EP2449016A1 - Heterocyclische 3-ringverbindungen und jodhaltige verbindungen enthaltende polymere - Google Patents

Heterocyclische 3-ringverbindungen und jodhaltige verbindungen enthaltende polymere

Info

Publication number
EP2449016A1
EP2449016A1 EP10734060A EP10734060A EP2449016A1 EP 2449016 A1 EP2449016 A1 EP 2449016A1 EP 10734060 A EP10734060 A EP 10734060A EP 10734060 A EP10734060 A EP 10734060A EP 2449016 A1 EP2449016 A1 EP 2449016A1
Authority
EP
European Patent Office
Prior art keywords
polymer
monomers
iodo
iodine
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10734060A
Other languages
English (en)
French (fr)
Inventor
Andreas Böttcher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanxess Deutschland GmbH
Original Assignee
Lanxess Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanxess Deutschland GmbH filed Critical Lanxess Deutschland GmbH
Priority to EP10734060A priority Critical patent/EP2449016A1/de
Publication of EP2449016A1 publication Critical patent/EP2449016A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0058Biocides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides

Definitions

  • the invention relates to polymers containing heterocyclic 3-ring compounds and iodine-containing compounds, to their preparation and to polymer preparations and binder formulations containing them and their use for protecting industrial materials.
  • Iodinated biocides are used to protect industrial materials (eg paints) from infestation, decomposition, destruction and optical damage Change by fungi, bacteria and algae, preferably by fungi, used.
  • iodine-containing biocides also in combination with biocides of other classes of active ingredients, are used as components of biocidal active material protection agents such as wood preservatives.
  • active substances are also used here in which one or more iodine atoms are bound to double bond systems, but also to singly bonded carbon atoms.
  • iodine-containing biocides have in common that, when exposed to light, even in bulk or as a component of a technical material (e.g., paints), they lead to yellowing with drug degradation. This feature impedes or prevents the use of iodine-containing biocides in correspondingly sensitive materials, e.g. in light or white paints.
  • a technical material e.g., paints
  • iodine-containing biocides in particular iodoalkynyl compounds, are destroyed particularly rapidly by metal compounds. This fact prevents the use of e.g. Iodoalkynyl compounds in solvent-based paints, e.g. Paints, varnishes and glazes, or biocidal protection agents, such as Wood preservation primers, Ho Iz protective impregnations and wood stains, since these alkyd-based coating and protection systems are regularly equipped with metal compounds.
  • transition metal compounds e.g. Cobalt, lead, manganese and vanadium octoates, as driers (siccatives) of the alkyd resin-containing binder system.
  • transition metal compounds are also used as pigments, some of which have comparable destructive properties with the siccatives.
  • the dryers there are a number of other components in the above-mentioned solvent-based systems which lead to a degradation of iodine-containing biocides to varying degrees. While in the commonly used solvents the destabilizing effect is still relatively weak, the other common components of a color formulation, such as e.g. Process additives, plasticizers, color pigments, anti-settling agents, thixotropic agents, corrosion inhibitors, anti-skinning agents and binders have more or less pronounced destabilizing effects.
  • iodine-containing biocides in certain water-based engineering materials (eg paints and preservatives such as wood preservatives and primers) is also problematic.
  • transition metal compounds are used as siccatives, which is accompanied by destruction of the contained iodine-containing biocides.
  • Methods are already known for preventing the degradation of halopropargyl compounds in transition metal-containing, solvent-based alkyd resin paints.
  • WO 98/22543 describes the addition of chelating reagents.
  • transition metal-containing, solvent-based alkyd resin paints are known in which halopropargyl compounds are stabilized by organic epoxides (see WO 00/16628).
  • Methods have also been described for suppressing light-induced degradation of antifungal agents, such as iodopropargyl butylcarbamate, by adding tetraalkylpiperidine compounds and / or UV absorbers (cf EP-A 0083308).
  • iodine-containing biocides are stabilized with 2- (2-hydroxyphenyl) benzotriazoles.
  • the addition of epoxy compounds is said to reduce the discoloration of iodoalkyne compounds such as IPBC (see US-A 4,276,211 and US-A 4,297,258).
  • Epoxies are also described in JP-A-19-120515 for stabilization of IPBC.
  • CD-iodine pairing is merely a complex in which the iodine or iodophor is protected in the cavity of the CD without being covalently bound to the CD.
  • the iodophor itself is a complex in which iodine is not covalently bound to the carrier, especially since this is only a form from which iodine must again liberate to the desired effect again.
  • the stabilization of iodine-containing biocides by azole compounds is described in WO 2007/101549.
  • the stabilizing effect of the abovementioned stabilizers is not always sufficient and has disadvantages in terms of performance.
  • the drying times of the colors are significantly extended, which in many cases is not acceptable to the user.
  • the inhibition of discoloration is not always sufficient.
  • iodine-containing compounds preferably iodine-containing biocides in polymers containing iodine-containing compounds and heterocyclic 3-ring compounds, in particular aziridines, in particular in solvent- and water-based systems are protected against both chemical and light-induced degradation and thus the disadvantages described unstable iodine-containing compounds such as color changes and drug or loss of effect can be prevented.
  • the use of such polymers for stabilizing iodine-containing biocides in the abovementioned systems is not accompanied by any disadvantages in terms of application, such as, for example, an extension of the drying time of a paint system.
  • heterocyclic 3-ring compounds in particular aziridines, containing polymers
  • the stability of iodine-containing compounds which are also contained in the polymer is further improved.
  • this form has stability advantages over iodine-containing solutions, even those which already contain heterocyclic 3-ring compounds, in particular during storage, preferably at elevated temperatures.
  • heterocyclic 3-ring compound the term "containing” can be understood as meaning both “incorporated in the polymer matrix” and “adsorptively or covalently bound to the polymer.”
  • an iodine-containing compound is understood as meaning an organic compound which has at least one covalent iodine-carbon bond.
  • heterocyclic 3-ring compound is "containing" in the polymer in the manner according to the invention is generally obtained by the analytical determination of the heterocyclic 3-ring groups, for example the aziridine groups, by suitable methods, for example solid-state NMR (MAS). If a heterocyclic 3-ring compound can be detected, for example, in the MAS-NMR determination of the polymer according to the invention, this condition is fulfilled for the purposes of the present invention.
  • MAS solid-state NMR
  • Preferred heterocyclic 3-ring compounds are those having a 3-ring function which have, as the heteroatom in the 3-membered ring, O, NR, S or Se, where R is hydrogen or a organic residue stands.
  • Preferred heterocyclic 3-ring compounds are epoxides or aziridines, in particular aziridines.
  • Suitable aziridines are those which contain one or more aziridine groups.
  • aziridine compounds of the formula (I) are preferred.
  • R 1 is hydrogen, alkyl or cycloalkyl, which are each unsubstituted or substituted and / or mono- or polyethylenically unsaturated, in each case substituted or unsubstituted fullerenyl, aryl, alkoxy, alkoxycarbonyl, arylcarbonyl, alkanoyl, carbamoyl or oxomethylene,
  • R 2 , R 3 , R 4 and R 5 independently of one another have the same meaning as R 1 and additionally independently halogen, hydroxyl, carboxyl, alkylsulfonyl, arylsulfonyl, nitrile, isonitrile or the radicals
  • R 2 and R 4 or R 3 and R 5 together with the carbon atoms to which they are attached form a 5- to 10-membered carbocyclic ring which is unsubstituted or substituted and / or mono- or polyethylenically unsaturated.
  • Suitable monofunctional aziridines of the formula (I) are those in which R 2 and R 4 or R and R 5 together with the carbon atoms to which they are attached form a 5- to 10-membered carbocyclic ring which is unsubstituted or substituted and / or singly or multiply ethylenically unsaturated.
  • carbocyclic ring is unsubstituted or having one or more substituents selected from the group consisting of halogen, hydroxyl, oxo, carboxyl, alkylsulfonyl, arylsulfonyl, nitrile, isonitrile, alkyl or cycloalkyl, each unsubstituted or substituted and / or singly or are polyethylenically unsaturated, substituted or unsubstituted fullerenyl, aryl, alkoxy, alkoxycarbonyl or alkanoyl is substituted and n is a number from 0 to 6, preferably 0 to 1.
  • R 24 is -H or alkyl, preferably -H, -CH 3 , -C 2 H 5 , particularly preferably -CH 3 , -C 2 H 5 , g is a number from 1 to 4, preferably 1 to 3, more preferably 1 to 2, h is a number from 1 to 11, preferably 1 to 5 and particularly preferably 1 to 3 and the remaining radicals having the above significance.
  • those compounds of the formula (I) which correspond to the compound of the formula (III) or (IV) are preferred.
  • R is -H or alkyl, preferably -H or -CH 3 , particularly preferably -CH 3 ,
  • R 25 is -H or alkyl, preferably -H or -CH 3 , more preferably -CH 3 and the remaining radicals have the above significance.
  • aziridines which have two or more aziridine functions.
  • compounds of formula (V) are mentioned.
  • A is an m-valent aliphatic, cycloaliphatic or aromatic radical which is optionally substituted, m is a number from 2 to 5, in particular 2 to 3, and
  • Each R 30 is independently hydrogen or C 1 -C 4 alkyl, especially CH 3 or CH 2 CH 3 .
  • A is preferably C 2 -C 10 -alkylene, in particular
  • A is preferably the trivalent radical of the formula
  • polyfunctional aziridine compounds are Michael addition products of optionally substituted ethyleneimine with esters of polyhydric alcohols with ⁇ , ⁇ -unsaturated carboxylic acids and the addition products of optionally substituted ethyleneimine with polyisocyanates.
  • Suitable alcohol components are, for example, trimethylolpropane, neopentyl glycol, glycerol, pentaerythritol, 4,4'-isopropylidenediphenol, 4,4'-methylenediphenol and polyvinyl alcohols.
  • ß- unsaturated carboxylic acids are, for example, acrylic and methacrylic acid, crotonic acid and cinnamic acid in question. Particularly preferred is acrylic acid.
  • the corresponding polyhydric alcohols of the .alpha.,. Beta.-unsaturated carboxylic acid esters may optionally be alcohols which function at their OH functions partially completely extended with alkylene oxides one or more times.
  • alkylene oxides are ethylene oxide and propylene oxide.
  • aziridines suitable according to the invention are those mentioned on page 3, lines 29-34 of WO2004 / 050617. Also preferred are such aziridines as described for example in US 3,225,013 (Fram), US 4,490,505 (Pendergrass) and US 5,534,391 (Wang).
  • aziridines of the formula (I) which have at least three aziridine groups, for example trimethylolpropane tris [3- (1-aziridinyl) propionate], trimethylolpropane tris [3- (2-methyl-1-aziridinyl) propionate] , Trimethylolpropane tris [2-aziridinyl butyrate], tris (1-aziridinyl) phosphine oxide, tris (2-methyl-1-aziridinyl) phosphine oxide, pentaerythritol tris [3- (1-aziridinyl) propionate] and pentaerythritol tetrakis [ 3- (l-aziridinyl) propionate].
  • trimethylolpropane tris [3- (1-aziridinyl) propionate]
  • trimethylolpropane tris [3- (2-methyl-1-aziridinyl) propionate]
  • trimethylolpropane tris [2-aziridinyl butyrate]
  • pentaerythritol tris- [3- (1-aziridinyl) propionate]
  • pentaerythritol tetrakis [3- (1-aziridinyl) propionate]
  • trimethylolpropane tris [3- (1-aziridinyl) propionate]
  • trimethylolpropane tris [3- (2-methyl-1-aziridinyl) propionate]
  • pentaerythritol tetrakis [3- (1-aziridinyl) propionate].
  • B is the residue of an aliphatic polyol having at least x OH functions, wherein x OH functions are substituted by the remainder of the above parenthesis, f is a number from 0 to 6, especially from 1 to 3, x is a number greater or is 2, in particular represents 2 to 500,000 and R 38 , R 39 , R 40 and R 41 have the identical meaning as the radicals R 2 - R 5 in the formula (I).
  • R 38 is hydrogen or CH 3 .
  • the aziridine compound of the formula (VIa), also known as DSM crosslinker CX-100, with R 38 methyl and also the product "Corial Hardener AN" from BASF, which is the aziridine of the formula (VIa) where R 38 is hydrogen, is particularly preferred contains.
  • Epoxides are all compounds which contain one or more oxirane rings. Preference is given, for example, to epoxides of the general formula (VII): embedded image in which
  • R 43 , R 44 , R 45 and R 46 independently of one another are hydrogen, alkyl or cycloalkyl, which are each unsubstituted or substituted and / or mono- or polyethylenically unsaturated, in each case substituted or unsubstituted fullerenyl, aryl, alkoxy, aryloxy, alkanoyl, alkoxycarbonyl , Arylcarbonyl, alkanoyl, carbamoyl or oxomethylene, halogen, hydroxyl, carboxyl, alkylsulfonyl, arylsulfonyl, nitrile, isonitrile, or the radicals
  • R 43 and R 44 or R 45 and R 46 together with the carbon atoms to which they are attached form a 5- to 10-membered carbocyclic ring which is unsubstituted or substituted and / or mono- or polyethylenically unsaturated.
  • alkyl is a linear or branched alkyl radical having 1 to 20, preferably 1 to 12 carbon atoms
  • alkyl radicals according to the invention are methyl, ethyl, n-propyl,
  • alkyl radicals may preferably be substituted by the following radicals; Alkoxy, preferably C 1 -C 5 -alkoxy, nitro, monoalkylamino, preferably C 1 -C 2 -monoalkylamino,
  • Dialkylamino preferably di [CpCn-] alkylamino, cyano, halo, haloalkyl, preferably trifluoromethyl, alkanoyl, aminocarbonyl, monoalkylaminocarbonyl, dialkylaminocarbonyl,
  • Alkylamido preferably d-Cn-alkylamido, alkoxycarbonyl, preferably C 1 -C 12 -alkoxycarbonyl,
  • Alkylcarbonyloxy preferably C 1 -C 4 -alkylcarbonyloxy, aryl, preferably phenyl or by
  • the radicals R 43 , R 44 , R 45 and R 46 are each independently hydrogen or aralkyl, aryloxyalkyl, alkoxyalkyl such as epoxy-di-alkoxyalkyl, for example, 2,3-epoxy-l-propoxyethoxymethyl, 2,3-epoxy-l Butoxyethoxyethyl or 3,4-epoxy-l-butoxyethoxyethyl, for the rest of the formula or
  • Z is a straight or branched Ci-Cio alkylene, preferably propylene, butylene, pentylene, hexylene, or heptylenes, halogenated straight or branched Ci-Ci 0 -
  • Alkylene such as, for example, 2,2-dichloromethylpropylene and
  • Q is Ci-C / pAlkylen, Carbonylarylcarboxy such as. Carbonylphenylcarboxy.
  • Preferred epoxides include the compounds wherein R 46 is hydrogen, alkoxy, alkyl or 2,3-epoxy-1-propoxyethoxymethyl,
  • R 43 is hydrogen or alkyl
  • R 44 and R 45 is hydrogen, and in addition R 43 and R 44 or R 45 and R 46 together with the carbon atoms to which they are attached form a 5- to 10-membered carbocyclic ring which is unsubstituted or substituted and / or mono- or polyunsaturated ethylenically.
  • Particularly preferred epoxides include glycidyl ethers. These compounds are characterized in that they contain one or more 2,3-epoxypropanoxy groups and can be represented by the general formula (VIII): in which
  • R 47 has the same meaning as R 43 , R 44 , R 45 or R 46 .
  • glycidyl ethers are commercially available.
  • all glycidyl ethers are suitable, in particular those which can be prepared by reaction of 1-chloro-2,3-epoxypropane with alcohols, or by reaction of glycidyl alcohol with suitable electrophiles, for example halides.
  • epoxide-containing products obtainable by reaction of epichloro-in (l-chloro-2,3-epoxypropane) with polyhydric alcohols, in particular polyhydric phenols, such as, for example, bsw.
  • Bisphenol A including oligomeric and polymeric reaction products.
  • Particularly preferred are those having an average molecular weight of less than 2000 g / mol, in particular less than 1000 g / mol.
  • the preferred epoxides also include the following compounds:
  • R is H, alkyl, substituted alkyl
  • iodine-containing compounds are preferably iodoalkynyl compounds or compounds in question, in which one or more iodine atoms are bonded to double bonds or in which one or more iodine atoms are bonded to single bonded carbon atoms.
  • the iodine-containing compounds are, for example, diiodomethyl-p-tolylsulfone, diiodomethyl-p-chlorophenylsulfone, 3-bromo-2,3-diiodo-2-propenyl alcohol, 2,3,3-triiodoallyl alcohol, Chloro-2- (2-chloro-2-methylpropyl) -5 - [(6-iodo-3-pyridinyl) methoxy] -3 (2H) -pyridazinone (CAS-RN: 120955-77-3) iodoffen, 3 Iodo-2-propynyl-2,4,5-trichlorophenyl ether, 3-iodo-2-propynyl-4-chlorophenylformal (IPCF), N-iodopropargyloxycarbonyl-alanine, N-iodopropargyloxycarbonyl-alanine
  • the iodine-containing compounds are preferably 3-iodo-2-propynyl-2,4,5-trichlorophenyl ether, 3-iodo-2-propynyl-4-chlorophenyl formal (IP CF), N-iodopropargyloxycarbonyl- alanine, N-iodopropargyloxycarbonyl-alanine ethyl ester, 3- (3
  • the iodine-containing compounds are more preferably 3-iodo-2-propynyl-propyl-carbamate, 3-iodo-2-propynyl-butyl-carbamate (IPBC), 3-iodo-2-propynyl-m- chlorophenyl carbamate, 3-iodo-2-propynylphenyl carbamate, di (3-iodo-2-propynyl) hexyl dicarbamate,
  • 2-propynylthioxo-thioethylcarbamate 3-iodo-2-propynylcarbamic acid ester (IPC)
  • 3-bromo-2,3-diiodo-2-propenylethylcarbamate 3-iodo-2-propynyl-n-hexylcarbamate or 3-iodo 2-propynylcyclohexylcarbamate.
  • the particularly preferred iodine-containing compounds are N-alkyl-iodotetrazoles, N-aryl-iodo-terazoles and N-aralkyl-iodo-terazoles, as described, for example, in (EP 1773125).
  • the iodine-containing compounds in particular biocides, can be used individually or in mixtures together with a plurality of iodine-containing compounds, in particular biocides. Particularly preferred is IPBC.
  • Preferred polymers are natural polymers, for example cellulose, proteins, polyprene or lignin, semisynthetic polymers such as, for example, cellulose acetate, cellulose ethers, cellulose nitrate, crosslinked casein or carboxymethylcellulose and / or synthetic polymers, in particular those based on ethylenically unsaturated monomers, for example polyvinyl chloride.
  • Polyethylene (HDPE, LDPE, VLDPE), polypropylene, polystyrene, modified polystyrenes such as SAN, ABS, polyacrylates or their copolymers, polyesters such as polyethylene terephthalate, polybutylene terephthalate or unsaturated polyester resins, as well as polyurethanes, polyamides, polyureas, polycarbonates, polyalkylene glycols, polyimides, polyimines , Alkyd resins, phenolic resins, amino resins or epoxy resins.
  • the polymers mentioned can also be used as blends or as far as possible also as copolymers.
  • polymers based on ethylenically unsaturated monomers Preferred is a polymer which is characterized in that the polymer is made up of ethylenically unsaturated monomers M, comprising:
  • up to 40% by weight in particular up to 0.01 to 40% by weight, based on the total amount of the monomers M, of one or more of the monomers M 1 and M 2 of different monomers M 3 which are charge-carrying or are potentially charge-bearing or neutral and preferably not potentially charge-bearing, having a water solubility of greater than 50 g / l at 25 ° C.
  • a polymer composed of ethylenically unsaturated monomers M wherein the monomers M at least one monomer M in an amount of 0.01 to 40 wt .-%, in particular 0.1 to 30 wt .-%, based on the total amount of the monomers M is selected among - monoethylenically unsaturated monomers M a, few have an anionic group, of monoethylenically unsaturated neutral monomers M 3b, which have a solubility in water of at least 50 g / l at 25 0 C, and monoethylenically unsaturated monomers M c , which have at least one cationic group and / or at least one in the aqueous protonatable group.
  • the monomers M contain at least one monomer M a .
  • the inventive polymer is at least 30 wt .-%, based on the total amount of the polymer-forming monomers M, preferably 40 to 99.5 wt .-% and particularly preferably 50 to 98 wt .-% of neutral, monoethylenically unsaturated Monomers M 1 with a water solubility of not more than 30g / l at 25 0 C, especially at 1013 mbar constructed.
  • the water solubility of the monomers M 1 under these conditions is at most 20 g / l.
  • Suitable monomers M 1 are also vinyl and allyl esters of aliphatic carboxylic acids having 1 to 20 carbon atoms, for example vinyl acetate, vinyl propionate and the vinyl esters of Versatic ® acids (Vinylversatate), vinyl halides such as vinyl chloride and vinylidene chloride, conjugated diolefins such as butadiene and isoprene and C 2-C6 olefins such as ethylene, propene, 1-butene and n-hexene.
  • vinyl halides such as vinyl chloride and vinylidene chloride
  • conjugated diolefins such as butadiene and isoprene
  • C 2-C6 olefins such as ethylene, propene, 1-butene and n-hexene.
  • Preferred monomers M 1 are vinylaromatic monomers, in particular styrene, C 1 -C 20 -alkyl acrylates, in particular CpCig-alkyl acrylates and C 1 -C 18 -alkyl methacrylates.
  • preferred ethylenically unsaturated monomers M comprise from 0.1 to 60% by weight, in particular from 0.5 to 50% by weight, of at least one ethylenically polyunsaturated monomer
  • the monomers M 2 include in particular divinylbenzene, acrylates and methacrylates of dihydric and polyhydric alcohols, such as, for example, butanediol, pentaerythritol and glycerol.
  • preferred ethylenically unsaturated monomers M are at least 0.01 to 40% by weight, in particular 0.1 to 30% by weight, of at least one ethylenically unsaturated monomer M 3 which is different from the monomers M 1 and M 2 .
  • the monomers M include in particular monoethylenically unsaturated monomers M a, having at least one anionic group, in particular monomers M 3a, the at least one
  • Be acid group preferably at least one sulfonic acid group, a phosphonic acid group or one or two carboxylic acid groups, and the salts of the monomers M 3a , in particular the alkali metal salts, for.
  • the salts of the monomers M 3a in particular the alkali metal salts, for.
  • the sodium or Kailumsalze and the ammonium salts include ethylenically unsaturated sulfonic acids, in particular vinylsulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, 2-acryloxyethanesulfonic acid and 2-methacryloxyethanesulfonic acid,
  • Vinylphosphonic acid dimethyl ester and its salts and ⁇ , ß-ethylenically unsaturated C 3 -Cg mono- and C / pCg dicarboxylic acids in particular acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid and itaconic acid.
  • the proportion of the monomers M 3a is preferably not greater than 35
  • Wt .-% preferably not greater than 20 wt .-%, z. B. 0.1 to 20 wt .-% and in particular 0.5 to 15 wt .-%, based on the total amount of the monomers M.
  • the monomers M further include the monoethylenically unsaturated, neutral monomers M 3b , which have a water solubility of at least 50 g / l at 25 0 C, in particular at least 100 g / l at 25 0 C.
  • Examples of these are the amides of the abovementioned ethylenically unsaturated carboxylic acids, in particular acrylamide and methacrylamide, ethylenically unsaturated nitriles such as methacrylonitrile and acrylonitrile, hydroxyalkyl esters of the abovementioned ⁇ , ⁇ -ethylenically unsaturated C 3 -Cg monocarboxylic acids and C / pCg dicarboxylic acids, in particular hydroxyethyl acrylate, hydroxyethyl methacrylate, 2- and 3-hydroxypropyl acrylate, 2- and 3-hydroxypropyl methacrylate, esters of the aforementioned monoethylenically unsaturated mono- and dicarboxylic acids with C 2 - C / rPolyalkylenglykolen, in particular the esters of these carboxylic acids with polyethylene glycol or alkyl-polyethylene glycols, wherein the (alkyl
  • the monomers M 3b also include N-vinyl amides such as N-vinylformamide, N-vinylpyrrolidone, N-vinylimidazole and N-vinylcaprolactam.
  • the proportion of the monomers M 3b is preferably not more than 20 Wt .-%, and in particular not more than 10 wt .-%, z. B. 0.1 to 10 and in particular 0.5 to 5 wt .-%, based on the total amount of monomers M.
  • the monomers M 3 furthermore include monoethylenically unsaturated monomers M 3c which have at least one cationic group and / or at least one group which is protonatable in the aqueous.
  • the monomers M c include in particular those which are a protonatable
  • Imino group are N-vinylimidazole and vinylpyridines.
  • monomers having a quaternized imino group are N-alkylvinylpyridinium salts and N-alkyl-N'-vinylimidazolinium salts such as N-methyl-N'-vinylimidazolinium chloride or methosulfate.
  • Monomers M c in particular the monomers of general formula (IX) are preferred
  • R 53 is hydrogen or Ci-C 4 - represents alkyl, in particular hydrogen or methyl, R 54 and R 55 independently of one another C 1 -C 4 - are alkyl, especially methyl,
  • R 56 is hydrogen or C 1 -C 4 -alkyl, in particular hydrogen or methyl
  • A is C 2 -C 8 alkylene, e.g. B. 1, 2-ethanediyl, 1,2- or 1,3-propanediyl, 1, 4-butanediyl or 2-methyl-l, 2-propanediyl, which is optionally interrupted by 1, 2 or 3 non-adjacent oxygen atoms is .
  • X for an anion equivalent, e.g. B. for Cl “ , HSO 4 " , 1/2 SO 4 2 “ or CH 3 OSO 3 " etc.
  • Examples of monomers of formula (IX) are 2- (N, N-dimethylamino) ethyl acrylate, 2- (N, N-dimethylamino) ethyl methacrylate, 2- (N, N-dimethylamino) ethyl acrylamide, 3- (N, N -
  • the monomers M forming the polymer comprise at least one monomer M 3a .
  • the proportion of the monomers M 3a is then advantageously 0.1 to 20 wt .-%, in particular 0.5 to 10 wt .-%, and particularly preferably 1 to 7 wt .-%, based on the total amount of the monomers M.
  • the polymer has a net anionic charge, ie the molar fraction of the monomers M 3a outweighs the molar fraction of the monomers M c in the polymer and is preferably 110 mol%, in particular at least 120 mol%, and particularly preferably at least 150 mol%, based on the monomers M 3c or the monomers M comprising the polymer contain no cationic or potentially cationic monomer M 3c .
  • the monomers M and M which are not explicitly mentioned here, furthermore include all monomers corresponding to the definition which can usually be used in an emulsion polymerization.
  • the polymer is preferably composed of 50 to 98% by weight of monomer M 1 , 0.5 to 50% by weight of monomer M and 0.1 to 30% by weight of monomer M a . Particularly preferred is from 50 to 98% by weight of methyl methacrylate and stearyl methacrylate, 0.5 to 50% by weight of divinylbenzene and 0.1 to 30% by weight of sodium 4-vinylbenzenesulfonate.
  • the polymers according to the invention are preferably in the form of particulate particles, in particular having an average particle size of less than 15 ⁇ m, in particular smaller 10 ⁇ m, preferably less than 6 ⁇ m, the average particle size being measured by dynamic light scattering.
  • medium particle sizes of less than 1 ⁇ m are preferably used.
  • the polymers according to the invention may also contain one or more ingredients such as emulsifiers, stabilizers, for example antioxidants, free-radical scavengers, UV stabilizers such as UV absorbers, UV absorbers, chelators and other biocides (examples see below).
  • emulsifiers such as antioxidants, free-radical scavengers, UV stabilizers such as UV absorbers, UV absorbers, chelators and other biocides (examples see below).
  • stabilizers for example antioxidants, free-radical scavengers
  • UV stabilizers such as UV absorbers, UV absorbers, chelators and other biocides (examples see below).
  • the polymer according to the invention preferably contains 0.001 to 80 wt .-%, preferably 0.005 to 60 wt .-%, in particular 0.01 to 50 wt .-%, particularly preferably 0.01 to 30 wt .-%, also preferably 5 to 80 wt .-%, especially from 10 to 70% by weight, and in particular from 20 to 60% by weight, of at least one heterocyclic 3-ring compound, in particular an aziridine compound, and from 0.001 to 80% by weight, preferably from 0.005 to 60% by weight, in particular 0 , 01 to 50 wt .-% also preferably 5 to 80 wt .-%, especially 10 to 70 wt .-%, and in particular 20 to 60 wt -.%, Of at least one iodine-containing biocide.
  • Particularly preferred polymers according to the invention comprise at least one aziridine of the formula (VI) and IPBC.
  • the polymer according to the invention contains the iodine-containing biocide and an aziridine compound in the sum of 1 to 80 wt .-%, preferably 10 to 80 wt .-%, particularly 20 to 70 wt .-%, and in particular 25 to 60 wt .-%.
  • the content of all heterocyclic 3-ring compounds present in the polymer according to the invention, in particular aziridines, is generally 1 to 280% by weight, preferably 2 to 225% by weight, in particular 5 to 110% by weight, based on the iodine-containing compound.
  • the invention further relates to a process for the preparation of the polymer according to the invention, which comprises: a) mixing at least one iodine-containing compound, at least one heterocyclic 3-ring compound and a polymer in the presence of at least one solvent and then removing the solvent, or b) at least one polymer, preferably a thermoplastic polymer, at least one iodine-containing compound and at least one heterocyclic 3-ring compound optionally extruded using further auxiliaries, or c) an aqueous dispersion of a preferably finely divided polymer in the presence of an O / W emulsion containing at least one iodo-containing compound, at least one heterocyclic 3-ring compound, water and organic solvent shear, preferably by means of a blade agitator or a bead mill, or d) an aqueous dispersion of a preferably finely divided polymer comprising at least one iodine-containing compound in the presence of an O / W emulsion
  • Emulsion polymerization of ethylenically unsaturated monomers Emulsion polymerization of ethylenically unsaturated monomers.
  • a solvent in which the iodine-containing compound and the 3-ring compound are each soluble to at least 20 g / l at 25 ° C. and which is suitable for dissolving or swelling the polymer used.
  • the polymer and the heterocyclic 3-ring compound may also be present, if appropriate, already in suitable, different solvents before they are mixed. Accordingly, as preferred solvents, typical solvents for polymers, for example. Described in K. -F.
  • the polymer preferably a polymer based on ethylenically unsaturated monomers, is dissolved or swelled so that the additives can migrate into the polymer.
  • At least one iodine-containing compound and / or at least one heterocyclic 3-ring compound may also be used in the form of a compound or a masterbatch for Polymer are added.
  • said compound contains in addition to the polymer at least one of said iodine and / or 3-ring compounds, in particular in a proportion of up to 70 wt .-%.
  • Preferred temperatures are used in the extrusion according to alternative b) of 150 to 300 0 C.
  • Preferably used is the preparation according to the process alternative d).
  • the preparation of the OAV emulsion of the heterocyclic 3-ring compound, in particular an aziridine, dissolved in a suitable organic solvent is optionally carried out with the addition of suitable emulsifiers and preferably under high shear forces (eg Ultraturrax, ultrasonic homogenizer, high-pressure homogenizer).
  • suitable emulsifiers eg Ultraturrax, ultrasonic homogenizer, high-pressure homogenizer.
  • the addition of the O / W emulsion of the heterocyclic 3-ring compound, in particular an aziridine to the dispersion of the polymer phase is preferably carried out under low shear force (eg blade agitator, paddle dryer).
  • the loading of the polymer phase with the heterocyclic 3-ring compound, in particular with an aziridine, is preferably carried out by the action of high shear forces on the resulting suspoemulsion, for example by using a bead mill.
  • Suitable organic solvents are in particular esters of divalent carboxylic acids, eg., Mixtures comprising diisobutyl adipate, diisobutyl glutarate, diisobutyl succinate (eg Rhodiasolv DIB ® are also suitable.
  • finely divided is preferably an average particle size of less than 15 microns, preferably less than 6 microns understood.
  • the procedures d) to e) are preferably at a temperature of 0 to 30 0 C, in particular at 15 to 25 C performed 0.
  • the procedure f) is preferably carried out at a temperature of 20 to 110 0 C, in particular at 50 to 95 0 C.
  • the preparation according to the process alternative f) is also preferred. Possibly. other additives can be added in all procedures in solid, liquid or in dissolved, dispersed or emulsified form.
  • biocidal polymer latices Suitable methods for the preparation of biocidal polymer latices are described, for example, in WO 2005/102044.
  • the finely divided polymers or polymer latexes mentioned in the embodiments c) -e) of the process alternative according to the invention can be obtained, for example, by grinding the corresponding polymers, preferably: a. by dry milling, for example. By air jet mills, and then dispersing the resulting polymer powder in water, optionally with the addition of dispersants or b. by wet grinding, for example. Using a bead mill and optionally with the addition of dispersants.
  • the finely divided polymers or polymer latices mentioned in the embodiments c) -e) of the composition according to the invention can be prepared by free-radical, aqueous emulsion, in particular microemulsion, polymerization, generally referred to below as emulsion polymerization.
  • the polymerization is carried out analogously to conventional emulsion polymerization, with the difference that the monomer emulsion to be polymerized additionally contains the iodine-containing compound as well as the heterocyclic 3-ring compound dissolved in the monomer droplets in fertil.
  • the polymerization is carried out according to the inventive process alternative f) or the polymer dispersions used according to the alternatives d) and e) by a so-called monomer feed method, d. H.
  • the main amount, preferably at least 70% and in particular at least 90% of the solution of the additives, in this case the iodine-containing compound and / or the heterocyclic 3-ring compound, in the monomers M, or the majority, preferably at least 70% and in particular at least 90% of the Monomer / additive emulsion is fed to the polymerization vessel in the course of the polymerization reaction.
  • the monomer / additive solution or emulsion is added over a period of at least 0.5 hour, preferably at least 1 hour, e.g. 1 to 10 hours and especially 2 to 6 hours.
  • the addition of the monomer / additive solution or emulsion may be carried out at a constant or varying rate of addition, e.g. at intervals with a constant rate of addition or with a variable rate of addition or continuously with a variable rate of addition.
  • the composition of the monomer / additive solution or emulsion can remain constant or changed during the addition, wherein changes can be made both with regard to the monomer composition and with respect to the type of additive or the concentration of the additive.
  • a preferred polymerization according to process alternative f) according to the invention or for the polymer dispersions used according to alternatives d) and e) is the so-called stage polymerization, characterized in that the monomer composition is changed in the course of monomer addition such that polymer regions having different glass transition temperatures are obtained in the polymer particles become.
  • the charge-carrying or potentially charge-carrying monomers M 3a and M 3c may be present dissolved in the monomer mixture M or in the water phase.
  • seed latex a finely divided polymer latex whose average particle size is usually not more than 100, in particular not more than 80 nm and particularly preferably not more than 50 nm, in each case determined by laser diffraction (for example with a Coulter LS, from Beckmann Coulter).
  • the seed latex constituent monomers preferably contain a) at least 30% by weight, preferably from 40 to 99.5% by weight and more preferably from 50 to 98% by weight of at least one of the monomers M 1 , b) 0.1 to 60 wt .-%, in particular 0.5 to 50 wt .-% of at least one of the monomers
  • M 2 , c) from 0.01 to 40% by weight, in particular from 0.1 to 30% by weight, of at least one of the monomers M 3 .
  • the amount of seed latex is usually 0.01 to 10 wt .-%, in particular 0.1 to 6 wt .-%, based on the monomers to be polymerized M.
  • the seed latex can also be generated in situ in the polymerization vessel by free radical emulsion polymerization of the seed latex-forming monomers, the seed latex-forming monomers being selected from the aforementioned monomers M 1 , M 2 and M 3 .
  • the desired particle size of the seed latex can be controlled in known manner through the ratio of monomer to emulsifier or in the case of an emulsifier-free procedure on the ratio of the non-charge-bearing monomers M 1, M 2 and M 3 b to the charge-carrying monomers M a and M c become.
  • the polymerization is particularly preferably carried out as part of a so-called miniemulsion polymerization (see, for example, Schork, GW Poehlein, S. Wang, J. Reimers, J. Rodrigues, C. Samer, Colloids Surf, A: Physicochem., Eng., Asp. 153, 39), characterized in that firstly an emulsion containing monomers M, additives in the above sense, emulsifier, in the monomers M soluble co-emulsifier and water by application of high shear or shear energy, for example.
  • miniemulsion polymerization see, for example, Schork, GW Poehlein, S. Wang, J. Reimers, J. Rodrigues, C. Samer, Colloids Surf, A: Physicochem., Eng., Asp. 153, 39
  • stator rotor Dispersing tools By using stator rotor Dispersing tools, ultrasound probes, etc., with droplet sizes ⁇ 10 .mu.m, preferably ⁇ 6 .mu.m and in particular ⁇ l ⁇ m are prepared, whereupon the discrete, monomer-containing oil droplets of the emulsion are converted by the addition of radical initiators and optionally elevated temperature in a polymeric phase.
