EP2449482A2 - Verfahren zur filterung von messsignalen - Google Patents

Verfahren zur filterung von messsignalen

Info

Publication number
EP2449482A2
EP2449482A2 EP10740140A EP10740140A EP2449482A2 EP 2449482 A2 EP2449482 A2 EP 2449482A2 EP 10740140 A EP10740140 A EP 10740140A EP 10740140 A EP10740140 A EP 10740140A EP 2449482 A2 EP2449482 A2 EP 2449482A2
Authority
EP
European Patent Office
Prior art keywords
wavelet
filtering
signals
measurement
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10740140A
Other languages
English (en)
French (fr)
Other versions
EP2449482B1 (de
Inventor
Thomas Orth
Stefan Nitsche
Till Schmitte
Klaus-Dieter Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vallourec Deutschland GmbH
Original Assignee
V&M Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by V&M Deutschland GmbH filed Critical V&M Deutschland GmbH
Publication of EP2449482A2 publication Critical patent/EP2449482A2/de
Application granted granted Critical
Publication of EP2449482B1 publication Critical patent/EP2449482B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4427Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4463Signal correction, e.g. distance amplitude correction [DAC], distance gain size [DGS], noise filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • G06F17/148Wavelet transforms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside

Definitions

  • the invention relates to a method for filtering measurement signals according to the preamble of claim 1.
  • Filtering of measuring signals is for example in the case of non-destructive
  • the tests are used to accompany the production in particular to ensure compliance with the required wall thickness of the pipe and any existing discontinuities in the pipe wall, such. As doublings, cracks, notches, Einwalzitch or other surface defects to detect.
  • ultrasonic pulses are excited in the wall and, according to the pulse echo method, starting from the outer surface of the tube
  • Tube inside surface reflected signals received again. From the duration of the signal and from the speed of sound in the material to be tested, the thickness of the pipe wall can be calculated. Usually, this process is used in production and automatically for both magnetizable and non-magnetizable pipe materials.
  • the useful signals are the sought carrier of information from interference signals, such. B. background noise, are superimposed.
  • ZfP non-destructive testing
  • wavelet algorithms are particularly well suited for this task.
  • wavelets are used as a filter criterion, since they can have a high similarity with the useful signals.
  • wavelet filters With the help of wavelet filters a much more effective noise suppression can be realized compared to conventional filter techniques.
  • wavelet filtering is a Fourier transform-related technique in which a signal from the time domain is converted into a frequency domain. While the Fourier transformation completely suppresses the time information, part of the time information is preserved in the wavelet transformation into the wavelet domain and information about the frequency of one signal at a time is obtained. The same can be said with the so-called "short time fourier
  • the wavelet transformation does not use harmonic functions (sin / cos) as an orthogonal function system, but uses short, pulsed wavelets, and finally, in the wavelet transformation, the signal is convolved with these wavelet basis functions.
  • the wavelet coefficients thus calculated are subjected to a threshold evaluation. This means that the wavelet coefficients are compared with a threshold value and determined according to a method to be determined, eg. These modified wavelet coefficients are applied to an inverse wavelet transform and the whole process is called wavelet filtering.
  • wavelet transform projects the original signal onto wavelet basis functions, which is a representation of the time domain into the time-frequency domain.
  • wavelet functions which are localized in the time and frequency domain, are derived from a few prototype wavelets, the so-called parent function, by dilation and translation.
  • the aim is to use the wavelet transformation to significantly reduce the noise level in comparison to the error signal.
  • the object of the invention is to provide a safe and cost-effective method for filtering measurement signals, in which the threshold values in the wavelet domain are variably variable with respect to the respective measurement situation and thus lead to the best possible noise separation.
  • this object is achieved in that a statistical parameter is calculated from an adjustable number of already calculated wavelet coefficients of a decomposition stage and this is multiplied to determine the threshold for this decomposition stage with an adjustable value common to all stages.
  • the statistical characteristic may be, for example, the standard deviation from the mean value, the standard deviation from the median, or the mean square deviation RMS (Rout Mean Square).
  • the wavelet filtering known from DE 10 2005 036 509 A1 can be used for this method by means of a continuous digital data stream, since the data history can also be used to determine the threshold value. Furthermore, the length of the observation period of the history can advantageously also be set here.
  • the calculation algorithm for filtering in the measuring pauses is stopped via an additional signal, so that the data of the preceding measurement are available as a history when the measurement is resumed.
  • the filtering of the measuring signals according to the invention takes place via wavelet filters, which consist of a cascaded arrangement of FIR (Finite Impulse Response) filters. This arrangement is also referred to as a filter bank.
  • FIR Finite Impulse Response
  • the signal is first transformed into the wavelet domain (also called decomposition /
  • the signal in the wavelet domain consists of wavelet coefficients that exist in different levels or levels.
  • the number of stages results from the depth of the cascaded FIR filter arrangement.
  • the wavelet coefficients are now changed according to the invention. This is done by evaluating the amplitude of the wavelet coefficients within a stage. For each level, a positive threshold (threshold) is set. Each coefficient is compared with this value. If the magnitude of the coefficient is less than the threshold value, it is set to zero. If the amount is above, the threshold value is subtracted for positive coefficients, and for negative ones added.
  • threshold threshold
  • the wavelet coefficients are transformed back into the time domain.
  • the so-called hard-thresholding is also implemented according to the invention.
  • the wavelet coefficients "survive" above the threshold in the corresponding stage WITHOUT value change, whereas all coefficients below the threshold are set to zero.
