EP2450865B1 - Mobile Kontrollvorrichtungen und -verfahren für Fahrzeuge - Google Patents

Mobile Kontrollvorrichtungen und -verfahren für Fahrzeuge Download PDF

Info

Publication number
EP2450865B1
EP2450865B1 EP10450169A EP10450169A EP2450865B1 EP 2450865 B1 EP2450865 B1 EP 2450865B1 EP 10450169 A EP10450169 A EP 10450169A EP 10450169 A EP10450169 A EP 10450169A EP 2450865 B1 EP2450865 B1 EP 2450865B1
Authority
EP
European Patent Office
Prior art keywords
vehicle
dsrc
time stamp
detection range
geometry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10450169A
Other languages
English (en)
French (fr)
Other versions
EP2450865A1 (de
Inventor
Harald Hanisch
Markus Ratz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kapsch TrafficCom AG
Original Assignee
Kapsch TrafficCom AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kapsch TrafficCom AG filed Critical Kapsch TrafficCom AG
Priority to SI201030179T priority Critical patent/SI2450865T1/sl
Priority to ES10450169T priority patent/ES2404151T3/es
Priority to DK10450169.7T priority patent/DK2450865T3/da
Priority to PT104501697T priority patent/PT2450865E/pt
Priority to EP10450169A priority patent/EP2450865B1/de
Priority to PL10450169T priority patent/PL2450865T3/pl
Priority to CA2752455A priority patent/CA2752455C/en
Priority to AU2011226888A priority patent/AU2011226888B2/en
Priority to NZ595441A priority patent/NZ595441A/en
Priority to ZA2011/07564A priority patent/ZA201107564B/en
Priority to US13/277,534 priority patent/US8817101B2/en
Priority to CL2011002668A priority patent/CL2011002668A1/es
Priority to RU2011144887/11A priority patent/RU2567997C2/ru
Priority to CN201110343399XA priority patent/CN102542798A/zh
Publication of EP2450865A1 publication Critical patent/EP2450865A1/de
Application granted granted Critical
Publication of EP2450865B1 publication Critical patent/EP2450865B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/052Detecting movement of traffic to be counted or controlled with provision for determining speed or overspeed
    • G08G1/054Detecting movement of traffic to be counted or controlled with provision for determining speed or overspeed photographing overspeeding vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/017Detecting movement of traffic to be counted or controlled identifying vehicles
    • G08G1/0175Detecting movement of traffic to be counted or controlled identifying vehicles by photographing vehicles, e.g. when violating traffic rules