  • Suitable co-emulsifiers are in principle the compounds described in the literature on the subject of "miniemulsion polymerization", for example long-chain alkanes such as hexadecane, as well as the hydrophobic monomers M 1 mentioned in the present invention such as, for example, stearyl methacrylate.
  • the starters which are suitable for the emulsion or miniemulsion polymerization according to the invention are the polymerization initiators which are suitable and usually used for emulsion or miniemulsion polymerization and which initiate a free-radical polymerization of the monomers M.
  • azo compounds such as 2,2'-azobisisobutyronitrile, 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobis [2-methyl-N - (- 2-hydroxyethyl) propionamide id, 1, 1 'Azobis (1-cyclohexanecarbonitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (N, N'-dimethyleneisobutyroamidine) dihydrochloride, and 2,2'-azobis (2 -amidinopropane) dihydrochloride, organic or inorganic peroxides such as diacetyl peroxide, di-tert-butyl peroxide, diamyl peroxide, dioctanoyl peroxide, didecanoyl peroxide, dilauroyl peroxide, dibenzoyl peroxide, bis (o-toluyl) peroxide, succiny
  • cationic azo compounds such as azobis (dimethylamidinopropane), salts of peroxodisulfuric, in particular a sodium, potassium or ammonium salt or a redox initiator system which acts as an oxidizing agent for a salt of peroxodisulfuric acid, hydrogen peroxide or an organic peroxide such as tert-butyl hydroperoxide.
  • a sulfur compound which is especially selected from sodium hydrogen sulfite, sodium hydroxymethanesulfate and the hydrogen sulfide adduct of acetone.
  • Suitable reducing agents are phosphorus-containing compounds such as phosphorous acid, hypophosphites and phosphinates, as well as hydrazine or hydrazine hydrate and ascorbic acid.
  • redox initiator systems may contain addition of small amounts of redox metal salts, such as iron salts, vanadium salts, copper azeles, chromium salts or manganese salts, for example the redox initiator system ascorbic acid / iron (II) sulfate / sodium peroxodisulfate.
  • the initiator is usually employed in an amount of 0.02 to 2% by weight and in particular 0.05 to 1.5% by weight, based on the amount of the monomers M.
  • the initiator depends on the initiator system used and can be used by the person skilled in the art Routine experiments are determined.
  • the initiator may be partially or completely charged in the reaction vessel.
  • the main amount of the initiator in particular at least 80%, z. B. 80 to 99, 5% of the initiator in the course of the polymerization in the polymerization reactor, eg. By metering pumps.
  • Pressure and temperature are of minor importance for the preparation of the inventive polymers.
  • the temperature naturally depends on the initiator system used and an optimum polymerization temperature can be determined by a person skilled in the art by means of routine experiments.
  • the polymerization temperature is in the range of 20 to 110 0 C, often in the range of 50 to 95 0 C.
  • the polymerization is usually carried out at atmospheric pressure or ambient pressure. But it can also at elevated pressure, z. B. to 3 bar or at slightly reduced pressure z. B.> 800 mbar are performed.
  • emulsifiers and protective colloids are advantageous for stabilizing the polymers according to the invention in the form of dispersions.
  • protective colloids and low molecular weight emulsifiers are advantageous for stabilizing the polymers according to the invention in the form of dispersions.
  • protective colloids and emulsifiers can be of cationic, anionic, neutral or zwitterionic nature.
  • anionic surface-active substances examples include anionic emulsifiers, such as alkyl phenyl sulfonates, phenyl sulfonates, alkyl sulfates, alkyl sulfates, alkyl ether sulfates, Alkaline earth, ammonium and amine salts.
  • anionic protective colloids examples include lignosulfonic acids, condensation products of sulfonated naphthalenes with formaldehyde or with formaldehyde and phenol and optionally urea and condensation products of phenolsulfonic acid, formaldehyde and urea, lignin sulfite from lye and lignosulfonates and polycarboxylates such as polyacrylates, maleic anhydride / olefin copolymers (z. B. Sokalan® I CP9, BASF) and the alkali, alkaline earth, ammonium and amine salts of the aforementioned protective colloids.
  • lignosulfonic acids condensation products of sulfonated naphthalenes with formaldehyde or with formaldehyde and phenol and optionally urea and condensation products of phenolsulfonic acid, formaldehyde and urea
  • Nonionic emulsifiers are, for example, alkylphenol alkoxylates, alcohol alkoxylates,
  • Fatty amine alkoxylates polyoxyethylene glycol fatty acid esters, castor oil alkoxylates, fatty acid alkoxylates, fatty acid amide alkoxylates, fatty acid polydiethanolamides, lanolin ethoxylates, Fatty acid polyglycol esters, isotridecyl alcohol, fatty acid amides, methyl cellulose, fatty acid esters, silicone oils, alkyl polyglycosides and glycerol fatty acid esters.
  • nonionic protective colloids are polyethylene glycol, polypropylene glycol,
  • Polyethylene glycol-polypropylene glycol block copolymer e polyethylene glycol ether, polypropylene glycol, polyethylene glycol-glycol ether block copolymers and mixtures thereof.
  • cationic emulsifiers are quaternary ammonium salts, e.g. B. trimethyl- and triethyl-Ce-Cso-alkylammonium salts such as cocotrimethylammonium salts,
  • Trimethylcetylammoniumsalze dimethyl- and diethyl-di-C 4 -C 2 o-alkyl ammonium salts such as didecyldimethylammonium salts and Dicocodimethylammoniumsalze, methyl and ethyl-tri-C / R C 2 o-alkylammonium salts such as Methyltrioctylammoniumsalze, Ci-C2o-alkyl-di- Ci-C 4 - alkylbenzylammonium salts such as triethylbenzylammonium salts and
  • Cocobenzyldimethylammonium salts methyl and ethyl-di-C / rC 2o alkylpoly (oxyethyl) ammonium salts, e.g. B. Didecylmethylpoly (oxyethyl) ammonium salts, N-C ⁇ - C2o-Alkylpyridiniumsalze, z. B.
  • N-Laurylpyridiniumsalze N-methyl and N-ethyl-N-C6-C2O alkylmorpholiniumsalze, and N-methyl and N-ethyl-N'-C6-C 2 o-alkylimidazoliniumsalze, in particular the halides, borates, Carbonates, formates, acetates, propionates, bicarbonates, sulfates and methosulfates.
  • Examples of cationic protective colloids are homo- and copolymers of the abovementioned monomers M 3a and M 3c with a content of monomers M 3a or M 3c of at least 20% by weight.
  • % in particular at least 30 wt .-%, for example, homopolymers of N-vinyl-N-methylimidazolinium salts or of N-alkylvinylpyridinium salts and copolymers thereof
  • Emulsifiers are those with betainic structures. Such substances are known to the person skilled in the art and can be taken from the relevant prior art (see, for example, R. Heusch, in Ullmann's Encylopedia of Industrial Chemistry, 5th ed. On CD-ROM,
  • the polymers according to the invention can be used in solid form, for example as powders or granules or in liquid form, in particular as dispersions in water or organic solvents (latices). Accordingly, the invention also relates to polymer preparations containing in addition to the polymer according to the invention still at least one excipient.
  • Preferred polymer preparations are aqueous polymer dispersions comprising the polymer according to the invention and preferably wetting agents, thickeners, defoamers, preservatives and / or stabilizers.
  • the wetting agents used preferably have a low vapor pressure at room temperature.
  • wetting agent it is possible to use all wetting agents customarily used in dispersions, for example polycondensates of naphthalenesulfonic acid or salts thereof. Preference is given to using oligo- or polyalkylene glycols or triols, or ethers of the abovementioned compounds, in particular having a molecular weight of less than 1000 g / mol.
  • ethylene glycol diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, glycerol or mono or di-methyl, ethyl, propyl or butyl ether of the aforementioned compounds.
  • the proportion of wetting agents can be varied within a relatively wide range. Preference is given to 1 to 1 0 wt .-%, in particular 2 to 7 wt .-%, based on the novel polymer preparations, in particular the polymer dispersion.
  • the thickener In principle, all substances which build up a spatial structure in the water and thus prevent or slow down the sedimentation can be used as the thickener. Preference is given to using polysaccharides, xanthan gum, sodium or magnesium silicates, heteropolysaccharides, alginates, carboxymethylcellulose, gum arabic or polyacrylic acids. Most preferably, xanthan gum is used.
  • the proportion of thickening agents in the polymer preparations, in particular the polymer dispersion is preferably from 0.1 to 0.5% by weight, in particular from 0.3 to 0.4% by weight, based on the dispersion.
  • defoamers surface-active compounds are generally used, which are only slightly soluble in the surfactant solution. Preference is given to defoamers which are derived from natural fats and oils, petroleum derivatives or silicone oils.
  • the proportion of Ents chotern in the polymer preparations according to the invention, in particular the polymer dispersion is preferably 0.01 to 2 wt .-%, in particular 0.05 to 1 wt .-%, based on the dispersion.
  • preservatives it is possible to use all bactericides which have an antimicrobial effect in the desired sense. If appropriate, one or more of these substances can be used.
  • the optionally usable stabilizers may be antioxidants, radical scavengers or UV absorbers.
  • one or more of these substances can be used.
  • the proportion of these auxiliaries to the polymer preparations according to the invention, in particular to the polymer dispersions, is preferably from 0.1 to 3% by weight, in particular from 0.5 to 2% by weight, based on the dispersion.
  • the obtained according to the embodiments c) -f) of the process according to the invention, containing iodide-containing compound and heterocyclic 3-ring compound polymer latices can be used in this form as a stabilized dosage form of the iodine-containing biocide.
  • the polymer according to the invention, in the form of the aqueous dispersion, according to the inventive process alternatives c) to f) are isolated from its latex by suitable isolation methods such as. Filtration, spray drying, fluidized bed drying, etc. If appropriate, the novel polymeric material obtained may be further disaggregated by the use of a ring sieve mill
  • the polymers according to the invention can either contain no emulsifier or at least one emulsifier in the form of their dispersions. If they contain at least one emulsifier, they preferably contain at least one nonionic emulsifier and optionally one or more ionic emulsifiers.
  • the amount of emulsifier is usually from 0.1 to 15 wt .-%, in particular from 0.2 to 12 wt .-%, and particularly preferably from 0.7 to 10 wt .-%, based on the mixture containing monomers M. and drug or on the polymer.
  • the polymer preparation of the invention may contain as preferred compounds, for example solvents such as, for example, esters of monohydric or polybasic carboxylic acids (for example mixtures containing diisobutyl adipate, diisobutylglutarate, diisobutylsuccinate), preferably VOC-free or low-VOC solvents, VOC (volatile organic compounds) being preferred.
  • solvents such as, for example, esters of monohydric or polybasic carboxylic acids (for example mixtures containing diisobutyl adipate, diisobutylglutarate, diisobutylsuccinate), preferably VOC-free or low-VOC solvents, VOC (volatile organic compounds) being preferred.
  • Volatile organic compounds having a boiling point of less than 250 0 C understood chelating reagents such as those mentioned in WO 98/22543, one or more stabilizers from the series of antioxidants, radical scavengers, UV stabilizers
  • compositions according to the invention may be the isolated polymer phase or a dispersion of the polymer phase in water or organic solvents.
  • the loading of the polymer phase of the composition according to the invention can also be carried out for these compounds, preferably analogously to the processes a) -f) (see above).
  • the equipment of the continuous phase of the abovementioned dispersions can be carried out by dissolving, if appropriate with the addition of solubilizers, emulsifying, etc.
  • the inventive polymer preparation is particularly preferably present as a solid preparation, for example as a powder, granules, in particular with an average particle size of 50 to 2000 ⁇ m, or as a compact, such as, for example, compacted powder such as pellets, tablets, etc.
  • a solvent-based dispersion wherein for adjusting the rheological properties of the dispersion, for example, alkyd resins, modified alkyd resins, thixotropic resins, etc. and other additives such as anti-skinning agents (antioxidants), pigments, crystallization stabilizers, etc. can be added.
  • the polymer preparation according to the invention may contain as further ingredients adhesives such as carboxymethylcellulose, natural and synthetic powdery, granular or latex-like polymers such as gum arabic, polyvinyl alcohol, polyvinyl acetate, as well as natural phospholipids such as cephalins and lecithins, and synthetic phospholipids as well as mineral and vegetable oils.
  • adhesives such as carboxymethylcellulose, natural and synthetic powdery, granular or latex-like polymers such as gum arabic, polyvinyl alcohol, polyvinyl acetate, as well as natural phospholipids such as cephalins and lecithins, and synthetic phospholipids as well as mineral and vegetable oils.
  • dyes such as inorganic pigments, such as iron oxide, titanium oxide, and ferrocyan blue organic dyes such as alizarin, azo and Metall phthalocyaninfarbstoffe and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc as well as heterocyclic 3-ring compounds, in particular aziridine compounds, known stabilizers, for example tetramethylethylenediamine (TMEDA), triethylenediamine and the 1,4-diazabicyclo [2.2.2] octane (DABCO) known from WO2004 / 050617.
  • inorganic pigments such as iron oxide, titanium oxide, and ferrocyan blue organic dyes such as alizarin, azo and Metall phthalocyaninfarbstoffe
  • trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc as well as heterocyclic 3-ring compounds, in particular aziridine compounds, known stabilizers, for
  • the invention further relates to a process for the preparation of the polymer preparation according to the invention.
  • the polymer preparation of the invention can be prepared, for example, by mixing the polymer according to the invention with other biocides (s.u.) and additives such as.
  • Paddle mixer tumble mixer, drum mixer with interfering bodies, etc. are used. Also the tumble mixer, drum mixer with interfering bodies, etc. are used. Also the tumble mixer, drum mixer with interfering bodies, etc. are used. Also the tumble mixer, drum mixer with interfering bodies, etc. are used. Also the tumble mixer, drum mixer with interfering bodies, etc. are used. Also the tumble mixer, drum mixer with interfering bodies, etc. are used. Also the tumble mixer, drum mixer with interfering bodies, etc. are used. Also the tumble mixer, drum mixer with interfering bodies, etc. are used. Also the tumble mixer, drum mixer with interfering bodies, etc. are used. Also the tumble mixer, drum mixer with interfering bodies, etc. are used. Also the tumble mixer, drum mixer with interfering bodies, etc. are used. Also the tumble mixer, drum mixer with interfering bodies, etc. are used. Also the tumble mixer, drum mixer with interfering bodies, etc. are used. Also the tumble mixer, drum mixer with interfering bodies, etc. are used. Also
  • Granules, compacts such as Kiss en, tablets, etc. is using fluidized bed granulation, use of mechanical compaction equipment, possibly with the addition of other additives such as. Binder, possible.
  • the inventive composition is preferably under high shear, for example.
  • inert organic solvent eg isoparaffins such as Isopar ® L (isoparaffin from Exxon) or so-called. "White spirits” such as Shellsol ® D60 ground
  • processing aids and stabilizers such as, rheological additives (thixotropic resins such as. WorleeThix® S6358, a thixotropic alkyd resin from. Worlee) and optionally anti-skinning agents such as.
  • Antiskin ® 444 Fa.
  • Triazoles such as:
  • Pyridines and pyrimidines such as: ancymidol, buthiobate, fenarimol, mepanipyrine, nuarimol, pyroxyfur, triamirole;
  • Succinate dehydrogenase inhibitors such as: Benodanil, Carboxim, Carboximsulfoxide, Cyclafluramid, Fenfuram, Flutanil, Furcarbanil, Furmecyclox, Mebenil, Mepronil, Methfuroxam, Metsulfovax, Nicobifene, Pyrocarbolide, Oxycarboxine, Shirlan, Seedvax;
  • Naphthalene derivatives such as: terbinafm, naftifm, butenafm, 3-chloro-7- (2-aza-2,7,7-trimethyl-oct-3-en-5-yn); Sulphenamides like:
  • Benzothiazoles such as: 2-mercaptobenzothiazole;
  • Benzothiophene dioxides such as:
  • Formaldehyde and formaldehyde-releasing compounds such as:
  • Aldehydes such as: cinnamaldehyde, formaldehyde, glutardialdehyde, ⁇ -bromocinnamaldehyde, o-phthaldialdehyde; Thiocyanates such as:
  • Benzalkonium chloride benzyldimethyltetradecylammonium chloride, benzyldimethyldodecylammonium chloride, dichlorobenzyldimethylalkylammonium chloride, didecyldimethylammonium chloride, dioctyldimethylammonium chloride, N-hexadecyltrimethylammonium chloride, 1-hexadecylpyridinium chloride, iminoctadine tris (albesilate);
  • Pyridines such as: 1-hydroxy-2-pyridinethione (and its Cu, Na, Fe, Mn, Zn salts), tetrachloro-4-methylsulfonylpyridine, pyrimethanol, mepanipyrim, dipyrrithione, 1-hydroxy-4-methyl -6- (2,4,4-trimethylpentyl) -2 (1H) -pyridine;
  • Methoxyacrylates or similar such as:
  • Azoxystrobin Dimoxystrobin, Fluoxastrobin, Kresoxim-methyl, Metominostrobin, Orysastrobin, Picoxystrobin, Pyraclostrobin, Trifloxystrobin, 2,4-dihydro-5-methoxy-2-methyl-4- [2 - [[[[l- [3- (trifluoromethyl ) phenyl] ethylidenes] amino] oxy] methyl] phenyl] -3H-l, 2,4-triazol-3-ones (CAS No. 185336-79-2);
  • Salts of the metals tin, copper and zinc with higher fatty, resinous, naphthenic and phosphoric acid e.g. Tin, copper, zinc naphthenate, octoate, 2-ethylhexanoate, oleate, phosphate, benzoate;
  • Oxides of the metals tin, copper and zinc e.g. Tributyltin oxide, CU2O, CuO, ZnO;
  • Oxidizing agents such as:
  • Nitriles such as: 2,4,5,6-tetrachloroisophthalodinitrile, disodium cyanodithioimidocarbamate; Chinolins like:
  • Spiroxamine Carpropamid, Diflumetorin, Quinoxyfen, Famoxadone, Polyoxorim, Acibenzolar-S-methyl, Furametpyr, Thifluzamide, Methalaxyl-M, Benthiavalicarb, Metrafenone, Cyflufenamid, Tiadinil, Tea Tree Oil, Phenoxyethanol,
  • Bacillus thuringiensis barthrin, 4-bromo-2 (4-chlorophenyl) -1- (ethoxymethyl) -5- (trifluoromethyl) -1H-pyrrole-3-carbonitrile, bendiocarb, benfuracarb, bensultap, betacyfluthrin, bifenthrin, bioresmethrin, bioallethrin, Bistrifluron, Bromophos A, Bromophos M, Bufencarb, Buprofezin, Butathiophos, Butocarboxine, Butoxycarboxime,
  • Fenamiphos fenazaquin, fenbutatin oxide, fenfluthrin, fenitrothion, fenobucarb, fenothiocarb, fenoxycarb, fenpropathrin, fenpyrad, fenpyroximate, fensulfothion, fenthione, fenvalerate, fipronil, flonicamid, fluacrypyrim, fluazuron, flucycloxuron, flucythrinate, flufenerim, flufenoxuron, flupyrazofos, fluffine, flumethrin flufenprox , Fluvalinate, Fonophos, Formethanates, Formothion, Fosmethilan Fosthiazat, Fubfenprox, Furathiocarb,
  • Halofenocide HCH (CAS RN: 58-89-9), heptenophos, hexaflumuron, hexythiazox, hydramethylnone, hydroprene,
  • Parathion A parathion M, penfluron, permethrin, 2- (4-phenoxyphenoxy) ethyl-ethylcarbamate, phenthoate, phorate, phosalone, phosmet, phosphamidone, phoxim, pirimicarb, pirimiphos M, pirimiphos A, prallethrin, profenophos, promecarb, propaphos, Propoxur, Prothiophos, Prothoate, Pymetrozine, Pyrachlophos, Pyridaphenthione, Pyresmethrin, Pyrethrum, Pyridaben, Pyridalyl, Pyrimidifen, Pyriproxifen, Pyrithiobac Sodium
  • MCPA MCPA hydrazide, MCPA-thioethyl, MCPB, mecoprop, mecoprop-P, mefenacet, mefluidide, mesosulfuron, metam, metamifop, metamitron, metazachlor, methabenzthiazuron, methazole, methopyrone, methyldymrone, methylisothiocyanate, metobromuron, metoxuron, metribuzin, metsulfuron, Molinate, Monalid, Monolinuron, MSMA, Metolachlor, Metosulam, Metobenzuron, Naproanilide, napropamide, naptalam, neburon, nicosulfuron, norflurazon, sodium chlorate, oxadiazon, oxyfluorfen, oxysulfuron, orbencarb, oryzalin, oxadiargyl,
  • the invention further relates to a polymer which is characterized in that the polymer is composed of ethylenically unsaturated monomers M, as described in general and in particular above, containing at least one aziridine compound, the preferred embodiments of the polymer , the aziridine compound and the amount and preparation correspond to those given above.
  • this aziridine-containing polymer is free of iodine-containing compounds.
  • the invention furthermore relates to the use of such a polymer according to the invention for stabilizing iodine-containing compounds, in particular those mentioned above. Furthermore, the invention relates to a composition comprising a) at least one polymer containing at least one aziridine compound and b) at least one iodine-containing compound.
  • the invention furthermore relates to the use of the polymers according to the invention described at the outset as well as the composition according to the invention as a stable and stabilizing dosage form of iodine-containing compounds, in particular biocides.
  • the polymers to be used according to the invention or the polymer preparation according to the invention are preferably suitable for stabilizing iodine-containing compounds, in particular biocides in binder formulations, for example in alkyd resin-based systems such as paints containing transition metal dryers, especially in the presence of transition metal dryers.
  • Preferred binder formulations and transition metal driers are described in more detail below.
  • stabilization is preferably understood to mean the stabilization of iodine-containing compounds both from chemical and light-induced degradation, in particular from chemical degradation.
  • the polymers according to the invention and the compositions according to the invention can be used to suppress or at least slow down the chemical degradation of compounds containing iodine, in particular biocides in active ingredient formulations, in particular paints such as paints, lacquers, primers, impregnations, glazes and other technical materials.
  • the compositions according to the invention which can be used according to the invention for stabilizing iodine-containing compounds, in particular biocides have a good stabilizing effect quite particularly in alkyd resin-based systems, such as paints containing transition metal dryers.
  • the invention further relates to a binder formulation containing
  • At least one binder at least one polymer according to the invention and / or
  • composition according to the invention At least one composition according to the invention.
  • the polymer according to the invention can preferably also be used in the form of the polymer preparation according to the invention.
  • Suitable binders are oxidatively drying binders, preferably alkyd resin-based binders or binding agents coalescing through coalescing agents, in particular latexes.
  • alkyd resin-based binders are preferably alkyd resins and modified alkyd resins in question.
  • the alkyd resins are generally polycondensation resins of polyols and polybasic carboxylic acids or their anhydrides and fats, oils or free natural and / or synthetic fatty acids. If necessary, the alkyd resins may be treated with hydrophilic, in particular water-soluble groups to be used, for example, as an emulsifiable or water-soluble alkyd resin.
  • said polyols are glycerol, pentaerythritol, trimethylolethane, trimethylolpropane and various diols, such as ethane / propanediol, diethylene glycol and neopentyl glycol.
  • the polybasic carboxylic acids or their anhydrides mentioned are preferably phthalic acid, phthalic anhydride, maleic anhydride, isophthalic acid, terephthalic acid, trimellitic anhydride, adipic acid, azelaic acid or sebacic acid.
  • oils or fatty acids mentioned are generally linseed oil, oiticia oil, wood oil, soybean oil, sunflower oil, safflower oil, ricinole oil, tall oil, castor oil, coconut oil, peanut oil, their fatty acids and also synthetic saturated, unsaturated or polyunsaturated monocarboxylic acids or mixtures of these components ,
  • the alkyd resins may optionally be modified, for example, with natural resins, phenolic resins, acrylic resins, styrene, epoxy resins, silicone resins, isocyanates, polyamides or aluminum alcoholates.
  • the alkyd resins generally have a molecular weight of from 500 to 100,000 g / mol, preferably from 1,000 to 50,000 g / mol, in particular from 1,500 to 20,000 g / mol (determined by laser light scattering, see, for example, "Static Light Scattering of Polystyrene Reference Materials : Round Robin Test ", U. Just, B. Werthmann International Journal of Polymer Analysis and Characterization, 1999 Vol.5, pages 195-207).
  • the binder formulations of the invention preferably contain 1 to 80 wt .-%, preferably 2 to 70 wt .-% and particularly preferably 3 to 60 wt .-% of alkyd resin.
  • the binder formulation according to the invention preferably contains an alkyd resin-based binder and, for oxidative drying, a transition metal dryer.
  • transition metal dryers are understood as meaning, in particular, transition metal compounds which accelerate the drying and hardening of the alkyd resin-based binder.
  • the salts of transition metals of groups Vb, VIb, VIIb, VIII and Ib of the Periodic Table is the salts of cobalt, manganese, vanadium, nickel, copper and iron, more preferably cobalt, manganese, iron and
  • Vanadium They do not necessarily have to be used alone, but can also be used in combination with not transition metal salts, such as lead, calcium or zirconium are used.
  • the preferred transition metal salts are soluble in organic solvents, for example.
  • White spirit at 20 0 C in an amount of more than 10 g / l.
  • it is the salts of carboxylic acids, which have a good compatibility with the alkyd resin Bindemittem and at the same time ensure sufficient solubility of the metal salt.
  • Transition metal salts of fatty acids such as oleates or linoleates, resin acids such as resinates or salts of 2-ethylhexanoic acid (octoates) are preferably used.
  • Preferred transition metal driers are cobalt octoate and cobalt naphthenate example Octasoligen -cobalt ® 12 from Borchers.
  • the binder formulations according to the invention preferably contain the transition metal dryers in an amount of 0.001 to 1 wt .-%, preferably 0.005 to 0.5 wt .-% and most preferably 0.01 to 0.1 wt .-%, each based on binder.
  • the binder formulations in a preferred embodiment contain at least one polar organic solvent, preferably a polar aprotic solvent.
  • polar organic solvent preferably a polar aprotic solvent.
  • polar protic and dipropylene glycol monomethyl ethers for example Dowanol DPM from Dow Chemical
  • polar aprotic solvents such as dimethylformamide and dimethyl sulfoxide
  • etherified glycols, oligoglycols and polyglycols etherified polyols and esterified polyols, esters of mono- and polybasic carboxylic acids, e.g. Adipic diisobutyl ester, diisobutyl maleate (e.g., Rhodiasolv DIB).
  • solvent in particular nonpolar or polar solvents, preferably up to 10% by weight, in particular from 0.01 to 7.5% by weight, based on the binder preparation of polar aprotic solvents, and
  • binder formulations according to the invention comprising at least one alkyd resin, at least one transition metal dryer, at least one solvent and at least one composition according to the invention or formulation according to the invention.
  • the binder formulation may also contain fillers, skin preventatives, rheology additives such as anti-settling agents and thixotropic agents, other biocides such as fungicides, bactericides, antifoulants and algicides, solvents, process additives, plasticizers, UV and heat stabilizers, and corrosion inhibitors in conventional amounts.
  • rheology additives such as anti-settling agents and thixotropic agents
  • other biocides such as fungicides, bactericides, antifoulants and algicides
  • solvents process additives
  • plasticizers plasticizers
  • UV and heat stabilizers UV and heat stabilizers
  • corrosion inhibitors in conventional amounts.
  • further stabilizers may be added to the binder formulations, such as, for example, the chelating reagents mentioned in WO 98/22543 or other heterocyclic 3-ring compounds, in particular those having a heteroatom other than what was used in the composition according to the invention or in the formulation according to the invention.
  • these are preferably the organic epoxides mentioned in WO 00/16628.
  • one or more stabilizers from the series of antioxidants, free-radical scavengers, UV stabilizers, chelators and UV absorbers can also be added in the inventive use, which have partially synergistic effects. If appropriate, these substances can also already be used in the preparation of the polymer according to the invention and be present in the polymer. Examples which may be mentioned as further UV stabilizers: sterically hindered phenols, such as
  • Esters of ⁇ - (5-tert-butyl-4-hydroxy-3-methylphenyl) -propionic acid with mono- or polyhydric alcohols e.g. with methanol, octadecanol, 1,6-hexanediol, neopentyl glycol,
  • Thiodiethylenglycol diethylene glycol, triethylene glycol, pentaerythritol, tris-hydroxyethyl isocyanurate or di-hydroxyethyl-oxalklarediamid.
  • Tri (nonylphenyl) phosphites tris (2,4-di-tert-butylphenyl) phosphites, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphites, bis (2,6-di-tert-butyl-4-methylphenyl ) pentaerythritol diphosphites, 2,2'-methylenebis (4,6-di-tert-butylphenyl) octyl phosphites, tetrakis (2,4-di-tert-butylphenyl) [l, 1'-biphenyl] -4,4'- diyl bisphosphonites, 2,2'-ethylidene bis (4,6-di-tert-butylphenyl) fluorophosphites, dioctadecyl pentaerythritol diphosphonites, 2 -
  • N- (2-naphthyl) -N-phenylamines, 2,2,4-trimethyl-1,2-dihydroquinoline polymer (CAS No: 26780-96-1), N-2-propyl-N'-phenyl-p phenylenediamines, N- (1-naphthyl) -N-phenylamines, (benzeneamines, N-phenyl-, reaction products with 2,4,4-trimethylpentenes) (CAS No. 68411-46-1) or 4- (l - methyl-1-phenylethyl) - N - [4- (1-methyl-1-phenylethyl) phenyl] aniline.
  • Lactones and benzofuranones such as, Irganox HP 136 (CAS No. 181314-48-7) thioethers and thioesters like,
  • UV absorbers like, (Methanone, [methylene bis (hydroxymethoxyphenylene)] bis [phenyl], (methoxy, [1,6-hexanediylbis [oxy (2-hydroxy-4, 1-phenylene)]] through [phenyl], 2- Benzoyl-5-methoxyphenol, 2,4-dihydroxybenzophenones, 2,2'-dihydroxy-4-methoxybenzophenones, 2-hydroxy-4-octyloxybenzophenones, 2-hydroxy-4-dodecyloxybenzophenones, 2- (2-hydroxy-4- hexyloxyphenyl) -4,6-diphenyl-l, 3,5-triazine, 2,4-bis (2,4-dimethylphenyl) -6- (2-hydroxy-4-octyloxyphenyl) -l, 3,5- triazines, 2-ethoxy-2'-ethyloxalic acid bisanilides, N- (5-tert-butyl-2-
  • Ethylenediaminetetraacetate ethylenediamine, acetylacetone, nitrilotriacetic acid, ethylene glycol bis (beta-aminoethyl ether) -N, N-tetraacetic acid, 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine, 2, 2 ', 6', 2 "-terpyridine, 4,4'-diphenyl-2,2'-bipyridine, 2,2'-bipyridine-3,3'-diol, 1,10-phenanthroline, 4-methyl-1 , 10-phenanthrolines, 5-methyl-l, 10-phenanthrolines, 4,7-dimethyl-l, 10-phenanthrolines, 5,6-dimethyl-1, 10-phenanthrolines, 3, 4,7,8-tetramethyl-1 , 10-phenanthroline, 4,7-diphenyl-l, 10-phenanthro line, 2, 4, 7, 9-tetramethyl-1,
  • Iodine-containing compounds in particular biocides, are broken down, especially in the presence of the dryers described in more detail above. Although the strongest effects are observed in the presence of these dryers, a number of other color components also have a destabilizing effect on iodine-containing compounds, especially biocides. These include inorganic and organic pigments, fillers, anti-skinning agents, rheology additives such as anti-settling agents and thixotropic agents, other compounds, especially biocides such as fungicides, bactericides, antifouling agents and algicides, solvents, process additives, plasticizers, UV and heat stabilizers, corrosion inhibitors, etc. The compositions / formulations according to the invention also show a strongly stabilizing effect here.
  • the erfmdungshacken compositions / formulations used in oxidatively drying binder preparations show the inventive binder preparations themselves a comparison to unstabilized iodine-containing systems, in particular IPBC-containing systems a significant reduction in the drying time or no extension of the drying time compared to the non-IPBC equipped systems (so-called blank formulations).
  • novel binder formulations are preferably used as paints, in particular as paints, lacquers, primers, impregnations and glazes. Accordingly, the invention also relates to the use of the binder formulations according to the invention as paints.
  • the invention further relates to the use of the polymers according to the invention or of the composition according to the invention for the protection of industrial materials against destruction or infestation by microorganisms.
  • the polymers according to the invention are suitable for the protection of industrial materials.
  • Technical materials as used herein mean non-living materials prepared for use in the art.
  • the technical materials are adhesives, glues, paper and cardboard, textiles, leather, wood, wood-based materials, paints and plastic articles, cooling lubricants and other materials that can be attacked or decomposed by microorganisms.
  • microorganisms that can cause degradation or a change in the technical materials
  • bacteria, fungi, yeasts, algae and mucus organisms may be mentioned.
  • the active compounds according to the invention preferably act against fungi, in particular mold fungi, wood-discolouring and wood-destroying fungi (Basidiomycetes) and against slime organisms and bacteria.
  • microorganisms of the following genus are mentioned:
  • Alternaria such as Alternaria tenuis, Aspergillus, such as Aspergillus niger,
  • Chaetomium such as Chaetomium globosum
  • Coniophora like Coniophora puetana,
  • Lentinus like Lentinus tigrinus
  • Penicillium such as Penicillium glaucum, Polyporus, such as Polyporus versicolor, Aureobasidium such as Aureobasidium pullulans, Sclerophoma such as Sclerophoma pityophila, Trichoderma such as Trichoderma viride, Escherichia such as Escherichia coli, Pseudomonas such as Pseudomonas aeruginosa, Staphylococcus such as Staphylococcus aureus.
  • the invention further relates to technical materials containing at least the inventive polymer or a composition according to the invention.
  • accelerated stability tests are performed by storage at elevated temperature.
  • the content of the IPBC was in all cases by HPLC.
  • Examples 1-2 describe the preparation of compositions according to the invention.
  • Monomer solution I 40.0 g of IPBC and 10 g of CX-100 crosslinker from DSM (trimethylolpropane tris [3- (2-methyl-1-aziridinyl) propionate] in a mixture consisting of 74.85 g of methyl methacrylate, 13.2 g dissolved 59g stearyl methacrylate and divinyl benzene.
  • a polymerization apparatus 4- vinylbenzenesulfonate and 2,43g of sodium peroxodisulfate were added, with stirring, 6g of monomer I to a solution of 2,63g sodium, heated to 70 0 C and stirred for 30 minutes.
  • Oil Phase I 60g of IPBC were dissolved in a mixture containing 37.4g of methyl methacrylate, 6.6g of stearyl methacrylate and 29.5g of divinylbenzene.
  • Emulsion I A solution of 7.4 g of Tanemul "508 (nonionic ethoxylated stearyl alcohol emulsifier from Tanatex,) and 1.32 g of sodium 4-vinylbenzenesulfonate in 650 ml of water was treated with the oil phase I using an Ultraturrax (24,000 rpm " 1 , 10 Minutes) into an emulsion.
  • Polymer latex I In a polymerization apparatus was added to a solution of 0.12g
  • Emulsion II A solution containing 20 g of CX-100 Crosslinker from DSM (trimethylolpropane tris [3- (2-methyl-1-aziridinyl) propionate] and 10.7 g of Rhodiasolv * DIB (oil phase) was mixed with a solution of 1, 53 g of Tanemul® KS (ethoxylated castor oil) in 53.3 g of water in an emulsion using an Ultraturrax (24,000 rpm "1 , 5 minutes).
  • DSM trimethylolpropane tris [3- (2-methyl-1-aziridinyl) propionate]
  • Rhodiasolv * DIB oil phase
  • the emulsion II was mixed with the polymer latex I while stirring with a paddle blade (10 minutes), the resulting suspoemulsion was passed through a bead mill and the polymer phase isolated from the latex thus obtained by spray drying (Büchi B-290 spray drier, pump performance 55%, N 2 -FIuB 35 ⁇ min "1, Inlet 160 0 C, outlet 50 0 C). It was isolated only the fine fraction, and so 114,3g of a fine powder (obtained corresponding to 70% of theory) with a content of 27.4% IPBC ,
  • a typical alkyd-based paint system Alkydlasur A
  • Co transition metal dryer
  • iron oxide iron oxide
  • an IPBC concentrate containing IPBC and a 2: 1 aziridine see Table 1, Reference II
  • IPBC nitrogen oxide
  • IPBC composition of Examples 1 and 2 were incorporated in a commercial wood thick-layer glaze "Alkydlasur B" (containing alkyd resin, white spirit, iron oxide pigment, dryer, butanone oxime, UV absorber and additives) to coat the paint system at 0.7 % IPBC, based on the glaze, the compositions of Examples 1, 2 and unstabilized IPBC are used in each case (see Table 4):
  • IPBC thick-film glazes Alkydlasur B-I to Alkydlasur B-III were prepared by mixing the weight percentages of Alkydlasur B shown in Table 4 and said IPBC-containing compositions.
  • the equipped color system is filled into tight-fitting 200 ml glass bottles, leaving only a minimal residual amount of air in the container, and stored at 40 0 C.
  • Table 5 The results can be found in Table 5, according to which only the inventively equipped with the alkyd lasers BI and B-II in comparison to the unstabilized sample after 4 weeks storage at 40 0 C show no significant degradation of the IPBC.
  • the Alkydlasur B-II shows even after 8 weeks storage at 40 0 C only a slight IPBC degradation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plant Pathology (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Paints Or Removers (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