  • the inverse transformation (also synthesis / reconstruction) is done equivalently by a cascade-shaped filter structure.
  • the filter coefficients are different than in the case of the Hin transformation.
  • the so-called “stationary wavelet transformation” is implemented according to the invention, whereby the “downsampling” used in the known “almost wavelet algorithm” is dispensed with after each stage, whereby redundant signal components are retained, but the filtered signals are no longer depending on the position within the input signal (hence “stationary”).
  • the goal is first to dispense with blocking the data and to carry out the filtering continuously, ie point by point. This procedure prevents the formation of artifacts at the block boundaries
  • the cascaded structure according to the invention is shown in FIG.
  • the input signal is passed through a pair of FIR filters, highpass (HP) and lowpass (TP), respectively.
  • the filters work in point-by-point mode, i. H. for each input value, an output value is generated. Since there are two filters in each stage, the number of values per stage doubles.
  • the results of the HP filtering are each stored in a FIFO (First-In-First-Out) buffer.
  • FIFO First-In-First-Out
  • wavelet coefficients are also referred to as "details.” They are denoted by “d” and an index indicating the level. So the first HP generates the details d1. In the second stage the wavelet coefficients d2 are generated, etc. The results of the TP filtering are fed to the next stage. The filter length doubles in each stage by filling with zeros.
  • the first stage has a FIR HP and TP with 4 coefficients each, in the case of the Daubechies 10 wavelets it is ten filter coefficients.
  • this filter is padded with zeros at every other location, so that the filter length of HP and TP is 8 (for Daubechies-4). In the next stage the filter length is then 16, etc.
  • the signals of the HP and TP filters of the last stage are "left over.” With 6 levels, the details of the 6th HP filter are formed by d6, and the results of the 6th TP filtering are called approximation and abbreviated to a6
  • Approximation represents the longest wave component of the signal, ie the background, which was calculated by a filter bank of 6 TP filters.
  • the wavelet coefficients are fed to the thresholding as described above.
  • the wavelet coefficients a6 and d6 are applied to the inverse TP (iTP) and inverse HP (iHP) filters.
  • These inverse filters of the last (6th) level again have 128 FIR filter coefficients.
  • Each individual result value of the two filters is added and divided by 2 (that is to say an average value).
  • This value is then the input value for the iTP filters of the next higher (5th) level.
  • the input value of the iHP filter comes from the FIFO of the corresponding stage.
  • the signal is reassembled up to the filtered output signal. It is important here that each filter works point by point, ie. H. in each bar, a value from the left is pushed through the entire scheme. In the individual stages, a corresponding number of values must always be stored, resulting in a total delay of the signal. This delay corresponds to the addition of the
  • a delay element (FIFO) must be set between the decomposition and synthesis FIR filters.
  • the filter coefficients of the FIR filters represent the wavelet used. Each wavelet uniquely determines the coefficients for the filters HP, TP, iHP and iTP. In the case of
  • Daubechies 4 wavelets are governed by four coefficients. All other values arise from mathematically justified permutations of these four numbers.
  • the four FIR filters HP, iHP, TP and iTP form mathematically a so-called "quadrupole mirror filter" with certain properties.
  • the FIFOs used as delay elements have different lengths.
  • the lowest FIFO stores the wavelet coefficients d5; the coefficients of the last stage d6 and a6 can be further processed directly. This FIFO must be the
  • Compensate group run times of the FIR filters on the 6th stage, so that it does not lead to any
  • Phase offset comes. At each stage, the delay must take into account the group delay of the filter stage below AND the cumulative delay of ALL of the underlying stages.
  • Figure 1 the filter structure is exemplified for the filtering with stages.
  • Decisive is the choice of the right threshold.
  • the procedure is based on the so-called "global threshold.”
  • the wavelet coefficients of a level are statistically evaluated by, for example, calculating the standard deviation, which is multiplied by a fixed factor known from the literature in order to obtain an estimate for This value is calculated for each level individually.
  • this value can be freely selected by the operator instead of a fixed factor, so that a certain filter strength can be selected.
  • Test equipment to be evaluated d. H. must be compared with fixed thresholds.
  • this form is difficult to reconcile with the continuous filtering according to the invention, since each level is not the same number of data points are available and the calculation of a standard deviation can be performed only poorly point-by-point.
  • the standard deviation is advantageously always calculated on the last m-points, where m is an integer corresponding to a number of measured values. It has proved to be favorable to choose a large number for m, which corresponds, for example, to the number of measured values of one or more tube revolutions.
  • the value m is adjustable and indicates the degree of adaptivity. If m small, the thresholds change frequently, m is large, the same threshold is used over a larger measuring range.
  • the past of the measured values is used to determine the current threshold value. This procedure is based on the legitimate assumption that noise and background signal do not change rapidly in their structure.
  • the method described so far can be further improved by using another parameter alpha to dampen the changes in the automatically calculated thresholds.
  • the parameter alpha now attenuates the adaptivity by a new threshold thr_i_neu may not deviate too much up: thr_i_neu ⁇ thr_i_alt * alpha (see Figure 2).
  • RMS Root Mean Square
  • Algorithm for calculating the thresholds stopped. The beginning of a new test object is then checked first with the same thresholds as the end of the previous object. Instead of the beginning and end of the test object can also be the test cycle z. B.
  • Ultrasonic Shot A-BiId, to be set or displayed by a trigger signal.
  • the filter can be parameterized even further.
  • the method according to the invention can be used for all measuring signals with pulse-like "events.”
  • these include the leakage flux test, the ultrasound test and also the eddy current test, whereby in the latter case the LF signals should be filtered with wavelets ,
  • DSP Signal processors
  • FPGA hardware-near in configurable logic devices

