EP2445771B1 - Verfahren zum erstellen eines elektronischen stellwerks als ersatz eines bestehenden stellwerks - Google Patents

Verfahren zum erstellen eines elektronischen stellwerks als ersatz eines bestehenden stellwerks Download PDF

Info

Publication number
EP2445771B1
EP2445771B1 EP10725956.6A EP10725956A EP2445771B1 EP 2445771 B1 EP2445771 B1 EP 2445771B1 EP 10725956 A EP10725956 A EP 10725956A EP 2445771 B1 EP2445771 B1 EP 2445771B1
Authority
EP
European Patent Office
Prior art keywords
logic
circuit
plan
signal box
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10725956.6A
Other languages
English (en)
French (fr)
Other versions
EP2445771A1 (de
Inventor
Markus Montigel
David Mueller
Markus Herrli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Supercomputing Systems AG
Original Assignee
Supercomputing Systems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Supercomputing Systems AG filed Critical Supercomputing Systems AG
Publication of EP2445771A1 publication Critical patent/EP2445771A1/de
Application granted granted Critical
Publication of EP2445771B1 publication Critical patent/EP2445771B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/30Trackside multiple control systems, e.g. switch-over between different systems
    • B61L27/37Migration, e.g. parallel installations running simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L19/00Arrangements for interlocking between points and signals by means of a single interlocking device, e.g. central control
    • B61L19/06Interlocking devices having electrical operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L19/00Arrangements for interlocking between points and signals by means of a single interlocking device, e.g. central control
    • B61L19/06Interlocking devices having electrical operation
    • B61L2019/065Interlocking devices having electrical operation with electronic means

