EP2451470A1 - Procédé de purification d'interféron-bêta - Google Patents
Procédé de purification d'interféron-bêtaInfo
- Publication number
- EP2451470A1 EP2451470A1 EP10737494A EP10737494A EP2451470A1 EP 2451470 A1 EP2451470 A1 EP 2451470A1 EP 10737494 A EP10737494 A EP 10737494A EP 10737494 A EP10737494 A EP 10737494A EP 2451470 A1 EP2451470 A1 EP 2451470A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ifn
- chromatography
- affinity chromatography
- formulation
- purification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 108090000467 Interferon-beta Proteins 0.000 title claims abstract description 147
- 238000000034 method Methods 0.000 title claims abstract description 74
- 238000000746 purification Methods 0.000 title claims description 64
- 102000003996 Interferon-beta Human genes 0.000 title abstract description 7
- 229960001388 interferon-beta Drugs 0.000 title abstract description 6
- 102100026720 Interferon beta Human genes 0.000 claims abstract description 140
- 238000001042 affinity chromatography Methods 0.000 claims abstract description 61
- 238000004191 hydrophobic interaction chromatography Methods 0.000 claims abstract description 47
- 238000005571 anion exchange chromatography Methods 0.000 claims abstract description 22
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 20
- 230000000694 effects Effects 0.000 claims abstract description 11
- 239000000872 buffer Substances 0.000 claims description 30
- 229920002684 Sepharose Polymers 0.000 claims description 28
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 28
- 238000003860 storage Methods 0.000 claims description 28
- 239000013522 chelant Substances 0.000 claims description 27
- 238000001542 size-exclusion chromatography Methods 0.000 claims description 27
- 239000000203 mixture Substances 0.000 claims description 24
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 21
- 238000009472 formulation Methods 0.000 claims description 19
- 238000001471 micro-filtration Methods 0.000 claims description 18
- 238000002360 preparation method Methods 0.000 claims description 15
- 101001054334 Homo sapiens Interferon beta Proteins 0.000 claims description 14
- 239000011780 sodium chloride Substances 0.000 claims description 14
- 238000000108 ultra-filtration Methods 0.000 claims description 14
- 238000005277 cation exchange chromatography Methods 0.000 claims description 13
- 239000003446 ligand Substances 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 13
- 238000001728 nano-filtration Methods 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 239000012505 Superdex™ Substances 0.000 claims description 12
- 239000012669 liquid formulation Substances 0.000 claims description 11
- 238000011210 chromatographic step Methods 0.000 claims description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- YKCWQPZFAFZLBI-UHFFFAOYSA-N cibacron blue Chemical compound C1=2C(=O)C3=CC=CC=C3C(=O)C=2C(N)=C(S(O)(=O)=O)C=C1NC(C=C1S(O)(=O)=O)=CC=C1NC(N=1)=NC(Cl)=NC=1NC1=CC=CC=C1S(O)(=O)=O YKCWQPZFAFZLBI-UHFFFAOYSA-N 0.000 claims description 8
- 239000012528 membrane Substances 0.000 claims description 8
- 150000003839 salts Chemical class 0.000 claims description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 7
- 239000004743 Polypropylene Substances 0.000 claims description 7
- 229920001213 Polysorbate 20 Polymers 0.000 claims description 7
- 150000001413 amino acids Chemical class 0.000 claims description 7
- 238000005374 membrane filtration Methods 0.000 claims description 7
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 claims description 7
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 claims description 7
- 229920001155 polypropylene Polymers 0.000 claims description 7
- 239000003814 drug Substances 0.000 claims description 6
- 238000001802 infusion Methods 0.000 claims description 6
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 239000003011 anion exchange membrane Substances 0.000 claims description 5
- 239000011261 inert gas Substances 0.000 claims description 5
- -1 polypropylene Polymers 0.000 claims description 5
- 239000003381 stabilizer Substances 0.000 claims description 5
- 238000010521 absorption reaction Methods 0.000 claims description 4
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 4
- 239000001307 helium Substances 0.000 claims description 4
- 229910052734 helium Inorganic materials 0.000 claims description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 4
- 238000004128 high performance liquid chromatography Methods 0.000 claims description 4
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims description 4
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 claims description 4
- 229940068977 polysorbate 20 Drugs 0.000 claims description 4
- 239000004475 Arginine Substances 0.000 claims description 3
- 241000699802 Cricetulus griseus Species 0.000 claims description 3
- 239000003708 ampul Substances 0.000 claims description 3
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 claims description 3
- 239000003937 drug carrier Substances 0.000 claims description 3
- 229930182817 methionine Natural products 0.000 claims description 3
- 210000001672 ovary Anatomy 0.000 claims description 3
- 239000004094 surface-active agent Substances 0.000 claims description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 claims description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 claims description 2
- 239000004472 Lysine Substances 0.000 claims description 2
- 229930195725 Mannitol Natural products 0.000 claims description 2
- 125000003277 amino group Chemical group 0.000 claims description 2
- 229920001577 copolymer Polymers 0.000 claims description 2
- 238000009295 crossflow filtration Methods 0.000 claims description 2
- QHSJIZLJUFMIFP-UHFFFAOYSA-N ethene;1,1,2,2-tetrafluoroethene Chemical group C=C.FC(F)=C(F)F QHSJIZLJUFMIFP-UHFFFAOYSA-N 0.000 claims description 2
- 230000007717 exclusion Effects 0.000 claims description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 claims description 2
- 239000000594 mannitol Substances 0.000 claims description 2
- 235000010355 mannitol Nutrition 0.000 claims description 2
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 claims description 2
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 claims description 2
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 claims description 2
- 229920001296 polysiloxane Polymers 0.000 claims description 2
- 229920000053 polysorbate 80 Polymers 0.000 claims description 2
- 229940068968 polysorbate 80 Drugs 0.000 claims description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 2
- 239000011148 porous material Substances 0.000 claims description 2
- 239000000600 sorbitol Substances 0.000 claims description 2
- 102100021935 C-C motif chemokine 26 Human genes 0.000 claims 1
- 101000897493 Homo sapiens C-C motif chemokine 26 Proteins 0.000 claims 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 claims 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 claims 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 claims 1
- 238000007911 parenteral administration Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 24
- 210000004027 cell Anatomy 0.000 description 22
- 238000004587 chromatography analysis Methods 0.000 description 22
- 238000010828 elution Methods 0.000 description 16
- 235000018102 proteins Nutrition 0.000 description 15
- 108090000623 proteins and genes Proteins 0.000 description 15
- 102000004169 proteins and genes Human genes 0.000 description 15