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Filterung von Messsignalen mittels Wavelet-Filterung, bei dem die Signale zunächst mittels Wavelet-Transformation in die Wavelet-Domäne überführt, dort einer Schwellwertbetrachtung unterzogen werden, und bei dem die Schwellwerte in der Wavelet-Domäne bezogen auf die jeweilige Messsituation veränderbar sind. Dabei erfolgt die Filterung der Messsignale über mehrere Filter in Zerlegungsstufen und aus einer einstellbaren Anzahl bereits berechneter Wavelet-Koeffizienten einer Zerlegungsstufe wird eine statistische Kenngröße berechnet und diese wird dann zur Bestimmung des Schwellwertes für diese Zerlegungsstufe mit einem für alle Stufen gemeinsamen einstellbaren Wert multipliziert.

Description

Verfahren zur Filterung von Messsignalen
Beschreibung
Die Erfindung betrifft ein Verfahren zur Filterung von Messsignalen gemäß dem Oberbegriff des Patentanspruches 1.
Eine Filterung von Messsignalen wird beispielsweise bei der zerstörungsfreien
Materialprüfung bei der Herstellung von Rohren aus Metall zur Prüfung auf
Oberflächenfehler oder Wanddickenabweichungen angewandt. Hierzu werden z. B. die Ultraschall- oder Streuflussprüfung eingesetzt, die seit langem bekannt und bewährt sind.
Die Prüfungen werden angewandt um produktionsbegleitend insbesondere die Einhaltung der geforderten Wanddicke des Rohres zu kontrollieren und eventuell vorhandene Ungänzen in der Rohrwand, wie z. B. Dopplungen, Risse, Kerben, Einwalzungen oder sonstige Oberflächenfehler, zu detektieren.
Bei der Ultraschallprüfung werden nach dem Puls-Echoverfahren ausgehend von der Rohraußenoberfläche Ultraschallimpulse in der Wand angeregt und die von der
Rohrinnenoberfläche reflektierten Signale wieder empfangen. Aus der Laufzeit des Signals und aus der Schallgeschwindigkeit im zu prüfenden Material lässt sich die Dicke der Rohrwand errechnen. Üblicherweise wird dieses Verfahren produktionsbegleitend und automatisiert sowohl für magnetisierbare und nicht magnetisierbare Rohrwerkstoffe eingesetzt.
Allgemein wird in der Messtechnik zwischen Nutz- und Störsignalen unterschieden. Dabei sind die Nutzsignale die gesuchten Träger von Informationen, die von Störsignalen, wie z. B. Hintergrundrauschen, überlagert sind. Das Verhältnis von (Nutz-)Signal S (S = Signal) zum Störsignal N (N = Noise) wird als S/N-Verhältnis angegeben. Grundsätzlich ist immer wünschenswert ein möglichst großes S/N-Verhältnis zu erreichen, um eine hohe
Prüfempfindlichkeit darzustellen.
Nachteilig bei der zerstörungsfreien Prüfung (zfP) ist, dass mit den üblichen
Auswertemethoden von Signalen insbesondere bei ungünstigen Verhältnissen von Lage der Ungänze und Geometrie des Prüflings Ungänzen nicht immer eindeutig detektiert werden können. Der Abstand der Fehleranzeige zum Rauschpegel ist dann zu gering, um zu verwertbaren Aussagen zu kommen.
Zur Signalauswertung bei der zerstörungsfreien Materialprüfung werden deshalb zunehmend neuartige auf Wavelet-Algorithmen basierende Filtertechniken eingesetzt, um Fehlersignale vom Grundrauschpegel zu trennen.
Neben der digitalen Filtertechnik mit konventionellen Filter-Algorithmen sind besonders die Wavelet-Algorithmen sehr gut für diese Aufgabe geeignet. Anstelle von harmonischen Funktionen werden Wavelets als Filterkriterium genutzt, da sie eine hohe Ähnlichkeit mit den Nutzsignalen aufweisen können. Mit Hilfe von Wavelet-Filtern lässt sich gegenüber konventionellen Filtertechniken eine deutlich effektivere Rauschunterdrückung realisieren.
Allgemein handelt es sich bei der Wavelet-Filterung um eine der Fourier-Transformation verwandte Technik, bei der ein Signal aus dem Zeitbereich in eine Frequenz-Domäne überführt wird. Während die Fourier-Transformation dabei die Zeitinformation vollständig unterdrückt, bleibt bei der Wavelet-Transformation in die Wavelet-Domäne ein Teil der Zeitinformation erhalten und man erhält Informationen über die Frequenz eines Signals zu einem Zeitpunkt. Ähnliches kann auch mit der sogenannten„Short time fourier
transformation" erreicht werden.
Im Unterschied zur Fourier-Transformation werden bei der Wavelet-Transformation keine harmonische Funktionen (sin/cos) als orthogonales Funktionensystem genutzt, sondern man benutzt kurze pulsartige„Wavelets". Letztlich wird bei der Wavelet-Transformation das Signal mit diesen Wavelet-Basisfunktionen gefaltet.
Man kann nun zeigen, dass sich dieser Prozess als eine bestimmte Aneinanderreihung von FIR-Filtem („Finite Impulse Response") darstellen lässt. Des Weiteren kann dieser
Algorithmus als Anwendung einer bestimmten Matrix auf das Signal gewertet werden, woraus der bekannte„Fast-Wavelet-Transformation" (FWT) Algorithmus folgert. Dieser beinhaltet das regelmäßige weglassen („down-sampling") redundanter Informationen und eine Blockung des Datenstroms. Diese letzten beiden Eigenschaften der FWT sind in der zerstörungsfreien Prüfung als ungünstig zu bewerten. Zum Einen führt die Blockung der Daten an den Rändern des Datenstroms zu ungewünschten Artefakten. Zum Anderen führt das oben erwähnte„down-sampling" zu nicht stationären Signalverhältnissen.
Nach der Wavelet-Transformation werden die so berechneten Wavelet-Koeffizienten einer Schwellwertbetrachtung unterzogen. Dies bedeutet, dass die Wavelet-Koeffizienten mit einem Schwellwert (threshold) verglichen und nach einem festzulegendem Verfahren, z. B. „soft-thresholding", verändert. Diese modifizierten Wavelet-Koeffizienten werden einer inversen Wavelet-Transformation zugeführt. Das gesamte Verfahren bezeichnet man als Wavelet-Filterung.
