Fig. 4
    ein Gefügebild (Ätzmittel: LePera) für einen 18 mm Stabstahl aus Stahl 6;
    Fig. 5
    ein Gefügebild (Ätzmittel: LePera) für einen 18 mm Stabstahl aus Stahl 7;
    Fig. 6
    Gefügebilder bei 3000X Vergrösserung im hochauflösenden Rasterelektronenmikroskop: oben Stahl 6 und unten Stahl 7, und
    Fig. 7
    das Ergebnis einer EBSD-Untersuchung am Beispiel von Stahl 7; die Sekundär-Korngrössen wurden entlang den Linien d1, d2 und d3 ausgewertet; die mittlere Korngrösse beträgt 4.51 µm (± 1.09 µm).
    Wege zur Ausführung der Erfindung
  • Die entscheidenden Zusammenhänge wurden bei Versuchen an Laborschmelzen entdeckt. Es wurden Stahlblöcke von Ø 100 x 400 mm gefertigt und zu Ø 50 mm Rundknüppel ausgeschmiedet. Zur Simulation einer Walzung in einem konventionellen Warmwalzwerk wurden die Knüppel in 8 Stichen auf Ø 18 mm ausgewalzt:
    Die Endwalztemperatur bei der letzten Warmumformung war 1'040 bis 1'060°C. Zur Simulation der Abkühlung bei dünnen Drähten wurde zwischen 900 und 600°C eine beschleunigte Luftabkühlung mit einer Kühlrate von ca. 5.5 K/s eingestellt. Während der Gefügeumwandlung unter 600°C wurden die Stäbe an ruhender Luft abgekühlt.
  • Die an neun Schmelzen ermittelten Charpy-Kerbschlagwerte bei Raumtemperatur sind in Fig. 1 in Abhängigkeit von der Bainit-Starttemperatur Bs (ermittelt nach Steven & Hayns) dargestellt. Es wurde entdeckt, dass die Schmelzen mit Bs < 800 K immer eine gute Kerbschlagzähigkeit aufweisen.
  • In den Versuchsschmelzen wurden Kohlenstoff, Mangan, Molybdän verwendet, um die Bs-Temperatur einzustellen. Es wurde kein Chrom und Nickel legiert. Die gemessenen Chrom- und Nickelgehalte (als Begleitelemente bzw. Verunreinigungen im Stahl) lagen zwischen 0.05 und 0.09 Gew.-%.
  • Die drei erfindungsgemässen Stähle ("Stähle 7 bis 9") sind den sechs nicht-erfindungsgemässen Stählen ("Stähle 1 bis 6") in den Tabellen 1 und 2 gegenübergestellt. Der wesentliche Unterschied zwischen den erfindungsgemässen und den nicht-erfindungsgemässen Stählen besteht in der Feinheit und in der Morphologie der Mikrostruktur. Diese wird über die chemische Zusammensetzung des Stahls, gemäss Bs (in K) = 1103 - 270C - 90Mn - 70Cr - 37Ni - 83Mo < 800 K eingestellt. Ausgewählte Gefügebilder sind in Fig. 2 bis 5 dargestellt.
  • Stahl 1 besteht dominant aus einem grobkörnigen granularen Bainit (Fig. 2). Vereinzelt wurden auch Ferritkörner gefunden. Die Zugfestigkeit Rm ist entsprechend niedrig. Die ISO-V-Kerbschlagarbeit bei Raumtemperatur fällt unter 100 J.
  • Die Eigenschaften und die Mikrostruktur des nicht-erfindungsgemässen Stahls 2 sind ähnlich zu Stahl 1. Die Bainit-Starttemperatur ist etwas niedriger und das Gefüge ist entsprechend etwas feiner (Fig. 3). Das Gefüge besteht dominant aus einem karbid-freien granularen Bainit. Die quantitative Gefügeanalyse (mittels Röntgendiffraktion für Austenit und quantitative REM-Analyse für Ferrit, Bainit und M/A-Phasenanteile) ergab folgende Gefügezusammensetzung: 80 % Bainit (dominant granular), 17 % Martensit und 3 % Restaustenit.