- 239000000047 product Substances 0.000 description 12
- 102000014150 Interferons Human genes 0.000 description 11
- 108010050904 Interferons Proteins 0.000 description 11
- 238000004007 reversed phase HPLC Methods 0.000 description 10
- 238000004113 cell culture Methods 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- 229940047124 interferons Drugs 0.000 description 9
- 108010005716 Interferon beta-1a Proteins 0.000 description 8
- 239000012619 Butyl Sepharose® Substances 0.000 description 7
- 108010062580 Concanavalin A Proteins 0.000 description 7
- 241000700605 Viruses Species 0.000 description 7
- 239000000969 carrier Substances 0.000 description 7
- 238000001262 western blot Methods 0.000 description 7
- 230000004071 biological effect Effects 0.000 description 6
- 239000012228 culture supernatant Substances 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000012536 storage buffer Substances 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- 108020004414 DNA Proteins 0.000 description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 5
- 239000008186 active pharmaceutical agent Substances 0.000 description 5
- 229940003504 avonex Drugs 0.000 description 5
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 5
- 229940088679 drug related substance Drugs 0.000 description 5
- 238000011067 equilibration Methods 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 238000001155 isoelectric focusing Methods 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 102000001708 Protein Isoforms Human genes 0.000 description 4
- 108010029485 Protein Isoforms Proteins 0.000 description 4
- 235000001014 amino acid Nutrition 0.000 description 4
- 238000011109 contamination Methods 0.000 description 4
- NBZBKCUXIYYUSX-UHFFFAOYSA-N iminodiacetic acid Chemical compound OC(=O)CNCC(O)=O NBZBKCUXIYYUSX-UHFFFAOYSA-N 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 230000010412 perfusion Effects 0.000 description 4
- 229920001184 polypeptide Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 4
- 239000013014 purified material Substances 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 108090001090 Lectins Proteins 0.000 description 3
- 102000004856 Lectins Human genes 0.000 description 3
- 241001529936 Murinae Species 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000007853 buffer solution Substances 0.000 description 3
- 238000011097 chromatography purification Methods 0.000 description 3
- 238000003795 desorption Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000003306 harvesting Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 229940079322 interferon Drugs 0.000 description 3
- 238000004255 ion exchange chromatography Methods 0.000 description 3
- 239000002523 lectin Substances 0.000 description 3
- 239000012160 loading buffer Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000011045 prefiltration Methods 0.000 description 3
- 229940038850 rebif Drugs 0.000 description 3
- 239000012557 regeneration buffer Substances 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N 1H-imidazole Chemical compound C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 2
- 101150074155 DHFR gene Proteins 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 230000001028 anti-proliverative effect Effects 0.000 description 2
- 230000000840 anti-viral effect Effects 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 230000000120 cytopathologic effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 239000002158 endotoxin Substances 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 238000011194 good manufacturing practice Methods 0.000 description 2
- 235000014304 histidine Nutrition 0.000 description 2
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000010257 thawing Methods 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 238000003828 vacuum filtration Methods 0.000 description 2
- 238000010200 validation analysis Methods 0.000 description 2
- 239000011534 wash buffer Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 208000002109 Argyria Diseases 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 239000012617 Butyl Sepharose™ 4 Fast Flow Substances 0.000 description 1
- 239000008000 CHES buffer Substances 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 241000282567 Macaca fascicularis Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- MKWKNSIESPFAQN-UHFFFAOYSA-N N-cyclohexyl-2-aminoethanesulfonic acid Chemical compound OS(=O)(=O)CCNC1CCCCC1 MKWKNSIESPFAQN-UHFFFAOYSA-N 0.000 description 1
- 230000004988 N-glycosylation Effects 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 229920002556 Polyethylene Glycol 300 Polymers 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 208000025747 Rheumatic disease Diseases 0.000 description 1
- 239000012506 Sephacryl® Substances 0.000 description 1
- 102000007365 Sialoglycoproteins Human genes 0.000 description 1
- 108010032838 Sialoglycoproteins Proteins 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 108020005719 Species specific proteins Proteins 0.000 description 1
- 102000007397 Species specific proteins Human genes 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000337 buffer salt Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000012864 cross contamination Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000006240 deamidation Effects 0.000 description 1
- 230000022811 deglycosylation Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 125000002228 disulfide group Chemical group 0.000 description 1
- 229940093476 ethylene glycol Drugs 0.000 description 1
- OUDSFQBUEBFSPS-UHFFFAOYSA-N ethylenediaminetriacetic acid Chemical compound OC(=O)CNCCN(CC(O)=O)CC(O)=O OUDSFQBUEBFSPS-UHFFFAOYSA-N 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- RVRCFVVLDHTFFA-UHFFFAOYSA-N heptasodium;tungsten;nonatriacontahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[W].[W].[W].[W].[W].[W].[W].[W].[W].[W].[W] RVRCFVVLDHTFFA-UHFFFAOYSA-N 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 230000002601 intratumoral effect Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000002997 ophthalmic solution Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 238000012510 peptide mapping method Methods 0.000 description 1
- 238000005325 percolation Methods 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 238000011020 pilot scale process Methods 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000002953 preparative HPLC Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000009938 salting Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 125000005629 sialic acid group Chemical group 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000012421 spiking Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 238000009121 systemic therapy Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- AYEKOFBPNLCAJY-UHFFFAOYSA-O thiamine pyrophosphate Chemical compound CC1=C(CCOP(O)(=O)OP(O)(O)=O)SC=[N+]1CC1=CN=C(C)N=C1N AYEKOFBPNLCAJY-UHFFFAOYSA-O 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 238000011100 viral filtration Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/555—Interferons [IFN]
- C07K14/565—IFN-beta
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/12—Carboxylic acids; Salts or anhydrides thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/26—Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention relates to a method for the production of recombinant human Interferon- ⁇ (IFN- ⁇ ), comprising at least one affinity chromatography (AC) and at least one hydrophobic interaction chromatography (HIC) step.