Polymer, enthaltend wenigstens eine heterocyclische 3 -Ring- Verbindung und eine jodhaltige Verbindung.

Description

Heterocyclische 3-Rϊngverbindungen und jodhaltige Verbindungen enthaltende Polymere
Die Erfindung betrifft Polymere, enthaltend heterocyclische 3-Ringverbindungen und jodhaltige Verbindungen, ihre Herstellung sowie diese enthaltende Polymerpräparationen und Bindemittelformulierungen und ihr Einsatz zum Schutz technischer Materialien Iodhaltige Biozide werden zum Schutz technischer Materialien (z.B. Anstrichmittel) vor dem Befall, der Zersetzung, Zerstörung und optischen Veränderung durch Pilze, Bakterien und Algen, bevorzugt durch Pilze, eingesetzt. Darüber hinaus werden iodhaltige Biozide, auch in Kombination mit Bioziden anderer Wirkstoffklassen, als Komponenten biozid wirksamer Materialschutzmittel wie Holzschutzmittel eingesetzt. Neben Iodalkinylverbindungen werden hier auch Wirkstoffe eingesetzt, bei denen ein oder mehrere Iodatome an Doppelbindungssysteme, aber auch an einfach gebundene Kohlenstoffatome gebunden sind.
Vielen iodhaltigen Bioziden ist gemeinsam, dass sie unter Lichteinwirkung selbst in Substanz oder als Komponente eines technischen Materials (z.B. Anstrichmittel) zu einer Gelbfärbung unter Wirkstoffabbau führen. Dieses Merkmal erschwert bzw. verhindert den Einsatz von iodhaltigen Bioziden in entsprechend sensiblen Materialien, so z.B. in hellen bzw. weißen Anstrichmitteln.
Viele iodhaltige Biozide, insbesondere Iodalkinylverbindungen, werden durch Metallverbindungen besonders rasch zerstört. Diese Tatsache verhindert den Einsatz von z.B. Iodalkinylverbindungen in lösungsmittelbasierten Anstrichmitteln, wie z.B. Farben, Lacken und Lasuren, oder bioziden Schutzmitteln, wie z.B. Holzschutzgrundierungen, Ho Iz Schutzimprägnierungen und Holzschutzlasuren, da diese alkydbasierten Beschichtungs- und Schutzsysteme regelmäßig mit Metallverbindungen ausgerüstet sind. Hier fungieren Übergangsmetallverbindungen, z.B. Cobalt-, Blei-, Mangan- und Vanadiumoctoate, als Trockner (Sikkative) des alkydharzhaltigen Bindemittelsystems. Darüber hinaus werden auch Übergangsmetallverbindungen als Pigmente eingesetzt, die teilweise mit den Sikkativen vergleichbare destruktive Eigenschaften aufweisen. Neben den Trocknern gibt es in den oben genannten lösungsmittelbasierten Systemen eine Reihe weiterer Bestandteile, die in unterschiedlicher Intensität zu einem Abbau iodhaltiger Biozide führen. Während bei den üblicherweise verwendeten Lösungsmitteln der destabilisierende Effekt noch relativ schwach ausgebildet ist, zeigen die anderen üblichen Komponenten einer Farbformulierung, wie z.B. Prozessadditive, Weichmacher, Farbpigmente, Antiabsetzmittel, Thixotropiermittel, Korrosionsinhibitoren, Hautverhinderer und Binder mehr oder weniger stark ausgeprägte destabilisierende Effekte.
Neben den oben beschriebenen lösungsmittelbasierten Systemen ist auch der Einsatz von iodhaltigen Bioziden in bestimmten wasserbasierten technischen Materialien (z.B. Anstrichmittel und Schutzmittel wie Holzschutzlasuren und Grundierungen) problematisch. Basiert z.B. die Filmbildung und Filmhärtung eines wasserbasierten Anstrichmittels auf der oxidativen Vernetzung wasserlöslicher bzw. emulgierter Alkydharze, so kommen auch in diesen Systemen Übergangsmetallverbindungen als Sikkative zum Einsatz, womit eine Zerstörung der enthaltenen iodhaltigen Biozide einhergeht. Es sind bereits Methoden bekannt, den Abbau von Halogenpropargylverbindungen in übergangsmetallhaltigen, lösemittelbasierten Alkydharzfarben zu verhindern. So wird beispielsweise in der WO 98/22543 der Zusatz von Chelatisierungsreagenzien beschrieben.
Des Weiteren sind übergangsmetallhaltige, Lösemittel basierte Alkydharzfarben bekannt, bei denen Halogenpropargylverbindungen durch organische Epoxide stabilisiert werden (vgl. WO 00/16628). Es sind auch bereits Verfahren beschrieben, den durch Licht induzierten Abbau von antifungischen Wirkstoffen, wie auch Iodpropargylbutylcarbamat, durch Zusatz von Tetraalkylpiperidin- verbindungen und/oder UV- Absorbern zu unterdrücken, (vgl. EP-A 0083308).
Gemäß WO 2007/028527 werden iodhaltige Biozide mit 2-(2-Hydroxyphenyl)-benzotriazolen stabilisiert. Durch Zusatz von Epoxyverbindungen soll die Verfärbung von Iodalkinverbindungen, wie IPBC reduziert werden (vgl. US-A 4,276,211 und US-A 4,297,258). Epoxide sind zu Stabilisierung von IPBC auch in JP-A- 19- 120515 bereits beschrieben.
Die Stabilisierung von Iod ist beispielsweise in JP-A-2006-45686 mittels sogenannter Cyclodextrine (CD) realisiert worden, deren Komplex zur besseren Fixierung an der Faser daran durch Polymerisation von Aziridinhaltigen-Monomeren verankert wird. Dabei handelt es sich bei der CD-Iod Paarung jedoch lediglich um Komplex, bei dem in dem Hohlraum des CDs das Iod bzw. der Iodophor geschützt liegt, ohne kovalent mit dem CD gebunden zu sein. Auch das Iodophor seinerseits ist ein Komplex bei dem Iod nicht mit dem Träger kovalent gebunden ist, zumal dies nur eine Form ist, aus der sich Iod wieder zur angestrebten Wirkung wieder befreien muss.
Des Weiteren sind noch synergistische Mischungen von Epoxiden mit UV Absorbern (vgl. WO 99/29176) und mit Benzyliden Campfer Derivaten (vgl. US-A 6,472,424) beschrieben, die ebenfalls eine reduzierte Gelbfärbung aufweisen.
Darüber hinaus wird in WO 2007/101549 die Stabilisierung iodhaltiger Biozide durch Azolverbindungen beschrieben. Die stabilisierende Wirkung der oben genannten Stabilisatoren ist jedoch nicht immer ausreichend und mit anwendungstechnischen Nachteilen behaftet. So werden insbesondere die Trockenzeiten der Farben deutlich verlängert, was in vielen Fällen für den Anwender nicht akzeptabel ist. Außerdem ist die Inhibierung der Verfärbung nicht immer ausreichend. Überraschenderweise wurde nun gefunden, dass jodhaltige Verbindungen, vorzugsweise jodhaltige Biozide in Polymeren, enthaltend jodhaltige Verbindungen und heterocyclische 3- Ringverbindungen, insbesondere Aziridine, insbesondere in Lösungsmittel- und Wasser basierten Systemen sowohl vor chemischem als auch Licht induziertem Abbau geschützt werden und damit die beschriebenen Nachteile nicht-stabilisierter jodhaltiger Verbindungen wie Farbveränderungen und Wirkstoff- bzw. Wirkungsverlust verhindert werden können. Darüber hinaus wurde gefunden, dass mit dem Einsatz von derartig ausgerüsteten Polymeren zur Stabilisierung jodhaltiger Biozide in den oben genannten Systemen keine anwendungstechnischen Nachteile, wie beispielsweise eine Verlängerung der Trockenzeit eines Anstrichsystems, einhergehen.
Durch den Einsatz von heterocyclische 3-Ringverbindungen, insbesondere Aziridine, enthaltende Polymere wird die Stabilität von jodhaltigen Verbindungen, die ebenfalls im Polymer enthalten sind noch weiter verbessert. Insbesondere besitzt diese Form gegenüber iodhaltigen Lösungen, selbst solchen, die bereits heterocyclische 3-Ringverbindungen enthalten Stabilitätsvorteile, insbesondere bei der Lagerung, vorzugsweise bei erhöhten Temperaturen.
Die Erfindung betrifft daher ein Polymer, enthaltend wenigstens eine heterocyclische 3-Ring- Verbindung und eine jodhaltige Verbindung.
Unter dem Begriff„enthaltend" kann im Hinblick auf die heterocylische 3 -Ringverbindung sowohl „in der Polymermatrix eingelagert" als auch„adsorbtiv- oder kovalent am Polymer gebunden" verstanden werden. Unter Iod-haltigen Verbindung wird im Rahmen dieser Erfindung eine organische Verbindung verstanden, die wenistens eine kovalente Iod-Kohlenstoff-Bindung besitzt.
Der Nachweis, dass eine heterocyclische 3 -Ringverb indung in erfmdungsgemäßer Weise in dem Polymer„enthaltend" ist, wird im Allgemeinen durch die analytische Feststellung der heterocyclischen 3 -Ringgruppen, beispielsweise der Aziridingruppen, mittels geeigneter Methoden, bspw. Festkörper-NMR (MAS-NMR) geführt. Kann eine heterocyclische 3-Ringverbindung z.B. bei der MAS-NMR Bestimmung des erfmdungsgemässen Polymers festgestellt werden, ist diese Bedingung im Sinne der vorliegenden Erfindung erfüllt.
Als heterocyclische 3 -Ring- Verbindung kommen vorzugsweise solche mit 3 -Ring-Funktion in Frage, die als Heteroatom im 3-Ring O, NR, S oder Se haben, wobei R für Wasserstoff oder einen organischen Rest steht. Bevorzugte heterocyclische 3-Ring- Verbindungen sind Epoxide oder Aziridine, insbesondere Aziridine.
Als Aziridine kommen solche in Frage, die eine oder mehrere Aziridin-Gruppen enthalten. Bevorzugt sind bspw. Aziridinverbindungen der Formel (I)
R1 wobei
R1 Wasserstoff, Alkyl oder Cycloalkyl, die jeweils unsubstituiert oder substituiert und/oder einfach- oder mehrfach ethylenisch ungesättigt sind, jeweils substituiertes oder unsub- stituiertes Fullerenyl, Aryl, Alkoxy, Alkoxycarbonyl, Arylcarbonyl, Alkanoyl, Carbamoyl oder Oxomethylen bedeutet,
R2, R3, R4 und R5 unabhängig voneinander die gleiche Bedeutung wie R1 haben und zusätzlich unabhängig Halogen, Hydroxyl, Carboxyl, Alkylsulfonyl, Arylsulfonyl, Nitril, Isonitril bedeuten oder die Reste
R2 und R4 oder R3 und R5 gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, einen 5- bis 10 gliedrigen carbocyclischen Ring bilden, der unsubstituiert oder substituiert und/oder einfach- oder mehrfach ethylenisch ungesättigt ist.
Als monofunktionelle Aziridine der Formel (I) kommen bspw. solche in Frage, worin R2 und R4 oder R und R5 gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, einen 5- bis 10 gliedrigen carbocyclischen Ring bilden, der unsubstituiert oder substituiert und/oder einfach- oder mehrfach ethylenisch ungesättigt ist.
Insbesondere sind dies solche der Formel (II)
wobei der carbocyclische Ring unsubstituiert ist oder mit einem oder mehreren Substituenten ausgewählt aus der Reihe Halogen, Hydroxyl, Oxo, Carboxyl, Alkylsulfonyl, Arylsulfonyl, Nitril, Isonitril, Alkyl oder Cycloalkyl, die jeweils unsubstituiert oder substituiert und/oder einfach- oder mehrfach ethylenisch ungesättigt sind, substituiertes oder unsubstituiertes Fullerenyl, Aryl, Alkoxy, Alkoxycarbonyl oder Alkanoyl substituiert ist und n für eine Zahl von 0 bis 6, bevorzugt 0 bis 1 steht.
Ebenfalls sind solche monofunktionelle Aziridinverbindungen der Formel (I) bevorzugt, worin R1 für einen Rest der Formel
oder
steht, worin
R24 für -H oder Alkyl, bevorzugt für -H, -CH3, -C2H5, besonders bevorzugt für -CH3, -C2H5 steht, g eine Zahl von 1 bis 4, bevorzugt 1 bis 3, besonders bevorzugt 1 bis 2 ist, h eine Zahl von 1 bis 11, bevorzugt 1 bis 5 und besonders bevorzugt 1 bis 3 ist und die übrigen Reste, die obige Bedeutung haben. Insbesondere sind solche Verbindungen der Formel (I) bevorzugt, die der Verbindung der Formel (III) oder (IV) entsprechen.
wobei
R für -H oder Alkyl, bevorzugt für -H oder -CH3, besonders bevorzugt für -CH3 steht,
R25 für -H oder Alkyl, bevorzugt für -H oder -CH3, besonders bevorzugt für -CH3 steht und die übrigen Reste die obige Bedeutung haben. Besonders bevorzugt sind Aziridine, die zwei oder mehrere Aziridinfünktionen haben. Beispielsweise sind Verbindungen der Formel (V) zu nennen.
worin
A ein m-valenter aliphatischer, cycloaliphatischer oder aromatischer Rest bedeutet, der ggf. substituiert ist, m für eine Zahl von 2 bis 5, insbesondere 2 bis 3 steht, und
R30 für jede m-Einheit jeweils unabhängig für Wasserstoff oder C1-C4- Alkyl, insbesondere CH3 oder CH2CH3 steht.
Bei m = 2 steht A bevorzugt für C2-Cio-Alkylen, insbesondere für
-(CHz)6)-, -C(CH3)2 CH2 C(CH3)2 CH2- oder
- C(CH3)2 CH2 CH(CH3) CH2 - oder für ein Phenylen, insbesondere für den bivalenten Rest der Formel Bei m = 3 steht A bevorzugt für den trivalenten Rest der Formel
Bevorzugt sind solche Verbindungen der Formel (V), die den Formeln (Va) - (Vd) entsprechen.
Ebenfalls bevorzugt sind als polyfunktionelle Aziridinverbindungen Michael- Additionsprodukte von gegebenenfalls substituiertem Ethylenimin an Ester von mehrwertigen Alkoholen mit α,ß- ungesättigten Carbonsäuren und den Additionsprodukten von gegebenenfalls substituiertem Ethylenimin an Polyisocyanate.
Geeignete Alkoholkomponenten sind beispw. Trimethylolpropan, Neopentylglykol, Glycerin, Pentaerythrit, 4,4'-Isopropylidendiphenol, 4,4 '-Methylendiphenol und Polyvinylalkohole. Als α,ß- ungesättigte Carbonsäuren kommen bspw. Acryl- und Methacrylsäure, Crotonsäure und Zimtsäure in Frage. Besonders bevorzugt ist Acrylsäure. Die korrespondierenden mehrwertigen Alkohole der α,ß-ungesättigten Carbonsäureester können ggf. Alkohole sein, die an ihren OH-Funktionen teilweise vollständig mit Alkylenoxiden einfach oder mehrfach verlängert sind. Hierbei kann es sich bspw. um die mit Alkylenoxiden einfach oder mehrfach verlängerten oben genannten Alkohole handeln. Diesbezüglich wird auch auf die US 4,605,698 verwiesen, dessen Offenbarung durch Bezugnahme in die vorliegende Erfindung eingeschlossen ist. Erfmdungsgemäß besonders geeignete Alkylenoxide sind Ethylenoxid und Propylenoxid.
Beispiele für zur Reaktion mit gegebenenfalls substituiertem Ethylenimin geeigneten PoIy- isocyanaten sind die auf S. 4, Zeile 33 - 35 von WO2004/050617 genannten.
Beispiele für erfmdungsgemäß geeignete Aziridine sind die auf S. 3, Zeile 29 - 34 von WO2004/050617 genannten. Bevorzugt sind ebenfalls solche Aziridine wie sie beispielsweise in US 3,225,013 (Fram), US 4,490,505 (Pendergrass) und US 5,534,391 (Wang) beschrieben sind.
Ebenfalls bevorzugt sind solche Aziridine der Formel (I), die wenigsten drei Aziridingruppen besitzen, wie beispielsweise Trimethylolpropan-tris[3-(l-aziridinyl)propionat], Trimethylolpropan- tris[3-(2-methyl-l-aziridinyl)propionat], Trimethylolpropan-tris[2-aziridinylbutyrat], Tris(l- aziridinyl)phosphinoxid, Tris(2-methyl-l-aziridinyl)phosphinoxid, Pentaerythritol-tris-[3-(l- aziridinyl)propionat] und Pentaerythritol-tetrakis-[3-(l-aziridinyl)propionat].
Hiervon sind besonders Trimethylolpropan-tris[3-(l-aziridinyl)propionat], Trimethylolpropan- tris[3-(2-methyl-l-aziridinyl)propionat], Trimethylolpropan-tris[2-aziridinylbutyrat], Pentaery- thritol-tris-[3-(l-aziridinyl)propionat] und Pentaerythritol-tetrakis-[3-(l-aziridinyl)propionat] bevorzugt.
Besonders sind Trimethylolpropan-tris[3-(l-aziridinyl)propionat], Trimethylolpropan-tris[3-(2- methyl-l-aziridinyl)propionat] und Pentaerythritol-tetrakis-[3-(l-aziridinyl)propionat] bevorzugt.
Ebenfalls bevorzugt sind polyfunktionelle Aziridine der Formel (VI)
worin B der Rest eines aliphatischen Polyols ist, das wenigstens x OH-Funktionen aufweist, wobei x OH-Funktionen durch den Rest der obigen Klammer substituiert sind, f für eine Zahl von 0 bis 6, insbesondere von 1 bis 3 steht, x eine Zahl größer oder gleich 2 ist, insbesondere für 2 bis 500.000 steht und R38, R39, R40 und R41 die identische Bedeutung wie die Reste R2 - R5 in der Formel (I) haben.
Besonders bevorzugt sind solche Aziridine der Formel (VI), worin x für 3 oder 4 steht und B ein 3- oder 4-fach OH-funktionelles Polyol ist.
Besonders bevorzugt sind Aziridine der Formel (VI), die der Formel (VIa) - (VIc) entsprechen
38
R
R38
worin
R38 für Wasserstoff oder CH3 steht.
Besonders bevorzugt ist die auch als Crosslinker CX-100 von DSM bekannte Aziridinverbindung der Formel (VIa), mit R38 = Methyl sowie auch das Produkt„Corial Härter AN" der BASF, das das Aziridin der Formel (VIa) mit R38 = Wasserstoff enthält.
Als Epxoide kommen alle Verbindungen in Frage, die eine oder mehrere Oxiran-Ringe enthalten. Bevorzugt sind bspw. Epoxide der allgemeinen Formel (VII): woπn
R43, R44, R45 und R46 unabhängig voneinander Wasserstoff, Alkyl oder Cycloalkyl, die jeweils unsubstituiert oder substituiert und/oder einfach- oder mehrfach ethylenisch ungesättigt sind, jeweils substituiertes oder unsubstituiertes Fullerenyl, Aryl, Alkoxy, Aryloxy, Alkanoyl, Alkoxycarbonyl, Arylcarbonyl, Alkanoyl, Carbamoyl oder Oxomethylen, Halogen, Hydroxyl, Carboxyl, Alkylsulfonyl, Arylsulfonyl, Nitril, Isonitril, bedeuten oder die Reste
R43 und R44 oder R45 und R46 gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, einen 5- bis 10 gliedrigen carbocyclischen Ring bilden, der unsubstituiert oder substituiert und/oder einfach- oder mehrfach ethylenisch ungesättigt ist.
Bevorzugtes„Alkyl" ist ein lineares oder verzweigtes Alkylradikal mit 1 bis 20, bevorzugt 1 bis 12 Kohlenstoffatomen. Beispiele für erfindungsgemäße Alkylreste sind Methyl, Ethyl, n-Propyl,
Isopropyl, n-Butyl, Isobutyl, sec-Butyl, tert-Butyl, Pentyl, iso-Amyl, Hexyl, Octyl usw. Die vorgenannten Alkylradikale können bevorzugt durch folgende Reste substituiert sein; Alkoxy, bevorzugt Ci-Cn-Alkoxy, Nitro, Monoalkylamino, bevorzugt Ci-Ci2-Monoalkylamino,
Dialkylamino, bevorzugt Di[CpCn-] alkylamino, Cyano, HaIo, Haloalkyl, bevorzugt Trifluoromethyl, Alkanoyl, Aminocarbonyl, Monoalkylaminocarbonyl, Dialkylaminocarbonyl,
Alkylamido, bevorzugt d-Cn-Alkylamido, Alkoxycarbonyl, bevorzugt C1-C12- Alkoxycarbonyl,
Alkylcarbonyloxy, bevorzugt d-C^-Alkylcarbonyloxy, Aryl, bevorzugt Phenyl oder durch
Halogen, Ci-Ci2-Alkyl oder Ci-Ci2-AIkOXy substituiertes Aryl, heterocyclische 3-Ringgruppen, insbesondere Aziridin- oder Epxoygruppen, oder Substituenten, wie die oben genannten, die diese Gruppen enthalten.
Bevorzugt stehen die Reste R43, R44, R45 und R46 jeweils unabhängig für Wasserstoff oder Aralkyl, Aryloxyalkyl, Alkoxyalkyl wie Epoxy-di-alkoxyalkyl bspw. 2,3-Epoxy-l-propoxyethoxymethyl, 2,3-Epoxy-l-butoxyethoxyethyl oder 3,4-Epoxy-l-butoxyethoxyethyl, für den Rest der Formel oder
O
CH2 wobei
Z für unverzweigtes oder verzweigtes Ci-Cio-Alkylen, insbesondere Propylen, Butylen, Pentylen, Hexylen, oder Heptylene, halogeniertes unverzweigtes oder verzweigtes Ci-Ci0-
Alkylen wie bspw. 2,2-Dichloromethylpropylen steht und
Q für Ci-C/pAlkylen, Carbonylarylcarboxy wie bspw. Carbonylphenylcarboxy steht. Zu den bevorzugten Epoxiden zählen die Verbindungen, in denen R46 für Wasserstoff, Alkoxy, Alkyl oder 2,3-Epoxy-l-propoxyethoxymethyl,
R43 für Wasserstoff oder Alkyl und
R44 und R45 für Wasserstoff steht, und zusätzlich R43 und R44 oder R45 und R46 gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, einen 5- bis 10 gliedrigen carbocyclischen Ring bilden, der unsubstituiert oder substituiert und/oder einfach- oder mehrfach ethylenisch ungesättigt ist.
Zu den besonders bevorzugten Epoxiden gehören Glycidylether. Diese Verbindungen sind dadurch gekennzeichnet, dass sie einen oder mehrere 2,3-Epoxypropanoxy-Gruppen enthalten und durch die allgemeine Formel (VIII) wiedergegeben werden können: wobei
R47 die gleiche Bedeutung wie R43, R44, R45 oder R46 hat.
Viele dieser Glycidylether sind kommerziell erhältlich. Grundsätzlich sind alle Glycidylether geeignet, insbeondere solche, die durch Reaktion von l-Chloro-2,3-epoxypropan mit Alkoholen, bzw. durch Reaktion von Glycidylalkohol mit geeigneten Elektrophilen, z.B. Halogeniden, herstellbar sind. Besonders bevorzugt sind auch Epoxid-haltige Produkte, erhältlich durch Umsetzung von Ep ich l orhy drin ( l-Chloro-2,3-epoxypropan) mit mehrwertigen Alkoholen, insbesonderemehrwertigen Phenolen wie bsw. Bisphenol A einschließlich oligomerer und polymerer Reaktionsprodukte. Besonders bevorzugt sind solche mit einem mittleren Molgewicht von kleiner 2000 g/mol, insbesondere kleiner 1000 g/mol.
Zu den bevorzugten Epoxiden gehören auch die folgenden Verbindungen:
wobei
,48
R C1-C20-AIkVl
R H, Alkyl, substituiertes Alkyl,
R ,530υ Halogen,
R51 Ci-C20-AIkVl und
R ,532Z H, Ci-C20- Alkyl, bevorzugt Methyl oder Ethyl bedeuten.
Als iodhaltige Verbindungen kommen vorzugsweise Iodalkinyl- Verbindungen oder Verbindungen in Frage, bei denen ein oder mehrere Iodatome an Doppelbindungen gebunden sind oder bei denen ein oder mehrere Iodatome an einfachgebundene Kohlenstoffatome gebunden sind. Bei den iodhaltigen Verbindungen, insbesondere Bioziden handelt es sich beispielsweise um Diiodmethyl-p-tolylsulfon, Diiodmethyl-p-chlorphenylsulfon, 3-Brom-2,3-diiod-2-propenyl- alkohol, 2,3,3-Triiodallylalkohol, 4-Chlor-2-(2-chlor-2-methylpropyl)-5-[(6-iod-3-pyridinyl)- methoxy]-3(2H)- pyridazinone (CAS-RN: 120955-77-3) Iodfenfos, 3-Iod-2-propinyl-2,4,5- trichlorphenylether, 3-Iod-2-propinyl-4-chlorphenylformal (IPCF), N-Iodpropargyloxycarbonyl- alanin, N-Iodpropargyloxycarbonyl-alanin-ethylester, 3-(3-Iodpropargyl)-benzoxazol-2-on, 3-(3- Iodpropargyl)-6-chlorbenzoxazol-2-on, 3-Iod-2-propinyl-alkohol, 4-Chlorphenyl-3-iodpropargyl- formal,3-Iod-2-propinyl-propyl-carbamat, 3-Iod-2-propinyl-butyl-carbamat (IPBC), 3-Iod-2- propinyl-m-chlorphenyl-carbamat, 3-Iod-2-propinyl-phenyl-carbamat, Di-(3-Iod-2-propinyl)hexyl- dicarbamat, 3-Iod-2-propinyloxyethanol-ethylcarbamat, 3-Iod-2-propinyl-oxyethanol-phenyl- carbamat, 3-Iod-2-propinyl-thioxo-thioethylcarbamat, 3-Iod-2-propinyl-carbaminsäureester (IPC), 3-Brom-2,3-diiod-2-propenylethylcarbamat, 3-Iod-2-propinyl-n-hexylcarbamat oder 3-Iod-2- propinyl-cyclohexylcarbamat.
Bevorzugt handelt es sich bei den iodhaltigen Verbindungen, insbesondere Bioziden um 3-Iod-2- propinyl-2,4,5-trichlorphenylether, 3 -Iod-2-propinyl-4-chl orphenyl formal (IP C F) , N- Iodpropargyloxycarbonyl-alanin, N-Iodpropargyloxycarbonyl-alanin-ethylester, 3-(3-
Iodpropargyl)-benzoxazol-2-on, 3-(3-Iodpropargyl)-6-chlorbenzoxazol-2-on, 3-Iod-2-propinyl- alkoho l, 4-Chlorphenyl-3-iodpropargylformal, 3-Iod-2-propinyl-propyl-carbamat, 3-Iod-2- propinyl-butyl-carbamat (IPBC), 3-Iod-2-propinyl-m-chlorphenyl-carbamat, 3-Iod-2-propinyl- phenyl-c a r b a m a t , D i-(3-Iod-2-propinyl)hexyl-dicarbamat, 3-Iod-2-propinyloxyethanol- ethy Ic arb am at, 3-Iod-2-propinyl-oxyethanol-phenyl-carbamat, 3-Iod-2-propinyl-thioxo- thioethylcarbamat, 3-Iod-2-propinyl-c arb amins äure e s ter (I P C ) , 3-Brom-2,3-diiod-2- propenylethylcarbamat, 3-Iod-2-propinyl-n-hexylcarbamat oder 3-Iod-2-propinyl-cyclohexylcarba- mat.
Besonders bevorzugt handelt es sich bei den iodhaltigen Verbindungen, insbesondere Bioziden um 3-Iod-2-propinyl-propyl-carbamat, 3-Iod-2-propinyl-butyl-carbamat (IPBC), 3-Iod-2-propinyl-m- chlorphenyl-carbamat, 3-Iod-2-propinyl-phenyl-carbamat, Di-(3-Iod-2-propinyl)hexyl-dicarbamat,
3-Iod-2-propinyloxyethanol-ethylcarbamat, 3-Iod-2-propinyl-oxyethanol-phenyl-carbamat, 3-Iod-
2-propinyl-thioxo-thioethylcarbamat, 3-Iod-2-propinyl-carbaminsäureester (IPC), 3-Brom-2,3- diiod-2-propenylethylcarbamat, 3-Iod-2-propinyl-n-hexylcarbamat oder 3-Iod-2-propinyl- cyclohexylcarbamat. Darüber hinaus handelt es sich bei den besonders bevorzugten, iodhaltigen Verbindungen, insbesondere Bioziden um N-Alkyl-Iodtetrazole, N-Aryl-Iodterazole und N-Aralkyl-Iodterazole, wie sie bspw. in (EP 1773125) beschrieben sind.
Die iodhaltigen Verbindungen, insbesondere Biozide können einzeln oder in Mischungen zusammen mit mehreren iodhaltigen Verbindungen, insbesondere Bioziden eingesetzt werden. Besonders bevorzugt ist IPBC.
Bevorzugte Polymere sind natürliche Polymere, bspw. Cellulose, Proteine, Polyprene oder Lignin,halbsynthetische Polymere wie bspw. Celluloseacetat, Celluloseether, Cellulosenitrat, vernetztes Casein oder Carboxymethylcellulose und/oder synthetische Polymere, insbesondere solche auf Basis von ethylenisch ungesättigten Monomeren wie bspw. Polyvinylchlorid, Polyethylen (HDPE, LDPE, VLDPE), Polypropylen, Polystyrol, modifizierte Polystyrole wie SAN, ABS, Polyacrylate oder deren Copolymerisate, Polyester wie bspw. Polyethylenterephthalat, Polybutylenterephthalat oder ungesättigte Polyesterharze, sowie Polyurethane, Polyamide, Polyharnstoffe, Polycarbonate, Polyalkylenglykole, Polyimide, Polyimine, Alkydharze, Phenolharze, Aminoharze oder Epoxyharze. Die genannten Polymere können auch als Blends oder soweit möglich auch als Copolymere zum Einsatz kommen.