Zur Trennung von Rausch- und Informationsanteilen von Signalen bei der industriellen Prozessüberwachung ist es allgemein, z. B. aus der DE 102 25 344 A1 , bekannt, zur Auswertung von zeitlichen Signalen die Wavelet-Transformation anzuwenden. Mit der Wavelet-Transformation wird das Originalsignal auf Wavelet-Basisfunktionen projiziert, was eine Abbildung aus dem Zeitbereich in die Zeit-Frequenzebene darstellt. Hierbei werden die Wavelet-Funktionen, die im Zeit- und Frequenzbereich lokalisiert sind aus einem einigen Prototyp-Wavelet, der sogenannten Mutterfunktion, durch Dilatation und Translation abgeleitet.
Angestrebt wird mit der Wavelet-Transformation das Rauschniveau im Vergleich zum Fehlersignal signifikant abzusenken.
In der WO 2005/012941 wird ein Verfahren zur zerstörungsfreien Prüfung von
Gegenständen mittels Ultraschallwellen angegeben, wobei mittels Wavelet-Transformation die Datenmenge reduziert bzw. komprimiert wird. Eine Entstörung, bzw. Signaltrennung, wird nicht vorgenommen.
Aus der DE 10 2005 036 509 A1 ist ein Verfahren zur zerstörungsfreien Prüfung von Rohren auf Oberflächenfehler bekannt, bei dem eine Echtzeitauswertung der Messsignale über eine spezielle Art der Filterung und Verarbeitung der Daten vorgenommen wird. Hier werden die analogen Signale in einen kontinuierlichen Datenstrom digitaler Daten überführt und über weitere Verarbeitungsschritte einem digitalen Signalprozessor oder einem übergeordneten Datenverarbeitungssystem zugeführt. Nachteilig bei den bekannten Verfahren ist jedoch, dass die Schwellwerte in der Wavelet- Domäne zur Filterung der Messsignalen entweder nach bekannten mathematischen
Methoden bestimmt oder experimentell ermittelt werden müssen und damit fest vorgegeben sind. Die experimentelle Ermittlung ist sehr aufwändig und nicht allgemeingültig. Die mathematischen Verfahren führen in der Praxis nicht immer zu befriedigenden Ergebnissen, weil die getroffenen Annahmen zur Herleitung dieser Schwellwerte (Annahme: weißes Rauschen als Störsignal) nicht allgemein zutreffen und deshalb zu einem unbefriedigenden Ergebnis bei der Rauschsignaltrennung führen.
Aufgabe der Erfindung ist es, ein sicheres und kostengünstiges Verfahren zur Filterung von Messsignalen anzugeben, bei dem die Schwellwerte in der Wavelet-Domäne bezogen auf die jeweilige Messsituation variabel veränderbar sind und so zu einer möglichst optimalen Rauschtrennung führen.
Erfindungsgemäß wird diese Aufgabe dadurch gelöst, dass aus einer einstellbaren Anzahl bereits berechneter Wavelet-Koeffizienten einer Zerlegungsstufe eine statistische Kenngröße berechnet wird und diese zur Bestimmung des Schwellwertes für diese Zerlegungsstufe mit einem für alle Stufen gemeinsamen einstellbaren Wert multipliziert wird.
Bei der statistischen Kenngröße kann es sich beispielsweise um die Standardabweichung vom Mittelwert, um die Standardabweichung vom Median oder um die mittlere quadratische Abweichung RMS (Rout-Mean-Square) handeln.
Vorteilhaft für dieses Verfahren ist die aus DE 10 2005 036 509 A1 bekannte Wavelet- Filterung mittels eines kontinuierlichen digitalen Datenstroms anwendbar, da hiermit auch die Datenhistorie zur Schwellwertermittlung herangezogen werden kann. Des Weiteren kann hiermit vorteilhaft auch die Länge des Betrachtungszeitraums der Historie eingestellt werden.
In einer vorteilhaften Ausgestaltung der Erfindung ist außerdem vorgesehen einen weiteren Parameter bereitzustellen, der den Maximalwert der Differenz zwischen dem einen und dem darauffolgenden Schwellwert begrenzt, um zu vermeiden, dass sich der automatisch berechnete Schwellwert zu stark ändert. Dies hätte ansonsten zur Folge, dass die Filterung ungleichmäßig wird.
In speziellen Situationen kann es vorteilhaft sein, die sogenannte Approximation, die normalerweise unverändert belassen wird, auch einer Schwellwertbetrachtung zuzuführen oder diese sogar auf einen Wert Null zu setzen. Diese Approximation repräsentiert den langwelligsten Anteil am Signal, also den Untergrund, der durch n-stufige Wavelet-Zerlegung berechnet wird.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird über ein zusätzliches Signal der Berechnungs-Algorithmus zur Filterung in den Messpausen angehalten, so dass bei einer Wiederaufnahme der Messung die Daten der vorgehenden Messung als Historie zur Verfügung stehen.
Die erfindungsgemäße Filterung der Messsignale erfolgt über Wavelet-Filter, die aus einer kaskadenförmigen Anordnung von FIR-(Finite Impulse Response) Filtern bestehen. Diese Anordnung wird auch als Filter-Bank bezeichnet. Durch die Anwendung dieser Struktur wird das Signal zunächst in die Wavelet-Domäne transformiert (auch als Zerlegung /
decomposition bezeichnet), dieser Vorgang ist vergleichbar mit der Transformation in die Frequenz-Domäne bei der Fourier-Transformation.
Das Signal in der Wavelet-Domäne besteht aus Wavelet-Koeffizienten, die in verschiedenen Levels oder Stufen vorliegen. Die Stufen-Anzahl ergibt sich aus der Tiefe der kaskadierten FIR-Filter Anordnung.
In der Wavelet-Domäne werden nun erfindungsgemäß die Wavelet-Koeffizienten verändert. Dies geschieht durch eine Bewertung der Amplitude der Wavelet-Koeffizienten innerhalb einer Stufe. Für jede Stufe wird ein positiver threshold-Wert (Schwellwert) festgelegt. Jeder Koeffizient wird mit diesem Wert verglichen. Falls der Betrag des Koeffizienten kleiner als der threshold-Wert ist, wird dieser zu Null gesetzt. Falls der Betrag oberhalb liegt, wird bei positiven Koeffizienten der threshold-Wert abgezogen, bei negativen dazuaddiert.
Nach diesem sogenannten soft-thresholding werden die Wavelet-Koeffizienten wieder zurück in die Zeit-Domäne transformiert.
Neben dem soft-thresholding ist erfindungsgemäß auch das sogenannte hard-thresholding implementiert. Dabei„überleben" die Wavelet-Koeffizienten oberhalb des thresholds in der entsprechenden Stufe OHNE Wertänderung, alle Koeffizienten unterhalb der Schwelle werden dagegen zu Null gesetzt. Die Rücktransformation (auch Synthese / reconstruction) geschieht äquivalent durch eine kaskadenförmige Filter-Struktur. Die Filter-Koeffizienten sind jedoch andere als bei der Hin- Transformation.