- IFN- ⁇ recombinant human Interferon- ⁇
- AC affinity chromatography
- HIC hydrophobic interaction chromatography
- the present invention relates to a method for the purification of glycosylated IFN- ⁇ from cell culture supernatant or a mixture of other proteins, comprising two affinity chromatography steps with subsequent hydrophobic interaction chromatography steps as preferably followed by an anion exchange chromatography (AEX) step.
- AEX anion exchange chromatography
- Interferons are species specific proteins, partially glycoproteins, which are secreted by different cell types of the body upon induction by viruses, double-stranded RNA, other polynucleotides as well as antigens. Interferons possess numerous biological activities such as antiviral, antiproliferative as well as immunomodulating properties. So far, at least three different types of human interferons have been identified, which are produced by leucocytes, lymphocytes, fibroblasts as well as cells of the immune system and designated ⁇ -, ⁇ -, and ⁇ -interferons. Several interferon types are further subdivided in subtypes.
- Native human IFN- ⁇ can be industrially produced by superinduction of human fibroblast cell cultures with PoIy-IC and subsequent isolation and purification of IFN- ⁇ by chromatographic and electrophoretic techniques. Applying recombinant DNA technology, proteins or polypeptides having comparable features as naturally occurring IFN- ⁇ can be produced; see for example European patent applications EP 028 033, EP 0 041 313, EP 070 906 and EP 287 075 as well as Chemajovsky et al. DNA 3 (1984), 297-308 and McCormick et al. MoI. Cell. Biol. 4 (1984), 166-172.
- human recombinant IFN- ⁇ can be produced by eukaryotic cells (for example CHO cells) or by prokaryotic cells (for example E.coli).
- the corresponding interferons are designated IFN- ⁇ - Ia and IFN- ⁇ - Ib, respectively.
- IFN- ⁇ -la is glycosylated; see Goodkin, Lancet 344 (1994), 1057-1060.
- Interferon- ⁇ A prerequisite tor the therapeutic application of Interferon- ⁇ implies that it can be provided in sufficient amounts and high purity and it is formulated in a galenic composition, which makes the protein suitable for long-term storage by maintaining the molecular integrity. Interferon- ⁇ is instable and is subject to different degradation reactions. These include especially the cleavage of peptide bonds, deamidation, oxidation of methionine to methioninsulfide, disulfide exchange as well as modification of the sugar side chain up to deglycosylation.
- Murine Interferon- ⁇ differs significantly from human IFN- ⁇ . Therefore, the principles for purifying murine IFN- ⁇ described in the numerous available literature are not transferable and in the last decade, intensive efforts have been made to provide and optimize purification protocols for IFN- ⁇ , in order to isolate IFN- ⁇ in a sufficient amount and in a form in which it is suitable for stable storage and therapeutic use. Therefore, several publications exist, which describe different purification methods of IFN- ⁇ .
- European patent application EP 011 435 discloses a sequence of purification steps comprising a cation exchange and a metal chelate affinity chromatography step.
- European patent application EP 027 262 describes a method for purification comprising a dye ligand chromatography with Cibacron Blue.
- European patent application EP 041 313 describes the use of a zinc chelate chromatography for purification of IFN- ⁇ .
- European patent application EP 094 672 and EP 118 808 describe a purification method comprising Cibacron Blue and metal chelate chromatography.
- European patent application EP 215 658 describes a sequence of purification steps comprising an affinity chromatography and a High Performance Liquid Chromatography (HPLC).
- HPLC High Performance Liquid Chromatography
- EP 274 900 the purification of IFN- ⁇ inter alia by affinity chromatography and reverse phase HPLC (RP-HPLC) is described.
- RP-HPLC reverse phase HPLC
- EP 467 992 describes the use of a metal chelate chromatography for the purification of IFN- ⁇ .
- European patent application EP 529 300 discloses a sequence of purification steps comprising liquid/liquid phase extraction, Cibacron Blue affinity chromatography, immobilized Metal Ion Affinity Chromatography (IMAC) and gel chromatography.
- IMAC immobilized Metal Ion Affinity Chromatography
- German patent application DE 30 28 919 describes a sequence of purification steps comprising affinity chromatography and RP-HPLC.
- German patent application DE 30 39 566 the purification of IFN- ⁇ inter alia by glass absorption and a metal chelate chromatography step is described.
- European patent application EP 446 850 describes a sequence of purification steps comprising glass absorption and cation exchange chromatography (CEX).
- IFN- ⁇ immunoaffinity chromatography
- lectin affinity chromatography in particular by use of Concanavalin A (ConA)
- ConA Concanavalin A
- Phenyl- Sepharose has been described; see for example Carter and Horoszewicz, Pharmacol. Ther. 8 (1980), 359-377 as well as Mikulski et al. Prep. Biochem. 10 (1980), 103-1 19.
- the object of the present invention is to provide a method for purifying biologically active recombinant human IFN- ⁇ in satisfactory purity and amount. Furthermore, the method should be simple and straightforward in realization. Desirable is a purification process which is applicable in routine process under GMP (Good Manufacturing Practice) aspects, and which preferably takes requirements for regulatory acceptance (validation, reproducibility) and particular biochemical peculiarities (such hydrophobicity) of IFN- ⁇ into account.
- GMP Good Manufacturing Practice
- the present invention relates to a method for purification of recombinantly produced biologically active human IFN- ⁇ (IFN- ⁇ ), comprising at least one affinity chromatography (AC) step and at least one hydrophobic interaction chromatography (HIC) step, wherein these chromatography steps can be performed immediately after another in either order.
- IFN- ⁇ biologically active human IFN- ⁇
- AC affinity chromatography
- HIC hydrophobic interaction chromatography
- cell culture supernatant or cell fractions containing IFN- ⁇ serve as starting material for the chromatographic purification in order to reach a sufficient purity which allows for its application for formulation of a pharmaceutical composition.
- IFN- ⁇ intended for said purification is a polypeptide which exhibits biological and/or immunological features of naturally occurring human IFN- ⁇ and can be either a natural or a recombinant IFN- ⁇ .
- glycosylated IFN- ⁇ more preferably recombinant IFN- ⁇ from eukaryotic host cells, preferably CHO cells, is used.
- IFN- ⁇ species originated from the cell line BIC 8622 (ECACC 87 04 03 01) are used, which are for example described in European patent applications EP 287 075 and EP 529 300, the disclosures of which are referenced hereby.
- the correct formation of the disulfide bond is essential for the biological activity.