Besonders bevorzugt sind Polymere auf Basis von ethylenisch ungesättigten Monomeren. Bevorzugt ist ein Polymer, das dadurch gekennzeichnet ist, dass das Polymer aus ethylenisch ungesättigten Monomeren M aufgebaut ist, umfassend:
- wenigstens 30 Gew. -%, insbesondere wenigstens 40 Gew.-%, besonders bevorzugt wenigstens 50 Gew.-%, bezogen auf die Gesamtmenge der Monomere M, wenigstens eines neutralen, monoethylenisch ungesättigten Monomeren M1 mit einer Wasserlöslichkeit von nicht mehr als 50 g/l bei 25 0C, vorzugsweise nicht mehr als 30 g/l bei 25 0C, - bis zu 60 Gew.-%, insbesondere von 0,01 bis 50 Gew.-%, bezogen auf die Gesamtmenge der Monomere M, eines oder mehrerer von den Monomeren M1 verschiedener mehrfach ethylenisch ungesättigter Monomere M und
- bis zu 40 Gew.-%, insbesondere bis zu 0,01 bis 40 Gew.-%, bezogen auf die Gesamtmenge der Monomere M, eines oder mehrerer von den Monomeren M1 und M2 verschiedener Monomere M3, die ladungstragend oder, potentiell ladungstragend sind oder neutral und vorzugsweise nicht potentiell ladungstragend sind, mit einer Wasserlöslichkeit von mehr als 50 g/l bei 25 0C.
Besonders bevorzugt sind Polymere, wobei Anteile der verwendeten Monomere M1, M2 und M3 100% betragen. Besonders bevorzugt ist ein Polymer, das aus ethylenisch ungesättigten Monomeren M aufgebaut ist, worin die Monomere M wenigstens ein Monomer M in einer Menge von 0,01 bis 40 Gew.-%, insbesondere 0,1 bis 30 Gew.-% , bezogen auf die Gesamtmenge der Monomeren M beträgt, das ausgewählt ist unter - monoethylenisch ungesättigten Monomeren M a, die wenigsten eine anionische Gruppe aufweisen, monoethylenisch ungesättigten, neutralen Monomeren M3b, die eine Wasserlöslichkeit von wenigstens 50 g/l bei 25 0C aufweisen, und monoethylenisch ungesättigten Monomeren M c, die wenigstens eine kationische Gruppe und/oder wenigstens eine im wässrigen protonierbare Gruppe aufweisen.
Bevorzugt enthalten die Monomere M wenigstens ein Monomer M a.
Bevorzugt ist das erfmdungsgemäße Polymer zu wenigstens 30 Gew.-%, bezogen auf die Gesamtmenge der das Polymer bildenden Monomere M, vorzugsweise zu 40 bis 99,5 Gew.-% und besonders bevorzugt 50 bis 98 Gew.-% aus neutralen, monoethylenisch ungesättigten Monomeren M1 mit einer Wasserlöslichkeit von nicht mehr als 30g/l bei 25 0C, insbesondere bei 1013 mbar aufgebaut. Insbesondere liegt die Wasserlöslichkeit der Monomere M1 unter diesen Bedingungen bei höchstens 20 g/l. Geeignete Monomere M1 umfassen vinylaromatische Monomere wie Styrol, Ester monoethylenisch ungesättigter Mono-und Dicarbonsäuren mit 3 bis 8 und insbesondere 3 oder 4 C-Atomen mit Ci-C2o-Alkanolen oder mit C5-Cg-Cycloalkanolen, insbesondere die Ester der Acrylsäure, der Methacrylsäure, der Crotonsäure, die Diester der Maleinsäure, der Fumarsäure und der Itaconsäure und besonders bevorzugt die Ester der Acrylsäure mit CpCig-Alkanolen (= Ci-Cig- Alkylacrylate) wie Ethylacrylat, n-Butylacrylat, Isobutylacrylat, tert.-Butylacrylat, n-Hexylacrylat, 2-Ethylhexylacrylat, 3-Propylheptylacrylat und Stearylacrylat sowie die Ester der Methacrylsäure mit Ci-Cig-Alkanolen wie Methylmethacrylat, Ethylmethacrylat, n-Butylmethacrylat, Isobutylmethacrylat, tert.-Butylmethacrylat, n-Hexylmethacrylat, Stearylmethacrylat und dergleichen. Geeignete Monomere M1 sind ausserdem Vinyl- und Allylester aliphatischer Carbonsäuren mit 1 bis 20 C-Atomen, beispielsweise Vinylacetat, Vinylpropionat sowie die Vinylester der Versatic®-Säuren (Vinylversatate), Vinylhalogenide wie Vinylchlorid und Vinylidenchlorid, konjugierte Diolefine wie Butadien und Isopren sowie C2-C6-Olefine wie Ethylen, Propen, 1-Buten und n-Hexen. Bevorzugte Monomere M1 sind vinylaromatische Monomere, insbesondere Styrol, Ci-C2o-Alkylacrylate, insbesondere CpCig-Alkylacrylate und Ci- C i g- Alkylmethacrylate. Bevorzugte ethylenisch ungesättigte Monomere M umfassen außerdem 0, 1 bis 60 Gew.-%, insbesondere 0,5 bis 50 Gew.-% wenigstens eines ethylenisch mehrfach ungesättigten Monomere
M2.
Zu den Monomeren M2 zählen insbesondere Divinylbenzol, Acrylate und Methacrylate zwei- und mehrwertiger Alkohole wie bspw. Butandiol, Pentaerythritol und Glycerin.
Bevorzugte ethylenisch ungesättigte Monomere M sind außerdem wenigstens 0,01 bis 40 Gew.-%, insbesondere 0,1 bis 30 Gew.-% wenigstens eines von den Monomeren M1 und M2 verschiedenen ethylenisch ungesättigten Monomere M3.
Zu den Monomeren M zählen insbesondere monoethylenisch ungesättigte Monomere M a, die wenigstens eine anionische Gruppe aufweisen, insbesondere Monomere M3a, die wenigstens eine
Säuregruppe, vorzugsweise wenigstens eine Sulfonsäuregruppe, eine Phosphonsäuregruppe oder ein oder zwei Carbonsäuregruppen aufweisen, sowie die Salze der Monomere M3a, insbesondere die Alkalimetallsalze, z. B. die Natrium-oder Kailumsalze sowie die Ammoniumsalze. Hierzu zählen ethylenisch ungesättigte Sulfonsäuren, insbesondere Vinylsulfonsäure, 2-Acrylamido-2- methylpropansulfonsäure, 2-Acryloxyethansulfonsäure und 2-Methacryloxyethansulfonsäure, 3-
Acryloxy-und 3-Methacryloxypropansulfonsäure, Vinylbenzolsulfonsäure und deren Salze, ethylenisch ungesättigte Phosphonsäuren, wie Vinylphosphonsäure und
Vinylphosphonsäuredimethylester und deren Salze und α,ß-ethylenisch ungesättigte C3-Cg-Mono- und C/pCg-Dicarbonsäuren, insbesondere Acrylsäure, Methacrylsäure, Crotonsäure, Maleinsäure, Fumarsäure und Itaconsäure. Der Anteil der Monomere M3a ist vorzugsweise nicht größer als 35
Gew.-%, vorzugsweise nicht größer als 20 Gew.-%, z. B. 0,1 bis 20 Gew.-% und insbesondere 0,5 bis 15 Gew.-%, bezogen auf die Gesamtmenge der Monomere M.
Zu den Monomeren M zählen weiterhin die monoethylenisch ungesättigten, neutralen Monomere M3b, die eine Wasserlöslichkeit von wenigstens 50 g/l bei 25 0C, insbesondere wenigstens 100 g/l bei 25 0C aufweisen. Beispiele hierfür sind die Amide der vorgenannten ethylenisch ungesättigten Carbonsäuren, insbesondere Acrylamid und Methacrylamid, ethylenisch ungesättigte Nitrile wie Methacrylnitril und Acrylnitril, Hydroxyalkylester der vorgenannten α,ß-ethylenisch ungesättigten C3-Cg-Monocarbonsäuren und der C/pCg-Dicarbonsäuren, insbesondere Hydroxyethylacrylat, Hydroxyethylmethacrylat, 2- und 3-Hydroxypropylacrylat, 2- und 3-Hydroxypropylmethacrylat, Ester der vorstehend genannten monoethylenisch ungesättigten Mono-und Dicarbonsäuren mit C2- C/rPolyalkylenglykolen, insbesondere die Ester dieser Carbonsäuren mit Polyethylenglykol oder Alkyl-Polyethylenglykolen, wobei der (Alkyl)polyethylenglykol-Rest üblicherweise ein Molekulargewicht im Bereich von 100 bis 3000 gmol"1 aufweist. Zu den Monomeren M3b zählen weiterhin N-Vinylamide wie N-Vinylformamid, N-Vinylpyrrolidon, N-Vinylimidazol und N- Vinylcaprolactam. Der Anteil der Monomere M3b beträgt vorzugsweise nicht mehr als 20 Gew.-%, und insbesondere nicht mehr als 10 Gew.-%, z. B. 0,1 bis 10 und insbesondere 0,5 bis 5 Gew.-%, bezogen auf die Gesamtmenge der Monomere M.
Zu den Monomeren M3 zählen weiterhin monoethylenisch ungesättigte Monomere M3c, die wenigstens eine kationische Gruppe und/oder wenigstens eine im Wässrigen protonierbare Gruppe aufweisen. Zu den Monomeren M c zählen insbesondere solche, die eine protonierbare
Aminogruppe, eine quaternäre Ammoniumgruppe, eine protonierbare Iminogruppe oder eine quaternisierte Iminogruppe aufweisen. Beispiele für Monomere mit einer protonierbaren
Iminogruppe sind N-Vinylimidazol und Vinylpyridine. Beispiele für Monomere mit einer quaternisierten Iminogruppe sind N-Alkylvinylpyridiniumsalze und N-Alkyl-N'- vinylimidazoliniumsalze wie N-Methyl-N'-vinylimidazoliniumchlorid oder Methosulfat. Unter den
Monomeren M c werden insbesondere die Monomere der allgemeinen Formel (IX) bevorzugt
wobei
R53 für Wasserstoff oder Ci-C4- Alkyl, insbesondere Wasserstoff oder Methyl steht, R54 und R55 unabhängig voneinander für C1-C4- Alkyl, insbesondere Methyl stehen,
R56 für Wasserstoff oder Ci-C4- Alkyl, insbesondere Wasserstoff oder Methyl steht,
Y für Sauerstoff, NH oder NR5' mit R5' = C1-C4- Alkyl steht,
A für C2-C8- Alkylen, z. B. 1 ,2-Ethandiyl, 1,2-oder 1,3-Propandiyl, 1 ,4-Butandiyl oder 2- Methyl-l,2-propandiyl, das gegebenenfalls durch 1 , 2 oder 3 nicht benachbarte Sauerstoffatome unterbrochen ist, steht,
X für ein Anionenquivalent, z. B. für Cl", HSO4 ", 1/2 SO4 2" oder CH3OSO3 " etc. steht.
Beispiele für Monomere der Formel (IX) sind 2-(N,N-Dimethylamino)ethylacrylat, 2-(N,N- Dimethyiamino)ethylmethacry 1 a t , 2-(N,N-Dimethylamino)ethylacrylamid, 3-(N,N-
Dimethylamino)propylacrylamid, 3-(N, N-Dimethylamino)propylmethacrylamid, 2-(N,N- Dimethylamino) ethylmethacrylamid, 2-(N, N. N-Trimethylammonium)ethylacrylat-Chlorid, 2-(N, N,N-Trimethylammonium)ethylmethacrylat-C h 1 0 r I d , 2-(N,N,N-Trimethylammonium)- ethylmethacrylamid-Chlorid, 3 -(N,N,N-Trimethylammonium)propylacrylamid-Chlorid, 3 -(N,N,N- Trimethylammonium) propylmethacrylamid-C h 1 o r i d , 2-(N,N,N-Trimethylammonium)- ethylacrylamid-Chlorid, sowie die entsprechenden Methosulfate und Sulfate.
In einer bevorzugten Ausführungsform umfassen die das Polymere bildenden Monomere M wenigstens ein Monomer M3a. Der Anteil der Monomere M3a beträgt dann vorteilhafterweise 0,1 bis 20 Gew.-%, insbesondere 0,5 bis 10 Gew.-%, und besonders bevorzugt 1 bis 7 Gew.-%, bezogen auf die Gesamtmenge der Monomere M.
In einer besonders bevorzugten Ausführungsform der Erfindung weist das Polymer eine anionische Nettoladung auf, d. h. der molare Anteil der Monomere M3a überwiegt den molaren Anteil der Monomere M c im Polymer und beträgt vorzugsweise 110 mol-% insbesondere wenigstens 120 mol-% und besonders bevorzugt wenigstens 150 mol-%, bezogen auf die Monomere M3c oder die das Polymer umfassenden Monomere M enthalten kein kationisches bzw. potentiell kationisches Monomer M3c.
Zu den Monomeren M und M , die hier nicht explizit genannt werden, zählen weiterhin alle der Definition entsprechenden Monomere, die üblicherweise in einer Emulsionspolymerisation eingesetzt werden können.
Bevorzugt ist das Polymer aufgebaut aus 50 bis 98 Gew.-% Monomer M1, 0,5 bis 50 Gew.-% Monomer M und 0,1 bis 30 Gew.-% Monomer M a. Besonderes bevorzugt aus 50 bis 98 Gew.-% Methylmethacrylat und Stearylmethacrylat, 0,5 bis 50 Gew.-% Divinylbenzol und 0,1 bis 30 Gew.- % Natrium 4-Vinylbenzolsulfonat. Bevorzugt liegen die erfmdungsgemäßen Polymere als partikuläre Teilchen vor, insbesondere mit einer mittleren Teilchengröße von kleiner 15μm, insbesondere kleiner lOμm, vorzugsweise kleiner 6μm vor, wobei die mittlere Teilchengröße durch dynamische Lichtstreuung gemessen wird. Methoden dazu finden sich bspw. in WO2005/102044 S.4, Z. 24 - 32. Bevorzugt beträgt die mittlere Teilchengröße für die Anwendung in Anstrichfarben, insbesondere Topcoats, vorzugsweise filmbildenen mit Filmstärken von > 10 μm, kleiner 10 μm. Für penetrierende Systeme, insbesondere Lasuren, werden vorzugsweise mittlere Teiclchengrößen von kleiner 1 μm eingesetzt.
Die erfindungsgemäßen Polymere können weiterhin auch noch ein oder mehrere Inhaltsstoffe wie Emulgatoren, Stabilisatoren bspw. Antioxidantien, Radikalfänger, UV-Stabilisatoren wie UV- Absorber UV-Absorber, Chelatoren, sowie weitere Biozide enthalten (Beispiele siehe unten).
Das erfindungsgemäße Polymer enthält vorzugsweise 0,001 bis 80 Gew.-%, vorzugsweise 0,005 bis 60 Gew.-%, insbesondere 0,01 bis 50 Gew.-%, besonders bevorzugt 0,01 - 30 Gew.-%, ebenfalls bevorzugt 5 bis 80 Gew.-%, besonders 10 bis 70 Gew.-%, und insb esondere 20 bis 60 Gew.-%, wenigstens einer heterocyclischen 3- Ringverbindung, insbesondere einer Aziridinverbindung und 0,001 bis 80 Gew.-%, vorzugsweise 0,005 bis 60 Gew.-%, insbesondere 0,01 bis 50 Gew.-% ebenfalls bevorzugt 5 bis 80 Gew.-%, besonders 10 bis 70 Gew.-%, und insbesondere 20 bis 60 Gew. -%, wenigstens eines iodhaltigen Biozids.
Besonders bevorzugte erfindungsgemäße Polymeren enthalten wenigstens ein Aziridin der Formel (VI) und IPBC. Bevorzugt enthält das erfindungsgemäße Polymer das iodhaltige Biozid und eine Aziridinverbindung in Summe von 1 bis 80 Gew.-%, bevorzugt 10 bis 80 Gew.-%, besonders 20 bis 70 Gew.-%, und insbesondere 25 bis 60 Gew.-%.
Bei der erfindungsgemäßen Verwendung beträgt der Gehalt aller in dem erfindungsgemäßen Polymeren enthaltenen heterocyclischen 3 -Ringverbindungen, insbesondere Aziridine im Allgemeinen 1 bis 280 Gew.-% , bevorzugt 2 bis 225 Gew.-%, insbesondere 5 bis 110 Gew.-%, bezogen auf die iodhaltige Verbindung.
Bevorzugt ist es, bezogen auf die iodhaltige Verbindung 0,05 bis 5, vorzugsweise 0,1 bis 4, insbesondere 0,25 bis 2 Äquivalente der in der Summe aller heterocyclischen 3 -Ringverbindungen enthaltenen heterocyclischen 3 -Ring-Funktionen, insbesondere Aziridinfunktionen einzusetzen. Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung des erfindungsgemäßen Polymeren, das dadurch gekennzeichnet ist, dass man a) wenigstens eine jodhaltige Verbindung, wenigstens eine heterocyclische 3-Ring- Verbindung und ein Polymer in Gegenwart wenigstens eines Lösungsmittel mischt und anschließend das Lösungsmittel entfernt, oder b) wenigstens ein Polymer, vorzugsweise ein thermoplastisches Polymer, wenigstens eine jodhaltige Verbindung und wenigstens eine heterocyclische 3-Ringverbindung ggf. unter Verwendung weiterer Hilfsstoffe extrudiert, oder c) eine wässrige Dispersion eines vorzugsweise feinverteilten Polymers in Gegenwart einer O/W-Emulsion, enthaltend wenigstens eine iodhaltige Verbindung, wenigstens eine heterocyclische 3 -Ring- Verbindung, Wasser und organisches Lösungsmittel schert, vorzugsweise mittels eines Flügelblattrührers oder einer Perlmühle, oder d) eine wässrige Dispersion eines vorzugsweise feinverteilten Polymers, enthaltend wenigstens eine iodhaltige Verbindung, in Gegenwart einer O/W-Emulsion, enthaltend wenigstens eine heterocyclische 3 -Ring- Verbindung, Wasser und organisches Lösungsmittel schert, vorzugsweise mittels eines Flügelblattrührers oder einer Perlmühle, oder e) eine wässrige Dispersion eines vorzugsweise feinverteilten Polymers, enthaltend wenigstens eine heterocyclische 3 -Ring- Verbindung, in Gegenwart einer O/W-Emulsion, enthaltend wenigstens eine iodhaltige Verbindung, Wasser und organisches Lösungsmittel schert, vorzugsweise mittels eines Flügelblattrührers oder einer Perlmühle, oder f) das Polymer in Gegenwart wengistens einer iodhaltigen Verbindung und wenigstens einer heterocyclischen 3 -Ring- Verbindung h e r s t e l l t , v orzugsweise durch
Emulsionspolymerisation ethylenisch ungesättigter Monomere.
Für die Alternative a) ist ein solches Lösungsmittel bevorzugt, in dem die iodhaltige Verbindung und die 3-Ringverbindung jeweils zu wenigstens 20 g/l bei 25 0C löslich sind und das geeignet ist, das verwendete Polymer zu lösen bzw. zu quellen. Dabei können das Polymer und die heterocylische 3 -Ringverb indung auch ggf. bereits in geeigneten, verschiedenen Lösungsmitteln vorliegen, bevor sie gemischt werden. Als bevorzugte Lösungsmittel kommen dementsprechend typische Lösungsmittel für Polymere, bspw. Beschrieben in K. -F. Egert,„Plastics, Analysis" in Ullmann's Encyclopedia of Industrial Chemistry, Onlineausgabe, publiziert am 15.06.2000, sowie Aromaten, wie Xylol, Toluol oder Alkylnaphthaline, Heteroaromaten wie Pyridin oder Pyrrol, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlor- ethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen (Testbenzin, Shellsol D60 der Fa Shell Chemical), Alkohole, Ether und Ester von Alkoholen wie bspw. Texanol der Fa. Eastman, Butanol oder Glycol, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, cyclische Ether wie Tetrahydrofuran, insbesondere stark polare aprotische Lösungsmittel, wie Dimethylformamid, Dimethylsulfoxid oder N-Methyl-2-pyrrolidon, sowie z.B. veretherte Glykole, Oligoglykole und Polyglykole, veretherte Polyole und veresterte Polyole, Ester von ein- sowie mehrwertigen Carbonsäuren, z.B. Adipinsäurediisobutylester und Maleinsäurediisobutylester (z.B. Rhodiasolv® DIB) sowie Mischungen davon in Frage.
Insbesondere wird das Polymer, vorzugsweise ein Polymer auf Basis von ethylenisch ungesättigten Monomeren hierbei angelöst bzw. quillt auf, so dass die Additive in das Polymer migrieren können.
Bei der Alternative b) können wenigstens eine jodhaltige Verbindung und/oder wenigstens eine heterocyclische 3-Ringverbindung auch in Form eines Compounds oder eines Masterbatches zum Polymer dazugegeben werden. Dabei enthält besagtes Compound neben dem Polymer noch wenigstens eine der genannten Iod und/oder 3-Ringverbindungen, insbesondere in einem Anteil von bis zu 70 Gew.-%. Bei der Extrusion nach Alternative b) kommen bevorzugt Temperaturen von 150 bis 300 zum Einsatz 0C. Bevorzugt ist die Herstellung nach der Verfahrens alternative d). Die Herstellung der OAV- Emulsion der in einem geeigneten organischen Lösungsmittel gelösten heterocylischen 3- Ringverbindung, insbesondere eines Aziridins, erfolgt ggf. unter Zusatz geeigneter Emulgatoren und vorzugsweis e unter Anwendung hoher S cherkräfte (z. B . Ultraturrax, Ultraschallhomogenisator, Hochdruckhomogenisator). Die Zugabe der O/W-Emulsion der heterocyclischen 3-Ringverbindung, insbesondere eines Aziridins zu der Dispersion der Polymerphase erfolgt vorzugsweise unter niedriger Scherkraft (z.B. Flügelblattrührer, Schaufeltrockner). Die Beladung der Polymerphase mit der heterocyclischen 3-Ringverbindung, insbesondere mit einem Aziridin, erfolgt vorzugsweise durch die Einwirkung hoher Scherkräfte auf die erhaltene Suspoemulsion, bspw. durch Einsatz einer Perlmühle. Als organische Lösungsmittel sind insbesondere Ester zweiwertiger Carbonsäuren, bspw. Mischungen enthaltend Diisobutyladipat, Diisobutylglutarat, Diisobutylsuccinat (z.B. Rhodiasolv®DIB geeignet.
Unter „feinverteilt" wird vorzugsweise eine mittlere Teilchengröße von kleiner 15 μm, vorzugsweise kleiner 6μm verstanden. Die Verfahrensweisen d) bis e) werden vorzugsweise bei einer Temperatur von 0 bis 30 0C, insbesondere bei 15 bis 25 0C durchgeführt.
Die Verfahrensweise f) wird vorzugsweise bei einer Temperatur von 20 bis 110 0C, insbesondere bei 50 bis 95 0C durchgeführt.
Darüber hinaus ist auch die Herstellung nach der Verfahrensalternative f) bevorzugt. Ggf. weitere Zusätze können bei allen Verfahrensweisen in fester, flüssiger oder in gelöster, dispergierter oder emulgierter Form zugegeben werden.
Geeignete Methoden zur Herstellung von mit Bioziden ausgerüsteten Polymerlatices sind bspw. in der WO 2005/102044, beschrieben.
Die in den Ausführungen c)-e) des erfindungsgemäßen Verfahrensalternativen genannten feinverteilten Polymere bzw. Polymerlatices können bspw. durch Mahlung der entsprechenden Polymere erhalten werden, vorzugsweise: a. durch Trockenmahlung, bspw. durch Luftstrahlmühlen, und anschließender Dispergierung der erhaltenen Polymerpulver in Wasser, ggf. unter Zusatz von Dispergierhilfsmitteln oder b. durch Nassmahlung, bspw. unter Verwendung einer Perlmühle und ggf. unter Zusatz von Dispergierhilfsmitteln.
Die in den Ausführungen c)-e) der erfindungsgemäßen Zusammensetzung genannten feinverteilten Polymere bzw. Polymerlatices können durch radikalische, wässrige Emulsions-, insbesondere Mikroemulsionspolymerisation, im Folgenden allgemein als Emulsionspolymerisation bezeichnet, hergestellt werden. Die Polymerisation erfolgt hierbei analog zur konventionellen Emulsionspolymerisation mit dem Unterschied, dass die zu polymerisierende Monomeremulsion zusätzlich die iodhaltige Verbindung als auch die heterocyclische 3 -Ring- Verb in düng in den Monomertröpfchen gelöst enthält.
Bevorzugt erfolgt die Polymerisation nach der erfmdungsgemäßen Verfahrensalternative f) oder die eingesetzten Polymerdispersionen nach den Alternativen d) und e) nach einem sogenannten Monomerzulaufverfahren, d. h. die Hauptmenge, vorzugsweise wenigstens 70 % und insbesondere wenigstens 90 % der Lösung der Additiven, hier also die iodhaltige Verbindung und oder die heterocyclische 3-Ringverbindung, in den Monomeren M, bzw. die Hauptmenge, vorzugsweise wenigstens 70 % und insbesondere wenigstens 90 % der Monomer/ Additiv-Emulsion wird im Verlauf der Polymerisationsreaktion dem Polymerisationsgefäss zugeführt. Vorzugsweise erfolgt die Zugabe der Monomer/ Additiv-Lösung bzw. Emulsion über einen Zeitraum von wenigstens 0,5 h, vorzugsweise wenigstens 1 h, z.B. 1 bis 10 h und insbesondere 2 bis 6 h. Die Zugabe der Monomer/ Additiv-Lösung bzw. Emulsion kann mit konstanter oder veränderlicher Zugaberate, z.B. in Intervallen mit konstanter Zugaberate oder mit veränderlicher Zugaberate oder kontinuierlich mit veränderlicher Zugaberate erfolgen. Die Zusammensetzung der Monomer/Additiv-Lösung bzw. Emulsion kann während der Zugabe konstant bleiben oder geändert werden, wobei Änderungen sowohl bezüglich der Monomerzusammensetzung als auch bezüglich der Art des Additives oder der Konzentration des Additives vorgenommen werden können.
Eine bevorzugte Polymerisation nach der erfindungsgemäßen Verfahrensalternative f) oder für die eingesetzten Polymerdispersionen nach den Alternativen d) und e) ist die sogenannte Stufenpolymerisation, dadurch gekennzeichnet, dass im Verlauf der Monomerzugabe die Monomerzusammensetzung derart geändert wird, dass in den Polymerteilchen Polymerbereiche mit unterschiedlicher Glasübergangstemperatur erhalten werden. Eine besonders bevorzugte Polymerisation ist die Durchführung der Polymerisation ohne Emulgator (= emulgatorfreie Emulsionspolymerisation), wobei die sich bildenden Polymerpartikel durch die copolymerisierten, ladungstragenden bzw. potentiell ladungstragenden Monomere M3a und/oder M3c, die dem sich bildenden Polymer eine positive oder negative Nettoladung verleihen, stabilisiert werden. Hierbei können die ladungstragenden bzw. potentiell ladungstragenden Monomere M3a und M3c in der Monomerenmischung M oder in der Wasserphase gelöst vorliegen.
Für die Herstellung der erfindungsgemäßen Polymeren hat es sich als vorteilhaft erwiesen, wenn die Emulsionspolymerisation in Gegenwart eines Saatpolymers (Saatlatex) durchrührt wird. Hierbei handelt es sich um einen feinteiligen Polymerlatex, dessen mittlere Teilchengrösse üblicherweise nicht mehr als 100 tun, insbesondere nicht mehr als 80 nm und besonders bevorzugt nicht mehr als 50 nm beträgt, jeweils bestimmt durch Laserbeugung (bspw. mit einem Coulter LS, Fa. Beckmann Coulter). Die den Saatlatex konstituierenden Monomere enthalten vorzugsweise a) wenigstens 30 Gew.-%, vorzugsweise zu 40 bis 99,5 Gew.-% und besonders bevorzugt 50 bis 98 Gew.-% wenigstens eines von den Monomeren M1, b) 0,1 bis 60 Gew.-%, insbesondere 0,5 bis 50 Gew.-% wenigstens eines von den Monomeren
M2, c) 0,01 bis 40 Gew.-%, insbesondere 0,1 bis 30 Gew.-% wenigstens eines von den Monomeren M3.