Definitions

  • the present invention relates to a mobile control device for controlling vehicles.
  • the invention further relates to a method for such controls.
  • Such a device is for example from the US 2008/0077312 known.
  • Vehicle controls often associate speed readings with vehicle images in order to clearly identify them for enforcement purposes. If such controls are carried out from a mobile, moving control platform, this currently requires a complex manual assignment of the speed measurement values to the image recordings and vice versa, because the detection ranges of conventional speed measurement sensors and image acquisition cameras never exactly coincide. As a result of this and due to the constantly changing relative speeds in flowing traffic, ambiguities can arise between different image recordings and speed measurement values, which make unambiguous assignment impossible.
  • the object of the invention is to provide mobile control devices and methods which utilize largely automated vehicle controls in flowing traffic, i. both on moving control platforms and moving vehicles to be controlled.
  • a mobile control device with a sensor for speed measurement of vehicles passing a first detection area, which sensor provides a time stamp to the speed measurement value of a vehicle passage; a sensor for at least indirect geometry measurement, preferably length measurement, of vehicles passing through a second detection area, which sensor provides the geometry measured value of a vehicle passage with a time stamp; a camera for taking pictures of vehicles passing through a third detection area, which camera time-stamps the image of each vehicle passage; and an evaluation device connected to the camera and the said sensors, which is designed to from the speed measurement value, its time stamp and the first detection area and from the geometric measurement value, its time stamp and the second detection area, to calculate the location and the time at which a vehicle passage in the third detection area is to be expected, from which it is based on its time stamp and third detection area to determine matching image.
  • the invention takes into account the different detection ranges which the individual sensors and cameras of a mobile control device, and calculates expected values for the movements of the controlled vehicle within the detection areas, so that captured in a detection area vehicle images can be automatically linked with speed measurement values that come from a different detection area.
  • detection area used here encompasses any environmental segment that can be detected from the current location of the mobile control device by means of sensors or cameras, be it a conical, pyramidal, prismatic, linear, planar, etc. space segment or the like.
  • the calculation can also be performed as post-processing, i.
  • the detection areas or time stamps can also be assigned after execution and storage of all individual measurements.
  • a particularly preferred embodiment of the invention which serves to control vehicles equipped with DSRC OBUs ("dedicated short range communication-on-board units"), such as those used in DSRC road toll systems, is characterized by a DSRC transceiver DSRC communication with DSRC OBUs from vehicles passing fourth detection range, which DSRC transceiver time stamps the DSRC communication of each vehicle passage; wherein the evaluation device is further configured to determine the DSRC communication that matches the image determined on the basis of its time stamp and fourth detection range.
  • DSRC OBUs dedicated short range communication-on-board units
  • the corresponding preferred embodiment of the method according to the invention is characterized by the additional steps of performing DSRC communications with the DSRC OBUs of vehicles passing through a fourth detection area and timestamping each DSRC communication; and determining the DSRC communication consistent with its timestamp and fourth detection range to the detected image.
  • DSRC OBUs are used in DSRC road toll systems to perform DSRC communications with roadside equipment (RSE).
  • the DSRC communications ultimately lead to toll transactions in the road toll system.
  • mobile control platforms are also used, which interrogate the DSRC-OBUS of the vehicles in flowing traffic in order to retrieve data for the control of the toll transactions generated in the road toll system, or simply to detect the presence of a functioning DSRC-OBU. OBU in a vehicle to check.
  • the transceiver areas of the DSRC transceiver of the mobile control device and the DSRC OBU of the controlled vehicle in their overlap area necessary for radio communication form a detection area different from the coverage areas of the other sensors and cameras of the mobile control device can differ greatly.
  • the invention solves this problem by calculating expected values for the time and location when and where a vehicle with which DSRC communication was performed is within the detection range of the camera to uniquely associate an image with a DSRC communication to enable.
  • the determination of the speed measurement value may only be one Intermediate result on the way of the assignment of the DSRC communications to the images, ie no own output signal or result of the control device or the control method is, but only for the calculation of said expectation values and thus allocation of the DSRC communications to the images is used.
  • the speed of the vehicles may be measured in any manner known in the art.
  • the speed is measured by means of the DSRC transceiver of the mobile control device itself, u.zw. preferably by Doppler measurement of the DSRC communications, i. Evaluation of the relative velocity-related Doppler effect that occurs in the radio communication.
  • the first and fourth detection ranges are the same because the speed measurement sensor is constituted by the DSRC transceiver itself. This embodiment eliminates the need for installing a separate speed measuring sensor.
  • the speed is measured with a laser scanner from the mobile control device, or by evaluating two consecutive images of a camera.
  • a geometry for example the number of axles, length or height of a passing vehicle can preferably also be detected.
  • the laser scanner can emit a scanning fan in a normal or oblique to the direction of the plane to the controlled vehicle.
  • an associated geometry for example the length, of the vehicle can be determined on the basis of a table of number of axles or vehicle heights and vehicle geometries typically associated therewith.
  • the geometry measurement sensor may be formed by the DSRC transceiver, which in the As part of a DSRC communication, vehicle data is obtained from the DSRC OBU from which it calculates a geometry, preferably the length, of the vehicle, in which case the second and fourth detection ranges are equal.
  • vehicle data is obtained from the DSRC OBU from which it calculates a geometry, preferably the length, of the vehicle, in which case the second and fourth detection ranges are equal.
  • the data of the geometry sensor can also be used for further plausibility checks such as the determination of a vehicle volume, a vehicle class, etc., against which the recorded images, speed readings and / or DSRC communications can be checked for plausibility of the assignment.
  • a control vehicle 1 which moves on a roadway of a road 2 in a direction of travel 3 at a speed v 1 .
  • the control vehicle 1 is used to control other vehicles 4 of the flowing traffic on the road 2, which move in the example shown here on an oncoming lane of the road 2 in an opposite direction 5 at a speed v 2 and pass the control vehicle 1 in oncoming traffic. It is understood, however, that control vehicle 1 can also control vehicles 4 traveling in the same direction, or that one or both vehicles 1, 4 can temporarily rest during stop-and-go traffic.
  • the different directions of travel 3, 5 and speeds v 1 , v 2 of control vehicle 1 and controlled vehicle 4 create time-variable conditions that make a fixed geometric association between control vehicle 1 and vehicle 4 impossible.
  • the senor 7 measures the (relative) speed v r of the passing vehicles 4 and provides each speed measurement value v r each with a time stamp TS 1 of the time of its detection. Knowing the airspeed v 1 of the vehicle 1, it is possible to deduce the intrinsic speed v 2 of the vehicle 4 from the relative speed v r .
  • the senor 9 measures at least one geometry of the passing vehicles 4, here the length L, and provides each geometry measured value L with a time stamp TS 2 of the time of its detection.
  • the camera 11 photographs the vehicles 4 passing through its detection area 12 and provides each captured image B with a time stamp TS 3 of the time his capture.
  • the DSRC transceiver 13 performs DSRC communications 14 with the DSRC OBU 15 of the passing vehicles 4 and stores each performed DSRC communication 15 with a time stamp TS 4 of its execution.
  • the evaluation device 17 links the speed measurement values, geometry measured values, camera images and DSRC communications received from the sensors 5, 9, the camera 11 and the optional DSRC receiver 13, taking into account their respective time stamps TS 1 -TS 4 and detection ranges 8, 10, 12. 16, so that they can be assigned to each other.
  • the respective detection areas 8, 10, 12 and 16 with respect to the coordinate system of the control device 6 are known, for example defined by solid angles, planes, sectors, etc., from the in the detection areas at the respective times 15 1 , 15 2 , 15 3 , 15 4 speed measurement values occurring geometry measured values and / or DSRC communications expected values for the location and time are calculated to one due to the vehicle 4 vehicle passage in the detection area 12 of the camera 11 occurs at the respectively so that the camera 11 recorded in the detection area 12 images B with their time stamps TS 3 can be compared with it.
  • the respective matching image B can be determined and vice versa, even if the detection ranges 8, 12 of speed sensor 7 and camera 11 do not coincide.
  • the vehicle geometry in particular number of axles A and / or vehicle length L, is thereby evaluated in order to exclude ambiguity, eg to validate a vehicle 4 recorded in an image B on the basis of its detected length in the image relative to the length L measured by the sensor 9, or several Vehicles 4, which were recorded in the same image B due to the traffic density, to distinguish from each other.
  • the speed measurement value v r or v 2 of the vehicle 4 determined in this way can also only be one embodiment be used as an intermediate result on the way of assigning a DSRC communication 14 to a captured image B.
  • a DSRC communication with a vehicle 4 can also correspond to the respective image B of the vehicle 4 are assigned.
  • the measured or calculated velocity vector v 2 of the vehicle 4 and the known velocity vector v 1 of the control vehicle 1 in conjunction with the respective timestamps TS 1 - TS 4 and detection areas 8, 10, 11, 12, 16 are evaluated around that location and estimate or extrapolate from this time the time at which the vehicle 4 with which a DSRC communication 14 took place should occur in the detection area 12 of the camera 11, that image B of the camera 11 whose time stamp TS 3 and whose position of the vehicle 4 recorded in the image B matches these expectation values.
  • any sensors known in the art may be used.
  • a laser scanner is used for the geometry measurement sensor 9, which emits, for example, a scanning fan in a direction normal to the direction of travel 3 or inclined plane, i. E. its detection area 10 is a plane, and by the movement of the control vehicle 1 and / or vehicle 4, the vehicle 4 is scanned to produce a 3D image of the vehicle 4.
  • the vehicle length L will often be distorted.
  • the vehicle length L can be determined indirectly from this: For example, from a correctly recorded vehicle height (or vehicle volume) can be closed to a certain class of vehicles, such as cars, trucks, trucks with trailers, etc., for which certain typical Vehicle lengths L can be determined.
  • the sensor 9 can do this For example, contain a table of typical vehicle heights and associated typical vehicle lengths and thus determine an associated - albeit approximately - length L of the vehicle 4 due to the measured vehicle height.
  • the senor 9 could be e.g. be a 3D laser scanner, which in a train very quickly creates a 3D image of a passing vehicle 4 - quasi photographic - from which directly a geometry, such as the vehicle length L, can be determined.
  • the senor 9 can be e.g. the number of axles A of the vehicle 4 is determined, for example by laser scanning or LIDAR or radar Doppler measurement of the rotating wheels of the vehicle 4.
  • the sensor 9 can then be e.g. Again, a table of typical axle numbers A vehicle lengths L or dimensions included and thus an associated - albeit only approximately - geometry, such as the length L, the vehicle 4 determine.
  • the speed measuring sensor 7 may be formed by a laser scanner, e.g. in the manner of a LIDAR speedometer.
  • the speed of the vehicle 4 could also be measured with a 2D or 3D laser scanner, for example with the aid of two short-term successive measurements and determination of the local offset of the vehicle 4 between the two measurements.
  • both the speed measuring sensor 7 and the geometry measuring sensor 9 can use one and the same laser scanner.
  • the speed may also be measured using the optional DSRC transceiver 13.
  • Doppler measurements may be made on the DSRC communications 14 to determine the relative velocity v r .
  • the speed can be measured by means of a transceiver 13 with infrared transmission in the course of vehicle communication.
  • the DSRC OBU 15 itself to measure its speed and to send this to the DSRC transceiver 13 as part of a DSRC communication 14, which here is included in the definition that the DSRC transceiver 13 forms a speed measuring sensor.
  • the DSRC transceiver 13 can also form the geometry measurement sensor 9 when it receives vehicle data from the DSRC OBU 15 as part of a DSRC radio communication 14, from which it can calculate a geometry of the vehicle 4, for example the length L.
  • the DSRC OBU 15 sends information about the vehicle class or number of axles of the vehicle 4, from which - in turn, based on a table of typical vehicle geometries for typical vehicle classes or numbers of axles - the corresponding vehicle geometry can be calculated.
  • the geometry measurement sensor 9 and the DSRC transceiver 13 coincide, it is understood that the detection regions 10, 16 coincide accordingly.
  • the transceiver 13 may alternatively be used in a different short-range transmission technique than DSRC, e.g. in infrared or any microwave technology, be executed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