- the protein consists of 40% hydrophobic amino acids and is extremely hydrophobic (insoluble). Its pi is slightly basic (7.8-8.9).
- the amino acid sequence shows four histidine residues in position 93, 97, 121 and 131, which explains the good binding to Me + * ligands.
- the specific activity of IFN- ⁇ should be at least 2 x 10 8 IU/mg.
- IFN- ⁇ preparations with high triantennary (>25%) and additional tetraantennary glycosylation (>5%) have been described, which can have a specific activity up to 3 x 10 IU/mg and more.
- the two essential biological activities of IFN- ⁇ which can be measured are its antiviral and antiproliferative effect. Each of these biological activities can be measured by standard methods through inhibition of the cytopathic effect of a virus. A detailed description of the test methods used can be found in Stewart, W. E. 11 (1981), The Interferon System (Second, enlarged Edition), Springer- Verlag: Wien, New York; Grossberg, S.E.
- the method of purifying IFN- ⁇ comprises two affinity chromatography steps, preferably performed before the hydrophobic interaction chromatography step.
- the metal chelate affinity chromatography (Zinc Sepharose chromatography) yields are 90-100%, and the hydrophobic interaction chromatography (Butyl Sepharose chromatography) yields are > 70%, respectively.
- Analysis by RP-HPLC as well as SDS-PAGE and subsequent silver staining confirmed that IFN- ⁇ was purified up to apparent homogeneity.
- a band shift in SDS-PAGE under reduced and non-reduced conditions revealed that the internal disulfide bond was formed and thus the protein was correctly folded.
- Isoelectric Focussing (IEF) Western blots the intermediate purification product and the final product exhibit a similar IFN- ⁇ isoform pattern as Avonex ⁇ .
- the IFN- ⁇ preparation according to the present invention has been further analyzed via analytical SEC using Superdex 75 HR 10/30.
- Major elution peaks at A280 and A214 exhibit a peak maximum between 13.9 and 14.0 ml elution volume.
- the apparent molecular mass is 14 kDa, which indicates that the IFN- ⁇ monomers were eluted with a slight delay, probably due to an unspecific interaction with the column matrix.
- the specific activity of the IFN- ⁇ purified according to the present invention already usually exhibits not less than 1 x 10 IU/mg, typically exceeding at least 2 x 10 IU/mg, and preferably exceeding at least 3 x 10 8 IU/mg and more.
- the purification method for IFN- ⁇ comprises an anion exchange chromatography (AbXJ step, preferably directly applied after the HIC step in flow through modus. This further AEX step is especially advantageous for the preparation of pharmaceuticals composition of IFN- ⁇ , since in control experiments with additional spiking of samples with virus material, the obtained IFN- ⁇ preparation was no longer infectious and therefore is suitable for therapeutic application.
- a cation exchange chromatography (CEX) step is omitted.
- CEX cation exchange chromatography
- CEX step is to be used as intermediary step and might be more suitable as a polishing step.
- CEX cannot be directly applied after an affinity chromatography step with dye ligands such as Cibacron or metal chelate as IMAC because it requires increasing salt concentrations for elution. Therefore, subsequent rebuffering and desalting steps would become necessary.
- dye ligands such as Cibacron or metal chelate as IMAC
- the method of purifying IFN- ⁇ does not comprises the use of a preparative HPLC.
- RP reverse phase
- RP-HPLC would be applied, if required, only for analytical purpose.
- immunoglobulin affinity chromatography is not part of said purification process of the present invention.
- Those purification steps for therapeutic proteins are always associated with an extensive validation program in order to exclude security issues such as cross contamination. Therefore, omittance of said immunoaffinity steps is regarded as a big advantage.
- the use of a hydroxyapatite chromatography is omitted.
- the purification method according to the present invention makes only use of two to three different chromatography separation methods, in particular an affinity chromatography with dye ligands and/or metal chelates and a hydrophobic interaction chromatography, characterized by adsorption of the nonpolar surface regions of a protein at high salt concentrations to weak hydrophobic ligands in the stationary phase (salting effect) and elution by decreasing the buffer salt concentration.
- this step is followed by an ion exchange chromatography step, based on the principle of a competitive interaction of charged ions, i.e. here anions.
- the chromatographic purification of IFN- ⁇ comprises the following steps:
- the IFN- ⁇ sample should be kept in a cationic environment; i.e., at pH values below its isoelectric point (pi), so that the used buffers and washing solutions, apart from some individual washing steps, preferably exhibit a pH of ⁇ 7; see also the Examples.
- Blue Dextran Sepharose R or other suitable Cibacron R Blue immobilized matrices such as Matrex Gel Blue A from Amicon or Fraktogel 45 TSK AF-Blue from Merck or Blue-Sepharose R 6FF from GE Healthcare can be used.
- suitable metal ions can be Cu 2+ , Zn 2+ , Co 2+ or Ni 2+ ions.
- the desorption can be induced by competitive substances such as imidazol, histidine, glycine or NH 4 Cl, chelate agents as EDTA, IDA (iminodiacidic acid), TED (Tris-Carboxymethyl Ethylendiamine) or by lowering the pH value to pH 2 to 4.
- Suitable separation media are immobilized iminodiacetic acid linked to agarose or to Fraktogel TSK HW-65F (Pierce) or Chelating Sepharose R FF (GE Healthcare) or Cellufine Chelate (Amicon).
- the experiments performed according to the present invention revealed that particularly dye affinity chromatography with Cibacron Blue and IMAC chromatography, especially in combination, are particularly advantageous for the IFN- ⁇ purification process.
- Cibacron in one preferred embodiment of the method of the present invention Cibacron
- IFN- ⁇ is a strong binding partner of Cibacron Blue F3GA (CB-F3GA) and foreign bound proteins can be washed out by various buffers prior to elution. This strong interaction is most likely due to its enormous hydrophobicity. Since IFN- ⁇ quantatively binds even at low concentrations under physiological conditions, this step is especially suitable as a capture step, i.e., as a first chromatography step of the purification process in accordance with the present invention. Elution of IFN- ⁇ can be conducted for example with ethylenglycol, if necessary in a gradient. Blue Sepharose Streamliner or Blue Sepharose Fast Flow (GE)
- a lectin affinity chromatography step can be considered, for example using Concanavalin A (ConA).
- ConA Concanavalin A
- the immobilized metal chelate chromatography (IMAC) is also often described for purification of IFN- ⁇ .