Im Unterschied zu bekannten Filtermethoden wird erfindungsgemäß die sogenannte „stationary wavelet transformation" umgesetzt. Dabei wird auf das im bekannten„fast wavelet algorithm" benutzte„downsampling" nach jeder Stufe verzichtet. Dadurch werden zwar redundante Signalanteile beibehalten, die gefilterten Signale sind aber nicht mehr abhängig von der Position innerhalb des Eingangssignals (daher„stationary").
Da die vorliegenden Signale quasi-unendlich sind, kann auch dieser Algorithmus
erfindungsgemäß noch weiter verbessert werden. Ziel ist zunächst auf eine Blockung der Daten zu verzichten und die Filterung kontinuierlich, also Punkt für Punkt, durchzuführen. Dieses Vorgehen verhindert eine Entstehung von Artefakten an den Blockgrenzen
(„Blockartefakte") und ist der Signal-Struktur in der zfP besser angepasst.
Die erfindungsgemäße kaskadenförmige Struktur ist in Figur 1 dargestellt. Auf jeder Stufe wird das Eingangsignal durch ein Paar von FIR-Filtern geleitet, jeweils Hochpass (HP) und Tiefpass (TP). Die Filter arbeiten im Punkt-für-Punkt-Modus, d. h. für jeden Eingangs-Wert wird ein Ausgangs-Wert erzeugt. Da in jeder Stufe zwei Filter vorliegen verdoppelt sich die Anzahl der Werte pro Stufe.
Die Ergebnisse der HP-Filterung werden jeweils in einem FIFO (First-In-First-Out)- Zwischenspeicher abgelegt.
Diese Wavelet-Koeffizienten werden auch als„details" bezeichnet. Ihre Bezeichnung erfolgt mit„d" und einem Index, der die Stufe angibt. Also erzeugt der erste HP die details d1. In der zweiten Stufe werden die Wavelet-Koeffizienten d2 erzeugt, etc. Die Ergebnisse der TP- Filterung werden der nächsten Stufe zugeführt. Die Filterlänge verdoppelt sich in jeder Stufe durch das Auffüllen mit Nullen. In dem Fall der Daubechies-4-Wavelets hat die erste Stufe einen FIR-HP und -TP mit jeweils 4 Koeffizienten, im Fall der Daubechies-10-Wavelets sind es zehn Filter-Koeffizienten. In der zweiten Stufen wird dieser Filter an jeder zweiten Stelle mit Nullen aufgefüllte, so dass die Filterlänge von HP und TP jeweils (für Daubechies-4) 8 beträgt. In der nächsten Stufe ist die Filterlänge dann 16, etc. Stufe Filterlänge Beispiel für die FIR-Filter Koeffizienten
1 4 a b c d
2 8 a O b O c d O
3 16 a O O O b O O O c O O O d O O O
Am Ende der Kaskade bleiben die Signale der HP- und TP-Filterung der letzten Stufe„übrig". Bei 6 Stufen entstehen am Ausgang des 6. HP-Filters also die details d6. Die Ergebnisse der 6. TP-Filterung werden als Approximation bezeichnet und mit a6 abgekürzt. Diese
Approximation repräsentiert den langwelligsten Anteil am Signal, also den Untergrund, der durch eine Filter-Bank von 6 TP Filtern berechnet wurde.
Nach der Wavelet-Zerlegung werden die Wavelet-Koeffizienten wie oben beschrieben dem thresholding zugeführt.
Die Rücktransformation geschieht ebenfalls mit FIR-Filtern in einer inversen Struktur, siehe Figur 1.
Von unten beginnend werden die Wavelet-Koeffizienten a6 und d6 (nach thresholding) den inversen TP-(iTP) und inversen HP-(iHP) Filtern zugeführt. Diese inversen Filter der letzten (6.) Stufe haben wiederum 128 FIR-Filter-Koeffizienten. Jeder einzelne Ergebnis-Wert der beiden Filter wird addiert und durch 2 geteilt (also quasi ein Mittelwert gebildet). Dieser Wert ist dann der Eingangswert für die iTP-Filter der nächst höheren (5.) Stufe. Der Eingangswert der iHP-Filter stammt jeweils aus dem FIFO der entsprechenden Stufe.
Auf vorgenannte Weise wird das Signal wieder bis zum gefilterten Ausgangssignal zusammengesetzt. Wichtig ist hier, dass jeder Filter Punkt-für-Punkt arbeitet, d. h. in jedem Takt wird ein Wert von links durch das gesamte Schema geschoben. In den einzelnen Stufen müssen immer entsprechend viele Werte gespeichert werden, dadurch kommt es insgesamt zu einer Verzögerung des Signals. Diese Verzögerung entspricht der Addition der
Gruppenlaufzeiten eines Signals durch die verschiedenen Filter. Wegen der
unterschiedlichen Filterlänge muss zwischen den Zerlegungs- und Synthese-FIR-Filtern jeweils ein Verzögerungsglied (FIFO) gesetzt werden.
Aus dieser Ausführung folgt, dass der Wavelet-Filter keinen Einfluss hat, wenn alle thresholds auf Null gesetzt werden, dann verzögert der Filter nur noch entsprechend. Die Sperr-Wirkung der thresholds erhöht sich mit dem Anstieg ihres Wertes. Die Filter-Koeffizienten der FIR-Filter repräsentieren das benutzte Wavelet. Jedes Wavelet bestimmt eindeutig die Koeffizienten für die Filter HP, TP, iHP und iTP. Im Fall der
Daubechies-4-Wavelets sind vier Koeffizienten maßgeblich. Alle anderen Werte entstehen durch mathematisch begründete Permutationen aus diesen vier Zahlen. Die vier FIR Filter HP, iHP, TP und iTP bilden mathematisch einen sogenannten„quadrupol mirror filter" mit bestimmten Eigenschaften.
Die als Verzögerungsglieder eingesetzten FIFOs haben unterschiedliche Längen. Das unterste FIFO speichert die Wavelet-Koeffizienten d5; die Koeffizienten der letzten Stufe d6 und a6 können direkt weiterverarbeitet werden. Dieser FIFO muss also die
Gruppenlaufzeiten der FIR-Filter auf der 6. Stufe ausgleichen, damit es zu keinem
Phasenversatz kommt. In jeder Stufe muss die Verzögerung die Gruppenlaufzeit der darunter angeordneten Filter-Stufe UND die kumulierte Verzögerung ALLER darunter liegenden Stufen berücksichtigen. In Figur 1 ist die Filterstruktur exemplarisch für die Filterung mit Stufen angegeben.
Entscheidend ist die Wahl des richtigen Schwellwertes. Dabei orientiert sich das Vorgehen zunächst am sogenannten„global threshold". Bei diesem bekannten Verfahren werden die Wavelet-Koeffizienten eines Levels statistisch bewertet indem man beispielsweise die Standardabweichung berechnet. Dieser Wert wird mit einem aus der Literatur bekannten festen Faktor multipliziert, um eine Abschätzung für einen optimalen threshold zu erhalten. Dieser Wert wird für jeden Level einzeln berechnet.