  • Die vorliegende Erfindung betrifft eine mobile Kontrollvorrichtung zur Kontrolle von Fahrzeugen. Die Erfindung betrifft ferner ein Verfahren für solche Kontrollen.
  • Eine solche Vorrichtung ist z.B. aus der US 2008/0077312 bekannt.
  • Bei Fahrzeugkontrollen werden häufig Geschwindigkeitsmesswerte mit Bildaufnahmen eines Fahrzeugs verknüpft, um dieses für die Ahndung von Verkehrsvergehen ("Enforcement") eindeutig identifizieren zu können. Werden solche Kontrollen von einer mobilen, sich bewegenden Kontrollplattform aus durchgeführt, erfordert dies derzeit eine aufwendige manuelle Zuordnung der Geschwindigkeitsmesswerte zu den Bildaufnahmen und umgekehrt, weil sich die Erfassungsbereiche üblicher Geschwindigkeitsmesssensoren und Bildaufnahmekameras nie genau decken. Dadurch und aufgrund der ständig wechselnden Relativgeschwindigkeiten im fließenden Verkehr können sich Doppeldeutigkeiten zwischen verschiedenen Bildaufnahmen und Geschwindigkeitsmesswerten ergeben, die eine eindeutige Zuordnung unmöglich machen.
  • Die Erfindung setzt sich zum Ziel, mobile Kontrollvorrichtungen und -verfahren zu schaffen, welche weitgehend automatisierte Fahrzeugkontrollen im fließenden Verkehr, d.h. sowohl bei bewegten Kontrollplattformen als auch bewegten zu kontrollierenden Fahrzeugen, gestatten.
  • Dieses Ziel wird in einem ersten Aspekt der Erfindung mit einer mobilen Kontrollvorrichtung erreicht, mit
    einem Sensor zur Geschwindigkeitsmessung von einen ersten Erfassungsbereich passierenden Fahrzeugen, welcher Sensor den Geschwindigkeitsmesswert einer Fahrzeugpassage mit einem Zeitstempel versieht;
    einem Sensor zur zumindest indirekten Geometriemessung, bevorzugt Längenmessung, von einen zweiten Erfassungsbereich passierenden Fahrzeugen, welcher Sensor den Geometriemesswert einer Fahrzeugpassage mit einem Zeitstempel versieht;
    einer Kamera zur Aufnahme von Bildern von einen dritten Erfassungsbereich passierenden Fahrzeugen, welche Kamera das Bild jeder Fahrzeugpassage mit einem Zeitstempel versieht; und
    einer an die Kamera und die genannten Sensoren angeschlossenen Auswerteeinrichtung, welche dafür ausgebildet ist,
    aus dem Geschwindigkeitsmesswert, seinem Zeitstempel und dem ersten Erfassungsbereich sowie aus dem Geometriemesswert, seinem Zeitstempel und dem zweiten Erfassungsbereich den Ort und die Zeit zu berechnen, an dem bzw. zu der eine Fahrzeugpassage im dritten Erfassungsbereich zu erwarten ist, um daraus das anhand seines Zeitstempels und dritten Erfassungsbereichs passende Bild zu ermitteln.
  • In einem zweiten Aspekt erreicht die Erfindung ihre Ziele mit einem Verfahren zur Kontrolle von Fahrzeugen, mit den folgenden Schritten in beliebiger Reihenfolge:
    • Messen der Geschwindigkeit eines einen ersten Erfassungsbereich passierenden Fahrzeugs und Versehen des Geschwindigkeitsmesswerts mit einem Zeitstempel;
    • zumindest indirektes Messen einer Geometrie, bevorzugt der Länge, eines einen zweiten Erfassungsbereich passierenden Fahrzeugs und Versehen des Geometriemesswerts mit einem Zeitstempel;
    • Aufnehmen von Bildern von einen dritten Erfassungsbereich passierenden Fahrzeugen und Versehen jedes Bildes mit einem Zeitstempel;
    • ferner mit den anschließenden Schritten:
      • Berechnen, aus dem Geschwindigkeitsmesswert, seinem Zeitstempel und dem ersten Erfassungsbereich sowie aus dem Geometriemesswert, seinem Zeitstempel und dem zweiten Erfassungsbereich, des Ortes und der Zeit, an dem bzw. zu der eine Fahrzeugpassage im dritten Erfassungsbereich zu erwarten ist, und
      • daraus Ermitteln des anhand seines Zeitstempels und dritten Erfassungsbereichs passenden Bildes.
  • Die Erfindung berücksichtigt die unterschiedlichen Erfassungsbereiche, welche die einzelnen Sensoren und Kameras einer mobilen Kontrollvorrichtung haben, und berechnet Erwartungswerte für die Bewegungen des kontrollierten Fahrzeugs innerhalb der Erfassungsbereiche, so dass in einem Erfassungsbereich aufgenommene Fahrzeugbilder automatisch mit Geschwindigkeitsmesswerten, die aus einem davon abweichenden Erfassungsbereich stammen, verknüpft werden können.
  • Der hier verwendete Begriff "Erfassungsbereich" umfasst dabei jedes vom aktuellen Ort der mobilen Kontrollvorrichtung aus mittels Sensoren bzw. Kameras erfassbare Umgebungssegment, sei dies ein kegelförmiges, pyramidenförmiges, prismatisches, linienförmiges, ebenenförmiges usw. Raumsegment od.dgl.
  • Die Berechnung kann auch als post-processing durchgeführt werden, d.h. die Erfassungsbereiche bzw. Zeitstempel können auch nach Durchführung und Speicherung aller Einzelmessungen zugeordnet werden.
  • Prinzipiell ist auch die Verwendung weiterer Sensoren denkbar, deren Sensordaten durch das beschriebene Verfahren zum jeweiligen passierenden Fahrzeug zugeordnet werden: Abgas-Sensoren, Lautstärke-Sensoren, Temperatur-Sensoren für Reifen- bzw. Bremsen-Inspektion, Video-Sensoren für Reifen-Inspektion, Gefahrentransport-Markierungen, Plaketten, Vignetten, usw.
  • Alle hier genannten Bilder können jeweils auch Bestandteil einer Videosequenz sein.
  • Eine besonders bevorzugte Ausführungsform der Erfindung, welche zur Kontrolle von mit DSRC-OBUs ("dedicated short range communication-onboard units") ausgestatteten Fahrzeugen dient, wie sie beispielsweise im Rahmen von DSRC-Straßenmautsystemen Verwendung finden, zeichnet sich durch einen DSRC-Sendeempfänger zur DSRC-Kommunikation mit DSRC-OBUs von einen vierten Erfassungsbereich passierenden Fahrzeugen aus, welcher DSRC-Sendeempfänger die DSRC-Kommunikation jeder Fahrzeugpassage mit einem Zeitstempel versieht; wobei die Auswerteinrichtung ferner dafür ausgebildet ist, die anhand ihres Zeitstempels und vierten Erfassungsbereichs zu dem ermittelten Bild passende DSRC-Kommunikation zu ermitteln.
  • Die entsprechende bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens zeichnet sich aus durch die zusätzlichen Schritte des Durchführens von DSRC-Kommunikationen mit den DSRC-OBUs von einen vierten Erfassungsbereich passierenden Fahrzeugen und Versehen jeder DSRC-Kommunikation mit einem Zeitstempel; und des Ermittelns der anhand ihres Zeitstempels und vierten Erfassungsbereichs zu dem ermittelten Bild passenden DSRC-Kommunikation.
  • DSRC-OBUs werden in DSRC-Straßenmautsystemen dazu eingesetzt, DSRC-Kommunikationen mit straßenseitig aufgestellten Funkbaken ("roadside equipment", RSE) durchzuführen. Die DSRC-Kommunikationen münden letztlich in Mautransaktionen im Straßenmautsystem. Für die Kontrolle von Fahrzeugen mit DSRC-OBUs werden auch mobile Kontrollplattformen eingesetzt, welche im fließenden Verkehr die DSRC-OBUS der Fahrzeuge abfragen, um daraus Daten für die Kontrolle der im Straßenmautsystem erzeugten Mauttransaktionen abzurufen, oder einfach nur um das Vorhandensein einer funktionsfähigen DSRC-OBU in einem Fahrzeug zu überprüfen. Bei dieser Art von Kontrolle ergibt sich das zusätzliche Problem, dass die Sendeempfangsbereiche des DSRC-Sendeempfängers der mobilen Kontrollvorrichtung und der DSRC-OBU des kontrollierten Fahrzeugs in ihrem für die Funkkommunikation notwendigen Überlappungsbereich einen Erfassungsbereich bilden, der sich von den Erfassungsbereichen der übrigen Sensoren und Kameras der mobilen Kontrollvorrichtung stark unterscheiden kann. Dadurch ergibt sich neuerlich ein Zuordnungsproblem zwischen den DSRC-Funkkommunikationen einerseits und den zu Enforcement-Zwecken aufgenommenen Bildern andererseits. Die Erfindung löst dieses Problem durch die Berechnung von Erwartungswerten für die Zeit und den Ort, wann bzw. wo ein Fahrzeug, mit dem eine DSRC-Kommunikation durchgeführt wurde, im Erfassungsbereich der Kamera ist, um eine eindeutige Zuordnung eines Bildes zu einer DSRC-Kommunikation zu ermöglichen.