- the carrier should be coupled with iminodiacetate (IDA). So far, IMAC was always performed after an affinity chromatography step (usually Cibacron Blue or ConA).
- a hydrophobic interaction chromatography (HIC) is performed, wherein preferably butyl groups serving as ligands. So far, the use of hydrophobic interaction chromatography for the purification of IFN- ⁇ has not been investigated in detail. Due to the extreme hydrophobicity of IFN- ⁇ , adsorption to and desorption from the hydrophobic matrix seemed to be problematical. In experiments conducted in accordance with the present invention, it was surprisingly found that IFN- ⁇ bound and easily eluted in the HIC step, especially when an acetate buffer with pH 5.0 is used for application and elution steps.
- HIC can be used as a capture step (requires addition of salt prior to applying the sample) and an intermediate chromatography step after the metal chelate chromatography such as IMAC and, if appropriate, can be performed directly after the dye affinity chromatography, e.g., with Cibacron.
- IMAC metal chelate chromatography
- early inactivation of potentially present enzymes or viruses can be achieved in the HIC by elution with organic solvents.
- HIC HIC
- strongly hydrophobic proteins are short-chained alkyls like methyl, butyl or propyl, for example Butyl Sepharose 4 Fast Flow, Macro Prep Methyl, Fractogel EMD Propyl or Phenyl Sepharose Low Substitution (Merck). Since also the matrix contributes to binding, it had to be tested in the experiments according to the present invention, which material is finally best suited for the purification of IFN- ⁇ . In this context it turned out that butyl groups are most appropriate for absorption and in particular subsequent desorption; see also the Examples. Products of Amersham Biosciences (now GE Healthcare) can be used.
- a membrane with quaternary amino groups is used for anion exchange membrane filtration.
- the person skilled in the art can obtain product information on suitable matrices and protocols for performing the anion exchange chromatography from the supplier such as Amersham Biosciences (http://www.amershambiosciences.com, now GE Healthcare) or Bio-Rad (http://www.bio- rad.com).
- 20 mM sodium acetate pH 5.0 is used for equilibration and washing in the anion exchange chromatography step.
- Further suitable conditions for anion exchange chromatography can be found in the literature like in the handbook "Ion Exchange Chromatography - Principles and Methods" from Amersham Biosciences, Freiburg, Kunststoff (now GE Healthcare), 2002.
- the purification process for IFN- ⁇ comprises therefore at least one of the follwoing steps; (e) an ultrafiltration (UF) step;
- ultra- and microfiltration serve for the specific purification and concentration of IFN- ⁇ while size exclusion chromatography and nanofiltration are especially used for the removal of host cell DNA, endotoxins and remaining process related impurities of the eluates, if present.
- ultrafiltration is a tangential flow filtration with a size exclusion of 5 kD - 1000 kD, and for microfiltration a 0.2 ⁇ m membrane, for the size exclusion chromatography Superdex 200 and/or for the nanofiltration a filter with a pore size of 15 - 75 nm should be used.
- the claimed purification process for IFN- ⁇ comprises the following steps as illustrated in the Examples: ⁇ a; a aye aiiimty chromatography(AC) step;
- the present invention also relates to a pharmaceutical composition, comprising the IFN- ⁇ obtained in accordance with the method of the present invention.
- IFN- ⁇ obtained can be stored as lyophilisate or preferably in liquid form. It can be applied subcutaneous or intravenous.
- Suitable pharmaceutically acceptable carrier for the formulation of recombinantly expressed IFN- ⁇ are stabilizers like sugar or sugar alcohols, amino acids as well as tensides like Polyssorbate 20 or 80 as well as suitable buffer substances. Examples for formulations are described in international application WO98/28007 and WO99/15193 as well as in European patent application EP 0 529 300, see also products of Avonex® and Rebif® in ROTE LISTE 2005.
- the present invention also relates to a method for the preparation of a pharmaceutical liquid formulation of human IFN- ⁇ suitable for parenteral application comprising a method for the purification of IFN- ⁇ as described herein before and in the Examples, and
- the IFN- ⁇ formulation can be stored for example in suitable washed and sterilized glass vials (hydrolytic class 1) with a pharmaceutical acceptable rubber plug.
- the pnarmaceuticai ifN- ⁇ formulation can also be filled into antiseptic pre-packaged syringes or in capsules or carpules for self injection devices and used for self injection.
- the aqueous solution can be freeze-dried - although this is not preferred - by addition of further additional carriers known by the person skilled in the art and is available in liquid form after reconstitution.
- suitable preservatives liquid multiple dosage forms can be produced as well as ophthalmic solutions and drop solutions for oral application.
- the pharmaceutical composition of IFN- ⁇ comprises acetate, NaCl or one of the amino acids arginine, lysine und glutamine either alone or in addition to one or more further carriers, wherein the carrier is preferably methionine, mannitol, sorbitol, glycerol or a tenside, wherein the tenside is preferably Polysorbate 20 or 80.
- the pH value of the formulation preferably ranges between 4.3 and 4.8.
- the specific activity of the purified IFN- ⁇ according to the present invention is usually at least 1 x 10 8 IU/mg, typically at least 2 x 10 8 IU/mg, preferably at least 3 x 10 8 IU/mg and more.
- a multitude of possible buffer compositions has been identified as suitable for formulation, providing apparently homogenous IFN- ⁇ purified by a dye affinity chromatography (AC), metal chelate affinity chromatography (MAC) and hydrophobic interaction chromatography, which is substantially stable and biologically active at room temperature as well as at -80°C storage and after subsequent thawing.
- the stability of IFN- ⁇ in a given buffer at a concentration of 200 ⁇ g/ml at storage up to two weeks at +4°C or at - 80°C amounts to at least 95%, preferably at least 97% and possibly nearly 100% of the initial activity. Therefore, the present invention also particularly relates to a pharmaceutical composition comprising biologically active IFN- ⁇ .
- IFN- ⁇ preparations are preferably stable over a storage time of 26 to 27 days at -80 °C and of 47 to 48 days (> 6.5 weeks) at +4 0 C, as confirmed by RP-HPLC measurements, A280 measurement and/or the determination of the A320 value ("turbidity" below 0.010).
- the IFN- ⁇ isoform pattern in Western blots after SDS-PAGE and on IEF Western blots is preferably very similar or identical to Avonex ⁇ and to the IFN- ⁇ preparation after the HIC purification step.