Definitions

  • the invention relates to signal boxes for rail traffic. It relates in particular to a method for creating an electronic interlocking and an electronic interlocking.
  • relay interlocking i. electrical interlockings.
  • the fuse-related dependencies are completely electrically produced by signal relays.
  • the relay interlockings are increasingly being replaced by electronic interlockings.
  • the interlocking dependencies are implemented by software in dedicated computers.
  • electronic interlockings according to the prior art are based on a central computer, on which the entire track image is mapped in the form of software. Accordingly elaborate is the appropriate software and This has to be adapted and parameterized for each station, resulting in an immense effort for the certification.
  • the WO 2005/113315 shows a control system for railway signaling equipment, which is intended as a replacement of conventional relay-based systems.
  • Processor units are used to take over the function of each unit of a relay interlocking control.
  • the units used for this purpose are programmable processor cards which have a plurality of microprocessors and a memory. Also, this procedure is based so like electronic interlocking on microprocessors that work off commands set in a program; this being implemented so as to equivalently replace the switching logic of a relay-based system.
  • WO 03/070537 relates to a method for generating logical control units for train station computer systems.
  • WO 2006/051355 has a control system for railway vehicles to the content.
  • the control system has a plurality of programmable logic controllers (PLC).
  • the font US 5,922,034 shows a programmable device driver for railway signaling equipment.
  • the device driver acts as an input and / or output unit for a particular function, such as a relay, a signal light, a motor, a switch, etc. It has a CPU and RAM memory.
  • Various Device drivers may be serially connected; They are controlled by a central computer, which can be understood as an electronic interlocking. Also in the approach according to US 5,922,034 There are the disadvantages of the system discussed above.
  • a method for creating an electronic interlocking as well as an electronic interlocking are made available, which allow the replacement of relay interlockings by modern technology, without too much effort for changes would have to be made and without the certification effort is too large.
  • the switching logic of an existing relay interlocking is mapped to a functionally equivalent circuit of electronic components. It is therefore preferable to the components of the relay circuit functionally identical / equivalent semiconductor devices used.
  • the functionally equivalent circuit is a configurable logic circuit, ie a circuit whose functional structure is configured.
  • a 'generic' microprocessor to be processed, presented in a memory sequence of commands, but a function structure configured with interconnected blocks.
  • Creating Software for a Processor In a configurable logic circuit, circuit structures are created using hardware description languages or schematics, and subsequently these structures are transferred to the device for configuration. As a result, certain switch positions are activated and / or deactivated in the configurable logic circuit. This results in a concretely implemented digital circuit that i.A. works highly in parallel because each unit of the switch position works in parallel. In contrast, even the fastest microprocessors perform at most few and usually no operations in parallel.
  • FPGA Field Programmable Gate Array
  • Such may include memory cells (e.g., EEPROM, EPROM, SRAM, Flash) in which the configuration is stored. During commissioning, the configuration is transferred to the actual circuit.
  • the FPGA may also be permanently programmed by permanently establishing the connections between the switching units, for example with the so-called 'antifuse' technology.
  • the FPGAs are often also the Complex Programmable Logic Devices (CPLD), which represent another example of configurable logic circuits.
  • CPLD Complex Programmable Logic Devices
  • a functionally equivalent circuit can be present in accordance with an approach if, for each input and output of the relay interlocking switching logic, a corresponding input or output of the functionally equivalent circuit is present and for the same binary input, a same binary output.
  • the interlocking preferably has a plurality of input and / or output units, which form the interfaces to the elements (switches, signals, Gleisokomeldeechen, track block monitoring units) of the outdoor facility.
  • These do not contain 'intelligence' (i.e., no logic) in many embodiments.
  • 'intelligence' i.e., no logic
  • they may also have a functional logic. They are dependent on the type of element to be controlled and serve only to convert the logic signal into the physical control of the corresponding element and thus, for example, the amplification and the potential decoupling between the logic unit and the external system.
  • the input and / or output units can be centrally located in the interlocking, i. in the interlocking building and essentially at the location of the logic unit. Thus, when replacing the relay interlock, ideally only components that are inside the building need to be replaced and installed.
  • the procedure according to the invention may also include the implementation of the circuit in a signal box.
  • the outputs of the functionally equivalent circuit are connected to the existing components to be controlled (switches (controls), signals, barriers (controls)) without them having to be significantly adapted or even replaced.
  • the architecture of the relay interlocking can be maintained substantially and thus eliminates a significant proportion of the design costs, and the entire certification process can be simplified.
  • the interlocking with programmable devices can be realized so that only minor changes to the outdoor facilities must be made. The maintenance is much less expensive than with conventional relay interlockings.
  • remote control and automation tasks and the integration into higher-level systems such as in a remote control system or in subordinate systems such as the ETCS (European Train Control System) can be done relatively easily by the logic modules used.
  • Another advantage over electronic interlockings is the speed. In comparison to the software of a conventional electronic interlocking, the interlocking with the logic circuit designed according to the first aspect of the invention shifts orders of magnitude faster.
  • the first aspect of the invention is, for example, for relay interlocking according to the shutter plan principle but also for relay interlocking according to the track plan applicable. Due to the advantages of the inventive approach to electronic interlockings to be replaced interlocking can also be a software-based electronic interlocking whose core function (binary output in function of the binary input) also by a fixed electronic circuit of semiconductor devices (iA at least one FPGA or a comparable Block) is replaced.
  • the architecture of a relay equivalent functionally equivalent circuit is established by transforming a shutter plan or a track plan into a logic circuit by an automatic translator.
  • the closure plan or the track plan may be in the form of a drawing, a table or in another technical form.
  • the automatic translator may be in the form of computer software that assigns electronic circuitry to the shutter / track schedule based on unique, predefined prescriptions.
  • the regulations are therefore comprehensible at any time and can be designed to meet the requirements of safety-relevant systems. They can also be verified by a certifying body.
  • An analogous procedure can also be selected for software-based electronic interlockings to be replaced, wherein for the circuit layout of the logic circuit, in which the logic is transformed, a corresponding alternative, based on the input-output logic of the software translation program is used ,
  • Particularly favorable is a combination of the first aspect of the invention with the second aspect.
  • this can optionally be transformed back into a comparable form to the original shutter plan / track plan with a back-translation algorithm.
  • the comparison between the closure plan / track plan and the reconstructed comparison plan can be part of the safety-relevant review.
  • a user after the inverse transformation, makes the comparison between the original shutter plan V / S and the comparison plan V '/ S' obtained by inverse transformation.
  • the representation of the comparison plan V '/ S' then makes sense again in the same way as the representation of the original closure plan / track plan V / S. So it makes sense that, for example, a similar representation occurs in a drawing, for example with the same local position in the representation or the same numbering or designation, or that the same names are used when using names for variables or signals.
  • metadata is generated by the translator, which is then used again for the inverse transformation. It goes without saying that these metadata do not fulfill a functional task; they merely serve for better readability of the comparison plan V '/ S' for humans.
  • the comparison between the closure plan / track plan and the comparison plan may be made by the computer.
  • the interlocking has a logic unit and input-output units which, as mentioned, correspond in their characteristics to those of the replaced relay interlocking.
  • the logic unit preferably has at least one communication input for control, automation, ETCS, etc.
  • the logic unit is in the core (i.e., in the elements that detect a binary output from a binary input) preferably free of microprocessors, i. of freely programmable units.
  • the logic unit may have additional systems which always ensure that the instantaneous logic function corresponds to the original logic function determined, for example, by the mentioned translation.
  • the input / output units of the electronic circuit preferably have similar connection structures to the outdoor equipment (switch controllers, signals, barrier controllers, etc.) as the replaced relay units. It is also preferred that the input-output units have similar external dimensions as the relay units.
  • the preferred features can help to make little or no changes to the outdoor facilities.
  • the architecture of the electronic circuit and the input-output units may provide according to a first embodiment, that the logic unit is connected in a star shape with the input-output units.
  • the logic function L is connected in a ring to the input-output units. This simplifies especially the wiring.
  • the ring can be a parallel or serial system, electrical or optical, without or be executed with error correction, one way or two way.
  • the possible characteristics of the communication have different costs and different characteristics: thus, an optically guided ring can have a large extent. Two-way communication has some error redundancy.
  • star and ring architectures are conceivable, for example, a plurality of subunits each having one or more input-output units, which are annularly connected to each other, wherein the connection between the logic unit and subunit is star-shaped.
  • Serial systems usually use data packets that are transmitted periodically. It is therefore technically easily possible to monitor this system state in a logging unit (for example, a separate "black box") and then to write (store) it. This allows all processes to be analyzed later by a computer that is directly connected to the "black box" B. This analysis can usefully be done during operation.
  • a logging unit for example, a separate "black box”
  • the first and the second logic unit preferably have an identical structure and have identical control inputs.
  • the signals from both logic units should be identical. If they are not identical, there is an error in one of the logic units or in one of the higher-level systems.
  • the input-output units can go into a "safe state” (eg signal to red) and / or trigger an alarm. Of course, the alarm can also be triggered by the "Black Box" B.
  • a shutter plan V (or, not shown, a track plan S) is detected by a computer Comp, optionally with a special input unit I may be provided.
  • the input unit may optionally be adapted to the format of the closure plan and, for example, have a scanner and corresponding software for detecting and detecting the symbols in the closure plan.
  • the closure plan can be present from the outset in electronically readable form.
  • the computer comp creates a logic function L #.
  • the logic function corresponds to the electronic representation of a logic circuit. It is mapped to a physical logic circuit that is implemented in a programmable logic device (FPGA).
  • FPGA programmable logic device
  • the method for constructing the logic function L # from the closure plan V (or a track plan S) is shown schematically in FIG. 1 in a specific embodiment which makes verification possible FIG. 2 shown.
  • a suitable translation program T will determine the logic function L #.
  • the translation program also creates a file M with metadata which is not relevant to security and contains, for example, information relating to the presentation of the closure plan.
  • a comparison plan V '/ S' is created from the logic function L # by a back translation program T -1 in the sense of 'reverse engineering', which is designed on the basis of the metadata so that, for example, a similar representation takes place or that the same names are used when using names for variables or signals.
  • the comparison C is made by a verifying person or alternatively can also be done by the / a computer, in which case the metadata is used instead of creating the comparison plan V '/ S'. can also be made available to the comparative program.
  • a user can make a manual adjustment via a corresponding manually-operated input option (Man).
  • Man manually-operated input option
  • FIG. 3 shows a star connection of the logic unit L (on which the logic function L # is implemented) with the input-output units IO 1 ... IO n .
  • the input-output units preferably have similar dimensions to the original relay units and also have similar connection structures to the outdoor equipment, so that little or no changes to the outdoor equipment must be made.
  • Reference symbol S denotes a communication input for communication with an input unit and / or with a higher-level system.
  • the logic unit L is also connected in a star shape to the input-output units; however via a switch X.
  • the architecture according to FIG. 4 is an annular architecture.
  • the logic unit L is annularly connected to the input-output units IO 1 ... IO n . While in a star-shaped architecture the wiring is structurally parallel (even a parallel architecture may optionally use a serial protocol), in an annular architecture it may be both parallel and serial.
  • the communication is serial, ie the data packet transmitted periodically by the logic unit, for example, contains data which contain the entire system state (switching state of each component to be controlled). Each input-output unit is addressed and extracts from the data packet the information needed for it. Because each data packet contains all the information, it is also suitable for monitoring the system and / or logging. For this purpose, the signal is also transmitted via the communication system CB to a "black box" B. There, the successive incoming data packets are stored and / or analyzed, usefully during operation.
  • the communicated state can be reliably transmitted to control systems or for operation under ETCS to the 'Radio Block Center' (RBC).
  • RBC Radio Block Center'
  • the embodiment according to FIG. 5 has, in addition to the logic unit L, a second, functionally equivalent and possibly identical logic unit L *.
  • the control inputs S, S * of the logic units are identical and identical driven.
  • the control signals of L and L * are passed through the communication system CB to the input-output units IO 0 ... IO n .
  • the signals of L and L * should be identical. If they are not identical, there is an error in one of the logic units L or L *, or in one of the superordinate system S or S *.
  • the input-output units IO 0 ... IO n can go into a "safe state” (eg set the signal to red) and trigger an alarm. The alarm can of course be triggered by the "Black Box" B.
  • Embodiments with two redundancy-aware logic units may also be used in star architectures or mixed architectures.
  • the logic unit can be realized due to the inventive approach by a comparatively simple means.
  • the first allows the approach two logic units to work independently of each other in parallel, which, for example, in electronic interlocking hardly in question. This, in turn, allows the redundancy, which is often very desirable, from a safety point of view.
  • the independence of the two logic units may mean, for example, that the logic units exchange no intermediate results, or even that no signals from the one control unit are processed by the other control unit.
  • FIG. 6 shows schematically using the example of FIG. 4 the connection to the outdoor area.
  • the bold black line symbolizes the boundary between the building in which the interlocking is located and the "outside".
  • the input and / or output units are each assigned to an element of the outdoor system to be activated, for example the unit IO B1 to the block B1, the unit IO W1 to the diverter W1, the unit IO S11 to the signal S11 etc.
  • the interface between the existing wiring of the External installation and the replaced interlocking forms a cable distributor V, which is also preferably present in the building interior.
  • FIG. 7 shows as an example a simple outdoor area with the track shown in the figure below.
  • the boxes B1 and B2 in the lower half of the figure designate the route blocks 1 and 2, W1 and W2 denote points, Sij are signals, and GFM1 and GFM2 train free-field units.
  • the correspondingly labeled boxes designate the input and / or output units assigned to the respective elements.
  • the wiring of the logic unit (FPGA) in a ring architecture with the input and / or output units is serially formed in this example as an Ethernet bus.
  • the outgoing from the cable distributor to the outside outdoor cabling can be taken over unchanged by the relay interlocking.