  • Bei weiterer Absenkung der Bainit-Starttemperatur ändert die Gefügestruktur von granularem Bainit zu lattenförmigem unterem Bainit. Bereits im Schliffbild (LOM) des nicht-erfindungsgemässen Stahls 6 ist die deutlich feinere Gefügestruktur zu erkennen (Fig. 5). Die Festigkeit steigt im Vergleich zu den Stählen 1 und 2 markant an, aber die Kerbschlagzähigkeit bleibt niedrig. Grund für die unbefriedigende Zähigkeit sind grobe Körner aus granularem, oberem Bainit, die in einer Matrix aus feinem unteren Bainit eingelagert sind. Das Gefüge besteht zu 87 % aus Bainit, 10 % aus Martensit und 3 % Restaustenit.
  • Aufgrund der vorliegenden Körner aus granularem Bainit ist die Gefügestruktur nicht so fein, wie sie im LOM oder auch im Rasterelektronenmikroskop erscheint.
  • Um die Feinheit der Struktur sichtbar zu machen wurden EBSD-Untersuchungen ("Electron Back Scattering Diffraction") durchgeführt. Mit dieser Methode werden die kristallografische Orientierungen in der Mikrostruktur gemessen. Eine Korngrenze liegt vor, wenn sich die kristallografische Orientierung um mehr als 15° ändert. Die mittlere lineare Ausdehnung der Körner kann so bestimmt werden. Für Stahl 6 ist die mittlere Korngrösse 10.1 µm (± 0.93 µm).
  • Fig. 7 zeigt das Gefüge des erfindungsgemässen Stahls 7 im Vergleich zum Stahl 6. Das Gefüge ist bei Stahl 7 nochmals feiner geworden. Die quantitative Analyse gibt folgende Gefügezusammensetzung: 70 bis 72 % unterer Bainit und 28 bis 30 % selbstangelassener Martensit. Grobe Gefügebestandteile wie Ferrit oder granularer oberer Bainit fehlen. Die mittels EBSD bestimmte mittlere Korngrösse ist entsprechend klein. Sie liegt bei 4.51 µm (± 1.09 µm) und ist somit nur halb so gross wie bei Stahl 6.
  • Die erfindungsgemässen Stähle repräsentieren eine Stahlzusammensetzung mit hoher Festigkeit (ca. 1'000 MPa) und Zähigkeit (ISO-V bei Raumtemperatur ist 150 bis 200 J):
    • Sie können mit konventioneller Walz- und Schmiedetechnologie hergestellt werden. Eine Feinung des Primärgefüges durch Absenkung der Temperatur im letzten Umformschritt unterhalb der Rekristallisations-Stopptemperatur ist nicht zwingend gefordert. Im Ausführungsbeispiel liegt eine Austenitkorngrösse von ca. 30 µm vor.
    • Die Eigenschaften werden bei tiefen Abkühlraten erreicht (hier an ruhender Luft), so dass massive Bauteile daraus gefertigt werden können (im Beispiel 18 mm Walzstahl). Die Abkühlrate entspricht der Herstellung von Stabstahl im Durchmesserbereich von 40 bis 50 mm.
    • Die Eigenschaften werden direkt aus der Warmumformung erreicht. Eine nachgelagerte Wärmebehandlung (z.B. ein Anlassen) ist nicht zwingend notwendig.
    • Der Einsatz von teuren Legierungsmitteln (wie Mikrolegierungsmittel oder Nickel und Molybdän) ist nicht zwingend notwendig.
    Figure imgb0002
    Figure imgb0003