- the IFN- ⁇ preparations according to the present invention preferably exhibit an apparent molecular mass of 12-16 kDa.
- the buffer designated 3a of table 10 is particularly well suited for storage of recombinantly produced glycolysated IFN- ⁇ .
- the present invention relates to a pharmaceutical composition, comprising IFN- ⁇ in 25 mM acetate, 150 mM NaCl und 0.167 % (v/v) Polysorbate 20 and which preferably has a pH value of pH 4.8.
- the liquid pharmaceutical formulations according to the present invention are preferably substantially free of human serum albumin and more preferably— apart from the pharmaceutical agent - free of human or animal polypeptides, in particular of serum proteins.
- the stability of the IFN- ⁇ formulation can further be positively affected by sparging with an inert gas such as helium or nitrogen. This is particularly true for the present IFN- ⁇ formulation in a suitable receptacle or container, wherein the head space of said receptacle or container is preferably also sparged with an inert gas such helium or nitrogen, and preferably wherein the head space is not exceeding 30% of the volume of the receptacle or container.
- an inert gas such as helium or nitrogen
- the present invention also relates to a medicament, comprising purified IFN- ⁇ obtained by the method of the present invention and pharmaceutical acceptable carriers as buffer, salts, tensides and stabilizers.
- the liquid formulation of IFN- ⁇ is stable over a long time period and can basically be stored in any suitable receptacle or container.
- the present invention also relates to a receptacle or container comprising a liquid pharmaceutical formulation of human IFN- ⁇ suitable for parenteral application and obtainable by method of the present invention for the preparation of the pharmaceutical liquid formulation of IFN- ⁇ as described hereinbefore and in particular in the Examples.
- the receptacle or container according to the present invention is preferably such that its inner surfaces which are in contact with the pharmaceutical formulation prevent the adsorption of IFN- ⁇ .
- at least one surface of the receptacle, or container which is in contact with the liquid formulation is coated with a material or composed of a material essentially consisting or made of polypropylene (PP), silicone or polytetrafluorethylene or ethylene tetrafluorethylene (ETFE) copolymer.
- PP polypropylene
- ETFE ethylene tetrafluorethylene
- the receptacle is a container that is conventionally intended for the storage and/or administration of a liquid medicament like a vial, syringe, ampoule, carpule, puncture bottle or infusion container, wherein the liquid formulation of IFN- ⁇ according to the present invention is particularly advantageous for the use in pre-filled syringes or ampoules.
- the liquid formulation is present for example in a syringe or an ampoule at a concentration of IFN- ⁇ of 10 - 500 ⁇ g/ml, preferably 50 - 250 ⁇ g/ml and/or an activity of 5 - 50 million I.E./ml.
- compositions of the present invention obtainedas well as the receptacles and containers containing these compositions can be used for the treatment of tumors, virus diseases, immunopathies or inflammations including rheumatic diseases, allergies, psoriasis, Crohn's disease and degenerative diseases of the nervous system, in particular multiple sclerosis.
- the required quantity of recombinant IFN- ⁇ in a medicament for the desired therapeutic effect depends on the respective administration and treated subject as well as the respective disease.
- a suitable dosage of the active integrient for administration on a human is ranging between 0.1 x 10 6 and 100 x 10 6 I.E.
- compositions according to the present invention and the receptacles and containers containing them are preferably designed for ophthalmological, subcutan, intracutan, intramuscular, intravenious, intrathecal, intraarticular, intratumoral/peritumoral, intralesional/perilesional or topic application.
- the IFN- ⁇ liquid medicament according to the present invention can be used for immediate administration, for example in a kit.
- the present invention therefore also relates to a kit for the administration of IFN- ⁇ by infusion or injection, comprising one or more of the above described receptacles, preferably along with instructions for storage and/or administration.
- IFN- ⁇ administration at a dosage of 1 x 10 6 to 1O x 10 6 I.E. will be provided, wherein also lower or higher dosages may be indicated, however, depending on the medical indication and stage of disease.
- several receptacles are provided in the kit according to the present invention, for example for weekly intramuscular administration for one month 4 pre- filled syringes with needles or 4 puncture bottles along with pre-packed syringes and needles as well as, if appropriate, a solvent in case lyophilisate is used which is basically possible, but however not preferred.
- Rebif ⁇ is intraveniously administrated three times a week.
- the kit according to the present invention advantageously has safety compartments for syringes, injections and/or infusions needles, respectively.
- discharge aids for the needles and prepared or pre-fitted sealing caps are also to be considered.
- the liquid IFN- ⁇ formulations according to the present invention are stable over a long time period, in particular at about 2-8°C, preferably over a period of at least 4 weeks. Therefore, the liquid formulations, receptacles and kits according to the present invention can advantageously be stored in a conventional refrigerator.
- IFN- ⁇ as a starting point typically is human recombinant IFN- ⁇ Ia expressed by recombinant Chinese Hamster Ovary (CHO) cell line.
- the protein contains arginine N-linked glycanes, exhibiting an isoform profile as described in the relevant draft Ph.Eur. monograph (PHARMEUROPA) Vol. 15, Nr. 4, October 2003.
- the specific activity is demonstrated in the CPE assay (CPE, cytopathic effect) by use of A549 cells and enzephalomyocarditis virus EMC as infections agent (PHARMEUROPA, Vol. 15, Nr. 4, October 2003).
- the specific activity of purified bulk IFN- ⁇ is approximately 3.2 x 10 IU x mg "1 .
- a recombinant CHO cell line is generated, which expresses human IFN- ⁇ Ia, and is adapted to suspension and serum-free culture conditions.
- expression vector a vector can be used which contains the (natural) human IFN- ⁇ gene sequence, a translation start sequence according to Kozak (Kozak sequence) and as a regulatory element for expression the SV40 promoter with a SV40 polyA terminator sequence. The selection and amplification of the expression vectors take place by a murine dhfr gene sequence under the control of an Adeno major late promotor and the SV40 polyA sequence.
- the parental cell line is preferably a dhfr- deficient Chinese Hamster Ovary (CHO) cell line obtainable for example from ATCC or DSMZ.
- the generation of the producer cell line is made in accordance with methods known in the art.