Description

  • Die Erfindung betrifft Stellwerke für den Eisenbahnverkehr. Sie betrifft insbesondere ein Verfahren zum Erstellen eines elektronischen Stellwerks sowie ein elektronisches Stellwerk.
  • Ein Grossteil der heute im Einsatz stehenden Stellwerke für den Eisenbahnverkehr sind Relaisstellwerke, d.h. elektrische Stellwerke. Bei Relaisstellwerken werden die sicherungstechnischen Abhängigkeiten vollständig elektrisch durch Signalrelais hergestellt.
  • Unterhalt und Betrieb dieser Stellwerke können zunehmend kostspielig und problematisch werden. Ausserdem ist die Integration der bestehenden Relaisstellwerke in Fernsteuerungs- und Automatisierungseinrichtungen mit grossen Kosten verbunden.
  • Daher werden die Relaisstellwerke zunehmend durch elektronische Stellwerke ersetzt. Bei elektronischen Stellwerken werden die sicherungstechnischen Abhängigkeiten durch eine Software in dafür vorgesehenen Computern realisiert. Zu diesem Zweck basieren elektronische Stellwerke gemäss dem Stand der Technik auf einem zentralen Rechner, auf welchem das gesamte Gleisbild in Form von Software abgebildet wird. Dementsprechend aufwendig ist die entsprechende Software und diese muss für jeden Bahnhof spezifisch angepasst und parametriert werden, was zu einem immensen Aufwand für die Zertifizierung führt.
  • Ein Ersatz von Relaisstellwerken durch elektronische Stellwerke erfordert auch aus diesem Grund grosse Investitionen für die Projektierung, den Neubau des Stellwerkes und insbesondere für den Ersatz der Aussenanlage sowie die neue Zertifizierung.
  • Die WO 2005/113315 zeigt ein Steuerungssystem für Eisenbahn-Signalanlagen, welches als Ersatz konventioneller relaisbasierter Systeme vorgesehen ist. Es werden Prozessoreinheiten benutzt, um die Funktion je einer Baueinheit einer Relais-Stellwerksteuerung zu übernehmen. Die dafür verwendeten Einheiten sind programmierbare Prozessorkarten, die mehrere Mikroprozessoren und einen Speicher aufweisen. Auch dieses Vorgehen beruht also wie elektronische Stellwerke auf Mikroprozessoren, die in einem Programm gesetzte Befehle abarbeiten; wobei dies so umgesetzt wird, dass die Schaltlogik eines relaisbasierten Systems äquivalent ersetzt wird.
  • WO 03/070537 betrifft ein Verfahren zum Erzeugen von logischen Kontrolleinheiten für Bahnstation-Computersysteme. WO 2006/051355 hat ein Kontrollsystem für Eisenbahnfahrzeuge zum Inhalt. Das Kontrollsystem weist eine Mehrzahl von speicherprogrammierbaren Steuerungen (SPS: programmable logic controller PLC) auf.
  • Aufgrund der notwendigen Verwendung von Mikroprozessoren weisen die Systeme der WO 2005/113315 , WO 03/070537 und WO 2006/051355 jedoch die Nachteile von elektronischen Stellwerken bezüglich Zertifizierungsaufwand auf - programmierte Prozessorsysteme sind in sich enorm komplex, und Sprünge beim Abarbeiten einer Befehlskette aufgrund eines einzigen Fehlers können das System in einen völlig anderen Zustand versetzt werden, was ein grosses, bei der Zertifizierung entsprechend ins Gewicht fallendes Risiko darstellen kann.
  • Die Schrift US 5,922,034 zeigt einen programmierbare Gerätetreiber für Eisenbahnsignalanlagen. Der Gerätetreiber fungiert als Ein- und/oder Ausgabeeinheit für eine bestimmte Funktion, bspw. ein Relais, eine Signalleuchte, einen Motor, einen Schalter etc. Er weist eine CPU und RAM Speicher auf. Verschiedene
    Gerätetreiber können seriell miteinander verbunden sein; sie werden durch einen zentralen Rechner angesteuert, welcher als elektronisches Stellwerk aufgefasst werden kann. Auch beim Ansatz gemäss US 5,922,034 bestehen die Nachteile des vorstehend diskutierten Systems.
  • Es ist eine Aufgabe der Erfindung, eine Lösung für den Ersatz von Relaisstellwerken zur Verfügung zu stellen, welche Nachteile des Standes der Technik überwindet und insbesondere weniger grosse Investitionen erfordert als Lösungen gemäss dem Stand der Technik.
  • Die Erfindung wird durch die unabhängigen Ansprüche 1 und 10 definiert.
  • Erfindungsgemäss sollen ein Verfahren zum Erstellen eines elektronischen Stellwerks sowie ein elektronisches Stellwerk zur Verfügung gestellt werden, welche den Ersatz von Relaisstellwerken durch moderne Technologie erlauben, ohne dass ein zu grosser Aufwand für Änderungen gemacht werden müsste und ohne dass der Zertifizierungsaufwand zu gross wird.
  • Gemäss einem ersten Aspekt der Erfindung wird die Schaltlogik eines bestehenden Relaisstellwerks auf eine funktionell äquivalente Schaltung elektronischer Bauteile abgebildet. Es kommen also vorzugsweise zu den Bauteilen der Relaisschaltung funktionell identische/äquivalente Halbleiterbausteine zum Einsatz.
  • Die funktionell äquivalente Schaltung ist dabei eine konfigurierbare Logikschaltung, d.h. eine Schaltung deren Funktionsstruktur konfiguriert wird. Im Unterschied beispielsweise zu Computern oder gängigen Steuerungssystemen - und bspw. auch elektronischen Stellwerken - ist also nicht eine durch einen ,generischen' Mikroprozessor abzuarbeitende, in einem Speicher vorgelegte Sequenz von Befehlen vorgegeben, sondern eine Funktionsstruktur mit untereinander verschalteten Blöcken konfiguriert.
  • Die Konfiguration einer konfigurierbaren Logikschaltung ist nicht zu verwechseln mit der Programmierung im konventionellen Sinn, d.h. mit der Erstellung von Software für einen Prozessor: Bei einer konfigurierbaren Logikschaltung werden Schaltungsstrukturen mittels Hardwarebeschreibungssprachen oder in Form von Schaltplänen erstellt und nachfolgend diese Strukturen zwecks Konfiguration in den Baustein übertragen. Dadurch werden in der konfigurierbaren Logikschaltung bestimmte Schalterstellungen aktiviert und/oder deaktiviert. Daraus ergibt sich eine konkret implementierte digitale Schaltung, die i.A. hochgradig parallel arbeitet, weil jede Einheit der Schalterstellung parallel arbeitet. Im Kontrast dazu führen auch die schnellsten Mikroprozessoren höchstens wenige und meist gar keine Operationen parallel aus.
  • Ein wichtiges Beispiel einer konfiguierbaren Logikschaltung ist ein so genannter ,Field Programmable Gate Array' (FPGA). Ein solcher kann Speicherzellen (z.B. EEPROM, EPROM, SRAM, Flash) aufweisen, in denen die Konfiguration gespeichert ist. Jeweils bei Inbetriebnahme wird die Konfiguration auf die eigentliche Schaltung übertragen. Gemäss einer alternativen Ausführungsform kann der FPGA auch permanent programmiert sein, indem die Verbindungen zwischen den Schalteinheiten permanent eingerichtet werden, bspw. mit der sogenannten 'antifuse'-Technologie.
  • Zu den FPGAs werden oft auch die Complex Programmable Logic Devices (CPLD) gerechnet, die ein weiteres Beispiel von konfigurierbaren Logikschaltungen darstellen.
  • Es wird also gemäss dem Ansatz der Erfindung kein - an sich funktionierendes, aber in der Implementierung mit grossem Aufwand verbundenes - Ersetzen der Relaisschaltung durch eine Software angestrebt, sondern die Relaisschaltung wird durch eine die gleichen Funktionen und die gleiche Charakteristik liefernde elektronische Schaltung auf Halbleiterbasis ersetzt.