Dieses Verfahren ist mathematisch streng nur bei Vorliegen von„weißem Rauschen" über dem Nutzsignal sinnvoll, führt dann aber zu einem im bestimmten Sinne optimalen Ergebnis. Bei den in der zfP vorliegenden Signalen liegt in der Regel kein solches Rauschen vor, man spricht hier von„farbigem Rauschen". Weiterhin erschwert das Vorliegen von kohärenten Untergrundsignalen das Verfahren, so dass das Verfahren angepasst werden muss.
Erfindungsgemäß ist statt eines festen Faktors dieser Wert durch den Bediener frei wählbar, so dass eine bestimmte Filterstärke gewählt werden kann. Der Schwellwert (threshold) für Level i ist: thr_i = sigma_i * f, wobei sigma_i die Standardabweichung der details in Level i darstellt und f der frei einstellbare Faktor ist (siehe Figur 2).
Das nächste Problem entsteht bei der Berechnung der Standardabweichung. Bei Benutzung der bekannten Wavelet-Algorithmen werden wie oben erwähnt die Daten in Blöcke eingeteilt und dann transformiert. Dabei entsteht für jeden Block in jedem Level eine bestimmte Anzahl von Details, von denen die Standardabweichung berechnet werden kann. Dadurch wird das gesamte Verfahren adaptiv, da ja pro Block ein neuer threshold berechnet wird.
Dieses bekannte Verfahren hat zwei Nachteile. Zum einen ist hier die Adaptivität sehr hoch, d. h. die thresholds schwanken sehr stark, wodurch die Filterwirkung ungleichmäßig wird. Dies ist insbesondere bei der zfP von Nachteil, da hier die gefilterten Werte in der
Prüfeinrichtung bewertet werden d. h. mit festen Schwellen verglichen werden müssen. Zum anderen ist diese Form nur schlecht mit der erfindungsgemäßen kontinuierlichen Filterung zu vereinbaren, da je Level nicht gleich viele Datenpunkte zur Verfügung stehen und die Berechnung einer Standardabweichung auch nur schlecht Punkt-für-Punkt durchgeführt werden kann.
Daher wird die Standardabweichung erfindungsgemäß vorteilhaft immer auf den letzten m-Punkten berechnet, wobei m eine ganze Zahl ist, die einer Anzahl von Messwerten entspricht. Es hat sich als günstig erwiesen, für m eine große Zahl zu wählen, die zum Beispiel der Anzahl Messwerte einer oder mehrerer Rohrumdrehungen entspricht. Der Wert m ist einstellbar und gibt den Grad der Adaptivität an. Ist m klein ändern sich die thresholds häufig, ist m groß, wird über einen größeren Messbereich der gleiche threshold benutzt.
Im Unterschied zu bekannten Verfahren wird die Vergangenheit der Messwerte benutzt, um den aktuellen threshold-Wert zu bestimmen. Dieser Vorgehensweise liegt die berechtigte Annahme zugrunde, dass sich Rauschen und Untergrundsignal in ihrer Struktur nicht schnell ändern.
Das bis hier beschriebene Verfahren kann noch weiter verbessert werden, indem ein weiterer Parameter alpha benutzt wird, um die Änderungen der automatisch berechneten thresholds zu dämpfen. Der Parameter alpha dämpft nun die Adaptivität indem ein neuer threshold thr_i_neu nicht zu sehr nach oben abweichen darf: thr_i_neu < thr_i_alt*alpha (siehe Figur 2).
Wie oben erwähnt benötigt man eine Abschätzung für den Rauschanteil der Signale in den einzelnen Levels, dazu wird typischerweise die Standardabweichung berechnet. Im Fall von Werten ohne Gleichstromanteil reicht auch die Berechnung des„Root-Mean-Square"-Wertes (RMS) aus. Des Weiteren ist es vorteilhaft, zur Berechnung der Standardabweichung der letzten m-Werte innerhalb eines Levels ein Verfahren zu benutzen, welches nicht alle letzten m-Werte zwischenspeichert, sondern„running-statistics" gemäß nachstehender Formel benutzt:
Bisher wurde davon ausgegangen, dass die Messwerte als Folge„quasi-unendlich" vorliegen, jede Prüfung ist jedoch endlich. Denn wenn die Filter nach dem Prüfobjekt-Ende bzw. Messende weiterarbeiteten, würde dies zu einer Veränderung der thresholds führen, weil in Prüfpausen eine andere Rausch-Signalstruktur vorliegt als während der Messung. Daher ist es vorteilhaft dem Filter die Prüfpausen durch ein zusätzliches Signal mitzuteilen. Während dieser Zeit wird die komplette Filterung angehalten, oder zumindest der
Algorithmus zur Berechnung der thresholds gestoppt. Der Anfang eines neuen Prüfobjekts wird dann zunächst mit den gleichen thresholds wie das Ende des vorhergehenden Objekts geprüft. Statt Anfang und Ende des Prüfobjekts kann hier auch der Prüfzyklus z. B.
Ultraschall-Schuss = A-BiId, eingestellt werden bzw. durch ein Trigger-Signal angezeigt werden.
Grundsätzlich ist es wichtig, mit welcher Abtastrate die Signale dem Filter zugeführt werden und wie viele Stufen (Level) der Filter aufweist. Diese Parameter hängen stark vom betrachteten Fall ab und können erfindungsgemäß auch einstellbar gemacht werden.
Dadurch ist der Filter noch weiter parametrierbar. Beim Vorliegen von kohärenten
Untergrundsignalen ist es günstig, die Wahl der Anzahl der Stufen und der Abtastrate so zu wählen, dass das Untergrundsignal im wesentlichen in der sogenannten Approximation verbleibt. Wenn dieser Fall vorliegt wird abweichend vom Stand der Technik die
Approximation vor der Rücktransformation gänzlich entfernt also zu Null gesetzt.
Das erfindungsgemäße Verfahren kann nach dieser Beschreibung für alle Messsignale mit pulsartigen„Ereignissen" verwendet werden. In der zfP sind das unter anderem die Streufluss-Prüfung, die Ultraschallprüfung und auch die Wirbelstromprüfung, wobei in letzterem Fall die NF-Signale mit Wavelets gefiltert werden sollten.
Der beschriebene Algorithmus kann auf gängiger Computerhardware, dedizierten
Signalprozessoren (DSP) oder sogar hardware-nah in konfigurierbare Logikbausteine (z. B. FPGA) programmiert werden. Begriffserklärung:
input Eingangssignal
HP Hochpass
TP Tiefpass
delay Verzögerung level Stufe
Output Ausgangssignal length of history Länge der Historie factor Faktor
Statistical calculation - statistische Bewertung threshold Schwellwert