Die Menge an Saatlatex beträgt üblicherweise 0,01 bis 10 Gew.-%, insbesondere 0,1 bis 6 Gew.-%, bezogen auf die zu polymerisierenden Monomere M. Vorzugsweise befindet sich die Hauptmenge, und insbesondere die Gesamtmenge des Saatlatex zu Beginn der Polymerisation vollständig im Reaktionsgefäss. Der Saatlatex kann auch in-situ im Polymerisationsgefäss durch radikalische Emulsionspolymerisation der den Saatlatex bildenden Monomere generiert werden, wobei die den Saatlatex bildenden Monomere aus den vorgenannten Monomeren M1, M2 und M3 ausgewählt sind. Die gewünschte Teilchengrösse des Saatlatex kann in an sich bekannter Weise über das Verhältnis von Monomer zu Emulgator bzw. im Falle einer emulgatorfreien Verfahrensweise über das Verhältnis der nicht ladungstragenden Monomere M1, M2 und M3b zu den ladungstragenden Monomeren M a und M c gesteuert werden.
Besonders bevorzugt erfolgt die Polymerisation im Rahmen einer sogenannten Miniemulsionspolymerisation (siehe bspw. FJ. Schork, G.W. Poehlein, S. Wang, J. Reimers, J. Rodrigues, C. Samer, Colloids Surf. A: Physicochem. Eng. Asp. 1999, 153, 39), die dadurch gekennzeichnet ist, dass zunächst eine Emulsion enthaltend Monomere M, Additive im obigen Sinne, Emulgator, in den Monomeren M löslicher Co-Emulgator und Wasser durch Anwendung hoher Scherung bzw. Scherenergie , bspw. durch Verwendung von Stator-Rotor Dispergierwerkzeugen, Ultraschallsonden etc., mit Tröpfchengrößen <10μm, vorzugsweise <6μm und insbesondere <lμm hergestellt werden, worauf die diskreten, monomerhaltigen Öltropfchen der Emulsion durch Zusatz von Radikalstartern und ggf. erhöhter Temperatur in eine polymere Phase überführt werden. Als Co-Emulgatoren kommen grundsätzlich die in der Literatur zum Thema„Miniemulsionspolymerisation" beschriebenen Verbindungen, bspw. langkettige Alkane wie Hexadecan, in Frage sowie auch die in der vorliegenden Erfindung genannten hydrophoben Monomere M1 wie bspw. Stearylmethacrylat.
Die für die erfmdungsgemäße Emulsions- bzw. Miniemulsionspolymerisation geeigneten Starter sind die für eine Emulsions- bzw. Miniemulsionspolymerisation geeigneten und üblicherweise verwendeten Polymerisationsinitiatoren, die eine radikalische Polymerisation der Monomere M auslösen. Hierzu zählen Azoverbindungenwie 2,2'-Azobis-isobutyronitril, 2,2'-Azobis(2-methyl butyronitril), 2,2'-Azobis[2-methyl-N-(-2-hydroxyethyl)propionam i d , 1 , 1 '-Azobis(l -cyclo hexancarbonitril), 2, 2'-Azobis(2,4-dimethylvaleronitril), 2,2'-Azobis(N, N'-dimethyleniso butyroamidin)dihydrochlorid, und 2,2'-Azobis(2-amidinopropan) dihydrochlorid, organische oder anorganische Peroxide wie Diacetylperoxid, Di-tert.-butylperoxid, Diamylperoxid, Dioctano- ylperoxid, Didecanoylperoxid, Dilauroylperoxid, Dibenzoylperoxid, Bis(o-toluyl)peroxid, Succinylperoxid, tert.-Butylperacetat, tert.-Butylpermaleinat, tert.-Butylperisobutyrat, tert.- Butylperpivalat, tert.-Butylperoctoat, tert.-Butylperneodecanoat, tert.-Butylperbenzoat, tert.- Butylperoxid, tert.-Butylhydroperoxid, Cumolhydroperoxid, tert.-Butylperoxi-2-ethylhexanoat und Diisopropylperoxidicarbamat, Salze der Peroxodischwefelsäure wie bspw. Natriumperoxodisulfat und Redox- Initiatorsysteme.
Vorzugsweise setzt man wasserlösliche Initiatoren ein, z. B. kationische Azoverbindungen wie Azobis(dimethylamidinopropan), Salze der Peroxodischwefelsäure, insbesondere ein Natrium-, Kalium- oder Ammoniumsalz oder ein Redoxinitiatorsystem, das als Oxidationsmittel für ein Salz der Peroxodischwefelsäure, Wasserstoffperoxid oder ein organisches Peroxid wie tert.- Butylhydroperoxid fungiert. Als Reduktionsmittel enthalten sie vorzugsweise eine Schwefelverbindung, die insbesondere ausgewählt ist unter Natriumhydrogensulfit, Natriumhydroxymethansulfmat und dem Hydrogensulfϊt-Addukt an Aceton. Weitere geeignete Reduktionsmittel sind phosphorhaltige Verbindungen wie phosphorige Säure, Hypophosphite und Phosphinate, sowie Hydrazin bzw. Hydrazinhydrat und Ascorbinsäure. Weiterhin können Redoxinitiatorsysteme einen Zusatz geringer Mengen von Redoxmetallsalzen wie Eisensalze, Vanadiumsalze, Kupfersazle, Chromsalze oder Mangansalze enthalten wie beispielsweise das Redoxinitiatorsystem Ascorbinsäure/Eisen(II)sulfat/Natriumperoxodisulfat.
Üblicherweise setzt man den Initiator in einer Menge von 0,02 bis 2 Gew.-% und insbesondere 0,05 bis 1 ,5 Gew.-%, bezogen auf die Menge der Monomere M ein. Die optimale Menge an
Initiator hängt naturgemäss von dem eingesetzten Initiatorsystem ab und kann vom Fachmann in Routineexperimenten ermittelt werden. Der Initiator kann teilweise oder vollständig im Reaktionsgefäss vorgelegt werden. Vorzugsweise gibt man die Hauptmenge des Initiators, insbesondere wenigstens 80 %, z. B. 80 bis 99, 5 % des Initiators im Verlauf der Polymerisation in den Polymerisationsreaktor, bspw. durch Dosierpumpen. Druck und Temperatur sind für die Herstellung der erfmdungsgemässen Polymere von untergeordneter Bedeutung. Die Temperatur hängt naturgemäss vom eingesetzten Initiatorsystem ab und eine optimale Polymerisationstemperatur kann vom Fachmann durch Routineexperimente ermittelt werden. Üblicherweise liegt die Polymerisationstemperatur im Bereich von 20 bis 110 0C, häufig im Bereich von 50 bis 95 0C. Der Polymerisation wird üblicherweise bei Normaldruck bzw. Umgebungsdruck durchgeführt. Sie kann aber auch bei erhöhtem Druck, z. B. bis 3 bar oder bei geringfügig erniedrigtem Druck z. B. > 800 mbar durchgeführt werden.
Zur Durchführung des bevorzugten erfindungsgemäßen Verfahrensalternative f) , insbesondere der Emulsionspolymerisationen ist eine Stabilisierung der Polymerteilchen in dem wässrigen Medium ratsam. Bis auf das emulgatorfreie Verfahren sind zur Stabilisierung der erfmdungsgemäßen Polymere in Form von Dispersionen oberflächenaktive Substanzen, bspw. Emulgatoren und Schutzkolloide, vorteilhaft. Hierzu zählen sowohl Schutzkolloide als auch niedermolekulare Emulgatoren, wobei letztere im Unterschied zu den Schutzkolloiden vorzugsweiseein Molekulargewicht unterhalb von 2000 g/mol, insbesondere unterhalb 1000 g/mol (Massenmittel) aufweisen. Die Schutzkolloide und Emulgatoren können sowohl kationischer, anionischer, neutraler als auch zwitterionischer Natur sein.
Beispiele für anionische oberflächenaktive Substanzen sind anionische Emulgatoren wie Alkylphenylsulfonate, Phenylsulfonate, Alkylsulfate, Alkylsulfonate, Alkylethersulfate, Alkylphenolethersulfate, Alkylpolyglykoletherphosphate, Alkyldiphenylethersulfonate, Polyarylphenyletherphosphate, Alkylsulfosuccinate, Olefinsulfonate, Paraffinsulfonate, Petroleumsulfonate, Tauride, Sarkoside, Fettsäuren, Alkylnaphthalinsulfonsäuren, Naphthalinsulfonsäuren, einschliesslich ihrer Alkali-, Erdalkali-, Ammonium- und Amin-Salze. Beispiele für anionische Schutzkolloide sind Ligninsulfonsäuren, Kondensationsprodukte sulfonierter Naphthaline mit Formaldehyd oder mit Formaldehyd und Phenol und gegebenenfalls Harnstoff sowie Kondensationsprodukte aus Phenolsulfonsäure, Formaldehyd und Harnstoff, Lignin- Sulfit- Ab lauge und Ligninsulfonate sowie Polycarboxylate wie Polyacrylate, Maleinsäureanhydrid/Olefin-Copolymere (z. B. Sokalan® I CP9, BASF) sowie die Alkali-, Erdalkali-, Ammonium- und Amin-Salze der vorgenannten Schutzkolloide.
Nichtionische Emulgatoren sind beispielsweise Alkylphenolalkoxylate, Alkoholalkoxylate,
Fettaminalkoxylate, Polyoxyeethylenglycerolfettsä u r e e s t e r , R i z i n u s ölalkoxylate, Fettsäurealkoxylate, Fettsäureamidalkoxylate, Fettsäurepolydiethanolamide, Lanolineth-oxylate, Fettsäurepolyglykolester, Isotridecylalkohol, Fettsäureamide, Methylcellulose, Fettsäureester, Silicon-Öle, Alkylpolyglykoside und Glycerolfettsäureester. Beispiele für nichtionische Schutzkolloid e s i n d P o l y e t h y l englykol, Polypropylenglykol,
Polyethylenglykolpolypropylenglykol-Blockcopolymer e , P o ly ethy l eng lyk o l alkyl ether, Polypropylenglykolalkylether, Polyethylenglykolpolypropylen-glykolether-Blockcopolymere und deren Gemische.
Beispiele für kationische Emulgatoren sind quartäre Ammoniumsalze, z. B. Trimethyl- und Triethyl-Ce-Cso-alkylammoniumsalze wie Cocotrimethylammoniumsalze,
Trimethylcetylammoniumsalze, Dimethyl- und Diethyl-di-C4-C2o-alkylammoniumsalze wie Didecyldimethylammoniumsalze und Dicocodimethylammoniumsalze, Methyl- und Ethyl-tri-C/r C2o-alkylammoniumsalze wie Methyltrioctylammoniumsalze, Ci-C2o-Alkyl-di-Ci-C4- alkylbenzylammoniumsalze wie Triethylbenzylammoniumsalze und
Cocobenzyldimethylammoniumsalze, Methyl- und Ethyl-di-C/rC2o alkylpoly(oxyethyl)ammoniumsalze, z. B. Didecylmethylpoly(oxyethyl) ammoniumsalze, N-Cβ- C2o-Alkylpyridiniumsalze, z. B. N-Laurylpyridiniumsalze, N-Methyl- und N-Ethyl-N-C6-C2o- alkylmorpholiniumsalze, sowie N-Methyl-und N-Ethyl-N'-C6-C2o-alkylimidazoliniumsalze, insbesondere die Halogenide, Borate, Carbonate, Formiate, Acetate, Propionate, Hydrogencarbonate, Sulfate und Methosulfate.
Beispiele für kationische Schutzkolloide sind Homo- und Copolymere der obengenannten Monomere M3a und M3c mit einem Gehalt an Monomeren M3a oder M3c von wenigstens 20 Gew.-
%, insbesondere wenigstens 30 Gew.-%, beispielsweise Homopolymere von N-Vinyl-N- methylimidazoliniumSalzen oder von N-Alkylvinylpyridiniumsalzen sowie Copolymere dieser
Monomere mit neutralen, vorzugsweise mit Wasser mischbaren Monomeren M3b Zwitterionische
Emulgatoren sind solche mit betainischen Strukturen. Derartige Substanzen sind dem Fachmann bekannt und können dem einschlägigen Stand der Technik entnommen werden (siehe beispielsweise R. Heusch, in Ullmanns Encylopedia of Industrial Chemistry, 5th ed. on CD-ROM,
Wiley-VCH 1997, "Emulsions", Kapitel 7, Tabelle 4).
Die erfindungsgemäßen Polymeren können in fester Form, bspw. als Pulver oder Granulate oder in flüssiger Form, insbesondere als Dispersionen in Wasser oder organischen Lösungsmitteln (Latices) eingesetzt werden. Entsprechend betrifft die Erfindung auch Polymerpräparationen, enthaltend neben dem erfindungsgemäßen Polymer noch wenigstens einen Hilfsstoff.
Bevorzugt sind als Polymerpräparationen wässrige Polymerdispersionen, enthaltend das erfmdungsgemäße Polymer und vorzugsweise Benetzungsmittel, Verdickungsmittel, Entschäumer, Konservierungsmittel und/oder Stabilisatoren. Bevorzugt haben die eingesetzten Benetzungsmittel einen geringen Dampfdruck bei Raumtemperatur. Als Benetzungsmittel können alle üblicherweise in Dispersionen verwendeten Benetzungsmittel verwendet werden, bspw. Polykondensate der Naphthalinsulfonsäure bzw. deren Salze. Bevorzugt verwendet man Oligo- oder Polyalkylenglycole oder Triole, oder Ether der vorgenannten Verbindungen, insbesondere mit einem Molekulargewicht von kleiner 1000 g/mol. Ganz bevorzugt wird Ethylenglycol, Diethylenglycol, Triethylenglycol, Tetraethylenglycol, Polyethylenglycol, Propylenglycol, Dipropylenglycol, Polypropylenglcol, Glycerin oder Mono oder Di- Methyl, Ethyl, Propyl oder Butylether der vorgenannten Verbindungen. Der Anteil an Benetzungsmitteln kann in einem relativ breiten Bereich variiert werden. Bevorzugt setzt man 1 bis 1 0 Gew.-%, insbesondere 2 bis 7 Gew.-%, bezogen auf die erfindungsgemäße Polymerpräparationen, insbesondere die Polymerdispersion ein.
Als Verdickungsmittel können prinzipiell alle Stoffe verwendet werden, die im Wasser eine räumliche Struktur aufbauen und somit die Sedimentation verhindern oder verlangsamen können. Bevorzugt verwendet man Polysaccharide, Xanthan Gum, Natrium oder Magnesium Silicate, Hete- ropolysaccharide, Alginate, Carboxymethylcellulose, Gummi arabicum oder Polyacrylsäuren. Ganz bevorzugt verwendet man Xanthan Gum. Der Anteil an Verdickungsmitteln in der Polymerpräparationen, insbesondere die Polymerdispersion beträgt bevorzugt 0,1 bis 0,5 Gew.-%, insbesondere 0,3 bis 0,4 Gew.-%, bezogen auf die Dispersion.
Als Entschäumer werden im Allgemeinen oberflächenaktive Verbindungen eingesetzt, die in der tensidischen Lösung nur schwach löslich sind. Bevorzugt handelt es sich um Entschäumer, die sich von natürlichen Fetten und Ölen, Petroleum-Derivaten oder Siliconölen ableiten. Der Anteil an Ents chäumern in der erfindungsgemäßen Polymerpräparationen, insbesondere die Polymerdispersion beträgt bevorzugt 0,01 bis 2 Gew.-%, insbesondere 0,05 bis 1 Gew.-%, bezogen auf die Dispersion. Als gegebenenfalls zusätzlich enthaltene Konservierungsmittel können alle Bakterizide eingesetzt werden, die eine antimikrobiell Wirkung im gewünschten Sinne besitzen. Hierbei können gegebenenfalls ein oder mehrere dieser Stoffe eingesetzt werden.
Bei den gegebenenfalls einsetzbaren Stabilisatoren kann es sich um Antioxidantien, Radikalfänger oder UV-Absorber handeln. Gegebenenfalls können ein oder mehrere dieser Stoffe eingesetzt werden. Der Anteil dieser Hilfsmittel an den erfindungsgemäßen Polymerpräparationen, insbesondere an den Polymerdispersionen beträgt bevorzugt 0,1 bis 3 Gew.-%, insbesondere 0,5 bis 2 Gew.-%, bezogen auf die Dispersion.
Die nach den Ausführungen c)-f) des erfindungsgemäßen Verfahrens erhaltenden, mit iodhaltiger Verbindung und heterocyclischer 3 -Ring- Verbindung beladenen Polymerlatices können in dieser Form als stabilisierte Darreichungsform des iodhaltigen Biozids eingesetzt werden. Ggf. kann das erfindungsgemäße Polymer, in Form der wässrigen Dispersion, nach dem erfmdungsgemäßen Verfahrensalternativen c) bis f) aus seinem Latex durch geeignete Isolationsverfahren wie bspw. Filtration, Sprühtrocknung, Wirbelschichttrocknung usw. isoliert werden. Das so erhaltene erfmdungsgemäße polymere Material kann ggf. noch durch Einsatz einer Ringsiebmühle desaggregiert werden
Die erfmdungsgemäßen Polymere können in Form ihrer Dispersionen entweder keinen oder wenigstens einen Emulgator enthalten. Sofern sie wenigstens einen Emulgator enthalten, enthalten sie vorzugsweise wenigstens einen nicht-ionischen Emulgator und gegebenenfalls einen oder mehrer ionische Emulgatoren. Die Menge an Emulgator liegt üblicherweise bei 0,1 bis 15 Gew.-%, insbesondere von 0,2 bis 12 Gew.-%, und besonders bevorzugt bei 0,7 bis 10 Gew.-%, bezogen auf die Mischung enthaltend Monomere M und Wirkstoff bzw. auf das Polymer.
Die erfindungsgemäße Polymerpräparation kann als bevorzugte Verbindungen enthalten, beispielsweise Lösungsmittel wie bspw. Ester ein- oder mehrwertiger Carbonsäuren (z.B. Gemische entahltend Diisobutyladipat, Diisobutylglutarat, Diisobutylsuccinat), bevorzugt VOC- freie bzw. VOC-arme Lösungsmittel, wobei unter VOC (volatile organic Compounds) flüchtige organische Verbindungen mit einem Siedepunkt von kleiner 250 0C verstanden werden, Chelatisierungsreagentien wie beispielsweise in WO 98/22543 genannt, ein oder mehrere Stabilisatoren aus der Reihe der Antioxidantien, Radikalfänger, UV- Stabilisatoren und/oder UV- Absorber sowie weitere Biozide (Beispiele s. unten). In vielen Fällen werden hier synergistische Effekte beobachtet. Bei den erfindungsgemäßen Zusammensetzungen kann es sich wie beschrieben um die isolierte Polymerphase oder eine Dispersion der Polymerphase in Wasser oder organischen Lösungsmitteln handeln. Die Beladung der Polymerphase der erfindungsgemäßen Zusammensetzung kann auch für diese Verbindungen vorzugsweise analog den Verfahren a) - f) (s.o.) erfolgen. Die Ausrüstung der kontinuierlichen Phase der vorgenannten Dispersionen kann durch Lösen, ggf. unter Zusatz von Lösevermittlern, Emulgieren usw. erfolgen.
Besonders bevorzugt liegt die erfmdungsgemäße Polymerpräparation als Feststoffpräparation vor, so bspw. als Pulver, Granulat, insbesondere mit einer mittleren Teilchengröße von 50 bis 2000 μm, oder als Kompaktat, wie bspw. kompaktiertes Pulver wie bspw. Pellets, Tabletten usw.. Ebenfalls besonders bevorzugt liegt die erfmdungsgemäße Polymerpräparation als lösemittelbasierte Dispersion vor, wobei zur Einstellung der Theologischen Eigenschaften der Dispersion bspw. Alkydharze, modifizierte Alkydharze, Thixotropieharze usw. sowie weitere Additive wie Hautverhinderer (Antioxidantien), Pigmente, Kristallisationsstabilisatoren usw. zugesetzt werden können. Weiterhin kann die erfindungsgemäße Polymerpräparation als weitere Inhaltsstoffe Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere enthalten, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide sowie mineralische und vegetabile Öle enthalten. Zudem kann sie Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metall- phthalocyaninfarbstoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink sowie für heterocyclische 3 -Ring- Verbindungen, insbesondere Aziridinverbindungen, bekannte Stabilisatoren, beispielsweise Tetramethylethylendiamin (TMEDA), Triethylendiamin und das aus WO2004/050617 bekannte 1,4-Diazabicyclo[2.2.2]octan (DABCO) enthalten.
Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung der erfindungsgemäßen Polymerpräparation.
Die erfindungsgemäße Polymerpräparation kann beispielsweise durch Vermischen des erfindungsgemäßen Polymeren mit weiteren Bioziden (s.u.) und Zusatzstoffen wie bspw.
Fließverbesserer, Additive zur Erhöhung der elektrischen Leitfähigkeit, Additive zur Einstellung des Staubungsverhaltens usw. hergestellt werden. Diese können aber auch bereits bei der
Herstellung des Polymeren selbst nach dem erfindungsgemäßen Verfahren zum Einsatz kommen.
Zur Herstellung der erfindungsgemäßen Polymerpräparation in Form von Feststoffmischungen kommen hierbei, ggf. nach Vorbehandlung der zu mischenden Komponenten mit bspw.
Siebmühlen wie der Bauermeister-Mühle, geeignete Feststoffmischer wie bspw. Lödige-Mischer,
Schaufelmischer, Taumelmischer, Trommelmischer mit Störkörpern usw. zum Einsatz. Auch die
Überführung so hergestellter Feststoffmischungen in weitere Ausführungsformen, wie bspw.
Granulate, Kompaktate wie Kiss en, Tabletten usw. ist unter Verwendung von Wirbelschichtgranulation, Einsatz mechanischer Kompaktierungsanlagen, ggf. unter Zusatz weiterer Additive wie bspw. Bindemittel, möglich.
Eine weitere Ausführungsform der erfindungsgemäßen Polymerpräparation ist eine lösemittelbasierte Dispersion. Hierbei wird die erfindungsgemäße Zusammensetzung vorzugsweise unter starker Scherung bspw. in einem der oben genannten inerten, organischen Lösungsmittel als kontinuierliche Phase (z.B. Isoparaffine wie Isopar® L (Isoparaffin der Fa. Exxon) oder sog.„white spirits" wie bspw. Shellsol® D60) ggf. unter Zusatz von Prozesshilfsmitteln und Stabilisatoren wie bspw. Rheologieadditive (Thixotropier-Harze wie bspw. WorleeThix® S6358, ein thixotropiertes Alkydharz der Fa. Worlee) und ggf. Hautverhinderungsmittel wie bspw. Antiskin® 444 (Fa. Borchers) gemahlen und dispergiert (z.B. Perlmühle). Darüber hinaus stellt auch eine Weiterverarbeitung der erfindungsgemäßen Polymerpräparation, bspw. in Form des oben beschriebenen, wässrigen Polymerlatex, bspw. durch Ausrüstung mit weiteren Additiven, wie bspw. Rheologieadditive (z.B. Xanthane), Pigmente, Antiabsetzmittel etc. eine erfindungsgemäße Formulierung dar. Die Wirksamkeit und das Wirkungsspektrum der erfindungsgemäßen Polymeren bzw. der Polymerpräparation oder der unten beschriebenen Zusammensetzungen bzw. der zum Einsatz kommenden iodhaltigen Verbindung kann erhöht werden, wenn gegebenenfalls weitere antimikrobiell wirksame Verbindungen, Fungizide, Bakterizide, Herbizide, Insektizide oder andere Wirkstoffe zur Vergrößerung des Wirkungsspektrums oder Erzielung besonderer Effekte zugesetzt bzw. mit verwendet werden. Diese Mischungen können ein noch breiteres Wirkungsspektrum besitzen. Diese Verbindungen können entweder bei der Herstellung des erfindungsgemäßen Polymeren oder danach bei der Herstellung der erfindungsgemäßen Polymerpräparation zum Einsatz kommen.
In vielen Fällen erhält man dabei synergistische Effekte, d.h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten. Besonders günstige Mischungspartner sind z.B. die folgenden Verbindungen:
Triazole wie:
Azaconazol, Azocyclotin, Bitertanol, Bromuconazol, Cyproconazol, Diclobutrazol, Difenoconazol, Diniconazol, Epoxyconazol, Etaconazol, Fenbuconazol, Fenchlorazol, Fenethanil, Fluquinconazol, Flusilazol, Flutriafol, Furconazol, Hexaconazol, Imibenconazol, Ipconazol, Isozofos, Myclobutanil, Metconazol, Paclobutrazol, Penconazol, Propioconazol, Prothioconazol, Simeoconazol, (+)-cis-l- (4-chlorphenyl)-2-(lH-l,2,4-triazol-l-yl)-cycloheptanol, 2-(l-tert-Butyl)-l-(2-chlorphenyl)-3-
(l,2,4-triazol-l-yl)-propan-2-ol, Tebuconazol, Tetraconazol, Triadimefon, Triadimenol, Triapenthenol, Triflumizol, Triticonazol, Uniconazol sowie deren Metallsalze und Säureaddukte; Imidazole wie:
Clotrimazol, Bifonazol, Climbazol, Econazol, Fenapamil, Imazalil, Isoconazol, Ketoconazol, Lombazol, Miconazol, Pefurazoat, Prochloraz, Triflumizol, Thiazolcar l-Imidazolyl-l-(4'- chlorophenoxy)-3,3-dimethylbutan-2-on sowie deren Metallsalze und Säureaddukte;
Pyridine und Pyrimidine wie: Ancymidol, Buthiobat, Fenarimol, Mepanipyrin, Nuarimol, Pyroxyfur, Triamirol; Succinat-Dehydrogenase Inhibitoren wie: Benodanil, Carboxim, Carboximsulfoxid, Cyclafluramid, Fenfuram, Flutanil, Furcarbanil, Furmecyclox, Mebenil, Mepronil, Methfuroxam, Metsulfovax, Nicobifen, Pyrocarbolid, Oxycarboxin, Shirlan, Seedvax;
Naphthalin-Derivate wie: Terbinafm, Naftifm, Butenafm, 3-Chloro-7-(2-aza-2,7,7-trimethyl-oct-3-en-5-in); Sulfenamide wie:
Dichlofluanid, Tolylfluanid, Folpet, Fluorfolpet; Captan, Captofol; Benzimidazole wie:
Carbendazim, Benomyl, Fuberidazole, Thiabendazol oder deren Salze; Morpholinderivate wie:
Aldimorph, Dimethomorph, Dodemorph, Falimorph, Fenpropidin, Fenpropimorph, Tridemorph, Trimorphamid und ihre arylsulfonsauren Salze, wie z.B . p-Toluolsulfons äure und p- Dodecylphenylsulfonsäure;
Benzthiazole wie: 2-Mercaptobenzothiazol;
Benzthiophendioxide wie:
BenzofbJthiophen-SjS-dioxid-carbonsäurecyclohexylamid;
Benzamide wie:
2,6-Dichloro-N-(4-trifluoromethylbenzyl)-benzamid, Tecloftalam; Borverbindungen wie:
Borsäure, Borsäureester, Borax;
Formaldehyd und Formaldehydabspaltende Verbindungen wie:
Benzylalkoholmono-(poly)-hemiformal, 1 , 3-Bis(hydroxymethyl)-5,5-dimethylimidazolidine-2,4- dione (DMDMH), Bisoxazolidine, n-Butanol-hemiformal, Cis l-(3-Chlorallyl)-3,5,7-triaza-l- az o n i a a d am ant an e c h l o ri d , l-[l,3-Bis(hydroxymethyl-2,5-dioxoimidazolidin-4-yl]-l,3- bis(hydroxymethyl)urea, Dazomet, Dimethylolharnstoff, 4,4-Dimethyl-oxazolidine, Ethylenglycol- hemiformal, 7-Ethylbicyclooxazolidine, Hexa-hydro-S-triazine, Hexamethylentetramin, N- Hydroxymethyl-N'-methylthioharnstoff, Methylenbismorpholin, Natrium N-(Hydroxy- methyl)glycinat, N-Methylolchloracetamid, Oxazolidine, Paraformaldehyd, Taurolin, Tetrahydro- 1 ,3-oxazin, N-(2-Hydroxypropyl)-amin-methanol, Tetramethylol-acetylen-diharnstoff (TMAD); Isothiazolinone wie:
N-Methylisothiazolin-3-on, 5-Chlor-N-methylisothiazolin-3-on, 4,5-Dichloro-N-octylisothiazorin- 3-on, 5-Chlor-N-octylisothiazolinon, N-Octyl-isothiazolin-3-on, 4,5-Trimethylen-isothiazolinon, 4,5-Benzisothiazolinon;
Aldehyde wie: Zimtaldehyd, Formaldehyd, Glutardialdehyd, ß-Bromzimtaldehyd, o-Phthaldialdehyd; Thiocyanate wie:
Thiocyanatomethylthiobenzothiazol, Methylenbisthiocyanat; quartäre Ammoniumverbindungen und Guanidine wie:
Benzalkoniumchlorid, Benzyldimethyltetradecylammoniumchl ori d, B e nzyldimethyldodecyl- ammoniumchlorid, Dichlorbenzyldimethylalkylammoniumchlorid, Didecyldimethylammonium- chlorid, Dioctyldimethylammoniumchlorid, N-Hexadecyltrimethylammoniumchlorid, 1-Hexa- decylpyridiniumchlorid, Iminoctadine-tris(albesilat);
Phenole wie:
Tribromphenol, Tetrachlorphenol, 3-Methyl-4-chlorphenol, 3,5-Dimethyl-4-chlorphenol, Dichlor- phen, 2-Benzyl-4-chlorphenol, Triclosan, Diclosan, Hexachlorophen, p-Hydroxybenzoesäure- methylester, p-Hydroxybenzoesäureethylester, p-Hydroxybenzoesäurepropylester, p-Hydroxy- benzoesäurebutylester, p-Hydroxybenzoesäureoctylester ,o-Phenylphenol, m-Phenylphenol, p- Phenylphenol, 4-(2-tert.-Butyl-4-methyl-phenoxy)-phenol, 4-(2-Isopropyl-4-methyl-phenoxy)- phenol, 4-(2,4-Dimethyl-phenoxy)-phenol und deren Alkali- und Erdalkalimetallsalze; Mikrobizide mit aktivierter Halogengruppe wie:
Bronopol, Bronidox, 2-Brom-2-nitro-l,3-propandiol, 2-Brom-4'-hydroxy-acetophenon, l-Brom-3- chlor-4,4,5,5-tetramethyl-2-imidazoldinone, ß-Brom-ß-nitrostyrol, Chloracetamid, Chloramin T, l,3-Dibrom-4,4,5,5-tetrametyl-2-imidazoldinone, Dichloramin T, 3,4-Dichlor-(3H)-l,2-dithiol-3- o n , 2 , 2-Dibrom-3-nitril-propionamid, 1 ,2-Dibrom-2,4-dicyanobutan, Halane, Halazone, Mucochlorsäure, Phenyl-(2-chlor-cyan-vinyl)sulfon, Phenyl-(l,2-dichlor-2-cyanvinyl)sulfon, Trichlorisocyanursäure;
Pyridine wie: l-Hydroxy-2-pyridinthion (und ihre Cu-, Na-, Fe-, M n-, Zn-Salze), Tetrachlor-4- methylsulfonylpyridin, Pyrimethanol, Mepanipyrim, Dipyrithion, l-Hydroxy-4-methyl-6-(2,4,4- trimethylpentyl)-2(lH)-pyridin;
Methoxyacrylate oder Ähnliche wie:
Azoxystrobin, Dimoxystrobin, Fluoxastrobin, Kresoxim-methyl, Metominostrobin, Orysastrobin, Picoxystrobin, Pyraclostrobin, Trifloxystrobin, 2,4-dihydro-5-methoxy-2-methyl-4-[2-[[[[l-[3- (trifluoromethyl)phenyl]ethylidene]amino]oxy]methyl]phenyl]-3H-l,2,4-triazol-3-one (CAS-Nr. 185336-79-2);
Metallseifen wie:
Salze der Metalle Zinn, Kupfer und Zink mit höheren Fett-, Harz-, Naphthensäuren und Phosphorsäure wie z.B. Zinn-, Kupfer-, Zinknaphtenat, -octoat, 2-ethylhexanoat, -oleat, -phosphat, -benzoat;
Metallsalze wie:
Salze der Metalle Zinn, Kupfer, Zink, sowie auch Chromate und Dichromate wie z.B. Kupferhydroxycarbonat, Natriumdichromat, Kaliumdichromat, Kaliumchromat, Kupfersulfat, Kupferchlorid, Kupferborat, Zinkfluorosilikat, Kupferfluorosilikat; Oxide wie:
Oxide der Metalle Zinn, Kupfer und Zink wie z.B. Tributylzinnoxid, CU2O, CuO, ZnO;
Oxidationsmittel wie:
Wasserstoffperoxid, Peressigsäure, Kalium-persulfat; Dithiocarbamate wie:
Cufraneb, Ferban, Kalium-N-hydroxymethyl-N'-methyl-dithiobarbamat, Na- oder K-dimethyl- dithiocarbamat, Macozeb, Maneb, Metam, Metiram, Thiram, Zineb, Ziram;
Nitrile wie: 2,4,5,6-Tetrachlorisophthalodinitril, Dinatrium-cyano-dithioimidocarbamat; Chinoline wie:
8-Hydroxychinolin und deren Cu-Salze; sonstige Fungizide und Bakterizide wie:
Bethoxazin, 5-Hydroxy-2(5H)-furanon; 4,5-Benzdithiazolinon, 4,5-Trimethylendithiazolinon, N-(2-p-Chlorbenzoylethyl)-hexaminiumchlorid, 2-Oxo-2-(4-hydroxy-phenyl)acethydroximsäure- chlorid, Tris-N-(cyclohexyldiazeniumdioxy)-aluminium, N-(Cyclo-hexyldiazeniumdioxy)-tributyl- zinn bzw . K-Salze, Bis-N-(cyclohexyldiazeniumdioxy)-kupfer, Iprovalicarb, Fenhexamid,
Spiroxamin, Carpropamid, Diflumetorin, Quinoxyfen, Famoxadone, Polyoxorim, Acibenzolar-S- methyl, Furametpyr, Thifluzamide, Methalaxyl-M, Benthiavalicarb, Metrafenon, Cyflufenamid, Tiadinil, Teebaumöl, Phenoxyethanol,
Ag, Zn oder Cu-haltige Zeolithe allein oder eingeschlossen in polymere Werkstoffe. Ganz besonders bevorzugt sind Mischungen mit
Azaconazol, Bromuconazol, Cyproconazol, Dichlobutrazol, Diniconazol, Diuron, Hexaconazol, Metaconazol, Penconazol, Propiconazol, Tebuconazol, Dichlofluanid, Tolylfluanid, Fluorfolpet, Methfuroxam, Carboxin, BenzofbJthiophen-SjS-dioxid-carbonsäurecyclohexylamid, Fenpiclonil, 4-(2,2-Difluoro-l,3-benzodioxol-4-yl)-lH-pyrrol-3-carbonitril, Butenafin, Imazalil, N-Methyl- isothiazolin-3-o n , 5-Chlor-N-methylisothiazolin-3-on, N-Octylisothiazolin-3-on, Dichlor-N- octylisozhiazolinon, Mercaptobenzthiazol, Thiocyanatomethylthiobenzothiazol, Thiabendazol, Benzisothiaz o 1 i n o n , N-(2-Hydroxypropyl)-amino-methanol, Benzylalkohol-(hemi)-formal, N-Methylolchloraceta m i d , N-(2-Hydroxypropyl)-amin-methanol, Glutaraldehyd, Omadine, Zn-Omadine, Dimethyldicarbonat, 2-Brom-2-nitro-l,3-propandiol, Bethoxazin, o-Phthaldialdehyd, 2,2-Dibrom-3-nitril-propionamid, 1 ,2-Dibrom-2,4-dicyanobutan, 1 ,3-Bis(hydroxymethyl)-5,5- dimethylimidazolidine-2,4-dione (DMDMH), Tetramethylol-acetylen-diharnstoff (TMAD), Ethylenglycol-hemiformal, p-Hydroxybenzoesäure, Carbendazim, Chlorophen, 3-Methyl-4- chlorphenol, o-Phenylphenol. Desweiteren werden neben den oben genannten Fungiziden und Bakteriziden auch gut wirksame Mischungen mit anderen Wirkstoffen hergestellt:
Insektizide / Akarizide / Nematizide:
Abamectin, Acephat, Acetamiprid, Acetoprole, Acrinathrin, Alanycarb, Aldicarb, Aldoxycarb, Aldrin, Allethrin, Alpha-cypermethrin, Amidoflumet, Amitraz, Avermectin, Azadirachtin, Azinphos A, Azinphos M, Azocyclotin,
Bacillus thuringiensis, Barthrin, 4-Bromo-2(4-chlorphenyl)-l-(ethoxymethyl)-5-(trifluoromethyl)- lH-pyrrole-3-carbonitrile, Bendiocarb, Benfuracarb, Bensultap, Betacyfluthrin, Bifenthrin, Bioresmethrin, Bioallethrin, Bistrifluron, Bromophos A, Bromophos M, Bufencarb, Buprofezin, Butathiophos, Butocarboxin, Butoxycarboxim,
Cadusafos, Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap, Chinomethionat, CIo- ethocarb, Chlordane, Chlorethoxyfos, Chlorfenapyr, Chlorfenvinphos, Chlorfluazuron, Chlormephos, N-[(6-Chloro-3-pyridinyl)-methyl]-N'-cyano-N-methyl-ethanimidamid, Chlorpicrin, Chlorpyrifos A, Chlorpyrifos M, Cis-Resmethrin, Clocythrin, Clothiazoben, Cypophenothrin Clofentezin, Coumaphos, Cyanophos, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cyhexatin, Cyper- methrin, Cyromazin,
Decamethrin, Deltamethrin, Demeton M, Demeton S, Demeton-S-methyl, Diafenthiuron, Dialiphos, Diazinon, l,2-Dibenzoyl-l(l,l-dimethyl)-hydrazin, DNOC, Dichlofenthion, Dichlorvos, Dicliphos, Dicrotophos, Difethialon, Diflubenzuron, Dimethoat, 3,5-Dimethylphenyl- methylcarbamat, Dimethyl-(phenyl)-silyl-methyl-3-phenoxybenzylether, Dimethyl-(4-Ethoxy- phenyl)-silylmethyl-3-phenoxybenzylether, Dimethylvinphos, Dioxathion, Disulfoton,
Eflusilanate, Emamectin, Empenthrin, Endosulfan, EPN, Esfenvalerat, Ethiofencarb, Ethion, Ethofenprox, Etrimphos, Etoxazole, Etobenzanid,
Fenamiphos, Fenazaquin, Fenbutatinoxid, Fenfluthrin, Fenitrothion, Fenobucarb, Fenothiocarb, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyroximat, Fensulfothion, Fenthion, Fenvalerate, Fipronil, Flonicamid, Fluacrypyrim, Fluazuron, Flucycloxuron, Flucythrinate, Flufenerim, Flufenoxuron, Flupyrazofos, Flufenzine, Flumethrin Flufenprox, Fluvalinate, Fonophos, Formethanate, Formothion, Fosmethilan Fosthiazat, Fubfenprox, Furathiocarb,
Halofenocid, HCH (CAS RN: 58-89-9), Heptenophos, Hexaflumuron, Hexythiazox, Hydramethylnon, Hydropren,
Imidacloprid, Imiprothrin, Indoxycarb, Iprinomectin, Iprobenfos, Isazophos, Isoamidophos, Isofenphos, Isoprocarb, Isoprothiolane, Isoxathion, Ivermectin, Kadedrin
Lambda-Cyhalothrin, Lufenuron,
Malathion, Mecarbam, Mervinphos, Mesulfenphos, Metaldehyd, Methacrifos, Methamidophos, Methidathion, Methiocarb, Methomyl, Metalcarb, Milbemectin, Monocrotophos, Moxiectin, Naled, NI 125, Nicotin, Nitenpyram, Noviflumuron, Omethoat, Oxamyl, Oxydemethon M, Oxydeprofos,
Parathion A, Parathion M, Penfluron, Permethrin, 2-(4-Phenoxyphenoxy)-ethyl-ethylcarbamat, Phenthoat, Phorat, Phosalon, Phosmet, Phosphamidon, Phoxim, Pirimicarb, Pirimiphos M, Pirimiphos A, Prallethrin, Profenophos, Promecarb, Propaphos, Propoxur, Prothiophos, Prothoat, Pymetrozin, Pyrachlophos, Pyridaphenthion, Pyresmethrin, Pyrethrum, Pyridaben, Pyridalyl, Pyrimidifen, Pyriproxifen, Pyrithiobac-natrium
Quinalphos,
Resmethrin, Rotenon,
Salithion, Sebufos, Silafluofen, Spinosad, Spirodiclofen, Spiromesifen, Sulfotep, Sulprofos, Tau-fluvalinat, Taroils, Tebufenozide, Tebufenpyrad, Tebupirimphos, Teflubenzuron, Tefluthrin, Temephos, Terbam, Terbufos, Tetrachlorvinphos, Tetramethrin, Tetramethacarb, Thiacloprid, Thiafenox, Thiamethoxam, Thiapronil, Thiodicarb, Thiofanox, Thiazophos, Thiocyclam, Thiomethon, Thionazin, Thuringiensin, Tralomethrin, Transfluthrin, Triarathen, Triazophos, Triazamate, Triazuron, Trichlorfon, Triflumuron, Trimethacarb, Vamidothion, Xylylcarb, Zetamethrin; Molluscizide:
Fentinacetat, Metaldehyd, Methiocarb, Niclosamid; Herbizide und Algizide:
Acetochlor, Acifluorfen, Aclonifen, Acrolein, Alachlor, Alloxydim, Ametryn, Amidosulfuron, Amitrole, Ammonium sulfamate, Anilofos, Asulam, Atrazine, Azafenidin, Aziptrotryn, Azimsulfuron,
Benazolin, Benfluralin, Benfuresat, Bensulfuron, Bensulfid, Bentazon, Benzofencap, Benzthiazuron, Bifenox, Bispyribac, Bispyribac-Natrium, Borax, Bromacil, Bromobutide, Bromofenoxim, Bromoxynil, Butachlor, Butamifos, Butralin, Butylat, Bialaphos, Benzoyl-prop, Bromobutide, Butroxydim,
Carbetamid, Carfentrazone-ethyl, Carfenstrol, Chlomethoxyfen, Chloramben, Chlorbromuron, Chlorflurenol, Chloridazon, Chlorimuron, Chlornitrofen, Chloressigsäure, Chloransulam-methyl, Cinidon-ethyl, Chlorotoluron, Chloroxuron, Chlorpropham, Chlorsulfuron, Chlorthal, Chlorthiamid, Cinmethylin, Cinofulsuron, Clefoxydim, Clethodim, Clomazone, Chlomeprop, Clopyralid, Cyanamide, Cyanazine, Cycloat, Cycloxydim, Chloroxynil, Clodinafop-propargyl, Cumyluron, Clometoxyfen, Cyhalofop, Cyhalofop-butyl, Clopyrasuluron, Cyclosulfamuron,
Diclosulam, Dichlorprop, Dichlorprop-P, Diclofop, Diethatyl, Difenoxuron, Difenzoquat, Diflufenican, Diflufenzopyr, Dimefuron, Dimepiperate, Dimethachlor, Dimethipin, Dinitramine, Dinoseb, Dinoseb Acetate, Dinoterb, Diphenamid, Dipropetryn, Diquat, Dithiopyr, Diduron, DNOC, DSMA, 2,4-D, Daimuron, Dalapon, Dazomet, 2,4-DB, Desmedipham, Desmetryn, Dicamba, Dichlobenil, Dimethamid, Dithiopyr, Dimethametryn,
Eglinazin, Endothal, EPTC, Esprocarb, Ethalfluralin, Ethidimuron, Ethofumesat, Ethobenzanid, Ethoxyfen, Ethametsulfuron, Ethoxysulfuron,
Fenoxaprop, Fenoxaprop-P, Fenuron, Flamprop, Flamprop-M, Flazasulfuron, Fluazifop, Fluazifop- P, Fuenachlor, Fluchloralin, Flufenacet Flumeturon, Fluorocglycofen, Fluoronitrofen, Flupropanate, Flurenol, Fluridone, Flurochloridone, Fluroxypyr, Fomesafen, Fosamine, Fosametine, Flamprop-isopropyl, Flamprop-isopropyl-L , F lufenpyr, F lumiclorac-pentyl, Flumipropyn, Flumioxzim, Flurtamon, Flumioxzim, Flupyrsulfuron-methyl, Fluthiacet-methyl,
Glyphosate, Glufosinate-ammonium Haloxyfop, Hexazinon,
Imazamethabenz, Isoproturon, Isoxaben, Isoxapyrifop, Imazapyr, Imazaquin, Imazethapyr, Ioxynil, Isopropalin, Imazosulfuron, Imazomox, Isoxaflutole, Imazapic, Ketospiradox,
Lactofen, Lenacil, Linuron,
MCPA, MCPA-hydrazid, MCPA-thioethyl, MCPB, Mecoprop, Mecoprop-P, Mefenacet, Mefluidid, Mesosulfuron, Metam, Metamifop, Metamitron, Metazachlor, Methabenzthiazuron, Methazol, Methoroptryne, Methyldymron, Methylisothiocyanat, Metobromuron, Metoxuron, Metribuzin, Metsulfuron, Molinat, Monalid, Monolinuron, MSMA, Metolachlor, Metosulam, Metobenzuron, Naproanilid, Napropamid, Naptalam, Neburon, Nicosulfüron, Norflurazon, Natriumchlorat, Oxadiazon, Oxyfluorfen, Oxysulfuron, Orbencarb, Oryzalin, Oxadiargyl,
Propyzamid, Prosulfocarb, Pyrazolate, Pyrazolsulfuron, Pyrazoxyfen, Pyribenzoxim, Pyributicarb, Pyridat, Paraquat, Pebulat, Pendimethalin, Pentachlorophenol, Pentoxazon, Pentanochlor, Petroleumöle, Phenmedipham, Picloram, Piperophos, Pretilachlor, Primisulfüron, Prodiamine, Profoxydim, Prometryn, Propachlor, Propanil, Propaquizafob, Propazine, Propham, Propisochlor, Pyriminobac-methyl, Pelargonsäure, Pyrithiobac, Pyraflufen-ethyl,
Quinmerac, Quinocloamine, Quizalofop, Quizalofop-P, Quinchlorac, Rimsulfuron Sethoxydim, Sifuron, Simazine, Simetryn, Sulfosulfüron, Sulfometuron, Sulfentrazone, Sulcotrione, Sulfosate,
Teeröle, TCA, TCA-Natrium, Tebutam, Tebuthiuron, Terbacil, Terbumeton, Terbutylazine, Terbutryn, Thiazafluoron, Thifensulfuron, Thiobencarb, Thiocarbazil, Tralkoxydim, Triallate, Triasulfuron, Tribenuron, Triclopyr, Tridiphane, Trietazine, Trifluralin, Tycor, Thdiazimin, Thiazopyr, Triflusulfuron, Vernolat.
Die Erfindung betrifft weiterhin ein Polymer, das dadurch gekennzeichnet ist, dass das Polymer aus ethylenisch ungesättigten Monomeren M aufgebaut ist, wie es oben im allgemeinen und im Besonderen beschrieben ist, enthaltend wenigstens eine Aziridin- Verbindung, wobei die bevorzugten Aus führungs formen für das Polymer, die Aziridinverbindung sowie Menge und Herstellung den oben angegebenen entsprechen. Bevorzugt ist dieses aziridinhaltige Polymer frei von iodhaltigen Verbindungen.
Die Erfindung betrifft weiterhin die Verwendung eines solchen erfindungsgemäßen Polymeren zur Stabilisierung von iodhaltigen Verbindungen, insbesondere den oben genannten. Weiterhin betrifft die Erfindung eine Zusammensetzung, enthaltend a) wenigstens ein Polymer enthaltend wenigstens eine Aziridin- Verbindung und b) wenigstens eine iodhaltige Verbindung.
Die Erfindung betrifft weiterhin die Verwendung der eingangs beschriebenen erfindungsgemäßen Polymeren als auch die erfindungsgemäße Zusammensetzung als stabile und stabilisierende Darreichungsform iodhaltiger Verbindungen, insbesondere Bioziden. Die verwendungsgemäß einzusetzenden Polymeren bzw. die erfindungsgemäßen Polymerpräparation eignen sich bevorzugt zur Stabilisierung von iodhaltigen Verbindungen, insbesondere Bioziden in Bindemittelformulierungen bspw. in alkydharzbasierten Systemen wie Anstrichmitteln, die Übergangsmetalltrockner enthalten, insbesondere in Gegenwart von Übergangsmetalltrocknern. Bevorzugte Bindemittelformulierungen und Übergangsmetalltrockner werden weiter unten näher beschrieben.
Unter Stabilisierung wird im Rahmen dieser Anmeldung vorzugsweise die Stabilisierung von iodhaltigen Verbindungen sowohl vor chemischem als auch durch Licht induziertem Abbau, insbesondere vor chemischem Abbau verstanden. Insbesondere können die erfmdungsgemäßen Polymeren und die erfindungsgemäßen Zusammensetzungen dazu verwendet werden, den chemischen Abbau iodhaltiger Verbindungen, insbesondere Biozide in Wirkstoffformulierungen, insbesondere Anstrichmitteln wie Farben, Lacke, Grundierungen, Imprägnierungen, Lasuren und anderen technischen Materialien zu unterdrücken oder zumindest zu verlangsamen. Die erfmdungsgemäß zur Stabilisierung iodhaltiger Verbindungen, insbesondere Biozide, einsetzbaren erfindungsgemäßen Zusammensetzungen weis en ganz b esonders in Alkydharz-basierten Systemen wie Anstrichmitteln, die Übergangsmetalltrockner enthalten, eine gute stabilisierende Wirkung auf.
Die Erfindung betrifft weiterhin eine Bindemittelformulierung, enthaltend
- wenigstens ein Bindemittel, - wenigstens ein erfindungsgemäßes Polymer und/oder
- wenigstens eine erfindungsgemäße Zusammensetzung.
Das erfindungsgemäße Polymer kann dabei bevorzugt auch in Form der erfindungsgemäßen Polymerpräparation eingesetzt werden.
Als bevorzugte Bindemittel kommen oxidativ trocknende Bindemittel, vorzugsweise alkydharzbasierende Bindemittel oder durch Koaleszenzmittel verfilmenden Bindemittel, insbesondere Latices in Frage.
Von den alkydharzbasierten Bindemitteln kommen vorzugsweise Alkydharze und modifizierte Alkydharze in Frage.
Bei den Alkydharzen handelt es sich im allgemeinen um Polykondensationsharze aus Polyolen und mehrwertigen Carbonsäuren bzw. deren Anhydriden und Fetten, Ölen oder freien natürlichen und/oder synthetischen Fettsäuren. Die Alkydharze können gegebenenfalls noch mit hydrophilen, insbesondere wasserlöslichen Gruppen chemisch modifiziert sein, um beispielsweise als emulgierbares bzw. als wasserlösliches Alkydharz einsetzbar zu sein.
B evorzugt handelt es sich b ei den genannten Polyolen um Glycerin, Pentaerythrit, Trimethylolethan, Trimethylolpropan sowie um verschiedene Diole wie Ethan-/Propandiol, Diethylenglycol und Neopentylglycol.
Bevorzugt handelt es sich bei den genannten mehrwertigen Carbonsäuren bzw. deren Anhydriden um Phthalsäure, Phthalsäureanhydrid, Maleinsäureanhydrid, Isophthalsäure, Terephthalsäure, Trimellitsäureanhydrid, Adipinsäure, Azelainsäure oder Sebacainsäure.
Bei den genannten Ölen oder Fettsäuren handelt es sich im allgemeinen um Leinöl, Oiticiaöl, Holzöl, Sojaöl, Sonnenblumenöl, Safloröl, Ricinenöl, Tallöl, Rizinusöl, Kokosöl, Erdnussöl, deren Fettsäuren sowie synthetische gesättigte, ungesättigte oder mehrfach ungesättigte Monocarbonsäuren bzw. Mischungen dieser Komponenten.
Die Alkydharze können gegebenenfalls noch modifiziert werden bspw. mit Naturharzen, Phenolharzen, Acrylharzen, Styrol, Epoxidharzen, Siliconharzen, Isocyanaten, Polyamiden oder Aluminiumalkoholaten.
Die Alkydharze haben im allgemeinen eine Molmasse von 500 bis 100000 g/mol, vorzugsweise von 1000 bis 50000 g/mol, insbesondere von 1500 bis 20000 g/mol (bestimmt durch Laserlicht- Streuung, siehe bspw. "Static Light Scattering of Polystyrene Reference Materials: Round Robin Test", U. Just, B.Werthmann International Journal of Polymer Analysis and Characterization, 1999 Vol.5, Seiten 195 - 207).
Die erfindungsgemäßen Bindemittelformulierungen enthalten vorzugsweise 1 bis 80 Gew.-% , bevorzugt 2 bis 70 Gew.-% und besonders bevorzugt 3 bis 60 Gew.-% an Alkydharz.
Bevorzugt enthält die erfindungsgemäße Bindemittelformulierung ein alkydharzbasiertes Bindemittel und zur oxidativen Trocknung ein Übergangsmetalltrockner. Unter Über- gangsmetalltrockner werden im Rahmen dieser Anmeldung insbesondere Übergangsmetall- verbindungen verstanden, die die Trocknung und Härtung des Alkydharz-basierten Bindemittels beschleunigen.
Bevorzugt sind die Salze von Übergangsmetallen der Gruppen Vb, VIb, VIIb, VIII und Ib des chemischen Periodensystems. Insbesondere handelt es sich um die Salze von Cobalt, Mangan, Vanadium, Nickel, Kupfer und Eisen, besonders bevorzugt um Cobalt, Mangan, Eisen und
Vanadium. Sie müssen nicht unbedingt nur allein eingesetzt, sondern können auch in Kombination mit nicht Übergangsmetallsalzen, wie Beispielsweise Blei, Calcium oder Zirkonium zum Einsatz kommen.
Die bevorzugten Übergangsmetallsalze sind in organischen Lösungsmitteln, bspw. Testbenzin, bei 20 0C in einer Menge von mehr als 10 g/l löslich. Vorzugsweise handelt es sich um die Salze von Carbonsäuren, die eine gute Verträglichkeit mit den Alkydharz-Bindemittem haben und gleichzeitig eine ausreichende Löslichkeit des Metallsalzes gewährleisten. Verwendet werden bevorzugt Übergangsmetallsalze von Fettsäuren wie Oleate oder Linoleate, Harzsäuren wie Resinate oder Salze der 2-Ethylhexansäure (Octoate). Bevorzugte Übergangsmetalltrockner sind Cobaltoctoat und Cobaltnaphthenat z.B. Octasoligen®-Cobalt 12 der Firma Borchers. Bevorzugt enthalten die erfindungsgemäßen Bindemittelformulierungen die Übergangsmetalltrockner in einer Menge von 0,001 bis 1 Gew.-%, bevorzugt 0,005 bis 0,5 Gew.-% und ganz besonders bevorzugt 0,01 bis 0,1 Gew.-%, jeweils bezogen auf Bindemittel.
Die Bindemittelformulierungen enthalten in einer bevorzugten Ausführungsform wenigstens ein polares organisches Lösungsmittel, vorzugsweise ein polares aprotisches Lösungsmittel. Als solche kommen beispielsweise polare protische wie Dipropylenglykol-monomethylether (z.B. Dowanol DPM der Fa. Dow Chemical) sowie vorzugsweise in Kombination dazu polare aprotische Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie z.B. veretherte Glykole, Oligoglykole und Polyglykole, veretherte Polyole und veresterte Polyole, Ester von ein- sowie mehrwertigen Carbonsäuren, z.B. Adipinsäurediisobutylester, Maleinsäurediisobutylester (z.B. Rhodiasolv DIB ) in Frage.
Besonders bevorzugt ist die Bindemittelformulierung, enthaltend
1 bis 80 Gew.-%, bevorzugt 2 bis 70 Gew.-%, besonders bevorzugt 3 bis 60 Gew.-% Alkydharz- binder
0 bis 50 Gew.-%, bevorzugt 0 bis 45 Gew.-%, besonders bevorzugt 0 bis 40 Gew.-%. Farbpigmente
0,01 bis 10 Gew. -%, bevorzugt 0,05 bis 5 Gew.-%, besonders bevorzugt 0,1 bis 4 Gew.-% erfindungsgemäßes Polymer oder erfindungsgemäße Zusammensetzung,
2 bis 97 Gew.-% Lösungsmittel, insbesondere unpolare oder polare Lösungsmittel, davon vorzugsweise bis zu 10 Gew.%, insbesondere 0,01 bis 7,5 Gew.-%, bezogen auf die Bindemittelpräparation an polaren aprotischen Lösungsmitteln, und
0,001 bis 3 Gew.-% eines Übergangsmetalltrockners. Besonders bevorzugt sind erfindungsgemäße Bindemittelformulierungen, enthaltend wenigstens eine Alkydharz, wenigstens ein Übergangsmetalltrockner, wenigstens ein Lösungsmittel und wenigstens eine erfindungsgemäße Zusammensetzung oder erfindungsgemässe Formulierung.
Die Bindemittelformulierung kann darüber hinaus noch Füller, Hautverhinderungsmittel, Rheologieadditive wie beispielsweise Antiabsetzmittel und Thixotropiermittel, weitere Biozide wie Fungizide, Bakterizide, Antifoulingmittel und Algizide, Lösungsmittel, Prozessadditive, Weichmacher, UV- und Hitzestabilisatoren, sowie Korrosionsinhibitoren in üblichen Mengen enthalten.
Zusätzlich können den Bindemittelformulierungen noch weitere Stabilisatoren zugesetzt werden, wie beispielsweise die in WO 98/22543 genannten Chelatisierungsreagentien oder andere heterocyclische 3-Ringverbindungen, insbesondere solche mit einem anderen Heteroatom als das, was in der erfindungsgemässsen Zusammensetzung bzw. erfindungsgemässen Formulierung eingesetzt wurde. Im Fall von Aziridinen sind dies vorzugsweise die in WO 00/16628 genannten organischen Epoxide. In vielen Fällen werden hier synergistische Effekte beobachtet. Darüber hinaus können bei der erfindungsgemäßen Verwendung auch noch ein oder mehrere Stabilisatoren aus der Reihe der Antioxidantien, Radikalfänger, UV-Stabilisatoren, Chelatoren und UV- Absorber zugesetzt werden, die teilweise synergistische Wirkungen aufweisen. Diese Stoffe können ggf. auch bereits bei der Herstellung des erfindungsgemäßen Polymers zum Einsatz kommen und im Polymer enthalten sein. Beispielhaft seien als weitere UV-Stabilisatoren genannt: sterisch gehinderten Phenole, wie
2,6-Di-tert.-butyl-4-methylphenol, 2-tert.-Butyl-4,6-dimethylphenol, 2,6-Di-cyclo- pentyl-4-methylphenol, 2-(α-Methylcyclohexyl)-4,6-dimethylphenol, 2,6-Di-octadecyl-4- methylphenol oder 2,6-Di-tert.-butyl-4-methoxymethylphenol, Diethyl-(3,5-di-tert-butyl-4- hydroxybenzyl)phosphonate, 2,4-Dimethyl-6-(l-methylpentadecyl)-phenol, 2-Methyl-4,6-
Bis[(octylthio)methyl]phenol, 2,6-Di-tert.-butyl- 4-methoxyphenol, 2,5-Di-tert.-butyl-hydrochinon, 2,5-Di-tert.-amyl-hydrochinon, 2,6-Diphenyl-4-octadecyloxyphenol, 2,2'-Thio-bis-(6-tert.-butyl- 4-methylphenol), 2,2'-Thio-bis-(4-octylphenol), 4,4'-Thio-bis-(6-tert.-butyl-3-methylphenol), 4,4'-Thio-bis-(6-tert.-butyl-2-methylphenol), 2,2'-Methylen-bis-(6-tert.-butyl-4-methylphenol), 2,2'-Methylen-bis-(4-methyl-6-cyclohexylphenol), 2,2'-Methylen-bis-(4,6-di-tert.-butylphenol), 2,2'-Ethyliden-bis-(4,6-di-tert.-butylphenol), 4,4'-Methylen-bis-(2,6-di-tert.-butylphenol),
4,4'-Methylen-bis-(6-tert.-butyl- 2-methylphenol), l,l-Bis-(5-tert.-butyl-4-hydroxy- 2-methylphenyl)-butan, l,l,3-Tris-(5-tert.-butyl-4-hydroxy-2-methylphenyl)-butan,