  • Eine funktionell äquivalente Schaltung kann gemäss einem Ansatz vorliegen, wenn für jeden Ein- und Ausgang der Relaisstellwerk-Schaltlogik ein entsprechender Ein- bzw. Ausgang der funktionell äquivalenten Schaltung vorhanden ist und für den gleichen binären Input ein gleicher binärer Output erfolgt.
  • Zusätzlich zur Schaltung, welche die Logikeinheit bildet, weist das Stellwerk vorzugsweise eine Mehrzahl von Eingabe- und/oder Ausgabeeinheiten auf, welche die Interfaces zu den Elementen (Weichen, Signalen, Gleisfreimeldeeinheiten, Streckenblocküberwachungseinheiten) der Aussenanlage bilden. Diese enthalten in vielen Ausführungsformen keine 'Intelligenz' (d.h. keine Logik). In anderen Ausführungsformen, beispielsweise für besondere Signale, Weichen etc., können sie auch eine funktionale Logik aufweisen. Sie sind abhängig vom Typ des anzusteuernden Elements und dienen nur der Umwandlung des Logiksignals in die physische Ansteuerung des entsprechenden Elements und damit bspw. der Verstärkung und der Potentialentkopplung zwischen der Logikeinheit und der Aussenanlage. Sie können ein Relais, einen Optokoppler und/oder einen Schütz und/oder andere an sich bekannte Bauteile aufweisen. Die Eingabe-und/oder Ausgabeeinheiten können im Stellwerk zentral angeordnet sein, d.h. im das Stellwerk beherbergende Gebäude und im Wesentlichen am Ort der Logikeinheit. Damit müssen beim Ersatz des Relaisstellwerks im Idealfall nur Komponenten ersetzt und installiert werden, die innerhalb des Gebäudes sind.
  • Zum erfindungsgemässen Vorgehen kann auch das Implementieren der Schaltung in einem Stellwerk gehören.
  • Die Ausgänge der funktionell äquivalenten Schaltung werden mit den bestehenden anzusteuernden Komponenten (Weichen(-steuerungen), Signale, Barrieren (-steuerungen)) verbunden, ohne dass diese markant angepasst oder gar ausgewechselt werden müssten.
  • Der Ansatz gemäss dem hier diskutierten Aspekt der Erfindung nimmt also im Unterscheid zum Stand der Technik Abstand vom an sich sehr mächtigen Werkzeug einer softwaremässigen Implementierung der Logikeinheit und macht einen Schritt hin zur vermeintlich aufwändigeren und weniger flexiblen Implementierung in Form einer programmierbaren Hardware.
  • Obwohl im Prinzip die Funktionalität einer Hardwareelektronik auch durch eine entsprechende Software zur Verfügung gestellt werden könnte, ist der vom ersten Aspekten der Erfindung gemachte, an sich einfache Schritt hin zu einer Schaltung elektronischer Bauteile von enormem Vorteil. Der Einsatz von Software ist nämlich immer mit dem Einsatz von Computersystemen verbunden, auf denen die Software läuft, und diese sind notwendigerweise sehr komplex. Auch ein einfacher moderner Computer hat buchstäblich Milliarden von Transistoren, verschiedene Datenspeicher, etc. und all diese Bauteile sind Teil des Stellwerks und müssen bei der Zertifizierung mit berücksichtigt werden. Eine Eigenschaft von softwareimplementierten Systemen wie beispielsweise den eingangs genannten Systemen gemäss dem Stand der Technik ist, dass beim sequentiellen Abarbeiten einer Befehlskette Sprünge vorkommen. Wenn aufgrund eines Fehlers (bspw. nach der Einwirkung eines ionisierenden Teilchens) die Sprungadresse einen Fehler aufweist, kann das System in einen völlig anderen Zustand versetzt werden, was zu einem Totalausfall führen kann. Bei einer physisch verdrahteten Logikschaltung kommen solche Sprünge hingegen nicht vor.
  • Daher sind, um entsprechenden Sicherheitsanforderungen trotzdem zu genügen, konventionelle auf Software basierte elektronische Stellwerke zwar sehr mächtige Werkzeuge, beruhen jedoch auf ganz anderen Prinzipien als die Relaisstellwerke, und entsprechend aufwändig ist das Umrüsten und insbesondere das Zertifizieren, welches alle Teilsysteme mit umfasst. Beim Ansatz gemäss dem ersten Aspekt der Erfindung hingegen muss die Sicherheit der übernommenen, auf die konfigurierbare Logikschaltung abgebildeten Relais-Schaltlogik nicht neu nachgewiesen werden, da diese bereits nachgewiesen ist.
  • Durch den verblüffend einfachen Ansatz gemäss der Erfindung kann die Architektur des Relaisstellwerks im Wesentlichen beibehalten werden und somit entfällt ein wesentlicher Anteil der Projektierungskosten, und auch der gesamte Zertifizierungsprozess kann vereinfacht werden. Ausserdem kann das Stellwerk mit programmierbaren Bausteinen so realisiert werden, dass nur geringfügige Änderungen an den Aussenanlagen gemacht werden müssen. Die Wartung ist deutlich weniger aufwändig als bei herkömmlichen Relaisstellwerken. Schliesslich können Fernsteuer- und Automatisierungsaufgaben und die Integration in übergeordnete Systeme wie beispielsweise in ein Fernsteuerungssystem oder in untergeordnete Systeme wie beispielsweise das ETCS (European Train Control System) relativ einfach durch die eingesetzten Logikbausteine erfolgen.
  • Ein weiterer Vorteil gegenüber elektronischen Stellwerken ist die Geschwindigkeit. Im Vergleich zu der Software eines konventionellen elektronischen Stellwerks schaltet das gemäss dem ersten Aspekt der Erfindung ausgestaltete Stellwerk mit der logischen Schaltung um Grössenordnungen schneller.
  • Der erste Aspekt der Erfindung ist beispielsweise für Relaisstellwerke nach dem Verschlussplanprinzip aber auch für Relaisstellwerke nach dem Spurplanprizip anwendbar. Aufgrund der Vorteile des erfindungsgemässen Vorgehens gegenüber elektronischen Stellwerken kann das zu ersetzende Stellwerk auch ein auf Software basierendes elektronisches Stellwerk sein, dessen Kernfunktion (Binäre Ausgabe in Funktion der binären Eingabe) ebenfalls durch eine feststehende elektronische Schaltung von Halbleiterbauteilen (i.A. mindestens ein FPGA oder ein vergleichbarer Baustein) ersetzt wird.
  • Gemäss einem zweiten Aspekt der Erfindung wird die Architektur einer zum Relaisstellwerk funktionell äquivalenten Schaltung erstellt, indem ein Verschlussplan oder ein Spurplan durch einen automatischen Übersetzer in eine logische Schaltung transformiert wird. Dabei kann der Verschlussplan bzw. der Spurplan in der Form einer Zeichnung, einer Tabelle oder in einer anderen technischen Form vorliegen.
  • Der automatische Übersetzer kann in der Form einer Computersoftware vorhanden sein, welche anhand von eindeutigen, vordefinierten Vorschriften dem Verschlussplan/Spurplan eine elektronische Schaltung zuordnet. Die Vorschriften sind somit jederzeit nachvollziehbar und können so ausgebildet sein, dass sie den Anforderungen sicherheitsrelevanter Systeme entsprechen. Sie können auch von einer für die Zertifizierung verantwortlichen Stelle überprüft werden.
  • Ein analoges Vorgehen kann auch für zu ersetzende, auf Software basierende elektronische Stellwerke gewählt werden, wobei für das Schaltungslayout der logischen Schaltung, in welche die Logik transformiert wird, ein entsprechend alternatives, sich an der input-output-Logik der Software orientierendes Übersetzungsprogramm verwendet wird.
  • Besonders günstig ist eine Kombination des ersten Aspekts der Erfindung mit dem zweiten Aspekt.