Claims

Patentansprüche
1. Verfahren zur Filterung von Messsignalen mittels Wavelet-Filterung bei dem die
Signale zunächst mittels Wavelet-Transformation in die Wavelet-Domäne überführt dort einer Schwellwertbetrachtung unterzogen werden und bei dem die Schwellwerte in der Wavelet-Domäne bezogen auf die jeweilige Messsituation variabel veränderbar sind
dadurch gekennzeichnet,
dass die Filterung der Messsignale über mehrere Filter in Zerlegungsstufen erfolgt, und aus einer einstellbaren Anzahl bereits berechneter Wavelet-Koeffizienten einer Zerlegungsstufe eine statistische Kenngröße berechnet wird und diese zur
Bestimmung des Schwellwertes für diese Zerlegungsstufe mit einem für alle Stufen gemeinsamen einstellbaren Wert multipliziert wird.
2. Verfahren nach Anspruch 1
dadurch gekennzeichnet,
dass die Wavelet-Transformation und inverse Wavelet-Transformation der
Messsignale mittels eines kontinuierlichen digitalen Datenstroms erfolgt.
3. Verfahren nach Anspruch 1 und 2
dadurch gekennzeichnet,
dass die Wavelet-Filterung der Messsignale über eine kaskadenförmigen Anordnung von Filtern erfolgt.
4. Verfahren nach Anspruch 3
dadurch gekennzeichnet,
dass die Wavelet-Transformation und inverse Wavelet-Transformation mittels FIR- (Finite Impulse Response) Filtern erfolgt.
5. Verfahren nach einem der Ansprüche 1 - 4
dadurch gekennzeichnet,
dass zur Berechnung des Schwellwertes der Maximalwert der Differenz zwischen dem einen und dem darauffolgenden Schwellwert begrenzt wird.
6. Verfahren nach einem der Ansprüche 1 - 5
dadurch gekennzeichnet,
dass bei entstehenden Messpausen über mindestens ein zusätzliches Signal der Berechnungs-Algorithmus zur Filterung in den Messpausen angehalten wird, so dass bei einer Wiederaufnahme der Messung die Daten der vorhergehenden Messung als Historie zur Verfügung stehen.
7. Verfahren nach Anspruch 6
dadurch gekennzeichnet,
dass bei entstehenden Messpausen über mindestens ein Signal der Anfang oder das Ende der Messpause angezeigt wird und die Länge der Messpause bekannt ist.
8. Verfahren nach einem der Ansprüche 1 - 7
dadurch gekennzeichnet,
dass bei einer n-stufigen Wavelet-Zerlegung, der langwelligste Anteil am Signal (Approximation) ebenfalls einer Schwellwertbetrachtung zugeführt wird.
9. Verfahren nach Anspruch 8
dadurch gekennzeichnet,
dass die Approximation zu Null gesetzt wird.
10. Verfahren nach einem der Ansprüche 1 - 9
dadurch gekennzeichnet,
dass zur Berechnung der statistischen Kenngröße die Standardabweichung vom Mittelwert angewendet wird.
11. Verfahren nach einem der Ansprüche 1 - 9
dadurch gekennzeichnet,
dass zur Berechnung der statistischen Kenngröße der Rout-Mean-Square (RMS)- Wert angewendet wird.
12. Verfahren nach einem der Ansprüche 1 - 9
dadurch gekennzeichnet,
dass zur Berechnung der statistischen Kenngröße die Standardabweichung vom Median angewandt wird.
13. Verfahren nach einem der Ansprüche 1 - 12
dadurch gekennzeichnet,
dass die Abtastrate als Parameter zur Anpassung des Filters frei wählbar ist.
14. Verfahren nach einem der Ansprüche 1 - 13
dadurch gekennzeichnet,
dass die Anzahl der Zerlegungsstufen frei wählbar ist.
15. Verfahren nach einem der Ansprüche 1 - 14
dadurch gekennzeichnet,
dass die der Filterung zugrunde liegenden Wavelets frei wählbar sind.
16. Verfahren nach einem der Ansprüche 1 - 15
dadurch gekennzeichnet,
dass als Schwellwertbetrachtung zur Veränderung der Wavelet-Koeffizienten die Verfahren„hard-thresholding" oder„soft-thresholding" angewendet werden.
17. Verfahren nach einem der Ansprüche 1 - 16
dadurch gekennzeichnet,
dass zur Wavelet-Transformation und inversen Wavelet-Transformation das Verfahren„stationary- Wavelet-Transformation" angewendet wird.
EP10740140.8A 2009-07-03 2010-06-23 Verfahren zur Filterung von Messsignalen bei der zerstörungsfreien Materialprüfung Active EP2449482B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009032100A DE102009032100A1 (de) 2009-07-03 2009-07-03 Verfahren zur Filterung von Messsignalen
PCT/DE2010/000735 WO2011000356A2 (de) 2009-07-03 2010-06-23 Verfahren zur filterung von messsignalen

Publications (2)

Publication Number Publication Date
EP2449482A2 true EP2449482A2 (de) 2012-05-09
EP2449482B1 EP2449482B1 (de) 2021-08-04

Family

ID=43299135

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10740140.8A Active EP2449482B1 (de) 2009-07-03 2010-06-23 Verfahren zur Filterung von Messsignalen bei der zerstörungsfreien Materialprüfung

Country Status (5)