Claims (14)

  1. Verfahren zur Herstellung eines Stahlprodukts, wobei man einen Stahl mit einem Gewichtsanteil von
    0.03 bis 0.20 % Kohlenstoff (C),
    2.00 % bis 4.00 % Mangan (Mn),
    0.05 bis 2.00 % Chrom (Cr),
    0.05 bis 1.00% Nickel (Ni),
    bis zu 0.035% Phosphor (P),
    bis zu 0.5% Molybdän (Mo),
    bis zu 0.02% Stickstoff (N),
    bis zu 0.04% Aluminium (Al),
    bis zu 0.005% Bor (B),
    bis zu 0.10% Titan (Ti),
    bis zu 0.8% Silizium (Si),
    der Rest Eisen sowie stahlübliche Verunreinigungen,
    einer Warmumformung bei 900 bis 1300°C unterzieht, und danach an Luft abkühlt, wobei die mittlere Austenitkorngrösse nach dem letzten Warmumformungschritt kleiner ist als 50 µm und wobei die Abkühlung aus der Umformhitze an ruhender oder bewegter Luft so geschieht, dass der Temperaturbereich zwischen 800 und 500°C mit einer Kühlrate von 0.1 bis 8.0 K/s und der Temperaturbereich zwischen 600 und 400°C mit einer Kühlrate von 0.1 bis 4.0 K/s durchlaufen wird,
    dadurch gekennzeichnet, dass
    die prozentualen Gewichtsanteile x(i) von Kohlenstoff, Mangan, Chrom, Nickel und Molybdän die folgende Bedingung erfüllen: 700 < Bs = 1 103 270 x C 90 x Mn 70 x Cr 37 x Ni 83 x Mo < 800
    Figure imgb0004
    wobei ein Stahlprodukt mit folgenden Gefügebestandteilen gebildet wird:
    60 bis 95% unterer Bainit,
    bis zu 10% granularer oder oberer Bainit,
    bis zu 40% Martensit,
    bis zu 20% Restaustenit, und
    bis zu 2% Ferrit.
  2. Verfahren nach Anspruch 1, wobei der prozentuale Gewichtsanteil von Mangan mindestens 2.55% beträgt.
  3. Verfahren nach Anspruch 1 oder 2, wobei die prozentualen Gewichtsanteile x von Kohlenstoff, Mangan, Chrom, Nickel und Molybdän die Bedingung erfüllen: 700 < Bs = 1 103 270 x C 90 x Mn 70 x Cr 37 x Ni 83 x Mo < 800.
    Figure imgb0005
  4. Warmumgeformtes Stahlprodukt, mit einem Gewichtsanteil von
    0.03 bis 0.20 % Kohlenstoff (C),
    2.00 % bis 4.00 % Mangan (Mn),
    0.05 bis 2.00 % Chrom (Cr),
    0.05 bis 1.00% Nickel (Ni),
    bis zu 0.035% Phosphor (P),
    bis zu 0.5% Molybdän (Mo),
    bis zu 0.02% Stickstoff (N),
    bis zu 0.04% Aluminium (Al),
    bis zu 0.005% Bor (B),
    bis zu 0.10% Titan (Ti),
    bis zu 0.8% Silizium (Si),
    der Rest Eisen sowie stahlübliche Verunreinigungen,
    wobei die prozentualen Gewichtsanteile x von Kohlenstoff, Mangan, Chrom, Nickel und Molybdän die folgende Bedingung erfüllen: 700 < Bs = 1 103 270 x C 90 x Mn 70 x Cr 37 x Ni 83 x Mo < 800
    Figure imgb0006
    wobei das Stahlprodukt folgende Gefügebestandteile aufweist:
    60 bis 95% unterer Bainit,
    bis zu 10% granularer oder oberer Bainit,
    bis zu 40% Martensit,
    bis zu 20% Restaustenit, und
    bis zu 2% Ferrit.
  5. Warmumgeformtes Stahlprodukt nach Anspruch 4, wobei die mittlere Korngrösse des bainitischen Gefüges kleiner ist als 5 µm.
  6. Warmumgeformtes Stahlprodukt nach Anspruch 4 oder 5, wobei die prozentualen Gewichtsanteile x von Kohlenstoff, Mangan, Chrom, Nickel und Molybdän die Bedingung erfüllen: 750 < Bs = 1 103 270 x C 90 x Mn 70 x Cr 37 x Ni 83 x Mo < 800.
    Figure imgb0007
  7. Warmumgeformtes Stahlprodukt nach einem der Ansprüche 4 bis 6, mit folgenden Gefügebestandteilen:
    60 bis 95% unterer Bainit,
    bis zu 10% granularer oder oberer Bainit,
    bis zu 30% Martensit,
    bis zu 5% Restaustenit, und
    bis zu 2% Ferrit.
  8. Warmumgeformtes Stahlprodukt nach einem der Ansprüche 4 bis 7, wobei der Siliziumgehalt 0.40 bis 0.80 Gew.-% beträgt.
  9. Warmumgeformtes Stahlprodukt nach einem der Ansprüche 4 bis 8, wobei der Borgehalt 10 bis 50 ppm beträgt.
  10. Warmumgeformtes Stahlprodukt nach einem der Ansprüche 4 bis 9, wobei der Titangehalt 0.03 bis 0.10 Gew.-% beträgt.
  11. Warmumgeformtes Stahlprodukt nach einem der Ansprüche 4 bis 10, mit einer Mindest-Wandstärke bzw. Mindest-Durchmesser von 10 mm.
  12. Warmumgeformtes Stahlprodukt nach einem der Ansprüche 4 bis 11, mit einer Charpy-Kerbschlagzähigkeit ISO-V bei Raumtemperatur von über 100 J.
  13. Warmumgeformtes Stahlprodukt nach einem der Ansprüche 4 bis 12, mit einer Zugfestigkeit Rm bei Raumtemperatur von 800 bis 1400 MPa.
  14. Verwendung eines warmumgeformten Produkts nach einem der Ansprüche 4 bis 13 für die Verarbeitung in einer Presse zur Herstellung von Kaltfliesspress- oder Kaltstauchteilen.
EP11188717.0A 2010-11-10 2011-11-10 Warmumgeformtes Produkt und Verfahren zu dessen Herstellung Not-in-force EP2453027B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11188717.0A EP2453027B1 (de) 2010-11-10 2011-11-10 Warmumgeformtes Produkt und Verfahren zu dessen Herstellung
PL11188717T PL2453027T3 (pl) 2010-11-10 2011-11-10 Produkt przekształcony termicznie i sposób jego wytwarzania