  • Um die Korrektheit einer durch Transformation erhaltenen logischen Schaltung zu verifizieren, kann diese optional mit einem Rückübersetzungsalgorithmus wieder in eine vergleichbare Form zum ursprünglichen Verschlussplan/Spurplan zurücktransformiert werden. Der Vergleich zwischen Verschlussplan/Spurplan und zurücktransformiertem Vergleichsplan kann ein Teil der sicherheitsrelevanten Überprüfung sein.
  • Gemäss einer ersten Ausführungsform nimmt nach der Rücktransformation ein Benutzer (bspw. eine Fachperson der Bahn) den Vergleich zwischen dem ursprünglichen Verschlussplan V/S und dem durch Rücktransformation erhaltenen Vergleichsplan V'/S' vor. Die Darstellung des Vergleichsplans V'/S' erfolgt dann sinnvollerweise wieder auf dieselbe Art, wie die Darstellung des ursprünglichen Verschlussplans/Spurplans V/S. Es ist also sinnvoll, dass bei einer Zeichnung beispielsweise eine ähnliche Darstellung erfolgt, beispielsweise mit gleicher örtlicher Position in der Darstellung oder gleicher Nummerierung oder Bezeichnung, oder dass bei der Verwendung von Namen für Variablen oder Signale dieselben Namen verwendet werden. Um diese Abbildung einfacher zu gestalten, werden vom Übersetzer Metadaten erzeugt, die dann für die Rücktransformation wieder eingesetzt werden. Es versteht sich von selbst, dass diese Metadaten keine funktionale Aufgabe erfüllen; sie dienen lediglich der besseren Lesbarkeit des Vergleichsplans V'/S' für den Menschen.
  • Gemäss einer zweiten Ausführungsform kann der Vergleich zwischen dem Verschlussplan/Spurplan und dem Vergleichsplan durch den Computer vorgenommen werden.
  • Das Stellwerk weist beispielsweise - wie an sich bekannt - eine Logikeinheit und Eingabe-Ausgabe-Einheiten auf, welche wie erwähnt in ihren Charakteristiken denjenigen des ersetzten Relaisstellwerks entsprechen. Die Logikeinheit verfügt vorzugsweise über mindestens einen Kommunikationseingang zur Steuerung, Automation, ETCS etc. Die Logikeinheit ist im Kern (d.h. in den Elementen, die aus einem binären Input einen binären Output ermitteln) vorzugsweise frei von Mikroprozessoren, d.h. von frei programmierbaren Einheiten.
  • Die Logikeinheit kann über Zusatzsysteme verfügen, die immer gewährleisten, dass die momentane Logikfunktion der ursprünglichen, bspw. durch die erwähnte Übersetzung ermittelte, Logikfunktion entspricht.
  • Die Eingabe-Ausgabe-Einheiten der elektronischen Schaltung verfügen wie erwähnt vorzugsweise über ähnliche Verbindungsstrukturen zu den Aussenanlagen (Weichensteuerungen, Signalen, Barrierensteuerungen etc.) wie die ersetzten Relaiseinheiten. Ebenfalls bevorzugt ist, dass die Eingabe-Ausgabe-Einheiten ähnliche äussere Abmessungen wie die Relaiseinheiten aufweisen. Jedes der bevorzugten Merkmale kann dazu beitragen, dass nur geringfügige oder gar keine Änderungen an den Aussenanlagen durchgeführt werden müssen.
  • Die Architektur der elektronischen Schaltung und der Eingabe-Ausgabeeinheiten kann gemäss einer ersten Ausführungsform vorsehen, dass die Logikeinheit sternförmig mit den Eingabe-Ausgabe-Einheiten verbunden ist.
  • In einer weiteren möglichen Architektur ist die Logikfunktion L ringförmig mit den Eingabe-Ausgabe-Einheiten verbunden. Dies vereinfacht vor allem die Verdrahtung. Der Ring kann als paralleles oder serielles System, elektrisch oder optisch, ohne oder mit Fehlerkorrektur, Einweg oder Zweiweg ausgeführt sein. Die möglichen Ausprägungen der Kommunikation haben unterschiedliche Kosten und unterschiedliche Eigenschaften: so kann ein optisch geführter Ring eine grosse Ausdehnung haben. Die Zweiwegkommunikation hat eine gewisse Fehlerredundanz.
  • Natürlich sind auch Kombinationen zwischen Stern- und Ringarchitekturen denkbar, bspw. eine Mehrzahl von Untereinheiten mit je einem oder mehreren Eingabe-Ausgabe-Einheiten, die unter sich ringförmig verbunden sind, wobei die Verbindung zwischen Logikeinheit und Untereinheit sternförmig ist.
  • Bei seriellen Systemen wird üblicherweise mit Datenpaketen gearbeitet, die periodisch übertragen werden. Es ist deshalb technisch einfach möglich, diesen Systemzustand in einer Protokollierungseinheit (bspw. einer separaten "Black Box") mitzuhören und dann mitzuschreiben (zu speichern). Damit lassen sich alle Abläufe später durch einen Computer analysieren, der direkt mit der "Black-Box" B verbunden ist. Diese Analyse kann dabei sinnvollerweise auch während dem Betrieb erfolgen.
  • Um die Sicherheit des Systems zu erhöhen, können auch zwei Logikeinheiten hintereinander geschaltet werden. Die erste und die zweite Logikeinheit haben dabei vorzugsweise einen identischen Aufbau und verfügen über identische Steuereingänge. Im normalen Betriebsfall sollten die Signale von beiden Logikeinheiten identisch sein. Sind sie nicht identisch, so liegt ein Fehler in einer der Logikeinheiten, oder in einem der übergeordneten System vor. Die Eingabe-Ausgabe-Einheiten können in diesem Fall in einen "sicheren Zustand" gehen (z.B. Signal auf rot stellen) und/oder einen Alarm auslösen. Der Alarm kann ggf. natürlich auch von der "Black-Box" B ausgelöst werden.
  • Nachfolgend werden Ausführungsformen der Erfindung anhand von schematischen Zeichnungen eingehender Beschrieben. In den Zeichnungen bezeichnen gleiche Bezugszeichen (Kennzeichnungsbuchstaben) gleiche oder analoge Elemente. Es zeigen:
    • Figur 1 ein Verfahren gemäss dem ersten Aspekt der Erfindung zum Erstellen eines elektronischen Stellwerks;
    • Figur 2 ein Verfahren gemäss dem zweiten Aspekt der Erfindung zum Entwerfen einer logischen Schaltung für ein elektronisches Stellwerk;
    • Figur 3 eine erste Ausführungsform der Architektur der elektronischen Schaltung;
    • Figur 3a eine Variante der Ausführungsform gemäss Figur 3;
    • Figur 4 eine weitere, alternative Ausführungsform der Architektur der elektronischen Schaltung;
    • Figur 5 eine Variante der Ausführungsform gemäss Figur 4, mit zwei Logikeinheiten; und
    • Figur 6 ausgehend von der Ausführungsform gemäss Figur 4 schematisch die Anbindung an Elemente der Aussenanlage; und
    • Figur 7 eine Stellwerkarchitektur der erfindungsgemässen Art in einem Beispiel.
  • Gemäss Figur 1 wird ein Verschlussplan V (oder, nicht dargestellt, ein Spurplan S) durch einen Computer Comp erfasst, wobei optional eine spezielle Eingabeeinheit I vorgesehen sein kann. Die Eingabeeinheit kann gegebenfalls auf das Format des Verschlussplans abgestimmt sein und bspw. einen Scanner sowie eine entsprechende Software zum Erkennen und Erfassen der Symbole im Verschlussplan aufweisen. Selbstverständlich kann auch der Verschlussplan schon von vorneherein in elektronisch lesbarer Form vorhanden sein. Aus dem erfassten Verschlussplan erstellt der Computer Comp eine Logikfunktion L#. Die Logikfunktion entspricht der elektronischen Darstellung einer logischen Schaltung. Sie wird auf eine physische logische Schaltung abgebildet, die einem programmierbaren Logikbaustein (FPGA) implementiert wird.