Country Link
US (1) US20120197594A1 (de)
EP (1) EP2449482B1 (de)
AR (1) AR077633A1 (de)
DE (1) DE102009032100A1 (de)
WO (1) WO2011000356A2 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2477366B (en) 2009-11-12 2013-06-19 Onzo Ltd Data storage and transfer
GB2476456B (en) 2009-12-18 2013-06-19 Onzo Ltd Utility data processing system
GB2491109B (en) 2011-05-18 2014-02-26 Onzo Ltd Identification of a utility consumption event
DE102012108787A1 (de) 2011-09-29 2013-04-04 Ge Sensing & Inspection Technologies Gmbh Verfahren zur Verarbeitung eines Ultraschallanalogsignals, digitale Signalverarbeitungseinheit und Ultraschalluntersuchungseinrichtung
US9836433B1 (en) * 2012-04-02 2017-12-05 Rockwell Collins, Inc. Image processing using multiprocessor discrete wavelet transform
FR3095272B1 (fr) * 2019-04-16 2021-11-05 Etablissements Chpolansky Procede de filtrage d’un signal d’emission acoustique genere par un ecoulement de fuite a l’aide d’une analyse multiresolution
CN110765881B (zh) * 2019-09-25 2022-08-02 哈尔滨工程大学 一种基于主成分分析的小波基选择方法
CN112034036B (zh) * 2020-10-16 2023-11-17 中国铁道科学研究院集团有限公司 钢轨漏磁信号滤波方法及装置
CN114440783B (zh) * 2021-12-31 2023-03-31 西安交通大学 变压器油箱本体形变监测装置及方法
CN114354740B (zh) * 2022-03-09 2022-05-31 成都熊谷油气科技有限公司 一种管道检测系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7068851B1 (en) * 1999-12-10 2006-06-27 Ricoh Co., Ltd. Multiscale sharpening and smoothing with wavelets
DE10225344A1 (de) 2002-06-06 2003-12-24 Abb Research Ltd Verfahren zur Bestimmung des Rausch-Niveaus eines als Folge von digitalisierten Messwerten repräsentierten Signals
US7139437B2 (en) * 2002-11-12 2006-11-21 Eastman Kodak Company Method and system for removing artifacts in compressed images
DE10334902B3 (de) 2003-07-29 2004-12-09 Nutronik Gmbh Verfahren und Schaltungsanordnung zur Verarbeitung von Signalen, die bei der zerstörungsfreien Prüfung von Gegenständen durch Reflexion von Ultraschallwellen erzeugt werden
US7584082B2 (en) * 2003-08-07 2009-09-01 The Mathworks, Inc. Synchronization and data review system
US7377170B2 (en) * 2004-04-08 2008-05-27 University Of South Florida System and method for the identification of chemical mechanical planarization defects
DE102005036509A1 (de) 2005-07-29 2007-02-08 V&M Deutschland Gmbh Verfahren zur zerstörungsfreien Prüfung von Rohren auf Oberflächenfehler
DE102005063352B4 (de) * 2005-07-29 2008-04-30 V&M Deutschland Gmbh Verfahren zur zerstörungsfreien Prüfung von Rohren auf Oberflächenfehler
US7974170B2 (en) * 2007-01-12 2011-07-05 The Arizona Board Of Regents On Behalf Of The University Of Arizona Application of wavelet transform filtering for processing data signals from optical data storage devices
EP1980956A1 (de) * 2007-04-12 2008-10-15 Deutsche Thomson OHG Verfahren und Vorrichtung zur selektiven Geräuschreduzierung in einem digitalen Signal
US7853433B2 (en) * 2008-09-24 2010-12-14 Siemens Energy, Inc. Combustion anomaly detection via wavelet analysis of dynamic sensor signals

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2011000356A2 *

Also Published As

Publication number Publication date
US20120197594A1 (en) 2012-08-02
DE102009032100A1 (de) 2011-01-05
AR077633A1 (es) 2011-09-14
WO2011000356A2 (de) 2011-01-06
EP2449482B1 (de) 2021-08-04
WO2011000356A3 (de) 2012-01-26

Similar Documents

Publication Publication Date Title
EP2449482B1 (de) Verfahren zur Filterung von Messsignalen bei der zerstörungsfreien Materialprüfung
DE69812965T2 (de) Vibrationsdatenprozessor und prozessverfahren
DE60221149T2 (de) System und verfahren zur identifikation des vorhandenseins von defekten in einer vibrierenden maschine
EP1301993B1 (de) Verfahren und vorrichtung zur kompression und/oder dekompression sowie zur analyse und darstellung von daten
DE102005063352B4 (de) Verfahren zur zerstörungsfreien Prüfung von Rohren auf Oberflächenfehler
DE102013225415B4 (de) Optimierung einer MR-Pulssequenz durch vereinfachte Gradientenverläufe
DE102005050917A1 (de) Verfahren und Tomographiegerät zur Rekonstruktion einer tomographischen Darstellung eines Objektes
EP1910814A2 (de) Verfahren zur zerstörungsfreien prüfung von rohren auf oberflächenfehler
EP3213294A1 (de) Ermittlung lokaler gütemasse aus einem volumenbilddatensatz
DE102011017514A1 (de) Vorrichtung und Verfahren zum Verarbeiten eines Doppler-Signals
DE102013014539B4 (de) Gerät und Verfahren zur Messung einer Kavitationsstärke in einem flüssigen Medium
EP2676131B1 (de) Verfahren zur reduktion von ultraschalldaten
DE102008023915A1 (de) Verfahren zur Einstellung von wenigstens einer Stellgröße eines Entrauschungsfilters in medizinischen Bildern
EP3281021B1 (de) Verfahren zur analyse eines signals sowie vorrichtung zur durchführung des verfahrens
EP1794601B1 (de) Verfahren und vorrichtung zur spektrumanalyse in mehreren frequenzbändern mit verschiedener frequenzauflösung
DE10255687B4 (de) Verfahren zur Verringerung des Crestfaktors eines Multiträgersignals
DE60106255T2 (de) Rauscharme signalauswertung
DE10222628B4 (de) Verfahren zum Auswerten eines Zeitsignals, das eine spektroskopische Information beinhaltet
DE102012215858A1 (de) Auswertevorrichtung für ein system zur objekterfassung
DE10225344A1 (de) Verfahren zur Bestimmung des Rausch-Niveaus eines als Folge von digitalisierten Messwerten repräsentierten Signals
EP4202372B1 (de) Verfahren zum filtern eines sensorsignals und vorrichtung zum ansteuern eines aktuators mittels filterung eines sensorsignals
DE102006035599A1 (de) Verfahren zur zerstörungsfreien Prüfung von Rohren auf Oberflächenfehler
AT517248B1 (de) Verfahren zur Bestimmung der spektralen Leistungsdichte des nicht wiederholbaren Schlages eines fluiddynamischen Lagersystems
WO2013127644A1 (de) Verfahren und vorrichtung zur darstellung von ordinaten-abszissen-wertepaaren auf einer anzeigeeinrichtung
DE102012215856B4 (de) Steuerungsvorrichtung für einen anregungssignal-generator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111216

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VALLOUREC DEUTSCHLAND GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VALLOUREC DEUTSCHLAND GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170626

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502010016947

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G06F0017140000

Ipc: G01N0029440000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G01N 29/44 20060101AFI20210125BHEP

Ipc: G06F 17/14 20060101ALI20210125BHEP

INTG Intention to grant announced

Effective date: 20210212

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1417476

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010016947

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211206

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211104

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211104

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010016947

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220523

Year of fee payment: 13

26N No opposition filed

Effective date: 20220506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220520

Year of fee payment: 13

Ref country code: DE

Payment date: 20220518

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20220519

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220623

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220623

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010016947

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230701

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1417476

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230623

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230701

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240103

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230623

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230623