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP10190719A EP2453026A1 (de) 2010-11-10 2010-11-10 Warmumgeformtes Stahlprodukt und Verfahren zu dessen Herstellung
EP11188717.0A EP2453027B1 (de) 2010-11-10 2011-11-10 Warmumgeformtes Produkt und Verfahren zu dessen Herstellung

Publications (2)

Publication Number Publication Date
EP2453027A1 EP2453027A1 (de) 2012-05-16
EP2453027B1 true EP2453027B1 (de) 2018-10-24

Family

ID=43735737

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10190719A Withdrawn EP2453026A1 (de) 2010-11-10 2010-11-10 Warmumgeformtes Stahlprodukt und Verfahren zu dessen Herstellung
EP11188717.0A Not-in-force EP2453027B1 (de) 2010-11-10 2011-11-10 Warmumgeformtes Produkt und Verfahren zu dessen Herstellung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10190719A Withdrawn EP2453026A1 (de) 2010-11-10 2010-11-10 Warmumgeformtes Stahlprodukt und Verfahren zu dessen Herstellung

Country Status (2)

Country Link
EP (2) EP2453026A1 (de)
PL (1) PL2453027T3 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022110466A1 (de) 2022-04-29 2023-11-02 Hirschvogel Holding GmbH Verfahren zur Herstellung eines Massivumformbauteils und Massivumformbauteil hergestellt mit einem solchen Verfahren

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2297094B (en) 1995-01-20 1998-09-23 British Steel Plc Improvements in and relating to Carbide-Free Bainitic Steels
FR2741632B1 (fr) 1995-11-27 1997-12-26 Ascometal Sa Acier pour la fabrication d'une piece forgee ayant une structure bainitique et procede de fabrication d'une piece
FR2756298B1 (fr) 1996-11-26 1998-12-24 Ascometal Sa Acier et procede pour la fabrication d'une piece de mecanique ayant une structure bainitique
CN1210430C (zh) 2003-08-01 2005-07-13 清华大学 中低碳锰系空冷贝氏体钢
MXPA05008339A (es) 2005-08-04 2007-02-05 Tenaris Connections Ag Acero de alta resistencia para tubos de acero soldables y sin costura.
JP2007284774A (ja) * 2006-04-20 2007-11-01 Jfe Bars & Shapes Corp 耐遅れ破壊特性および冷間加工性に優れる線材およびその製造方法
SI2103704T1 (sl) * 2008-03-10 2012-11-30 Swiss Steel Ag Vroče valjani dolg proizvod in postopek za njegovo izdelavo

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2453027A1 (de) 2012-05-16
EP2453026A1 (de) 2012-05-16
PL2453027T3 (pl) 2019-05-31