  • Es versteht sich, dass bei dieser Ausführungsform die Ermittlung des Geschwindigkeitsmesswerts gegebenenfalls nur ein Zwischenergebnis auf dem Weg der Zuordnung der DSRC-Kommunikationen zu den Bildern ist, d.h. kein eigenes Ausgangssignal bzw. Ergebnis der Kontrollvorrichtung bzw. des Kontrollverfahrens darstellt, sondern lediglich zur Berechnung der genannten Erwartungswerte und damit Zuordnung der DSRC-Kommunikationen zu den Bildern dient.
  • Die Geschwindigkeit der Fahrzeuge kann an sich auf jede in der Technik bekannte Art gemessen werden. Gemäß einer ersten bevorzugten Ausführungsform der Erfindung, welche für die DSRC-Systeme bestimmt ist, wird die Geschwindigkeit mit Hilfe des DSRC-Sendeempfängers der mobilen Kontrollvorrichtung selbst gemessen, u.zw. bevorzugt durch Dopplermessung der DSRC-Kommunikationen, d.h. Auswertung des relativgeschwindigkeitsbedingten Dopplereffekts, der in der Funkkommunikation auftritt. Demgemäß sind bei dieser Ausführungsform auch der erste und der vierte Erfassungsbereich gleich, weil der Geschwindigkeitsmesssensor durch den DSRC-Sendeempfänger selbst gebildet wird. Diese Ausführungsform erübrigt den Einbau eines gesonderten Geschwindigkeitsmesssensors.
  • In einer alternativen bevorzugten Ausführungsform, welche sich auch für nicht mit DSRC-OBUs ausgestattete Fahrzeuge eignet, wird die Geschwindigkeit mit einem Laserscanner von der mobilen Kontrollvorrichtung aus gemessen, oder durch Auswertung zweier aufeinanderfolgender Bilder einer Kamera.
  • Mit einem solchen Laserscanner kann bevorzugt auch eine Geometrie, z.B. die Achsanzahl, Länge oder Höhe eines passierenden Fahrzeugs detektiert werden. Beispielsweise kann der Laserscanner einen Abtastfächer in einer normal oder schräg zur Fahrtrichtung liegenden Ebene auf das kontrollierte Fahrzeug aussenden. Aus einer z.B. solcherart detektierten Achsanzahl oder Fahrzeughöhe kann anhand einer Tabelle von Achsanzahlen bzw. Fahrzeughöhen und diesen typischerweise zugeordneten Fahrzeuggeometrien eine zugehörige Geometrie, z.B. die Länge, des Fahrzeugs ermittelt werden. Alternativ kann der Geometriemesssensor durch den DSRC-Sendeempfänger gebildet sein, welcher im Rahmen einer DSRC-Kommunikation Fahrzeugdaten von der DSRC-OBU erhält, aus welchen er eine Geometrie, bevorzugt die Länge, des Fahrzeugs berechnet, in welchem Fall der zweite und der vierte Erfassungsbereich gleich sind. Die Daten des Geometriesensors können überdies auch für weitere Plausibilitätsüberprüfungen wie die Ermittlung eines Fahrzeugvolumens, einer Fahrzeugklasse usw. herangezogen werden, gegen welche die aufgenommenen Bilder, Geschwindigkeitsmesswerte und/oder DSRC-Kommunikationen auf Plausibilität der Zuordnung gegengeprüft werden können.
  • Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachstehenden Beschreibung eines bevorzugten Ausführungsbeispiels, welches auf die begleitenden Zeichnungen Bezug nimmt, in denen:
    • die Fig. 1 bis 3 eine auf einem Kontrollfahrzeug montierte mobile Kontrollvorrichtung zur Kontrolle von Fahrzeugen des fließenden Verkehrs in drei verschiedenen Verwendungsstellungen zeigen, welche gleichzeitig drei Phasen des Verfahrens der Erfindung wiedergeben.
  • Unter Bezugnahme auf die Fig. 1 bis 3 ist darin jeweils ein Kontrollfahrzeug 1 gezeigt, das sich auf einer Fahrbahn einer Straße 2 in einer Fahrtrichtung 3 mit einer Geschwindigkeit v1 bewegt. Das Kontrollfahrzeug 1 dient dazu, andere Fahrzeuge 4 des fließenden Verkehrs auf der Straße 2 zu kontrollieren, welche sich im hier gezeigten Beispiel auf einer Gegenfahrbahn der Straße 2 in einer entgegengesetzten Fahrtrichtung 5 mit einer Geschwindigkeit v2 bewegen und das Kontrollfahrzeug 1 im Gegenverkehr passieren. Es versteht sich jedoch, dass Kontrollfahrzeug 1 auch in gleicher Richtung fahrende Fahrzeuge 4 kontrollieren kann, oder dass bei Stop-and-go-Verkehr eines oder beide Fahrzeuge 1, 4 vorübergehend ruhen können. Die unterschiedlichen Fahrtrichtungen 3, 5 und Geschwindigkeiten v1, v2 von Kontrollfahrzeug 1 und kontrolliertem Fahrzeug 4 schaffen zeitveränderliche Bedingungen, die eine feste geometrische Zuordnung zwischen Kontrollfahrzeug 1 und Fahrzeug 4 unmöglich machen.
  • Zur Kontrolle des Fahrzeugs 4 trägt das Kontrollfahrzeug 1 eine mobile Kontrollvorrichtung 6, welche die folgenden Komponenten umfasst, von denen einige auch zusammenfallen können:
    • einen ersten Sensor 7 zur Messung der auf das Kontrollfahrzeug 1 bezogenen Relativgeschwindigkeit vr = v2 - v1 des Fahrzeugs 4, wenn sich dieses im Erfassungsbereich 8 des Sensors 7 befindet bzw. diesen passiert;
    • einen zweiten Sensor 9, welcher zumindest indirekt eine Geometrie, hier die Länge L des Fahrzeugs 4 misst, wenn sich dieses im Erfassungsbereich 10 des Sensors 9 befindet;
    • zumindest eine Kamera 11 zur Aufnahme eines Bildes B des Fahrzeugs 4, wenn sich dieses im Erfassungsbereich 12 der Kamera 11 befindet bzw. diesen passiert;
    • einen (optionalen) DSRC-Sendeempfänger 13, der eine Funkkommunikation 14 mit einer (optionalen) DSRC-OBU 15 des Fahrzeugs 4 durchführen kann, wenn sich dieses im Erfassungsbereich 16 des DSRC-Sendeempfängers 13 befindet bzw. diesen passiert; der Erfassungsbereich 16 ist die Schnittmenge aus dem Sendeempfangsbereich des DSRC-Sendeempfängers 13 und dem Sendeempfangsbereich der DSRC-OBU 15; und
    • eine an die obigen Komponenten angeschlossene Auswerteeinrichtung 17.
  • Im Betrieb misst der Sensor 7 die (Relativ-)Geschwindigkeit vr der passierenden Fahrzeuge 4 und versieht jeden Geschwindigkeitsmesswert vr jeweils mit einem Zeitstempel TS1 des Zeitpunkts seiner Erfassung. Aus der Relativgeschwindigkeit vr könnte in Kenntnis der Eigengeschwindigkeit v1 des Fahrzeugs 1 auf die Eigengeschwindigkeit v2 des Fahrzeugs 4 rückgeschlossen werden.
  • In gleicher Weise misst der Sensor 9 zumindest eine Geometrie der passierenden Fahrzeuge 4, hier die Länge L, und versieht jeden Geometriemesswert L mit einem Zeitstempel TS2 des Zeitpunkts seiner Erfassung. Die Kamera 11 fotografiert die ihren Erfassungsbereich 12 passierenden Fahrzeuge 4 und versieht jedes aufgenommene Bild B mit einem Zeitstempel TS3 des Zeitpunkts seiner Erfassung. Optional führt der DSRC-Sendeempfänger 13 DSRC-Kommunikationen 14 mit den DSRC-OBU 15 der passierenden Fahrzeuge 4 durch und speichert jede durchgeführte DSRC-Kommunikation 15 mit einem Zeitstempel TS4 ihrer Durchführung ab.