l,3,5-Tri-(3,5-di-tert.-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzol, 3,5-Di-tert.-butyl-4-hydroxy- benzyl- mercaptoessigsäure-isooctylester, 1 ,3,5-Tris-(3,5-di-tert.-butyl-4-hydroxybenzyl)- isocyanurat, 1 ,3,5-Tris-(4-tert.butyl-3-hydroxy-2,6-dimethylbenzyl)-isocyanurat, 1 ,3,5-Tris[(3,5-di- tert-butyl-4-hydroxyphenyl)propionyloxyethyl] isocyanurate, 3,5-Di-tert.- butyl-4-hydroxybenzyl-phosphonsäure-dioctadecylester, 3,5- Di-tert.-butyl-4-hydroxybenzyl-phosphonsäure-monoethylester-Calciunr-salz,
N,N'-Di-(3,5-di-tert.-butyl-4-hydroxyphenylpropionyl)-hexamethylendiamin,
N,N'-Di-(3,5-di-tert.-butyl-4-hydroxyphenylpropionyl)-trimethylendiamin,
N,N'-Di-(3,5-di-tert-butyl-4-hydroxyphenyl-propionyl)-hydrazin, 3,9-Bis[l,l-dimethyl-2-[(3-tert- butyl-4-hydroxy-5-methylphenyl)propionyloxy]ethyl]-2,4,8,10-tetraoxaspiro[5.5]undecane, Bis[3,3-bis(4'-hydroxy-3'-tert-butylphenyl)butanoic acid] ethylene glycol ester, 2,6-bis[[3-(l,l- dimethylethyl)-2-hydroxy-5-methylphenyl]octahydro-4,7-methano-lH-indenyl]-4-methyl-phenol (= Wingstay L), 2,4-Bis(n-octylthio)-6-(3,5-di-tert-butyl-4-hydroxyphenylamino)-s-triazine, N-(4- Hydroxyphenyl)octadecanamide, 2,4-Di-tert-butylphenyl 3',5'-di-tert-butyl-4'-hydroxybenzoate, (Benzoic acid, 3,5-bis(l,l-dimethylethyl)-4-hydroxy-, hexadecyl ester), 3-Hydroxyphenyl benzoate, 2,2'-Methylenebis(6-tert-butyl-4-methylphenol) monoacrylate, 2-(l,l-dimethylethyl)-6- [1 -[3-(1 , 1 -dimethylethyl)-5-(l , 1 -dimethylpropyl)-2-hydroxyphenyl]ethyl]-4-(l , 1 - dimethylpropyl)phenyl ester, Ester der ß-(3,5-Di-tert.-butyl-4-hydroxyphenyl)-propionsäure mit ein- oder mehrwertigen Alkoholen wie z.B. mit Methanol, Octadecanol, 1 ,6-Hexandiol, Neopentyl- glycol, Thiodiethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythrit, Tris-hydroxyethyl- isocyanurat oder Di-hydroxyethyl-oxalsäurediamid,
Ester der ß-(5-tert— Butyl-4-hydroxy-3-methylphenyl)-propionsäure mit ein- oder mehrwertigen Alkoholen, wie z.B. mit Methanol, Octadecanol, 1 ,6-Hexandiol, Neopentylglycol,
Thiodiethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythrit, Tris-hydroxyethyl- isocyanurat oder Di-hydroxyethyl-oxalsäurediamid.
Gehinderte Amine wie,
Bis(l,2,2,6,6-pentamethyl-4-piperidyl) 2-(3,5-di-tert-butyl-4-hydroxybenzyl)-2-butyl malonate, Bis(2,2,6,6-tetramethyl-4-piperidyl) decanedioate, Dimethyl succinate-l-(2-hydroxyethyl)-4- hydroxy-2,2,6,6-tetramethylpiperidine copolymer, Poly[[6-[(l,l,3,3-tetramethylbutyl)amino]-l,3,5- triazine-2,4-diyl][(2,2,6,6-tetramethyl-4-piperidyl)imino]hexamethylene[(2,2,6,6-tetramethyl-4- piperidyl)imino]] (CAS-Nr 71878-19-8), l,5,8,12-Tetrakis[4,6-bis(N-butyl-N-l,2,2,6,6- pentamethyl-4-piperidylamino)-l,3,5-triazin-2-yl]-l,5,8,12-tetraazadodecane (CAS-Nr. 106990-43- 6), Bis(l,2,2,6,6-pentamethyl-4-piperidyl) decanedioate, Bis(l,2,2,6,6-pentamethyl-4-piperidyl) 2- (3,5-di-tert-butyl-4-hydroxybenzyl)-2-butyl malonate, Decanedioic acid, bis(2,2,6,6-tetramethyl-4- piperidinyl) ester, reaction products with tert-Bu hydroperoxide and octane (CAS-Nr 129757-67-1), Chimasorb 2020 (CAS-Nr 192268-64-7), Poly[[6-morpholino-l,3,5-triazine-2,4-diyl][(2,2,6,6- tetramethyl-4-piperidinyl)immo]-l,6-hexanediyl[(2,2,6,6-tetramethyl-4-piperidmyl)immo]], Poly[[6-(4-morpholinyl)-l,3,5-triazine-2,4-diyl][(l,2,2,6,6-pentamethyl-4-piperidinyl)imino]-l,6- hexanediyl[(l,2,2,6,6-pentamethyl-4-piperidinyl)imino]] (9CI), 3-Dodecyl-l-(2,2,6,6-tetramethyl- 4-piperidyl)pyrrolidine-2,5-dione, 3-Dodecyl-l-(l,2,2,6,6-pentamethylpiperidin-4-yl)pyrrolidine- 2,5-dione„4-Octadecanoyloxy-2,2,6,6-tetramethylpiperidine, Poly[[6-(cyclohexylamino)-l,3,5- triazine-2,4-diyl][(2,2,6,6-tetramethyl-4-piperidinyl)imino]-l,6-hexanediyl[(2,2,6,6-tetramethyl-4- piperidinyl)imino]], lH,4H,5H,8H-2,3a,4a,6,7a,8a-Hexaazacyclopenta[def]fluorene-4,8-dione, hexahydro-2,6-bis(2,2,6,6-tetramethyl-4-piperidinyl)- (CAS-Nr 109423-00-9), N,N'-Bis(formyl)- N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)- 1 ,6-hexanediamine, N-(tetramethyl-4- piperidinyl)maleimide-C20-24-α-olefin copolymer (CAS-Nr 199237-39-3), Tetrakis(l, 2,2,6,6- pentamethyl-4-piperidyl) 1 ,2,3,4-butanetetracarboxylate, Tetrakis(2,2,6,6-tetramethyl-4-piperidyl) 1,2,3,4-butanetetracarboxylate, l,2,2,6,6-Pentamethyl-4-piperidinyl tridecyl 1,2,3,4- butanetetracarboxylate, (1,2,3,4-Butanetetracarboxylic acid, 2,2,6,6-tetramethyl-4-piperidinyl tridecyl ester), (2,4,8, 10-Tetraoxaspiro[5.5]undecane-3,9-diethanol, ß,ß,ß',ß'-tetramethyl-, polymer with 1,2,3,4-butanetetracarboxylic acid) (CAS-Nr 115055-30-6), 2,2,4,4-Tetramethyl-21-oxo-7- oxa-3,20-diazadispiro[5.1.11.2]heneicosane, (7-Oxa-3,20-diazadispiro[5.1.11.2]heneicosane-20- propanoic acid, 2,2,4,4-tetramethyl-21-oxo-, tetradecyl ester), (7-Oxa-3,20-diazadispiro[5.1.11.2]- heneicosan-21-one, 2,2,4,4-tetramethyl-20-(oxiranylmethyl)-), (Propanamide, N-(2,2,6,6- tetramethyl-4-piperidinyl)-3-[(2,2,6,6-tetramethyl-4-piperidinyl)amino]-), (1,3-Propanediamine, N,N"-l,2-ethanediylbis-, polymer with 2,4,6-trichloro-l,3,5-triazine, reaction products with N- butyl-2,2,6,6-tetramethyl-4-piperidinamine) (CAS-Nr 136504-96-6), 1 , 1 '-Ethylenebis(3,3,5,5- tetramethyl-2-piperazinone), (Piperazinone, 1 ,1 ', 1 "-[1 ,3,5-triazine-2,4,6- triyltris[(cyclohexylimino)-2,l-ethanediyl]]tris[3,3,5,5-tetramethyl-), (7-Oxa-3,20- diazadispiro[5.1.11.2]heneicosane-20-propanoic acid, 2,2,4,4-tetramethyl-21-oxo-, dodecyl ester), 1 , 1 -Bis(l ,2,2,6,6-pentamethyl-4-piperidyloxycarbonyl)-2-(4-methoxyphenyl)ethene, (2-Propenoic acid, 2-methyl-, methyl ester, polymer with 2,2,6,6-tetramethyl-4-piperidinyl 2-propenoate) (CAS- Nr 154636-12-1), (Propanamide, 2-methyl-N-(2,2,6,6-tetramethyl-4-piperidinyl)-2-[(2,2,6,6- tetramethyl-4-piperidinyl)amino]-), (D-Glucitol, l,3:2,4-bis-O-(2,2,6,6-tetramethyl-4- piperidinylidene)-) (CA-Nr 99473-08-2), N,N'-Bis(2,2,6,6-tetramethyl-4- piperidinyl)isophthalamide, 4-Hydroxy2,2,6,6-tetramethylpiperidine,
1 -Allyl-4-hydroxy-2,2,6,6-tetramethylpiperidine,
1 -Benzyl-4-hydroxy-2,2,6,6-tetramethylpiperidine, 1 -(4-tert.-Butyl-2-butenyl)- 4-hydroxy-2,2,6,6-tetramethylpiperidine, 4-Stearoyloxy-2,2,6,6-tetramethylpiperidine, 1 -Ethyl- 4-salicyloyloxy-2,2,6,6-tetramethylpiperidine, 4-Methacryloyloxy-l,2,2,6,6-pentamethylpiperidine, l,2,2,6,6-Pentamethylpiperidin-4-yl-ß-(3,5-ditert.-butyl-4-hydroxyphenyl)-propionate,
1 -Benzyl-2,2,6,6-tetramethyl-4-piperidinylmaleinate,
(Di-2,2,6,6-tetramethylpiperidin-4-yl)-adipate, (Di-2,2,6,6-tetramethylpiperidin-4-yl)-sebacate, (Di-l,2,3,3,6-tetramethyl-2,6-diethyl-piperidin-4-yl)sebacate, (Di- 1 -allyl-2,2,6,6-tetramethyl-piperidin-4-yl)phthalate, 1 -Propargyl4-ß-cyanoethyl- oxy-2,2,6,6-tetramethylpiperidine, l-Acetyl-2,2,6,6-tetramethylpiperidin-4-yl-acetate, (Trimellitic acid-tri-(2,2,6,6-tetramethylpiperidin-4-yl)ester),
1 -Acryloyl-4-benzyloxy-2,2,6,6-tetramethylpiperidine, Dibutyl-malonic acid-di- (1 ,2,2,6,6-pentamethyl-piperidin-4-yl)ester, Butyl-(3,5-di-tert-butyl-4-hydroxybenzyl)-malonic acid-di-(l ,2,2,6,6-pentamethylpiperidin-4-yl)ester, Dibenzyl- malonic
acid-di-(l ,2,2,6,6-pentamethylpiperidin-4-yl)ester, Dibenzyl-malonic acid-di-(l ,2,3,6-tetramethyl- 2,6-diethyl-piperidin-4-yl)ester, Hexane-l',6'-bis- (4-carbamoyloxy-l-n-butyl-2,2,6,6-tetramethylpiperidine), Toluene-2',4'-bis- (4-carbamoyloxy- 1 -n-propyl-2,2,6,6-tetramethylpiperidine), Dimethyl-bis-(2,2,6,6- tetramethyl- piperidine-4-oxy)silane, Phenyl-tris-(2,2,6,6-tetramethylpiperidine-4-oxy)silane,
Tris-(1 -propyl-2,2,6,6-tetramethylpiperidin-4-yl)phosphite, Tris- (1 -propyl-2,2,6,6-tetramethylpiperidin-4-yl)phosphate, Phenyl-[bis-(l ,2,2,6,6- pentamethylpiperidin-4-yl)phosphonate, Di(1 ,2,2,6,6-pentamethylpiperidin- 4-yl)sebacate, NN'-Bis-(2,2,6,6-tetramethylpiperidin-4-yl)hexamethylene- 1,6-diamine, NN'-Bis- (2,2,6,6-tetramethylpiperidin-4-yl)hexamethylene- 1,6-diacetamide,
l-Acetyl-4-(N-cyclohexylacetamido)-2,2,6,6-tetramethylpiperidine,
4-Benzylamino-2,2,6,6-tetramethylpiperidine, N,N'-Bis-(2,2,6,6-tetramethyl- piperidin-4-yl)-N,N'-dibutyladipamide, N,N'-Bis-(2,2,6,6-tetramethylpiperidin-4-yl)- N,N'-dicyclohexyl-(2-hydroxypropylene), NN'-Bis-(2,2,6,6-tetramethylpiperidin- 4-yl)-p- xylylenediamine, 4-(Bis-2-hydroxyethyl)-amino-l,2,2,6,6-pentamethylpiperidine, 4-(3-Methyl- 4-hydroxy-5-tert.-butyl-benzoicacidamido)-2,2,6,6-tetramethylpiperidine,
4-Methacrylamino- 1 ,2,2,6,6-pentamethylpiperidine, 9-Aza-8,8, 10,10- tetramethyl-l,5-dioxaspiro[5.5]undecane, 9-Aza-8,8,10,10-tetramethyl-3-ethyl- l,5-dioxaspiro[5.51undecane, 8-Aza-2,7,7,8,9,9-hexamethyl- l,4-dioxaspiro[4.5]decane, 9-Aza-3-hydroxymethyl-3-ethyl-8,8,9, 10, 10-pentamethyl-1 -5-dioxaspiro[5.5]undecane,
9-Aza-3-ethyl-3-acetoxymethyl- 9-acetyl-8,8, 10, 10-tetramethyl- 1 ,5-dioxaspiro[5.5]undecane, 2,2,6,6-Tetramethyl- piperidine-4-spiro-2'-(l',3'-dioxane)5'-spiro-5"-(l",3"-dioxane)-2"-spiro4"-(2"',2"',6"',6"'-tetrameth ylpiperidine),3-Benzyl-l,3,8-triaza-7,7,9,9-tetramethyl-spiro[4.5]decane-2,4-dione, 3-n-Octyl- l,3,8-triaza-7,7,9,9-tetramethyl-spiro[4.5]decane-2,4-dione, 3-Allyl-l,3,8-triaza- l,7,7,9,9-pentamethyl-spiro[4.5]decane-2,4.dione, 3-Glycidyl-l,3,8-triaza-7,7,8,9,9- penta- methyl-spiro(4.5]decane-2,4-dione, 2-Isopropyl-7,7,9,9-tetramethyl-l-oxa- 3,8-diaza- 4-oxyspiro[4.5]decane, 2-Butyl-7,7,9,9-tetramethyl-l-oxa-3,8-diaza-4-oxyspiro[4.5]decane, 2-Isopropyl-7,7,9,9-tetramethyl-l-oxa-4,8-diaza-oxyspiro[4.5]decane,
2-Butyl-7,7,9,9-tetramethyl-l-oxa-4,8-diaza-3-oxyspiro[4.5]decane,
Bis-[ß-(2,2,6,6-tetramethylpiperidino)-ethyl]-sebacate, α-(2,2,6,6-tetramethylpiperidino)-acetic acid-n-octyl ester, l,4-bis-(2,2,6,6-tetramethylpiperidino)- 2-butene,
N-Hydroxymethyl-N'-2,2,6,6-tetramethylpiperidin-4-yl-urea, N-Methoxy- methyl-N'-2,2,6,6-tetramethylpiperidin-4-yl-urea, N-Methoxymethyl-N'-n-dodecyl- N'-2,2,6,6-tetramethylpiperidin-4-yl-urea, O-(2,2,6,6-Tetramethylpiperidin-4-yl)- N-methoxymethyl-urethane.
Phosphite und Phosphonate wie,
Tri(nonylphenyl) phosphite, Tris(2,4-di-tert-butylphenyl) phosphite, Bis(2,4-di-tert-butylphenyl) pentaerythritol diphosphite, Bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite, 2,2'- Methylenebis(4,6-di-tert-butylphenyl) octyl phosphite, Tetrakis(2,4-di-tert-butylphenyl)[l,l'- biphenyl]-4,4'-diylbisphosphonite, 2,2'-Ethylidenebis(4,6-di-tert-butylphenyl) fluorophosphite, Dioctadecyl pentaerythritol diphosphonite, 2-[[2,4,8,10-Tetrakis(l,l-dimethylethyl)dibenzo[d,f]- [l,3,2]dioxaphosphepin-6-yl]oxy]-N,N-bis[2-[[2,4,8,10-tetrakis(l,l-dimethylethyl)dibenzo- [d,f][l,3,2]dioxaphosphepin-6-yl]oxy]ethyl]ethanamine (CAS-Nr. 80410-33-9), Bis(2,4-di-tert- butyl-6-methylphenyl) ethyl phosphite, 2,4,6-Tri-tert-butylphenyl- 2-butyl-2-ethyl-l,3-propanediol phosphite oder Bis(2,4-dicumylphenyl) pentaerythritol diphosphite,
Hydroxylamine wie,
N,N-Bis(2-carboxyethyl)hydroxylamin, N,N-Bis(benzylthiomethyl)hydroxylamin, N,N- Diethylhydroxylamin, usw.
Sekundare Arylamine wie,
N-(2-Naphthyl)-N-phenylamine, 2,2,4-Trimethyl-l,2-dihydroquinoline polymer (CAS-Nr: 26780- 96-1), N-2-Propyl-N'-phenyl-p-phenylenediamine, N-(l-Naphthyl)-N-phenylamine, (Benzenamine, N-phenyl-, reaction products with 2,4,4-trimethylpentene) (CAS-Nr. 68411-46-1) oder 4-(l- Methyl-l-phenylethyl)-N-[4-(l-methyl-l-phenylethyl)phenyl]aniline.
Lactone und Benzofuranone wie, Irganox HP 136 (CAS Nr. 181314-48-7) Thioether und Thioester wie,
Distearyl-3,3-thiodipropionate, Dilauryl 3,3'-thiodipropionate, Ditetradecylthiodipropionate, Di-n- octadecyl disulfide.
UV- Absorber wie, (Methanone, [methylenebis(hydroxymethoxyphenylene)]bis[phenyl-) , ( M eth an one , [ 1 , 6- hexanediylbis[oxy(2-hydroxy-4,l-phenylene)]]bis[phenyl-), 2-Benzoyl-5-methoxyphenol, 2,4- Dihydroxyb enzophenone, 2 ,2 '-Dihydroxy-4-methoxybenzophenone, 2-Hydroxy-4- octyloxybenzophenone, 2-Hydroxy-4-dodecyloxyb enzophenone, 2-(2-Hydroxy-4-hexyl- oxyphenyl)-4,6-diphenyl-l,3,5-triazine, 2,4-Bis(2,4-dimethylphenyl)-6-(2-hydroxy-4- octyloxyphenyl)-l,3,5-triazine, 2-Ethoxy-2'-ethyloxalic acid bisanilide, N-(5-tert-Butyl-2- ethoxyphenyl)-N'-(2-ethylphenyl)oxamide, Dimethyl (p-methoxybenzylidene)malonate, 2,2'-(l,4- Phenylene)bis[3,l-benzoxazin-4-o n e ] , N '-(4-Ethoxycarbonylphenyl)-N-methyl-N-phenylform- amidine, 4-Methoxycinnamic acid 2-ethylhexyl ester, 4-Methoxycinnamic acid isoamyl-ester, 2- Phenylbenzimidazole-5-sulfonsäure, 2-Cyano-3,3-diphenylacrylic acid 2-ethylhexyl ester, 2- Ethylhexyl salicylate oder 3-(4-Methylbenzylidene)bornan-2-one,
Chelatoren wie,
Ethylendiamintetraacetat (EDTA), Ethylendiamin,Acetylaceton, Nitrilotriessigsäure, Ethylenglycol-bis(ß-aminoethyl ether)-N,N-tetraessigsäure, 2,2 ' -Bipyridine, 4,4 ' -Dimethyl-2,2 ' - bipyridin, 2,2',6',2"-Terpyridin, ,4,4'Diphenyl-2,2'-bipyridin, 2,2'-Bipyridin-3,3'-diol, 1,10- Phenanthroline, 4-Methyl-l,10-phenanthroline, 5-Methyl-l,10-phenanthroline, 4,7-Dimethyl-l,10- phenanthroline, 5,6-Dimethyl- 1 , 10-phenanthroline, 3 ,4,7,8-Tetramethyl- 1 , 10-phenanthroline, 4,7- Diphenyl-l,10-phenanthro line, 2 , 4 , 7 , 9-Tetramethyl-l,l 0-phenanthro line, N,N,N' ,N '- Tetramethylethylendiamin, 2-Hydroxychinolin, 8-Hydroxychinolin, 2-Hydroxy-4-methyl- chinaldin, 5-Chlor-8-hydroxychinolin, 5,7-Dichlor-8-hydroxychinolin, 2,4-Chinolindiol, 2- Chinolinthiol, 8-Chinolinthiol, 8-Aminochinolin, 2,2'-Bichinolin, 2-Chinoxalinol, 3-Methyl-2- chinoxalinol, 2,3-Dihydroxychinoxaline, 2-Mercaptopyridin, 2-Dimethylaminopyridin, l,2-Bis(Di- methylphosphino)ethan, 1 ,2-Bis-(diphenylphosphino)ethan, 1 ,3-bis(diphenylphosphino)propane, 1 ,4-Bis(diphenylphosphino)butan, Polyasparaginsäure oder Iminodisuccinat. Iodhaltige Verbindungen, insbesondere Biozide werden vor allem in Gegenwart der oben näher beschriebenen Trockner abgebaut. Obwohl die stärksten Effekte in Gegenwart dieser Trockner beobachtet werden, haben auch eine Reihe von weiteren Farbkomponenten einen destabilisierenden Effekt auf iodhaltige Verbindungen, insbesondere Biozide. Zu nennen sind hier anorganische und organische Pigmente, Füller, Hautverhinderungsmittel, Rheologieadditive wie beispielsweise Anti ab setzmittel und Thixotropiermittel, weitere Verbindungen, insbesondere Biozide wie Fungizide, Bakterizide, Antifoulingmittel und Algizide, Lösungsmittel, Prozessadditive, Weichmacher, UV- und Hitzestabilisatoren, Korrosionsinhibitoren usw. Die erfindungsgemäßen Zusammensetzungen/Formulierungen zeigen auch hier einen stark stabilisierenden Effekt.
Die erfmdungsgemäßen Zusammensetzungen/Formulierungen eingesetzt in oxidativ trocknenden Bindemittelpräparationen, bzw. die erfmdungsgemäßen Bindemittelpräparationen selbst zeigen eine gegenüber unstabilisierten iodhaltigen Systemen, insbesondere IPBC-haltigen Systemen eine deutliche Reduzierung der Trockenzeit bzw. keine Verlängerung der Trockenzeit im Vergleich zu den nicht mit IPBC ausgerüsteten Systemen (sogenannte Blank-Formulierungen).
Bevorzugt werden die erfindungsgemäßen Bindemittelformulierungen als Anstrichmittel, insbesondere als Farben, Lacke, Grundierungen, Imprägnierungen und Lasuren eingesetzt. Entsprechend betrifft die Erfindung auch die Verwendung der erfindungsgemäßen Bindemittelformulierungen als Anstrichmittel.
Die Erfindung betrifft weiterhin die Verwendung der erfindungsgemäßen Polymeren oder der erfmdungsgemäßen Zusammensetzung zum Schutz von technischen Materialien gegen Zerstörung oder Befall durch Mikroorganismen.
Die erfmdungsgemäßen Polymeren bspw. in Form ihrer Polymerpräparationen eignen sich zum Schutz von technischen Materialien. Unter technischen Materialien sind im vorliegenden Zusammenhang nicht-lebende Materialien zu verstehen, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise handelt es sich bei den technischen Materialien um Klebstoffe, Leime, Papier und Karton, Textilien, Leder, Holz, Holzwerkstoffe, Anstrichmittel und Kunststoffartikel, Kühlschmierstoffe und andere Materialien, die von Mikroorganismen befallen oder zersetzt werden können.
Als Mikroorganismen, die einen Abbau oder eine Veränderung der technischen Materialien bewirken können, seien beispielsweise Bakterien, Pilze, Hefen, Algen und Schleimorganismen genannt. Vorzugsweise wirken die erfmdungsgemäßen Wirkstoffe gegen Pilze, insbesondere Schimmelpilze, holzverfärbende und holzzerstörende Pilze (Basidiomyceten) sowie gegen Schleimorganismen und Bakterien.
Es seien beispielsweise Mikroorganismen der folgenden Gattung genannt:
Alternaria, wie Alternaria tenuis, Aspergillus, wie Aspergillus niger,
Chaetomium, wie Chaetomium globosum,
Coniophora, wie Coniophora puetana,
Lentinus, wie Lentinus tigrinus,
Penicillium, wie Penicillium glaucum, Polyporus, wie Polyporus versicolor, Aureobasidium, wie Aureobasidium pullulans, Sclerophoma, wie Sclerophoma pityophila, Trichoderma, wie Trichoderma viride, Escherichia, wie Escherichia coli, Pseudomonas, wie Pseudomonas aeruginosa, Staphylococcus, wie Staphylococcus aureus.
Die Erfindung betrifft weiterhin technische Materialien, enthaltend wenigstens das erfmdungsgemäße Polymer oder eine erfindungsgemäße Zusammensetzung.
Beispiele:
In den folgenden Beispielen werden durch Lagerung bei erhöhter Temperatur beschleunigte Stabilitätstests durchgeführt. Die Gehaltsbestimmung des IPBC erfolgte in allen Fällen per HPLC.
Beispiele 1-2 In den Beispielen 1-2 wird die Herstellung erfindungsgemäßer Zusammensetzungen beschrieben. Beispiel 1 Emulgatorfreie Emulsionspolymerisation (IPBC : Aziridin = 4:1)
Monomerlösung I: Es wurden 40,0g IPBC und 10g Crosslinker CX-100 der Fa. DSM (Trimethylolpropan-tris[3-(2-methyl-l-aziridinyl)propionat] in einer Mischung bestehend aus 74,85g Methylmethacrylat, 13,2g Stearylmethacrylat und 59g Divinylbenzol gelöst. In einer Polymerisationsapparatur wurden zu einer Lösung von 2,63g Natrium 4- Vinylbenzolsulfonat und 2,43g Natriumperoxodisulfat unter Rühren 6g der Monomerenlösung I gegeben, auf 700C aufgeheizt und 30 Minuten gerührt. Anschließend wurde der Rest der Monomerenlösung I innerhalb von 5 Stunden zugetropft und nach beendeter Zugabe über Nacht bei 700C nachgerührt. Nach dem Abkühlen wurde die erhaltene Dispersion durch eine Perlmühle gefahren und aus dem so gewonnenen Latex die Polymerphase durch Sprühtrocknung isoliert (Büchi B-290 Sprühtrockner, Pumpenleistung 45%, N2-Fluß 35 ^min"1, Inlet 1600C, Outlet 73°C). Es wurden 171,4g eines feinen Pulvers (entsprechend 87% d.Th.) mit einem IPBC-Gehalt von 18,1% erhalten.
Beispiel 2: Miniemulsionspolymerisation (IPBC: Aziridin = 3:1)
Ölphase I: 60g IPBC wurden in einer Mischung enthalten 37,4g Methylmethacrylat, 6,6g Stearylmethacrylat und 29,5g Divinylbenzol gelöst.
Emulsion I: Eine Lösung von 7,4g Tanemul" 508 (nichtionischer ethoxylierter Stearylalkohol Emulgator der Fa. Tanatex,) und 1,32g Natrium 4-Vinylbenzolsulfonat in 650ml Wasser wurde mit der Ölphase I unter Verwendung eines Ultraturrax (24.000 Umin"1, 10 Minuten) in eine Emulsion überführt.
Polymerlatex I: In einer Polymerisationsapparatur wurde zu einer Lösung von 0,12g
Natriumperoxodisulfat in 20ml Wasser die Emulsion I gegeben, unter Rühren auf 700C erwärmt und dann 20 Minuten gerührt. Anschließend wurde eine Lösung von 1,1g Natriumperoxodisulfat in 20ml Wasser zugesetzt, weitere 2,5 Stunden gerührt, dann innerhalb von 2 Stunden eine Lösung von 1 ,2g Natriumperoxodisulfat in 10ml Wasser zudosiert, anschließend noch 3 Stunden nachgerührt und dann auf Raumtemperatur abgekühlt.
Emulsion II: Eine Lösung enthaltend 20g Crosslinker CX-100 der Fa. DSM (Trimethylolpropan- tris[3-(2-methyl-l-aziridinyl)propionat] sowie 10,7g Rhodiasolv* DIB (Ölphase) wurde mit einer Lösung von 1 ,53g Tanemul® KS ( ethoxyliertes Rizinusöl) in 53,3g Wasser mit Hilfe eines Ultraturrax (24.000 Umin"1, 5 Minuten) in eine Emulsion überführt.
Die Emulsion II wurde mit dem Polymerlatex I unter Flügelblattrührung gemischt (10 Minuten), die erhaltene Suspoemulsion durch eine Perlmühle gefahren und aus dem so gewonnenen Latex die Polymerphase durch Sprühtrocknung isoliert (Büchi B-290 Sprühtrockner, Pumpenleistung 55%, N2-FIuB 35 ^min"1, Inlet 1600C, Outlet 500C). Es wurde nur der Feinanteil isoliert und so 114,3g eines feinen Pulvers (entsprechend 70% d.Th.) mit einem IPBC-Gehalt von 27,4% erhalten.
Beispiel 3 Verwendung eines erfindungsgemäßen Polymers in Bindemittelformulierungen
Das IPBC- und Aziridin- enthaltende Polymer aus Beispiel 2 (Verhältnis IPBC:Aziridin = 3: 1) wurde in einem typischen, Alkyd-basierten Anstrichsystem (Alkydlasur A) in Gegenwart eines Übergangsmetalltrockners (Co) und eines Metalloxidpigmentes (Eisenoxid) eingebracht. Zur Ausrüstung des Anstrichsystems wurden das vorgenannte Polymer, ein IPBC-Konzentrat enthaltend IPBC und ein Aziridin im Verhältnis 2:1 (siehe Tabelle 1, Referenz II) sowie IPBC (neat) als Referenz I jeweils verwendet.
Gemisch bestehend aus Diisobutyladipat, Diisobutylglutarat, Diisobutylsuccinat, Fa. Rhodia. Trimethylolpropan-tris [3 -(2-methyl- 1 -aziridinyl)propionat]
Die Rezeptur der verwendeten Alkydlasur A ist in der Tabelle 2 dargestellt.
Zur Bestimmung der Stabilisierung wird ein beschleunigter Alterungstest durchgeführt. Hierzu wird das ausgerüstete Farbsystem in dicht schließende 200ml-Glasflaschen gefüllt, wobei nur eine minimale Restmenge Luft in dem Gebinde verbleibt, und bei 400C gelagert. Die Ergebnisse sind der Tabelle 3 zu entnehmen.
entspricht jeweils 0,7 Gew.-% IPBC, bezogen auf die Lasur.
Aus Tabelle 3 wird deutlich, dass das mit einer 3-Ringverbindung und IPBC ausgerüstete Polymer im Hinblick auf die Stabilisierung von IPBC (siehe Lasur A-I) eine deutlich höhere Stabilität gegenüber der unstabilisierten Probe A-II aufweist. Auch gegenüber der lediglich mit Aziridin stabilisierten IPBC-Probe ohne Nutzung der Polymermatrixverkapselung (Lasur A-III) zeigt sich noch eine deutliche Verbesserung, obwohl die Lasur A-III ein größeres Aziridin/IPBC-Verhältnis aufweist (1/2 vs. 1/3).
' nicht stabilisierte Probe
2) Aziridin stab. IPBC, ohne Polymermatrix
Beispiel 4 Verwendung eines erfindungsgemäßen Polymers in Bindemittelformulierungen
Die IPBC-Zusammensetzung aus den Beispielen 1 und 2 wurden in einer handelsüblichen Holz- Dickschichtlasur„Alkydlasur B" (enthaltend Alkydharz, Testbenzin, Eisenoxidpigment, Trockner, Butanonoxim, UV- Absorber und Additive) eingebracht. Zur Ausrüstung des Anstrichsystems mit jeweils 0,7% IPBC, bezogen auf die Lasur, werden jeweils die Zusammensetzungen der Beispiele 1, 2 sowie unstabilisiertes IPBC eingesetzt (siehe Tabelle 4):
entspricht jeweils 0,7 Gew.- IPBC bezogen auf Lasur
Die zu untersuchenden, mit jeweils 0.7% IPBC ausgerüsteten Dickschichtlasuren (Alkydlasur B-I bis Alkydlasur B-III) wurden durch Mischen der in der Tabelle 4 angegebenen Gewichtsanteile der Alkydlasur B sowie der genannten IPBC-haltigen Zusammensetzungen hergestellt.
Zur Bestimmung der Stabilisierung wird ein beschleunigter Alterungstest durchgeführt. Hierzu wird das ausgerüstete Farbsystem in dicht schließende 200 ml-Glasflaschen gefüllt, wobei nur eine minimale Restmenge Luft in dem Gebinde verbleibt, und bei 400C gelagert. Die Ergebnisse sind der Tabelle 5 zu entnehmen, wonach nur die mit den erfindungsgemäß ausgerüsteten Alkydlasuren B-I und B-II im Vergleich zu der unstabilisierten Probe nach 4 Wochen Lagerung bei 400C keinen signifikanten Abbau des IPBC zeigen. Insbesondere die Alkydlasur B-II zeigt auch nach 8 Wochen Lagerung bei 400C nur einen leichten IPBC-Abbau.
' nicht stabilisierte Probe