Similar Documents

Publication Publication Date Title
EP3228724B1 (de) Werkzeugstahl, insbesondere warmarbeitsstahl, und stahlgegenstand
DE602004000140T2 (de) Rostfreier austenitischer Stahl
DE60010997T2 (de) Wärmebeständiges Chrom-Molybdän Stahl
WO2010054813A1 (de) Manganstahlband mit erhöhtem phosphorgehalt und verfahren zur herstellung desselben
EP2905348B1 (de) Hochfestes Stahlflachprodukt mit bainitisch-martensitischem Gefüge und Verfahren zur Herstellung eines solchen Stahlflachprodukts
DE60205419T2 (de) Niedrig legierter und hitzebeständiger Stahl, Verfahren zur Wärmebehandlung und Turbinenrotor
WO2019223854A1 (de) Aus einem stahl geformtes blechformteil mit einer hohen zugfestigkeit und verfahren zu dessen herstellung
DE60206771T2 (de) Mehrphasen-stahlblech mit verbesserter tiefziehfähigkeit und verfahren zu seiner herstellung
DE102006017263A1 (de) Kurbelwelle und Verfahren zu deren Herstellung
DE112019006482T5 (de) Karbonitrierte lagerkomponente
DE60024495T2 (de) Stahl mit ausgezeichneter Schmiedbarkeit und Bearbeitbarkeit
DE60224528T2 (de) Kaltarbeitsstahl
EP2009120A2 (de) Verwendung einer hochfesten Stahllegierung zur Herstellung von Stahlrohren mit hoher Festigkeit und guter Umformbarkeit
EP2103704B1 (de) Warmgewalztes Langprodukt und Verfahren zu dessen Herstellung
DE102018113600A1 (de) Verfahren zum Herstellen eines Gegenstandes aus einem Warmarbeitsstahl
EP3211109B1 (de) Verfahren zur herstellung eines warmformwerkzeuges und warmformwerkzeug hieraus
DE60037575T2 (de) Grosse lagerteile aus stahl
DE69907896T4 (de) Kaltarbeitsstahl
DE60126646T2 (de) Stahllegierung, halter und haltereinzelteile für kunststoff-formwerkzeuge und vergütete rohlinge für halter und haltereinzelteile
EP2453027B1 (de) Warmumgeformtes Produkt und Verfahren zu dessen Herstellung
EP3061838B1 (de) Blankes bainitisches langprodukt und verfahren zu dessen herstellung
WO2021063746A1 (de) Verfahren zur herstellung eines stahlproduktes sowie ein entsprechendes stahlprodukt
EP3872206A1 (de) Verfahren zur herstellung eines nachbehandelten, kaltgewalzten stahlflachprodukts und nachbehandeltes, kaltgewalztes stahlflachprodukt
DE112009000462B4 (de) Hochfeste Stahlplatte mit hervorragender Beständigkeit gegen ein Entspannungsglühen und hervorragender Kaltzähigkeit
EP0149210A2 (de) Verfahren zum Herstellen hochfester, duktiler Körper aus Kohlenstoffreichen Eisenbasislegierungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20121113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502011014899

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C21D0006000000

Ipc: C22C0038020000

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/02 20060101AFI20180328BHEP

Ipc: C22C 38/08 20060101ALI20180328BHEP

Ipc: C21D 6/00 20060101ALI20180328BHEP

Ipc: C22C 38/44 20060101ALI20180328BHEP

Ipc: C22C 38/58 20060101ALI20180328BHEP

Ipc: C22C 38/04 20060101ALI20180328BHEP

Ipc: C22C 38/18 20060101ALI20180328BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180515

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1056748

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011014899

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER AND PARTNER AG PATENT- UND MARKENANW, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181024

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190224

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190124

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20190215

Year of fee payment: 8

Ref country code: DE

Payment date: 20190131

Year of fee payment: 8

Ref country code: CH

Payment date: 20190201

Year of fee payment: 8

Ref country code: IT

Payment date: 20190225

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190125

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190220

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011014899

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20190215

Year of fee payment: 8

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190124

26N No opposition filed

Effective date: 20190725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181110

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190124

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1056748

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181110

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011014899

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181024

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111110

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191110

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200603

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191110

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191110