  • Die Auswerteeinrichtung 17 verknüpft die von den Sensoren 5, 9, der Kamera 11 und dem optionalen DSRC-Empfänger 13 erhaltenen Geschwindigkeitsmesswerte, Geometriemesswerte, Kamerabilder und DSRC-Kommunikationen unter Berücksichtigung ihrer jeweiligen Zeitstempel TS1 - TS4 und Erfassungsbereiche 8, 10, 12, 16, so dass sie einander zugeordnet werden können. Da die jeweiligen Erfassungsbereiche 8, 10, 12 und 16 bezüglich des Koordinatensystems der Kontrollvorrichtung 6 bekannt sind, beispielsweise durch Raumwinkel, Ebenen, Sektoren usw. definiert, können aus den in den Erfassungsbereichen zu den jeweiligen Zeiten 151, 152, 153, 154 auftretenden Geschwindigkeitsmesswerten, Geometriemesswerten und/oder DSRC-Kommunikationen Erwartungswerte für den Ort und die Zeit berechnet werden, an dem bzw. zu der eine auf das Fahrzeug 4 zurückzuführende Fahrzeugpassage im Erfassungsbereich 12 der Kamera 11 auftritt, so dass die von der Kamera 11 im Erfassungsbereich 12 aufgenommenen Bilder B mit ihren Zeitstempeln TS3 damit verglichen werden können. Damit kann zu jedem Geschwindigkeitsmesswert vr das jeweils passende Bild B ermittelt werden und umgekehrt, selbst wenn sich die Erfassungsbereiche 8, 12 von Geschwindigkeitssensor 7 und Kamera 11 nicht decken. Die Fahrzeuggeometrie, insbesondere Achsanzahl A und/oder Fahrzeuglänge L, wird dabei mit ausgewertet, um Doppeldeutigkeiten auszuschließen, z.B. um ein in einem Bild B aufgenommenes Fahrzeug 4 anhand seiner im Bild detektierten Länge gegenüber der vom Sensor 9 gemessenen Länge L zu validieren, oder mehrere Fahrzeuge 4, die in ein- und demselben Bild B aufgrund der Verkehrsdichte aufgenommen wurden, voneinander zu unterscheiden.
  • Der auf diese Weise ermittelte Geschwindigkeitsmesswert vr bzw. v2 des Fahrzeugs 4 kann in einer Ausführungsform auch nur als Zwischenergebnis auf dem Weg der Zuordnung einer DSRC-Kommunikation 14 zu einem aufgenommenen Bild B verwendet werden. So kann in Kenntnis des Erfassungsbereichs 16 des DSRC-Sendeempfängers 13, der vorgenannten Geschwindigkeits- und Geometriemesswerte der Sensoren 7, 9, der Erfassungsbereiche 8, 10 und der Zeitstempel TS1 - TS4 eine DSRC-Kommunikation mit einem Fahrzeug 4 auch dem jeweiligen Bild B des Fahrzeugs 4 zugeordnet werden. Dazu werden beispielsweise der gemessene bzw. berechnete Geschwindigkeitsvektor v2 des Fahrzeugs 4 und der bekannte Geschwindigkeitsvektor v1 des Kontrollfahrzeugs 1 in Verbindung mit den jeweiligen Zeitstempeln TS1 - TS4 und Erfassungsbereichen 8, 10, 11, 12, 16 ausgewertet, um jenen Ort und jene Zeit daraus zu schätzen bzw. extrapolieren, zu dem bzw. zu der jenes Fahrzeug 4, mit dem eine DSRC-Kommunikation 14 stattfand, im Erfassungsbereich 12 der Kamera 11 auftreten sollte, um jenes Bild B der Kamera 11, dessen Zeitstempel TS3 und dessen im Bild B aufgenommenen Position des Fahrzeugs 4 zu diesen Erwartungswerten passt, zuzuordnen.
  • Für den Geschwindigkeitsmesssensor 7 und den Geometriemesssensor 9 können jegliche in der Technik bekannte Sensoren verwendet werden. In einer ersten Ausführungsform wird für den Geometriemesssensor 9 ein Laserscanner verwendet, der beispielsweise einen Abtastfächer in einer zur Fahrtrichtung 3 normalen oder schräg gestellten Ebene aussendet, d.h. sein Erfassungsbereich 10 ist eine Ebene, und durch die Fortbewegung des Kontrollfahrzeugs 1 und/oder Fahrzeugs 4 wird das Fahrzeug 4 gescannt, um ein 3D-Abbild des Fahrzeugs 4 zu erzeugen.
  • In einem solchen 3D-Abbild des Fahrzeugs 4 wird aufgrund der Fahrzeuggeschwindigkeit v2 die Fahrzeuglänge L häufig verzerrt dargestellt sein. In diesem Fall lässt sich die Fahrzeuglänge L daraus indirekt ermitteln: So kann z.B. aus einer korrekt erfassten Fahrzeughöhe (oder dem Fahrzeugvolumen) auf eine bestimmte Klasse von Fahrzeugen geschlossen werden, wie PKW, LKW, LKW mit Anhänger, usw., für welche bestimmte typische Fahrzeuglängen L ermittelt werden können. Der Sensor 9 kann dazu z.B. eine Tabelle von typischen Fahrzeughöhen und zugeordneten typischen Fahrzeuglängen enthalten und so aufgrund der gemessenen Fahrzeughöhe eine zugehörige - wenn auch näherungsweise - Länge L des Fahrzeugs 4 ermitteln.
  • Alternativ könnte der Sensor 9 z.B. ein 3D-Laserscanner sein, welcher in einem Zug sehr rasch ein 3D-Abbild eines passierenden Fahrzeugs 4 - quasi fotografisch - erstellt, woraus direkt eine Geometrie, wie die Fahrzeuglänge L, ermittelt werden kann.
  • Noch eine weitere Alternative wäre, dass der Sensor 9 z.B. die Achsanzahl A des Fahrzeugs 4 ermittelt, beispielsweise durch Laserabtastung oder LIDAR- bzw. Radar-Dopplermessung der sich drehenden Räder des Fahrzeugs 4. Der Sensor 9 kann dann z.B. wieder eine Tabelle von für bestimmte Achsanzahlen A typische Fahrzeuglängen L bzw. -abmessungen enthalten und so eine zugehörige - wenn auch nur näherungsweise - Geometrie, wie die Länge L, des Fahrzeugs 4 ermitteln.
  • Auch der Geschwindigkeitsmesssensor 7 kann durch einen Laserscanner gebildet sein, z.B. in der Art einer LIDAR-Geschwindigkeitsmesspistole. Alternativ könnte auch mit einem 2D- oder 3D-Laserscanner die Geschwindigkeit des Fahrzeugs 4 gemessen werden, beispielsweise mit Hilfe zweier kurzzeitig aufeinander folgender Messungen und Bestimmung des örtlichen Versatzes des Fahrzeugs 4 zwischen den beiden Messungen. Optional kann daher sowohl für den Geschwindigkeitsmesssensor 7 als auch den Geometriemesssensor 9 ein- und derselbe Laserscanner verwendet werden.
  • In einer alternativen Ausführungsform kann die Geschwindigkeit auch mit Hilfe des optionalen DSRC-Sendeempfängers 13 gemessen werden. Beispielsweise können dazu Dopplermessungen an den DSRC-Kommunikationen 14 vorgenommen werden, um die Relativgeschwindigkeit vr zu ermitteln. Alternativ kann die Geschwindigkeit mit Hilfe eines Sendeempfängers 13 mit Infrarotübertragung in Zuge der Fahrzeugkommunikation gemessen werden.
  • Denkbar wäre auch, dass die DSRC-OBU 15 selbst ihre Geschwindigkeit misst und dies im Rahmen einer DSRC-Kommunikation 14 an den DSRC-Sendeempfänger 13 sendet, was hier von der Definition mitumfasst ist, dass der DSRC-Sendeempfänger 13 einen Geschwindigkeitsmesssensor bildet.
  • Wenn die Geschwindigkeit mit dem DSRC-Sendeempfänger 13 gemessen wird, versteht es sich, dass der erste und der vierte Erfassungsbereich 8 und 16 zusammenfallen.
  • Der DSRC-Sendeempfänger 13 kann darüber hinaus auch den Geometriemesssensor 9 bilden, wenn er im Rahmen einer DSRC-Funkkommunikation 14 Fahrzeugdaten von der DSRC-OBU 15 erhält, aus welchen er eine Geometrie des Fahrzeugs 4, beispielsweise die Länge L, berechnen kann. Beispielsweise sendet die DSRC-OBU 15 Informationen über die Fahrzeugklasse oder Achsanzahl des Fahrzeugs 4, aus welchem - wiederum anhand einer Tabelle von typischen Fahrzeuggeometrien für typische Fahrzeugklassen oder Achsanzahlen - die zugehörige Fahrzeuggeometrie berechnet werden kann. Wenn der Geometriemesssensor 9 und der DSRC-Sendeempfänger 13 zusammenfallen, versteht es sich, dass entsprechend auch die Erfassungsbereiche 10, 16 zusammenfallen.
  • Der Sendeempfänger 13 kann alternativ auch in einer anderen Kurzstreckenübertragungstechnik als DSRC, z.B. in Infrarot-oder beliebiger Mikrowellentechnik, ausgeführt sein.
  • Die Erfindung ist demgemäß nicht auf die dargestellte Ausführungsformen beschränkt, sondern umfasst alle Varianten und Modifikationen, die in den Rahmen der angeschlossenen Ansprüche fallen.