  • Das Verfahren zum Erstellen der Logikfunktion L# aus dem Verschlussplan V (bzw. einem Spurplan S) ist in einer speziellen, eine Verifikation ermöglichenden Ausführungsform schematisch in Figur 2 dargestellt. Aus dem Verschlussplan V bzw. dem Spurplan S wird eine geeignetes Übersetzungsprogramm T die Logikfunktion L# ermitteln. Das Übersetzungsprogramm legt in der hier dargestellten Ausführungsform auch noch eine Datei M mit Metadaten an, die nicht sicherheitsrelevant sind und beispielsweise Informationen enthält, welche die Darstellung des Verschlussplans betreffen. Um eine Verifikation zu ermöglichen, wird aus der Logikfunktion L# durch ein Rückübersetzungsprogramm T-1 im Sinne eines 'Reverse Engineering' ein Vergleichsplan V'/S' erstellt, welcher auf Basis der Metadaten so ausgestaltet wird, dass beispielsweise eine ähnliche Darstellung erfolgt oder dass bei der Verwendung von Namen für Variablen oder Signale dieselben Namen verwendet werden. Der Vergleich C wird durch eine überprüfende Person vorgenommen oder kann alternativ auch durch den/einen Computer erfolgen, wobei in diesem Fall die Metadaten anstatt für die Erstellung des Vergleichsplans V'/S' verwendet zu werden auch dem vergleichenden Programm zur Verfügung gestellt werden können.
  • In Spezialfällen - bspw. bei einem nicht standardmässigen Signalstandort) kann ein Benutzer über eine entsprechende manuell zu bedienende Eingabemöglichkeit (Man) eine manuelle Anpassung vornehmen.
  • Die Umsetzung einer Logikfunktion L# auf einem FPGA, welches anschliessend als Logikeinheit ausgerüstet ist, ist an sich bekannt.
  • Als Variante zum vorstehend beschriebenen Verfahren ist es auch möglich, die implementierte Logikeinheit L anstatt die Logikfunktion L# reverse zu engineeren.
  • Figur 3 zeigt eine sternförmige Verbindung der Logik-Einheit L (auf der die Logikfunktion L# implementiert ist) mit den Eingabe-Ausgabe-Einheiten IO1...IOn. Wie erwähnt haben in allen Ausführungsformen vorzugsweise die Eingabe-Ausgabe-Einheiten ähnliche Abmessung wie die ursprünglichen Relaiseinheiten und verfügen auch über ähnliche Verbindungsstrukturen zu den Aussenanlagen, so dass nur geringfügige oder gar keine Änderungen an den Aussenanlagen durchgeführt werden müssen.
  • Das Bezugszeichen S bezeichnet einen Kommunikationseingang für die Kommunikation mit einer Eingabeeinheit und/oder mit einem übergeordneten System.
  • In einer Variante gemäss Figur 3a ist die Logik-Einheit L ebenfalls sternförmig mit den Eingabe-Ausgabe-Einheiten verbunden; allerdings über einen Switch X.
  • Die Architektur gemäss Figur 4 ist eine ringförmige Architektur. Die Logikeinheit L ist ringförmig mit den Eingabe-Ausgabe-Einheiten IO1...IOn verbunden. Während bei einer sternförmigen Architektur die Verdrahtung konstruktionsgemäss parallel ist (auch bei einer parallelen Architektur kann optional ein serielles Protokoll verwendet werden), kann sie bei einer ringförmigen Architektur sowohl parallel als auch seriell ausgestaltet sein. Im dargestellten Ausführungsbeispiel ist die Kommunikation seriell, d.h. das von der Logikeinheit bspw. periodisch ausgesandte Datenpaket beinhaltet Daten, die den gesamten Systemzustand (Schaltzustand jeder anzusteuernden Komponente) beinhalten. Jede Eingabe-Ausgabeeinheit wird adressiert und entnimmt dem Datenpaket die für sie benötigte Information. Weil jedes Datenpaket die gesamte Information beinhaltet, eignet es sich auch für die Überwachung des Systems und/oder die Protokollierung. Zu diesem Zweck wird das Signal über das Kommunikationssystem CB auch an eine "Blackbox" B weitergegeben. Dort werden die nacheinander eintreffenden Datenpakete abgespeichert und/oder analysiert, sinnvollerweise während dem Betrieb.
  • Durch ein weiteres Interface kann der kommunizierte Zustand zuverlässig an Leitsysteme oder für den Betrieb unter ETCS an das 'Radio Block Center' (RBC) übermittelt werden. Auf demselben Weg können Fahrstrassen welche vom Leitsystem oder von einer Automatisierung angefordert werden an das digitale Stellwerk übermittelt werden.
  • Die Ausführungsform gemäss Figur 5 weist nebst der Logikeinheit L eine zweite, funktionell äquivalente und eventuell identische Logikeinheit L* auf. Auch die Steuereingänge S, S* der Logikeinheiten sind identisch und werden identisch angesteuert. Die Steuersignale von L und L* werden durch das Kommunikationssystem CB an die Eingabe-Ausgabe-Einheiten IO0...IOn weitergegeben. Im normalen Betriebsfall sollten die Signale von L und L* identisch sein. Sind sie nicht identisch, so liegt ein Fehler in einer der Logikeinheiten L oder L*, oder in einem der übergeordneten System S oder S* vor. Die Eingabe-Ausgabe-Einheiten IO0...IOn können in diesem Fall in einen "sicheren Zustand" gehen (z.B. Signal auf rot stellen) und einen Alarm auslösen. Der Alarm kann natürlich auch von der "Black-Box" B ausgelöst werden.
  • Ausführungsformen mit zwei Redundanz gewährleistenden Logikeinheiten können an sich auch bei Sternarchitekturen oder gemischten Architekturen verwendet werden.
  • Als spezielles Sicherheitsmerkmal von in vielen Fällen bevorzugten Ausführungsformen kann für die Logikeinheit L* ein anderes, mit der Logikeinheit L nicht baugleiches Fabrikat, unter Umständen eines anderen Anbieters verwendet werden als für die Logikeinheit L. Dadurch wird eine diversitäre Redundanz erwirkt.
  • Es ist ein grosser Vorteil des erfindungsgemässen Vorgehens nach allen Aspekten der Erfindung, dass die Logikeinheit aufgrund des erfindungsgemässen Ansatzes durch ein vergleichsweise einfache Mittel realisierbar ist. Das erst ermöglicht den Ansatz zwei Logikeinheiten ganz unabhängig voneinander parallel arbeiten zu lassen, was bspw. bei elektronischen Stellwerken kaum in Frage käme. Das wiederum ermöglicht die sicherheitstechnisch oft sehr begehrenswerte diversitäre Redundanz.
  • Die Unabhängigkeit der beiden Logikeinheiten kann beispielsweise bedeuten, dass die Logikeinheiten keine Zwischenresultate austauschen, oder gar dass gar keine Signale von der einen Steuereinheit durch die andere Steuereinheit verarbeitet werden.
  • Figur 6 zeigt schematisch anhand des Beispiels von Figur 4 die Anbindung an die Aussenanlage. Die fettgedruckte schwarze Linie symbolisiert die Grenze zwischen dem Gebäude, in welchem das Stellwerk vorhanden ist, und dem "Draussen". Die Eingabe- und/oder Ausgabeeinheiten sind jeweils einem anzusteuernden Element der Aussenanlage zugeordnet, bspw. die Einheit IOB1 dem Block B1, die Einheit IOW1 der Weiche W1, die Einheit IOS11 dem Signal S11 etc. Die Schnittstelle zwischen der bestehenden Verkabelung der Aussenanlage und des ersetzten Stellwerks bildet ein Kabelverteiler V, der ebenfalls bevorzugt im Gebäudeinneren vorhanden ist.
  • Figur 7 zeigt als Beispiel eine einfache Aussenanlage mit dem in der Figur unten dargestellten Schienenverlauf. Die Kästen B1 und B2 bezeichnen in der unteren Figurhälfte die Streckenblöcke 1 und 2, W1 und W2 bezeichnen Weichen, Sij sind Signale, und GFM1 und GFM2 Gleisfreimeldeeinheiten. In der oberen Figurhälfte (in der Innenanlage) bezeichnen die entsprechend beschrifteten Kästen die den jeweiligen Elementen zugeordneten Eingabe- und/oder Ausgabeeinheiten.
  • Die Verkabelung der Logikeinheit (FPGA) in einer Ringarchitektur mit den Eingabe- und/oder Ausgabeeinheiten ist im hier gezeichneten Beispiel als Ethernetbus seriell ausgebildet. Die vom Kabelverteiler nach aussen weggehende Aussenverkabelung kann unverändert vom Relaisstellwerk übernommen werden.