- the dhfr deficient CHO cells are transfected with the expression vector. After selection, subcloning utilizing cloning cylinders and subsequent amplification using methotrexate, the resulting cell line is adapted to serum free culture condition and is tested as suspension culture. A second round of subcloning can be performed utilizing the limited dilution technique.
- the cell culture process consists preferably of seed train expansion of transfected CHO cells in Erlenmeyer flasks followed by commercial scale production in a 10 liter bioreactor.
- the purification process comprises several steps designed to yield a product with high biological activity and biochemical characteristics, and which at the level of product - and product - related substances and impurities are in full compliance with the current regulatory, scientific and compendia standards.
- the scope for this development phase includes an extensive optimization of each purification step and to generate the representative material for a pilot PK/PD-study with Cynomolgus monkeys. Due to limited development resources, the purification (excluding capture step) of this material is performed in a scaled down laboratory process. a) Affinity chromatography: Streamline Blue Sepharose
- a washing buffer is used a): 20 mM NaH 2 P(VNa 2 HPO 4 , IM NaCl, pH 7.2.
- Column regeneration is performed with regeneration buffer 1 : 50 mM Tris/HCl, 1 M NaCl, pH 7.6;
- regeneration buffer 2 10 mM Tris-HCl, 800 mM NaCl, 50 mM EDTA, 10 % Isopropanol, pH 7.6
- regeneration buffer 3 50 mM Tris/HCl, 3 M NaCl, pH 7.6 together with SIP: 70% Ethanol > 12h and 2h/CIP: 0.5 M NaOH.
- the column is stored in storage buffer: 0.01 M NaOH preferably at 2-8°C.
- Conductivity of the eluate is determined and adjusted to 2.5 ⁇ 0.5 mS/cm using 20 mM Na- acetate, pH 5.0 (approximately dilution factor T). The pH is adjusted to pH 5.0 ⁇ 0.1.
- the column is equilibrated with washing buffer a) and after elution of the samples treated with SIP/CIP: 0.1 M NaOH and is stored in storage buffer: 20 mM NaOH. d) Anion exchange membrane filtration
- Loading buffer used for equilibration is sparged with nitrogen in order to remove oxygen prior to equilibration, and after subsequent elution of the sample the column is treated with IM NaOH and is stored in storage buffer: 20 mM NaOH. f) pre-filtration / Nanofiltration
- the purified material is filtered prior to nanofiltration according to table 8.
- Mini Kleenpak (Pall Systems) is used during filtration in order to protect the nanofiltration membrane for micro-precipitates .
- the purified material is filtered through a Planova N20 filter device (table 9).
- a Planova N20 filter device for virus filtration the hollow fiber system of Planova 2ON (Asahi Kasei) is appropriate regarding the yield to IFN- ⁇ and the compatibility with a use drug substance storage buffer. This method yields in 90 to 100%. The purity was > 99% (determined by RP- HPLC).
- the nanofilter is washed with up to 300 mL 2OmM NaAc, pH 5.0, 150 mM NaCl, 0.167% Tween 20 (v/v). Thereafter, the purified drug substance is filled into containers for freezing and storage (TPP Cryotubes).
- the total yield of IFN- ⁇ in relation to the starting activity is 25%.
- Example 3 Identification of a suitable storage buffer system for IFN- ⁇ drug substance
- IFN- ⁇ Blue Sepharose eluates are purified by zinc Sepharose chromatography and butyl Sepharose chromatography and are concentrated to approximately 1.9 mg/ml using Vivacell 70 centrifugal filter device.
- This preparation is the starting material needed for the formulation studies.
- the buffer exchange is performed using Size Exclusion Chromatography (NAPlO, GE Healthcare). A total of 20 different buffers are investigated (see table 10), partly sparged with nitrogen as inert gas. Furthermore, the influence of the head space and closure system on storage stability and precipitation is analyzed.
- Non-oxidizing conditions the buffers are 0.2 ⁇ m filtered using vacuum filtration and sparged with N 2 for 10 min before use; after filing of the formulated IFN- ⁇ into the PP cryovials the head space (maximally 30 % of the cryovial volume) is filled with 0.2 ⁇ m filtered N 2 .
- Oxidizing conditions Buffers not 0.2 ⁇ m are filtered using vacuum filtration, but are sparged with air for 10 min before use; after filling of the formulated IFN- ⁇ into the PP cryovials the head space are not filled with N 2 .
- Non-oxidizing/semi-sterile conditions The buffers are first sparged with N 2 for 30 min, then sterile filtered through a 0.2 ⁇ m cellulose acetate membrane (Schleicher & Schuell; FP 30/02 CA-S) under a lamina flow; the following work are performed under a lamina flow; the final protein solution are not sterile filtered because a significant loss of IFN- ⁇ is expected; after filling of the formulated IFN- ⁇ into the PP cryovials the head space (maximally 30% of the cryovial volume) is filled with 0.2 ⁇ m filtered N 2 .
- IFN- ⁇ protein stability measured by the means of RP-HPLC measurement, showing good stability for all buffer eluates after storage for 12 to 14 days at +4°C (97-103% recovery) with the exception of buffer HaI which exhibit a lower IFN- ⁇ concentration (approximately
- the A320 values is especially low (0.000-0.006) for buffer eluates 3a (25 mM acetate, 150 mM NaCl, 0.167% Tween 20, pH 4.8), 9al (25 mM acetate, 150 mM NaCl, 25 % (v/v) glycerol, pH 3.0) and 9bl (25 mM acetate, 150 mM NaCl, 25 % (v/v) PEG300, pH 3.0) before the storage and after storage at both +4 0 C and -80 0 C, and for two more buffer eluates containing low IFN- ⁇ concentration (approximately 60 ⁇ g/ml) before the storage and after storage at +4 0 C.
- the most suitable buffer for the drug substance with respect to a storage of IFN- ⁇ at -80°C (a demand of the preliminary monograph for IFN- ⁇ ) regarding the yield after thawing and the absence of precipitation is used for pilot and commercial scale (25 mM NaAc, pH 4.8, 150 mM NaCl, 0.167% Tween 20).