Claims (15)

  1. Mobile Kontrollvorrichtung (6) zur Kontrolle von Fahrzeugen (4), mit
    einem Sensor (7) zur Geschwindigkeitsmessung von einen ersten Erfassungsbereich (8) passierenden Fahrzeugen (4), welcher Sensor (7) den Geschwindigkeitsmesswert (vr) einer Fahrzeugpassage mit einem Zeitstempel (TS1) versieht;
    einem Sensor (9) zur zumindest indirekten Geometriemessung, bevorzugt Längenmessung, von einen zweiten Erfassungsbereich (10) passierenden Fahrzeugen (4), welcher Sensor (9) den Geometriemesswert (L) einer Fahrzeugpassage mit einem Zeitstempel (TS2) versieht;
    einer Kamera (11) zur Aufnahme von Bildern (B) von einen dritten Erfassungsbereich (12) passierenden Fahrzeugen (4), welche Kamera (11) das Bild (B) jeder Fahrzeugpassage mit einem Zeitstempel (TS3) versieht; und
    einer an die Kamera (11) und die genannten Sensoren (7, 9) angeschlossenen Auswerteeinrichtung (17), welche dafür ausgebildet ist,
    aus dem Geschwindigkeitsmesswert (vr), seinem Zeitstempel (TS1) und dem ersten Erfassungsbereich (8) sowie aus dem Geometriemesswert (L), seinem Zeitstempel (TS2) und dem zweiten Erfassungsbereich (10) den Ort und die Zeit zu berechnen, an dem bzw. zu der eine Fahrzeugpassage im dritten Erfassungsbereich (12) zu erwarten ist, um daraus das anhand seines Zeitstempels (TS3) und dritten Erfassungsbereichs (12) passende Bild (B) zu ermitteln.
  2. Mobile Kontrollvorrichtung nach Anspruch 1 zur Kontrolle von mit DSRC-OBUs ausgestatteten Fahrzeugen, ferner mit
    einem DSRC-Sendeempfänger (13) zur DSRC-Kommunikation (14) mit DSRC-OBUs (15) von einen vierten Erfassungsbereich (16) passierenden Fahrzeuge (4), welcher DSRC-Sendeempfänger (13) die DSRC-Kommunikation (14) jeder Fahrzeugpassage mit einem Zeitstempel (TS4) versieht;
    wobei die Auswerteinrichtung (17) ferner dafür ausgebildet ist, die anhand ihres Zeitstempels (TS4) und vierten Erfassungsbereichs (16) zu dem ermittelten Bild (B) passende DSRC-Kommunikation (14) zu ermitteln.
  3. Mobile Kontrollvorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass der erste und der vierte Erfassungsbereich (8, 16) gleich sind und der Geschwindigkeitsmesssensor (7) durch den DSRC-Sendeempfänger (13) gebildet ist.
  4. Mobile Kontrollvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Geschwindigkeitsmesssensor (7) durch einen Laserscanner gebildet ist.
  5. Mobile Kontrollvorrichtung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass der zweite und der vierte Erfassungsbereich (10, 16) gleich sind und der Geometriemesssensor (9) durch den DSRC-Sendeempfänger (13) gebildet ist, welcher im Rahmen einer DSRC-Kommunikation (14) Fahrzeugdaten von der DSRC-OBU (15) erhält, aus welchen er eine Geometrie, bevorzugt die Länge (L), des Fahrzeugs (4) berechnet.
  6. Mobile Kontrollvorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Geometriemesssensor (9) durch einen Laserscanner gebildet ist.
  7. Mobile Kontrollvorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass der Laserscanner (9) die Fahrzeughöhe oder Achsanzahl detektiert, aus welcher er anhand einer Tabelle von Fahrzeughöhen bzw. Achsanzahlen und zugeordneten Fahrzeuggeometrien die zugehörige Geometrie, bevorzugt Länge (L), des Fahrzeugs (4) ermittelt.
  8. Verfahren zur Kontrolle von Fahrzeugen, mit den folgenden Schritten in beliebiger Reihenfolge:
    Messen der Geschwindigkeit eines einen ersten Erfassungsbereich (8) passierenden Fahrzeugs (4) und Versehen des Geschwindigkeitsmesswerts (vr) mit einem Zeitstempel (TS1);
    zumindest indirektes Messen einer Geometrie, bevorzugt der Länge, eines einen zweiten Erfassungsbereich (10) passierenden Fahrzeugs (4) und Versehen des Geometriemesswerts (L) mit einem Zeitstempel (TS2);
    Aufnehmen von Bildern (B) von einen dritten Erfassungsbereich (12) passierenden Fahrzeugen (4) und Versehen jedes Bildes (B) mit einem Zeitstempel (TS3);
    ferner mit den anschließenden Schritten:
    Berechnen, aus dem Geschwindigkeitsmesswert (vr), seinem Zeitstempel (TS1) und dem ersten Erfassungsbereich (8) sowie aus dem Geometriemesswert (L), seinem Zeitstempel (TS2) und dem zweiten Erfassungsbereich (10), des Ortes und der Zeit, an dem bzw. zu der eine Fahrzeugpassage im dritten Erfassungsbereich (12) zu erwarten ist, und
    daraus Ermitteln des anhand seines Zeitstempels (TS3) und dritten Erfassungsbereichs (12) passenden Bildes (B).
  9. Verfahren nach Anspruch 8 zur Kontrolle von mit DSRC-OBUs ausgestatteten Fahrzeugen, ferner mit den Schritten
    Durchführen von DSRC-Kommunikationen (14) mit den DSRC-OBUs (15) von einen vierten Erfassungsbereich (16) passierenden Fahrzeugen (4) und Versehen jeder DSRC-Kommunikation (14) mit einem Zeitstempel (TS4); und
    Ermitteln der anhand ihres Zeitstempels (TS4) und vierten Erfassungsbereichs (16) zu dem ermittelten Bild (B) passenden DSRC-Kommunikation (14).
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der erste und der vierte Erfassungsbereich (8, 16) gleich sind und die Geschwindigkeit (vr) durch Dopplermessung der DSRC-Kommunikation (14) gemessen wird.
  11. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Geschwindigkeit mit einem Laserscanner gemessen wird, oder durch Auswertung zweier aufeinanderfolgender Bilder einer Kamera.
  12. Verfahren nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass der zweite und der vierte Erfassungsbereich (10, 16) gleich sind und im Rahmen einer DSRC-Kommunikation (14) Fahrzeugdaten von der DSRC-OBU (15) erhalten werden, aus welchen eine Geometrie, bevorzugt die Länge (L), des Fahrzeugs (4) berechnet wird.
  13. Verfahren nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass die Geometrie mit einem Laserscanner (9) gemessen wird.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass mit dem Laserscanner (9) die Fahrzeughöhe detektiert und aus dieser anhand einer Tabelle von Fahrzeughöhen und zugeordneten Fahrzeuggeometrien die zugehörige Geometrie, bevorzugt Länge (L), des Fahrzeugs (4) ermittelt wird.
  15. Verfahren nach einem der Ansprüche 8 bis 14, dadurch gekennzeichnet, dass es von einem fahrenden Kontrollfahrzeug (1) aus ausgeführt wird.
EP10450169A 2010-11-04 2010-11-04 Mobile Kontrollvorrichtungen und -verfahren für Fahrzeuge Active EP2450865B1 (de)