Claims (14)

  1. Verfahren zum Erstellen eines elektronischen Stellwerks als Ersatz eines bestehenden Stellwerks wobei die Schaltlogik des bestehenden Stellwerks auf eine funktionell äquivalente Schaltung abgebildet wird, und die Ausgänge dieser Schaltung mit mindestens einigen der bestehenden anzusteuernden Komponenten verbunden werden, dadurch gekennzeichnet, dass die funktionell äquivalente Schaltung eine Schaltung elektronischer Halbleiterbauteile ist, wobei die Schaltung elektronischer Halbleiterbauteile eine konfigurierbare Logikschaltung ist, und dass die Schaltlogik des bestehenden Schaltwerks mittels einer Transformation (T) auf die funktionell äquivalente Schaltung abgebildet wird und dieses Abbilden eine Konfiguration der konfigurierbaren Logikschaltung beinhaltet.
  2. Verfahren nach Anspruch 1, wobei die elektronischen Halbleiterbauteile mindestens ein Field Programmable Gate Array (FPGA) aufweisen.
  3. Verfahren nach einem der vorangehenden Ansprüche, wobei die Verbindung der Ausgänge dieser Schaltung mit den anzusteuernden Komponenten über komponentenspezifische Eingabe- und/oder Ausgabeeinheiten (IO1...n) ohne integrierte Logik oder mit integrierter Logik erfolgt.
  4. Verfahren nach einem der vorangehenden Ansprüche, wobei das zu ersetzende Stellwerk ein Relaisstellwerk ist.
  5. Verfahren nach einem der vorangehenden Ansprüche, zum Erstellen eines elektronischen Stellwerks als Ersatz eines Relaisstellwerks, wobei ein Verschlussplan (V) oder ein Spurplan (S) des Relaisstellwerks mittels eines Übersetzers unter Anwendung vordefinierter eindeutiger Regeln (T) in eine logische Schaltung transformiert wird.
  6. Verfahren nach Anspruch 5, wobei die logische Schaltung durch Anwendung invertierter Regeln (T-1) wieder in einen Vergleichsplan (V', S') zurückübersetzt wird, welcher mit dem Verschlussplan (V) bzw. Spurplan (S) vergleichbar ist, und wobei ein Vergleich (C) zwischen dem Verschlussplan (V) bzw. Spurplan (S) und dem Vergleichsplan (V') durchgeführt wird, wobei der Übersetzer beispielsweise ferner nicht sicherheitsrelevante Metadaten (M) erzeugt und wobei beim Zurückübersetzen die Metadaten (M) verwendet werden, um den Vergleichsplan mit dem Verschlussplan (V) vergleichbar darzustellen.
  7. Verfahren nach einem der vorangehenden Ansprüche, wobei die Schaltung eine Logikeinheit (L) und eine Mehrzahl von Ein- und/oder Ausgabeeinheiten (IO1...n) aufweist, wobei die logische Schaltung sternförmig mit den Ein- und/oder Ausgabeeinheiten verbunden ist.
  8. Verfahren nach einem der Ansprüche 1-6, wobei die Schaltung eine Logikeinheit (L) und eine Mehrzahl von Ein- und/oder Ausgabeeinheiten (IO1...n) aufweist, wobei die logische Schaltung in einer Ring-Architektur mit den Ein- und/oder Ausgabeeinheiten verbunden ist, wobei vorzugsweise eine Kommunikation gleichzeitig in beide Richtungen entlang des Ringes erfolgt.
  9. Verfahren nach Anspruch 8, wobei die Kommunikation (CB) in Datenpaketen erfolgt, die jeweils den gesamten Zustand des Systems repräsentieren, wobei die Kommunikation beispielsweise periodisch erfolgt und wobei die Kommunikation durch einen Beobachter (B) mitgeschrieben wird.
  10. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Schaltung zwei redundante Logikeinheiten aufweist, die beide je dieselbe Logikfunktion ausführen und die Resultate ausgeben, wobei vorzugsweise, falls die Resultate nicht übereinstimmen, in einen sicheren Zustand geschaltet wird und/oder ein Alarm ausgelöst wird.
  11. Stellwerk, erstellt nach einem Verfahren nach einem der vorangehenden Ansprüche, aufweisend eine elektronische Logikeinheit (L) und eine Mehrzahl von Ein- und/oder Ausgabeeinheiten (IO1...n) zum Ansteuern von Komponenten wie Weichen, Signale, Barrieren und dergleichen, dadurch gekennzeichnet, dass die Logikeinheit (L) mindestens teilweise als programmierter Halbleiter-Logikbaustein in Form einer konfigurierbaren Logikschaltung ist.
  12. Stellwerk nach Anspruch 11, dadurch gekennzeichnet, dass der mindestens eine Halbleiter-Logikbaustein ein Field Programmable Gate Array (FPGA) ist.
  13. Stellwerk nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass die Logikeinheit (L) frei von Mikroprozessoren ist.
  14. Stellwerk nach einem der Ansprüche 11 bis 13, gekennzeichnet durch eine zweite, mit der Logikeinheit (L) funktionell äquivalente Logikeinheit (L*), wobei die Logikeinheit (L) und die zweite Logikeinheit (L*)beide je Steuersignale an die Ein- und/oder Ausgabeeinheiten (IO1...n) ausgeben, und wobei die zweite Logikeinheit(L*) nach dem Prinzip der Diversität ausgewählt ist.
EP10725956.6A 2009-06-23 2010-06-22 Verfahren zum erstellen eines elektronischen stellwerks als ersatz eines bestehenden stellwerks Active EP2445771B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH00974/09A CH701344A1 (de) 2009-06-23 2009-06-23 Stellwerksteuerung.
PCT/CH2010/000160 WO2010148528A1 (de) 2009-06-23 2010-06-22 Verfahren zum erstellen eines elektronischen stellwerks als ersatz eines bestehenden stellwerks

Publications (2)

Publication Number Publication Date
EP2445771A1 EP2445771A1 (de) 2012-05-02
EP2445771B1 true EP2445771B1 (de) 2018-11-07

Family

ID=40942464

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10725956.6A Active EP2445771B1 (de) 2009-06-23 2010-06-22 Verfahren zum erstellen eines elektronischen stellwerks als ersatz eines bestehenden stellwerks

Country Status (6)