Claims

Patentansprüche
1. Polymer, enthaltend wenigstens eine heterocyclische 3-Ring-Verbindung und eine jodhaltige Verbindung.
2. Polymer gemäß Anspruch 1, dadurch gekennzeichnet, dass die heterocyclische 3-Ring- Verbindung ein Epoxid oder ein Aziridin, insbesondere ein Aziridin ist.
3. Polymer gemäß Anspruch 1, dadurch gekennzeichnet, dass das Polymer ein natürliches, halbsynthetisches und/oder synthetisches Polymer ist.
4. Polymer gemäß Anspruch 1, dadurch gekennzeichnet, dass das Polymer partikulär ist, insbesondere eine mittlere Teilchengröße von kleiner 15μm, insbesondere kleiner lOμm und besonders bevorzugt kleiner 6μm hat.
5. Polymer gemäß Anspruch 1, dadurch gekennzeichnet, dass Polymer aus ethylenisch ungesättigten Monomeren M aufgebaut ist, umfassend:
- wenigstens 30 Gew.-%, insbesondere wenigstens 40 Gew.-%, besonders bevorzugt wenigstens 50 Gew.-%, bezogen auf die Gesamtmenge der Monomere M, wenigstens eines neutralen, monoethylenisch ungesättigten Monomer e n M1 mit einer Wasserlöslichkeit von nicht mehr als 50 g/l bei 25 0C, vorzugsweise nicht mehr als 30 g/l bei 25 0C,
- bis zu 60 Gew.-%, insbesondere von 0,01 bis 50 Gew.-%, bezogen auf die Gesamtmenge der Monomere M, eines oder mehrerer von den Monomeren M1 verschiedener mehrfach ethylenisch ungesättigter Monomere M2 und
- bis zu 40 Gew. -%, insbesondere bis zu 0,01 bis 40 Gew.-%, bezogen auf die Gesamtmenge der Monomere M, eines oder mehrerer von den Monomeren M1 und M2 verschiedener Monomere M , die ladungstragend oder, potentiell ladungstragend sind oder neutral und vorzugsweise nicht potentiell ladungstragend sind, mit einer Wasserlöslichkeit von mehr als 50 g/l bei 25 0C.
6. Polymer gemäß Anspruch 1, dadurch gekennzeichnet, dass die heterocyclische 3-Ring- Verbindung ein Azirindin der Formel I
wobei
R1 Wasserstoff, Alkyl oder Cycloalkyl, die jeweils unsubstituiert oder substituiert und/oder einfach- oder mehrfach ethylenisch ungesättigt sind, jeweils substituiertes oder unsubstituiertes Fullerenyl, Aryl, Alkoxy, Alkoxycarbonyl, Arylcarbonyl, Alkanoyl, Carbamoyl oder Oxomethylen bedeutet,
R2, R3, R4 und R5 unabhängig voneinander die gleiche Bedeutung wie R1 haben und zusätzlich unabhängig Halogen, Hydroxyl, Carboxyl, Alkylsulfonyl, Arylsulfonyl, Nitril, Isonitril bedeuten oder die Reste
R2 und R4 oder R3 und R5 gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, einen 5- bis 10 gliedrigen carbocyclischen Ring bilden, der unsubstituiert oder substituiert und/oder einfach- oder mehrfach ethylenisch ungesättigt ist.
7. Polymer gemäß Anspruch 1, enthaltend als iodhaltige Verbindung wenigstens Diiodmethyl-p-tolylsulfon, Diiodmethyl-p-chlorphenylsulfon, 3-Brom-2,3-diiod-2- propenylalkohol, 2,3,3-Triiodallylalkohol, 4-Chlor-2-(2-chlor-2-methylpropyl)-5-[(6-iod-3- pyridinyi)methoxy]-3(2H)- pyridazinone (CAS-RN: 120955-77-3)Iodfenfos, 3-Iod-2- propinyl-2,4,5-trichlorphenylether, 3-Iod-2-propinyl-4-chlorphenylformal (IPCF), N- Iodpropargyloxycarbonyl-alanin, N-Iodpropargyloxycarbonyl-alanin-e thy 1 ester, 3 -(3 - Iodpropargyl)-benzoxazol-2-on, 3-(3-Iodpropargyl)-6-chlorbenzoxazol-2-o n , 3-Iod-2- propinyl-alkohol, 4-Chlorphenyl-3-iodpropargylformal,3-Iod-2-propinyl-propyl-carbamat, 3-Iod-2-propinyl-butyl-carbamat (IPBC), 3-Iod-2-propinyl-m-chlorphenyl-carbamat, 3-
Iod-2-propinyl-phenyl-c arb am at , D i-(3-Iod-2-propinyl)hexyl-dicarbamat, 3-Iod-2- propinyloxyethanol-ethylcarbamat, 3-Iod-2-propinyl-oxyethanol-phenyl-carbamat, 3-Iod- 2-propinyl-thioxo-thioethylcarbamat, 3-Iod-2-propinyl-carbaminsäureester (IPC), 3-Brom- 2,3-diiod-2-propenylethylcarbamat, 3-Iod-2-propinyl-n-hexylcarbamat oder 3-Iod-2- propinyl-cyclohexylcarbamat.
8. Polymer gemäß Anspruch 1, enthaltend als iodhaltige Verbindung wenigstens IPBC.
9. Verfahren zur Herstellung von Polymeren gemäß Anspruch 1, dadurch gekennzeichnet, dass man a) wenigstens eine jodhaltige Verbindung, wenigstens eine heterocyclische 3-Ring- Verbindung und ein Polymer in Gegenwart wenigstens eines Lösungsmittel mischt und anschließend das Lösungsmittel entfernt, oder b) wenigstens ein Polymer, vorzugsweise ein thermoplastisches Polymer, wenigstens eine jodhaltige Verbindung und wenigstens eine heterocyclische 3-Ringverbindung ggf. unter Verwendung weiterer Hilfsstoffe extrudiert, oder c) eine wässrige Dispersion eines vorzugsweise feinverteilten Polymers in Gegenwart einer O/W-Emulsion, enthaltend wenigstens eine iodhaltige Verbindung, wenigstens eine heterocyclische 3 -Ring- Verbindung, Wasser und organisches Lösungsmittel schert, vorzugsweise mittels eines Flügelblattrührers oder einer Perlmühle, oder d) eine wässrige Dispersion eines vorzugsweise feinverteilten Polymers, enthaltend wenigstens eine iodhaltige Verbindung, in Gegenwart einer O/W-Emulsion, enthaltend wenigstens eine heterocyclische 3 -Ring- Verbindung, Wasser und organisches
Lösungsmittel schert, vorzugsweise mittels eines Flügelblattrührers oder einer Perlmühle, oder e) eine wässrige Dispersion eines vorzugsweise feinverteilten Polymers, enthaltend wenigstens eine heterocyclische 3 -Ring- Verbindung, in Gegenwart einer O/W-Emulsion, enthaltend wenigstens eine iodhaltige Verbindung, Wasser und organisches Lösungsmittel schert, vorzugsweise mittels eines Flügelblattrührers oder einer Perlmühle, oder f) das Polymer in Gegenwart wenigstens einer iodhaltigen Verbindung und wenigstens einer heterocyc lis chen 3 -Ring- Verbindung herstellt, vorzugsweise durch Emulsionspolymerisation ethylenisch ungesättigter Monomere.
10. Polymerpräparation, enthaltend wenigstens ein Polymer gemäß Anspruch 1 und wenigstens einen Hilfsstoff.
11. Polymer dadurch gekennzeichnet, dass es aus ethylenisch ungesättigten Monomeren M aufgebaut ist, umfassend:
- wenigstens 30 Gew.-%, insbesondere wenigstens 40 Gew.-%, besonders bevorzugt wenigstens 50 Gew.-%, bezogen auf die Gesamtmenge der Monomere M, wenigstens eines neutralen, monoethylenisch ungesättigten Monomeren M1 mit einer Wasserlöslichkeit von nicht mehr als 50 g/l bei 25 0C, vorzugsweise nicht mehr als 30 g/l bei 25 0C,
- bis zu 60 Gew.-%, insbesondere von 0,01 bis 50 Gew.-%, bezogen auf die Gesamtmenge der Monomere M, eines oder mehrerer von den Monomeren M1 verschiedener mehrfach ethylenisch ungesättigter Monomere M2 und - bis zu 40 Gew.-%, insbesondere bis zu 0,01 bis 40 Gew.-%, bezogen auf die Gesamtmenge der Monomere M, eines oder mehrerer von den Monomeren M1 und M2 verschiedener Monomere M3, die ladungstragend oder, potentiell ladungstragend sind oder neutral und vorzugsweise nicht potentiell ladungstragend sind, mit einer Wasserlöslichkeit von mehr als 50 g/l bei 25 0C, enthaltend wenigstens eine Aziridin- Verbindung.
12. Verwendung von Polymeren gemäß Anspruch 11 zur Stabilisierung von iodhaltigen Verbindungen.
13. Zusammensetzung, enthaltend a) wenigstens ein Polymer gemäß Anspruch 11 und b) wenigstens eine iodhaltige Verbindung.
14. Bindemittelformulierung, enthaltend wenigstens ein Bindemittel wenigstens ein Polymer nach Anspruch 7 oder - wenigstens eine iodhaltige Verbindung und wenigstens ein Polymer gemäß
Anspruch 11.
15. Bindemittelformulierung nach Anspruch 14, enthaltend wenigstens ein oxidativ trocknendes Bindemittel.
16. Bindemittelformulierung nach Anspruch 14, enthaltend wenigstens ein Übergangsmetalltrockner.
17. Bindemittelformulierung nach Anspruch 11, enthaltend
1 bis 80 Gew.-% Alkydharzbinder, 0 bis 50 Gew.-% Farbpigmente,
2 bis 97 Gew.-% Lösungsmittel, 0,001 bis 3 Gew.-% eines Übergangsmetalltrockners,
0,01 bis 5 Gew.-% eines Polymeren gemäß Anspruch 1 oder 0,001 bis 5 Gew,-% einer iodhaltigen Verbindung und 0,001 bis 5 Gew.-% eines Polymeren gemäß Anspruch 11.
18. Verwendung der Zusammensetzung nach Anspruch 1 oder 13 zum Schutz von technischen Materialien gegen Zerstörung oder Befall durch Mikroorganismen.
19. Technische Materialien, enthaltend wenigstens ein Polymer gemäß Anspruch 1 oder eine Zusammensetzung gemäß Anspruch 13.
EP10734060A 2009-06-30 2010-06-28 Heterocyclische 3-ringverbindungen und jodhaltige verbindungen enthaltende polymere Withdrawn EP2449016A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10734060A EP2449016A1 (de) 2009-06-30 2010-06-28 Heterocyclische 3-ringverbindungen und jodhaltige verbindungen enthaltende polymere

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09164218A EP2270087A1 (de) 2009-06-30 2009-06-30 Heterocyclische 3-Ringverbindungen und jodhaltige Verbindungen enthaltende Polymere
EP10734060A EP2449016A1 (de) 2009-06-30 2010-06-28 Heterocyclische 3-ringverbindungen und jodhaltige verbindungen enthaltende polymere
PCT/EP2010/059113 WO2011000794A1 (de) 2009-06-30 2010-06-28 Heterocyclische 3-ringverbindungen und jodhaltige verbindungen enthaltende polymere

Publications (1)

Publication Number Publication Date
EP2449016A1 true EP2449016A1 (de) 2012-05-09

Family

ID=41349559

Family Applications (2)

Application Number Title Priority Date Filing Date
EP09164218A Withdrawn EP2270087A1 (de) 2009-06-30 2009-06-30 Heterocyclische 3-Ringverbindungen und jodhaltige Verbindungen enthaltende Polymere
EP10734060A Withdrawn EP2449016A1 (de) 2009-06-30 2010-06-28 Heterocyclische 3-ringverbindungen und jodhaltige verbindungen enthaltende polymere

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP09164218A Withdrawn EP2270087A1 (de) 2009-06-30 2009-06-30 Heterocyclische 3-Ringverbindungen und jodhaltige Verbindungen enthaltende Polymere

Country Status (10)

Country Link
US (1) US20120309897A1 (de)
EP (2) EP2270087A1 (de)
JP (1) JP2012531500A (de)
CN (1) CN102471526A (de)
AU (1) AU2010268174A1 (de)
BR (1) BRPI1014143A2 (de)
MX (1) MX2011013932A (de)
NZ (1) NZ597171A (de)
RU (1) RU2012102792A (de)
WO (1) WO2011000794A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2236033A1 (de) * 2009-04-01 2010-10-06 LANXESS Deutschland GmbH Stabilisierung Iod-haltiger Verbindungen
EP2594132A1 (de) 2011-11-16 2013-05-22 Lanxess Deutschland GmbH Stabilisierung von Iod enthaltenden Verbindungen mit Stickstoff enthaltenden Polymeren
US8927619B2 (en) * 2011-12-21 2015-01-06 Jorg Thomas Wilken Color-stabilized iodopropynyl butylcarbamate
DE102012203003A1 (de) 2012-02-28 2013-08-29 Schülke & Mayr GmbH Flüssige Zubereitung für die Reduktion von freiem Sauerstoff und die Konservierung von Wasser
JP6147115B2 (ja) * 2012-07-13 2017-06-14 大阪ガスケミカル株式会社 抗生物活性粒子およびその製造方法
US20140349015A1 (en) * 2013-05-22 2014-11-27 Jacam Chemical Company 2013, Llc Corrosion inhibitor systems using environmentally friendly green solvents
US8575237B1 (en) * 2013-05-22 2013-11-05 Jacam Chemical Company 2013, Llc Corrosion inhibitor systems using environmentally friendly green solvents
CN104119786A (zh) * 2014-08-10 2014-10-29 韩巧 具有驱避昆虫效果的粉末涂料组合物及其制备方法
MX2018011808A (es) * 2016-03-31 2019-01-24 Dow Global Technologies Llc Combinacion sinergica de compuesto de lenacilo y diyodometil p-tolil sulfona para proteccion de pelicula seca.
JP6692230B2 (ja) * 2016-06-29 2020-05-13 大阪ガスケミカル株式会社 塗料
CA3039001A1 (en) 2016-09-30 2018-04-05 Swimc Llc Tung oil-based non-lapping water-compatible wood stain
CN111567351B (zh) * 2020-04-30 2022-04-12 广西壮族自治区农业科学院 一种甘蔗苗黄化病分级及防治方法
EP4176721A1 (de) * 2021-11-03 2023-05-10 LANXESS Deutschland GmbH Biozide polymermischungen
CN116891406A (zh) * 2023-06-28 2023-10-17 浙江昂利泰制药有限公司 一种α-酮亮氨酸的制备方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3225013A (en) 1964-10-12 1965-12-21 Minnesota Mining & Mfg Curable compositions of an organic acid anhydride and an alkylenimine derivative
US4276211A (en) 1980-03-10 1981-06-30 Troy Chemical Corporation Stabilization composition for coating composition
US4490505A (en) 1980-04-17 1984-12-25 Minnesota Mining And Manufacturing Company Polyfunctional aziridine crosslinking agents for aqueous magnetic recording media binder
US4297258A (en) 1980-04-28 1981-10-27 Ici Americas Inc. Non-yellowing paint formulations containing iodo substituted alkynyl urethanes as fungicides
EP0083308B2 (de) 1981-12-24 1990-10-24 Ciba-Geigy Ag Verfahren zum Stabilisieren von Fungiciden
US4605698A (en) 1983-07-13 1986-08-12 Diamond Shamrock Chemicals Company Polyfunctional aziridines for use in crosslinking applications
DE3702233A1 (de) * 1987-01-27 1988-08-04 Espe Stiftung Eine aziridinverbindung enthaltendes praeparat fuer dentale zwecke
US5534391A (en) 1994-01-28 1996-07-09 Minnesota Mining And Manufacturing Company Aziridine primer for flexographic printing plates
JPH10120515A (ja) * 1996-10-24 1998-05-12 Mitsui Chem Inc 塩化ビニル樹脂成形用組成物
US5916930A (en) 1996-11-20 1999-06-29 Troy Corporation Stabilization of biocidal activity in air drying alkyds
US6059991A (en) 1997-12-12 2000-05-09 Troy Technology Corporation, Inc. Stabilized composition containing halopropynyl compounds
US6140370A (en) * 1998-09-21 2000-10-31 Troy Technology Corporation, Inc. Stabilized alkyd based compositions containing halopropynl compounds
US6472424B1 (en) 2000-06-07 2002-10-29 Troy Technology Corporation, Inc. Stabilized antimicrobial compositions containing halopropynyl compounds and benzylidene camphors
US7008979B2 (en) * 2002-04-30 2006-03-07 Hydromer, Inc. Coating composition for multiple hydrophilic applications
DE10256494A1 (de) 2002-12-03 2004-06-24 Basf Ag Stabilisierte Zusammensetzungen, enthaltend polyfunktionelle Aziridinverbindungen
CA2462010A1 (en) * 2004-02-23 2005-08-23 Bayer Inc. Room temperature curing system
PL1742531T5 (pl) 2004-04-26 2018-04-30 Basf Se Zastosowanie wodnych kompozycji grzybobójczych do zwalczania szkodliwych drobnoustrojów
JP2006045686A (ja) * 2004-07-30 2006-02-16 Komatsu Seiren Co Ltd 繊維布帛処理用液体組成物、機能性繊維布帛およびその製造方法
DE102004037366A1 (de) 2004-07-30 2006-03-23 Lanxess Deutschland Gmbh 5-Iodtetrazole
US20080171658A1 (en) * 2005-03-10 2008-07-17 Basf Aktiengesellshaft Method For Producing Aqueous Polymer Dispersions Containing Pesticides And Use Thereof
US7831243B2 (en) * 2005-06-14 2010-11-09 Sony Ericsson Mobile Communications Ab Communications device, system and method for personalized content delivery
DE102005042433A1 (de) 2005-09-07 2007-03-08 Lanxess Deutschland Gmbh Stabilisierung Iod haltiger Biozide
JP2007077349A (ja) * 2005-09-16 2007-03-29 Taoka Chem Co Ltd 樹脂組成物、前記樹脂組成物を用いた合わせガラス用中間膜および前記中間膜を用いた合わせガラス
US20070166344A1 (en) * 2006-01-18 2007-07-19 Xin Qu Non-leaching surface-active film compositions for microbial adhesion prevention
DE102006010199A1 (de) 2006-03-06 2007-09-13 Lanxess Deutschland Gmbh Stabilisierung Iod-haltiger Biozide durch spezielle Azolverbindungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011000794A1 *

Also Published As

Publication number Publication date
EP2270087A1 (de) 2011-01-05
US20120309897A1 (en) 2012-12-06
AU2010268174A1 (en) 2012-02-02
BRPI1014143A2 (pt) 2016-04-26
JP2012531500A (ja) 2012-12-10
CN102471526A (zh) 2012-05-23
WO2011000794A1 (de) 2011-01-06
RU2012102792A (ru) 2013-08-10
NZ597171A (en) 2013-08-30
MX2011013932A (es) 2012-04-30

Similar Documents

Publication Publication Date Title
WO2011000794A1 (de) Heterocyclische 3-ringverbindungen und jodhaltige verbindungen enthaltende polymere
EP2462805A1 (de) Formulierungen enthaltend stabilisierte iodhaltige Verbindungen
US9328065B2 (en) Nitrogen-containing inorganic carrier materials
DE102005042433A1 (de) Stabilisierung Iod haltiger Biozide
EP1993362A1 (de) Stabilisierung iod-haltiger biozide durch spezielle azolverbindungen
US9585384B2 (en) Stabilization of compounds comprising iodine
EP2779830B1 (de) Stabilisierung von iod enthaltenden verbindungen mit stickstoff enthaltenden polymeren
WO2017037118A1 (de) Biozide mischungen
EP3344663A1 (de) Penflufenhaltige polymerpartikel
US20120186487A1 (en) Inorganic carrier materials containing heterocyclic 3-ring compounds

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LANXESS DEUTSCHLAND GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160101

R18D Application deemed to be withdrawn (corrected)

Effective date: 20160105