Priority Applications (14)

Application Number Priority Date Filing Date Title
SI201030179T SI2450865T1 (sl) 2010-11-04 2010-11-04 Mobilne nadzorne naprave in postopki za vozila
ES10450169T ES2404151T3 (es) 2010-11-04 2010-11-04 Dispositivos y procedimientos de control móvil para vehículos
DK10450169.7T DK2450865T3 (da) 2010-11-04 2010-11-04 Mobile kontrolindretninger og -fremgangsmåder til brug i forbindelse med køretøjer
PT104501697T PT2450865E (pt) 2010-11-04 2010-11-04 Dispositivos e métodos de controlo móveis para veículos
EP10450169A EP2450865B1 (de) 2010-11-04 2010-11-04 Mobile Kontrollvorrichtungen und -verfahren für Fahrzeuge
PL10450169T PL2450865T3 (pl) 2010-11-04 2010-11-04 Mobilne urządzenie kontrolujące i sposoby kontroli dla pojazdów
CA2752455A CA2752455C (en) 2010-11-04 2011-09-15 Mobile monitoring devices and methods for vehicles
AU2011226888A AU2011226888B2 (en) 2010-11-04 2011-09-26 Mobile monitoring devices and methods for vehicles
NZ595441A NZ595441A (en) 2010-11-04 2011-09-29 Mobile monitoring method and device having sensors for measuring the speed, geometry, and images of passing vehicles
ZA2011/07564A ZA201107564B (en) 2010-11-04 2011-10-14 Mobile monitoring devices and methods for vehicles
US13/277,534 US8817101B2 (en) 2010-11-04 2011-10-20 Mobile device and method for monitoring of vehicles
CL2011002668A CL2011002668A1 (es) 2010-11-04 2011-10-26 Dispositivo de monitoreo movil y metodo para el control de vehiculos.
RU2011144887/11A RU2567997C2 (ru) 2010-11-04 2011-11-03 Мобильные устройства и способы контроля транспортных средств
CN201110343399XA CN102542798A (zh) 2010-11-04 2011-11-03 车辆的移动监测设备和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10450169A EP2450865B1 (de) 2010-11-04 2010-11-04 Mobile Kontrollvorrichtungen und -verfahren für Fahrzeuge

Publications (2)

Publication Number Publication Date
EP2450865A1 EP2450865A1 (de) 2012-05-09
EP2450865B1 true EP2450865B1 (de) 2013-01-23

Family

ID=43706429

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10450169A Active EP2450865B1 (de) 2010-11-04 2010-11-04 Mobile Kontrollvorrichtungen und -verfahren für Fahrzeuge

Country Status (14)

Country Link
US (1) US8817101B2 (de)
EP (1) EP2450865B1 (de)
CN (1) CN102542798A (de)
AU (1) AU2011226888B2 (de)
CA (1) CA2752455C (de)
CL (1) CL2011002668A1 (de)
DK (1) DK2450865T3 (de)
ES (1) ES2404151T3 (de)
NZ (1) NZ595441A (de)
PL (1) PL2450865T3 (de)
PT (1) PT2450865E (de)
RU (1) RU2567997C2 (de)
SI (1) SI2450865T1 (de)
ZA (1) ZA201107564B (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101418991B1 (ko) * 2010-11-22 2014-08-13 한국전자통신연구원 Wave 기반의 차량 통신 시스템에서의 프레임 송신 장치 및 방법
US20130265419A1 (en) * 2012-04-06 2013-10-10 Xerox Corporation System and method for available parking space estimation for multispace on-street parking
CN104755874B (zh) * 2013-04-01 2018-08-28 松下知识产权经营株式会社 具有多个光源的运动传感器装置
CN103363952A (zh) * 2013-06-03 2013-10-23 长春理工大学 输电线路与目标尺寸及间距的车载光电测量装置及其方法
AT515847B1 (de) 2014-06-03 2019-06-15 Efkon Gmbh Handgerät und verfahren zur kontrolle eines mauterfassungsgeräts
CN104021678A (zh) * 2014-07-01 2014-09-03 熊苡霖 智能实时测速监测系统
CN104200651B (zh) * 2014-09-10 2017-05-10 四川九洲电器集团有限责任公司 基于dsrc和北斗卫星的车载通信装置和方法
CN105300303A (zh) * 2015-11-03 2016-02-03 长春理工大学 一种输电线路与树木垂直间距的地面自动测量装置及方法
CN105574946B (zh) * 2015-12-21 2017-11-28 天津中兴智联科技有限公司 一种手持式etc读写器及其采用的rfid与ar的融合方法
CN105654561B (zh) * 2015-12-22 2018-01-16 北京万集科技股份有限公司 多车道自由流车辆匹配方法
US20170365105A1 (en) * 2016-06-17 2017-12-21 Ford Global Technologies, Llc Method and apparatus for inter-vehicular safety awareness and alert
US11112237B2 (en) * 2016-11-14 2021-09-07 Waymo Llc Using map information to smooth objects generated from sensor data
WO2018092388A1 (ja) * 2016-11-21 2018-05-24 パナソニックIpマネジメント株式会社 速度取締システム及び速度取締方法
WO2018215562A1 (en) 2017-05-24 2018-11-29 Starship Technologies Oü Device and method for detection and localization of vehicles
CN107767189B (zh) * 2017-11-23 2021-04-09 鄢碧珠 一种广告推送方法
US10600234B2 (en) 2017-12-18 2020-03-24 Ford Global Technologies, Llc Inter-vehicle cooperation for vehicle self imaging
US10417911B2 (en) 2017-12-18 2019-09-17 Ford Global Technologies, Llc Inter-vehicle cooperation for physical exterior damage detection
US10745005B2 (en) 2018-01-24 2020-08-18 Ford Global Technologies, Llc Inter-vehicle cooperation for vehicle self height estimation
US10628690B2 (en) 2018-05-09 2020-04-21 Ford Global Technologies, Llc Systems and methods for automated detection of trailer properties
US11351917B2 (en) 2019-02-13 2022-06-07 Ford Global Technologies, Llc Vehicle-rendering generation for vehicle display based on short-range communication
CN110779451B (zh) * 2019-11-14 2021-05-04 湖北工业大学 一种基于单相机的车辆尺寸测量装置及方法
US20220252404A1 (en) * 2021-02-10 2022-08-11 Ford Global Technologies, Llc Self-correcting vehicle localization
CN113012444B (zh) * 2021-03-30 2022-04-29 安徽银徽科技有限公司 测速抓拍机构及基于该机构的智能交通系统
US11900801B2 (en) * 2021-11-30 2024-02-13 International Business Machines Corporation Generating a speeding ticket using a persistently stored character code in a camera for masking information about characters of a number plate of a vehicle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5515042A (en) * 1993-08-23 1996-05-07 Nelson; Lorry Traffic enforcement device
US7262790B2 (en) * 2002-01-09 2007-08-28 Charles Adams Bakewell Mobile enforcement platform with aimable violation identification and documentation system for multiple traffic violation types across all lanes in moving traffic, generating composite display images and data to support citation generation, homeland security, and monitoring
RU2228542C1 (ru) * 2003-08-14 2004-05-10 Общество с ограниченной ответственностью "Альтоника" Способ определения местоположения транспортного средства
ITTO20030770A1 (it) * 2003-10-02 2005-04-03 Fiat Ricerche Dispositivo di rilevamento installabile lungo una
WO2007011522A2 (en) * 2005-07-14 2007-01-25 Gm Global Technology Operations, Inc. Remote perspective vehicle environment observation system
US20080077312A1 (en) * 2006-09-26 2008-03-27 Mrotek Charles G System, Method, and Apparatus, for Mobile Radar Assisted Traffic Enforcement
US8098889B2 (en) * 2007-01-18 2012-01-17 Siemens Corporation System and method for vehicle detection and tracking
GB2447672B (en) * 2007-03-21 2011-12-14 Ford Global Tech Llc Vehicle manoeuvring aids
DE102007022373A1 (de) * 2007-05-07 2008-11-13 Robot Visual Systems Gmbh Verfahren zur beweiskräftigen Erfassung der Geschwindigkeit eines Fahrzeuges
RU2395815C1 (ru) * 2009-07-27 2010-07-27 Игорь Юрьевич Мацур Способ определения скорости движения транспортного средства
US8742987B2 (en) * 2009-12-10 2014-06-03 GM Global Technology Operations LLC Lean V2X security processing strategy using kinematics information of vehicles