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Organic Chemistry (AREA)
- Biophysics (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Dermatology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicinal Preparation (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009032179A DE102009032179A1 (de) | 2009-07-07 | 2009-07-07 | Verfahren zur Reinigung von Interferon beta |
PCT/EP2010/004130 WO2011003600A1 (fr) | 2009-07-07 | 2010-07-07 | Procédé de purification d'interféron-bêta |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2451470A1 true EP2451470A1 (fr) | 2012-05-16 |
Family
ID=42562473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10737494A Withdrawn EP2451470A1 (fr) | 2009-07-07 | 2010-07-07 | Procédé de purification d'interféron-bêta |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2451470A1 (fr) |
JP (1) | JP2012532167A (fr) |
DE (1) | DE102009032179A1 (fr) |
EA (1) | EA201290040A1 (fr) |
WO (1) | WO2011003600A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210009982A (ko) * | 2019-07-18 | 2021-01-27 | 에이비온 주식회사 | 2당화된 인터페론-베타 단백질의 정제 방법 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5564799A (en) | 1978-11-07 | 1980-05-15 | Toray Ind Inc | Multi-stage concentration and purification of interferon originated from human fibroblast |
CH648331A5 (de) | 1979-07-31 | 1985-03-15 | Hoffmann La Roche | Homogenes fibroblasten-interferon und dessen herstellung. |
US4278661A (en) | 1979-10-12 | 1981-07-14 | E. I. Du Pont De Nemours And Company | Purification of interferon |
NL7907791A (nl) | 1979-10-23 | 1981-04-27 | Stichting Rega V Z W | Werkwijze voor het zuiveren van interferon. |
AU538665B2 (en) | 1979-10-30 | 1984-08-23 | Juridical Foundation, Japanese Foundation For Cancer Research | Human interferon dna |
FI88175C (fi) | 1980-04-03 | 1993-04-13 | Biogen Inc | Rekombinant-dna-molekyler och foerfaranden foer framstaellning av polypeptider liknande humant -interferon |
EP0070906B1 (fr) | 1981-02-04 | 1986-10-15 | Juridical Foundation Japanese Foundation For Cancer Research | Gene d'interferon beta humain |
JPS58201794A (ja) | 1982-05-17 | 1983-11-24 | Toray Ind Inc | ヒトインターフェロンβの濃縮精製法 |
US4992271A (en) | 1982-09-23 | 1991-02-12 | Cetus Corporation | Formulation for lipophilic IL-2 proteins |
CA1231306A (fr) | 1983-03-03 | 1988-01-12 | Erich Hochuli | Epuration de l'interferon |
US4894330A (en) | 1986-12-23 | 1990-01-16 | Cetus Corporation | Purification of recombinant beta-interferon incorporating RP-HPLC |
DE3712564A1 (de) | 1987-04-14 | 1988-11-24 | Bioferon Biochem Substanz | Verfahren zur konstruktion einer animalen zellinie fuer die herstellung von humanem interferon-beta |
US5169936A (en) * | 1989-04-14 | 1992-12-08 | Biogen, Inc. | Protein purification on immobilized metal affinity resins effected by elution using a weak ligand |
IT1240612B (it) | 1990-03-16 | 1993-12-17 | Sclavo Spa | Procedimento di purificazione del b-interferone umano ricombinante |
DE4128319A1 (de) | 1991-08-27 | 1993-03-04 | Bioferon Biochem Substanz | Neues rekombinantes human-ifn-beta, verfahren zu dessen herstellung und dieses enthaltende pharmazeutische zubereitungen |
WO1998028007A1 (fr) | 1996-12-24 | 1998-07-02 | Biogen, Inc. | Formulations liquides stables d'interferon |
JP4293497B2 (ja) | 1997-09-23 | 2009-07-08 | レントシュレール ビオテクノロジー ゲー・エム・ベー・ハー | インターフェロン−β液状組成物 |
CZ298597B6 (cs) * | 1998-04-28 | 2007-11-21 | Applied Research Systems Ars Holding N. V. | Zpusob postupné vazby polyethylenglykolových skupin na polypeptid |
ITBO20010426A1 (it) | 2001-07-06 | 2003-01-06 | Alfa Wassermann Spa | Processo per la purificazione di proteine farmacologicamente attive mediante cromatografia in scambio cationico |
GEP20084486B (en) * | 2002-12-26 | 2008-09-25 | Mountain View Pharmaceuticals | Polymer conjugates of interferon-beta with enhanced biological potency |
RS57549B1 (sr) * | 2005-08-26 | 2018-10-31 | Ares Trading Sa | Proces za pripremu glikoziliranog interferona beta |
CA2625978A1 (fr) * | 2005-12-09 | 2007-06-14 | Ares Trading S.A. | Procede de purification de la fsh ou d'un mutant de la fsh |
DE102007050165B4 (de) * | 2007-10-19 | 2010-06-17 | Stiftung Tierärztliche Hochschule Hannover | Stabilisierte Lösung, Verfahren zu deren Herstellung sowie deren Verwendung und Arzneimittel in Form einer stabilisierten Lösung |
CA2711375C (fr) * | 2008-01-18 | 2019-04-16 | F. Hoffmann-La Roche Ag | Purification de polypeptides non glycosyles |
DE102008051574A1 (de) * | 2008-10-14 | 2010-04-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur Herstellung von Interferon-beta und deren Varianten |
-
2009
- 2009-07-07 DE DE102009032179A patent/DE102009032179A1/de not_active Withdrawn
-
2010
- 2010-07-07 WO PCT/EP2010/004130 patent/WO2011003600A1/fr active Application Filing
- 2010-07-07 JP JP2012518819A patent/JP2012532167A/ja active Pending
- 2010-07-07 EP EP10737494A patent/EP2451470A1/fr not_active Withdrawn
- 2010-07-07 EA EA201290040A patent/EA201290040A1/ru unknown
Non-Patent Citations (1)
Title |
---|
See references of WO2011003600A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP2012532167A (ja) | 2012-12-13 |
WO2011003600A8 (fr) | 2011-09-01 |
EA201290040A1 (ru) | 2012-07-30 |
DE102009032179A1 (de) | 2011-01-13 |
WO2011003600A1 (fr) | 2011-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10980885B2 (en) | Method of reducing formation of etanercept aggregates or fragments | |
US11000588B2 (en) | Etanercept formulations stabilized with sodium chloride | |
US20120177603A1 (en) | Method for the purification of interferon-b | |
WO2011003600A1 (fr) | Procédé de purification d'interféron-bêta |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120203 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME RS |
|
17Q | First examination report despatched |
Effective date: 20130516 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: RATIOPHARM GMBH |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20150617 |