Country Link
US (1) US9783215B2 (de)
EP (1) EP2445771B1 (de)
JP (1) JP5881600B2 (de)
CA (1) CA2766432C (de)
CH (1) CH701344A1 (de)
WO (1) WO2010148528A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ2011142A3 (cs) * 2011-03-17 2012-05-23 Ažd Praha S. R. O. Zpusob zachování bezpecného stavu zabezpecovacích systému se složenou bezpecností, zejména na železnici, pri vytvárení datových otisku
CN102248949B (zh) * 2011-04-12 2014-04-30 上海华为技术有限公司 继电器控制方法、系统及列车运行控制系统
DE102011007601A1 (de) * 2011-04-18 2012-10-18 Siemens Aktiengesellschaft Verfahren zum Austauschen eines an ein elektronisches Stellwerk angeschlossenen Stellwerks mit Relaisschnittstellen-Ein-/Ausgang gegen ein weiteres elektronisches Stellwerk mit mindestens einem Datenbus-Ein-/Ausgang und elektronisches Stellwerk
DE102013209546A1 (de) * 2013-05-23 2014-11-27 Siemens Aktiengesellschaft Verfahren zum Ersetzen eines ersten Stellwerkes durch ein zweites Stellwerk
EP2853465B1 (de) * 2013-09-27 2016-03-16 Siemens Schweiz AG Logikschaltung und Verfahren zum Ersetzen eines zwangsgeführten Sicherheitsrelais
EP2868547A1 (de) 2013-10-24 2015-05-06 Siemens Schweiz AG Stellwerk- und Steuerungs-Architektur für Eisenbahnen
DE102013223101A1 (de) * 2013-11-13 2015-05-13 Siemens Aktiengesellschaft Bahnübergangssicherungssystem
WO2015101610A1 (fr) * 2013-12-30 2015-07-09 Ineo Urban Transportation Solutions Procédé et dispositif informatisé pour l'enclenchement d'un itinéraire ferroviaire
EP3312073B1 (de) 2016-10-21 2023-08-23 Schweizerische Bundesbahnen SBB Verfahren zur prüfung eines eisenbahnsystems und eisenbahnsystem

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4220696A1 (de) * 1992-06-23 1994-01-05 Siemens Ag Fahrwegsicherungssystem für spurgebundene Fahrzeuge

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5570284A (en) * 1994-12-05 1996-10-29 Westinghouse Air Brake Company Method and apparatus for remote control of a locomotive throttle controller
US5922034A (en) * 1996-12-06 1999-07-13 Union Switch & Signal Inc. Programmable relay driver
DE19832601C1 (de) * 1998-07-09 2000-01-05 Siemens Ag Elementverbindungsplan für ein elektronisches Stellwerk
FR2826921B1 (fr) * 2001-07-05 2004-07-09 Cit Alcatel Procede de formation et de gestion d'itineraires et reseau mettant en oeuvre un tel procede
ITSV20020009A1 (it) * 2002-02-22 2003-08-22 Alstom Transp Spa Metodo per la generazione di unita' logiche di comando degli apparatidi stazione a computer vitale, cioe' nelle unita' centrali di comando
GB0411277D0 (en) * 2004-05-20 2004-06-23 Balfour Beatty Plc Railway signalling systems
DE202005020802U1 (de) 2004-11-15 2007-03-15 Abb As Steuersystem für Schienenfahrzeuge
DE202005016151U1 (de) * 2005-10-09 2006-02-09 Elpro Gmbh Berlin -Industrieholding- Einrichtung zur Fernsteuerung eines Relais-Stellwerks unter Verwendung von hochverfügbaren diversitären Steuerungen
US7705743B2 (en) * 2006-03-01 2010-04-27 L-3 Communications Corporation Self-assembling wireless network, vehicle communications system, railroad wheel and bearing monitoring system and methods therefor
DE102008009746A1 (de) * 2008-02-18 2009-08-27 Deutsche Bahn Ag Verfahren zur Realisierung einer universellen Streckensicherungstechnik mittels industriell verfügbarer SPS-Komponenten

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4220696A1 (de) * 1992-06-23 1994-01-05 Siemens Ag Fahrwegsicherungssystem für spurgebundene Fahrzeuge

Also Published As

Publication number Publication date
US9783215B2 (en) 2017-10-10
JP5881600B2 (ja) 2016-03-09
CA2766432A1 (en) 2010-12-29
JP2012530639A (ja) 2012-12-06
CA2766432C (en) 2019-01-08
WO2010148528A1 (de) 2010-12-29
CH701344A1 (de) 2010-12-31
US20120182045A1 (en) 2012-07-19
EP2445771A1 (de) 2012-05-02

Similar Documents

Publication Publication Date Title
EP2445771B1 (de) Verfahren zum erstellen eines elektronischen stellwerks als ersatz eines bestehenden stellwerks
EP0875810B1 (de) Verfahren und Vorrichtung zum Überwachen einer Anlage mit mehreren Funktionseinheiten
DE202005020802U1 (de) Steuersystem für Schienenfahrzeuge
WO2006008257A1 (de) Automatisierungssystem und ein-/ausgabebaugruppe für dasselbe
DE102005023296B4 (de) Zugbeeinflussungssystem
WO2007076939A2 (de) Vorrichtung zum steuern mindestens einer maschine
EP3100121A1 (de) Verfahren und vorrichtung zum sicheren abschalten einer elektrischen last
DE102012202046A1 (de) System zur Steuerung, Sicherung und/oder Überwachung von Fahrwegen spurgebundener Fahrzeuge sowie Verfahren zum Betreiben eines solchen Systems
DE10053023C1 (de) Verfahren zum Steuern eines sicherheitskritischen Bahnbetriebsprozesses und Einrichtung zur Durchführung dieses Verfahrens
EP3448735B1 (de) Servereinrichtung betreibend eine software zur steuerung einer funktion eines schienengebundenen transportsicherungssystems
EP2090492A2 (de) Verfahren zur Realisierung einer universellen Streckensicherungstechnik mittels industriell verfügbarer SPS-Komponenten
DE102005043305A1 (de) System-Architektur zur Steuerung und Überwachung von Komponenten einer Eisenbahnsicherungsanlage
EP3046825B1 (de) Bahnübergangssicherungssystem
EP2978654B1 (de) Verfahren zum ersetzen eines ersten stellwerkes durch ein zweites stellwerk
DE102004035901B4 (de) Einrichtung zum Steuern eines sicherheitskritischen Prozesses
DE202005016151U1 (de) Einrichtung zur Fernsteuerung eines Relais-Stellwerks unter Verwendung von hochverfügbaren diversitären Steuerungen
EP2868547A1 (de) Stellwerk- und Steuerungs-Architektur für Eisenbahnen
EP0120339A1 (de) Einrichtung zur sicheren Prozesssteuerung
WO2020239437A1 (de) Anlagenkomponente, sicherheitsrelevante anlage und betriebsverfahren
WO1998007609A1 (de) Verfahren und vorrichtung zur steuerung und überwachung einer verkehrstechnischen anlage
WO2003047937A1 (de) Verfahren zum steuern eines sicherheitskritischen bahnbetriebsprozesses und einrichtung zur durchführung dieses verfahrens
DE102005049217A1 (de) Verfahren und Einrichtung zur Fernsteuerung eines Relais-Stellwerks unter Verwendung von hochverfügbaren Steuerungen
WO2018158039A1 (de) Umschaltung zwischen element-controllern im bahnbetrieb
DE10103951B4 (de) Energieversorgungseinrichtung für bordnetzgestützte, sicherheitsrelevante Systemkomponenten von Fahrzeugen
EP3943363B1 (de) Eisenbahnleitsystem mit bedienhemmung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MONTIGEL, MARKUS

Inventor name: HERRLI, MARKUS

Inventor name: MUELLER, DAVID

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SUPERCOMPUTING SYSTEMS AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170210

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180518

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SUPERCOMPUTING SYSTEMS AG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1061710

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010015540

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FREI PATENTANWALTSBUERO AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181107

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190207

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190207

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190307

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190208

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010015540

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190622

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230627

Year of fee payment: 14

Ref country code: DE

Payment date: 20230620

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230621

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230623

Year of fee payment: 14

Ref country code: GB

Payment date: 20230622

Year of fee payment: 14

Ref country code: CH

Payment date: 20230702

Year of fee payment: 14