Also Published As

Publication number Publication date
US20120113262A1 (en) 2012-05-10
AU2011226888B2 (en) 2013-11-14
SI2450865T1 (sl) 2013-05-31
CN102542798A (zh) 2012-07-04
RU2011144887A (ru) 2013-05-10
PL2450865T3 (pl) 2013-06-28
RU2567997C2 (ru) 2015-11-10
EP2450865A1 (de) 2012-05-09
DK2450865T3 (da) 2013-05-06
US8817101B2 (en) 2014-08-26
AU2011226888A1 (en) 2012-05-24
CL2011002668A1 (es) 2012-08-10
CA2752455C (en) 2018-04-24
ZA201107564B (en) 2012-07-25
CA2752455A1 (en) 2012-05-04
NZ595441A (en) 2012-06-29
ES2404151T3 (es) 2013-05-24
PT2450865E (pt) 2013-04-18

Similar Documents

Publication Publication Date Title
EP2450865B1 (de) Mobile Kontrollvorrichtungen und -verfahren für Fahrzeuge
EP3042368B1 (de) Verfahren, auswertesystem und fahrzeug zum prognostizieren von mindestens einem stauparameter
EP2564233B1 (de) Verfahren und vorrichtungen zum ermitteln des abstands zwischen einer funkbake und einem fahrzeuggerät
EP2698648B1 (de) Verfahren zur Klassifizierung von fahrenden Fahrzeugen
EP2624231B1 (de) Vorrichtungen und Verfahren zur Kontrolle in einem Straßenmautsystem
DE102012107444B3 (de) Verfahren zur Klassifizierung von fahrenden Fahrzeugen durch Verfolgung einer Positionsgröße des Fahrzeuges
DE102016109592A1 (de) Kollisionsabschwächung und -vermeidung
EP2799901A2 (de) Verkehrsüberwachungssystem zur Geschwindigkeitsmessung und Zuordnung von bewegten Fahrzeugen bei einem Mehrziel-Aufnahmemodul
EP3347737B1 (de) Verfahren zum ermitteln einer parkfläche eines strassenabschnitts
WO2009013054A1 (de) Objektklassifizierungsverfahren und einparkhilfesystem
DE102009031319A1 (de) Verfahren und System zur Bestimmung einer Fahrzeugklasse
EP2707862B1 (de) Abstandsbestimmung mittels eines kamerasensors
DE102007022372A1 (de) Verfahren und Vorrichtung zur Ermittlung der Fahrzeugklasse von Fahrzeugen
DE102007041121A1 (de) Verfahren und Vorrichtung zum Verarbeiten von Sensordaten für ein Fahrerassistenzsystem eines Fahrzeugs
WO2011101115A2 (de) Fahrbahnintegrierter radarsensor
DE112017006506T5 (de) Fahrassistenzsystem und Fahrassistenzvorrichtung
WO2017054956A1 (de) Verfahren und system zum ermitteln von verkehrsteilnehmern mit interaktionspotential
DE102018104243B3 (de) Verfahren und System zur Erkennung von für ein Fahrzeug geeigneten Parklücken
WO2018104191A1 (de) Automatisierte freiraumerkennung mittels differenzanalyse für fahrzeuge
DE102013217486A1 (de) Verfahren zur Repräsentation eines Umfelds eines Fahrzeugs in einem Belegungsgitter
DE102013016596A1 (de) Verfahren zum Betreiben einer Fahrerassistenzeinrichtung
DE102008021380B4 (de) Verfahren und Vorrichtung zum Vorhersagen eines Verlaufs einer Fahrbahn und Fahrerassistenzsystem
DE102009007055A1 (de) Verfahren zur Messung der Geschwindigkeit eines Fahrzeuges und sichtbaren Zuordnung in einer Dokumentation
WO2020187581A1 (de) VERFAHREN UND VORRICHTUNG ZUM ERKENNEN EINES VERKEHRSRECHTSVERSTOßES DURCH UNTERSCHREITEN EINES ZULÄSSIGEN ABSTANDS ZWISCHEN EINEM FOLGEFAHRZEUG UND EINEM FÜHRUNGSFAHRZEUG
DE102017200865A1 (de) Verfahren zum fahrspurspezifischen Verorten eines Fahrzeugs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 595326

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010002194

Country of ref document: DE

Effective date: 20130314

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20130412

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATWIL AG, CH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2404151

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130524

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20130123

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 13815

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130523

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20131024

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010002194

Country of ref document: DE

Effective date: 20131024

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E018758

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20161031

Year of fee payment: 7

Ref country code: GB

Payment date: 20161122

Year of fee payment: 7

Ref country code: NL

Payment date: 20161118

Year of fee payment: 7

Ref country code: NO

Payment date: 20161122

Year of fee payment: 7

Ref country code: CH

Payment date: 20161121

Year of fee payment: 7

Ref country code: DK

Payment date: 20161118

Year of fee payment: 7

Ref country code: HU

Payment date: 20161115

Year of fee payment: 7

Ref country code: CZ

Payment date: 20161103

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20161102

Year of fee payment: 7

Ref country code: IT

Payment date: 20161123

Year of fee payment: 7

Ref country code: PL

Payment date: 20161103

Year of fee payment: 7

Ref country code: SI

Payment date: 20161025

Year of fee payment: 7

Ref country code: BE

Payment date: 20161118

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20171130

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20171201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171104

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180504

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171104

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 13815

Country of ref document: SK

Effective date: 20171104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171105

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171105

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20180709

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171104

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130123

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171104

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171104

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230513

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231120

Year of fee payment: 14

Ref country code: FR

Payment date: 20231120

Year of fee payment: 14

Ref country code: DE

Payment date: 20231121

Year of fee payment: 14

Ref country code: AT

Payment date: 20231121

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240126

Year of fee payment: 14