EP2441076A1 - Electric cable adapted for ensuring the continuity of power distribution in the event of fire - Google Patents

Electric cable adapted for ensuring the continuity of power distribution in the event of fire

Info

Publication number
EP2441076A1
EP2441076A1 EP10737984A EP10737984A EP2441076A1 EP 2441076 A1 EP2441076 A1 EP 2441076A1 EP 10737984 A EP10737984 A EP 10737984A EP 10737984 A EP10737984 A EP 10737984A EP 2441076 A1 EP2441076 A1 EP 2441076A1
Authority
EP
European Patent Office
Prior art keywords
layer
composition
ceramic
cable
cable according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10737984A
Other languages
German (de)
French (fr)
Other versions
EP2441076B1 (en
Inventor
Bruno Weider
Markus Gasser
Yannick Buser
Christelle Mazel
Arnaud Piechaczyk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nexans SA
Original Assignee
Nexans SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41449992&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2441076(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nexans SA filed Critical Nexans SA
Publication of EP2441076A1 publication Critical patent/EP2441076A1/en
Application granted granted Critical
Publication of EP2441076B1 publication Critical patent/EP2441076B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/447Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from acrylic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • H01B7/0225Three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables

Definitions

  • Electrical cable capable of ensuring the continuity of electrical distribution in case of fire
  • the present invention relates to an electrical cable adapted to ensure the continuity of electrical distribution in case of fire comprising one or more insulated electrical conductors.
  • safety cables are in particular power transmission cables or low frequency transmission cables, such as control or signaling cables.
  • the cable In case of fire, the cable must be able to withstand the fire in order to operate as long as possible and limit its degradation.
  • a safety cable must also not be dangerous for its environment, that is to say not to spread the fire and not to release toxic fumes and / or opaque when subjected to extreme thermal conditions.
  • a halogen-free and fire-resistant electrical safety cable comprising a set of insulated electrical conductors, said assembly being surrounded by a outer sheath.
  • Each insulated electrical conductor is formed by an electrical conductor surrounded by a polymeric insulating monolayer obtained from a composition comprising a polymeric material and at least one ceramic-forming filler, said polymeric insulating layer thus being able to convert at least superficially into the ceramic state at high temperatures corresponding to fire conditions.
  • the polymeric material of this single insulating layer is selected from a polysiloxane (polyorganosiloxane) and a copolymer of ethylene, or a mixture thereof.
  • the purpose of the present invention is to overcome the drawbacks of the techniques of the prior art by proposing in particular an easily manipulated electric cable, limiting the risk of degradation mechanically insulated electrical conductors that compose it, while maintaining excellent fire resistance properties meeting the IEC 60331-21 standard and an improved electrical resistance meeting the IEC 60502-1 standard.
  • the present invention relates to an electrical cable comprising one or more insulated electrical conductors, each of said insulated electrical conductors comprising an electrical conductor surrounded by an insulating layer, preferably an electrically insulating layer, the insulating layer comprising a first polymeric layer (2a) surrounding the electrical conductor, the first layer (2a) being obtained from a first composition comprising a polymer matrix based on thermoplastic polymer, and at least one ceramic forming filler, characterized in that the insulating layer further comprises a second crosslinked polymeric layer (2b) surrounding said first layer, the second layer (2b) being obtained from a second composition comprising a polyolefin-based polymer matrix and comprising substantially no ceramic forming filler or halogenated compound .
  • first composition comprising a polymer matrix based on thermoplastic polymer
  • second composition comprising a polyolefin-based polymer matrix
  • the polymer (s) used in the second composition are predominantly one or more polyolefins (in% by weight in the matrix).
  • halogenated compounds furthermore means a compound of all kinds comprising at least one halogen element, such as, for example, fluorinated polymers or chlorinated polymers such as polyvinyl chloride (PVC), halogenated plasticizers, halogenated mineral fillers, ... etc.
  • halogenated compounds furthermore means a compound of all kinds comprising at least one halogen element, such as, for example, fluorinated polymers or chlorinated polymers such as polyvinyl chloride (PVC), halogenated plasticizers, halogenated mineral fillers, ... etc.
  • outer layer based on polyolefin mechanically protects the first polymeric layer (inner layer) based on thermoplastic polymer.
  • This property allows the insulating layer of each isolated electrical conductor to improve the mechanical properties of the cable, including the hardness, resistance to abrasion and tearing of the insulated electrical conductors that compose it, to facilitate the installation of said cable , and make the cable more robust during its manufacture, while ensuring a very good adhesion between the first layer and the second layer of the insulating layer.
  • the insulating layer of the electric cable of the invention has excellent mechanical strength in temperature (or hot creep) meeting the EN 60811-2-1 standard.
  • the electrical cable comprising the insulating layer according to the invention meets the IEC 60331-21 standard with excellent fire resistance properties.
  • the electrical conductors are thus protected against fire, or in other words, the electric cable ensures a fire behavior of high quality in terms of at least cohesion electrically insulating ash.
  • Another advantage of the insulating layer of the electric cable of the invention relates to its electrical resistance. Due to the absence of ceramic forming charge in the outer layer of the insulating layer of the invention, the electrical resistance properties of the cable to high temperature according to IEC 60502-1 are significantly improved.
  • Another advantage of the insulating layer of the electrical cable of the invention is that it significantly limits the release of toxic fumes when subjected to extreme thermal conditions.
  • the invention as thus defined finally has the advantage of being economical since it makes it possible to significantly limit, or even completely avoid, the use of polyorganosiloxane in the insulating layer of the isolated electrical conductors, while having very low good fire resistance properties.
  • the first layer polvméri ⁇ ue crazy inner layer
  • thermoplastic polymer of the first composition may be advantageously chosen from olefin polymers, acrylate or methacrylate polymers, vinyl polymers such as, for example, polyvinyl chloride, and fluoropolymers, or one of their mixtures.
  • the olefin polymers are chosen from homopolymers of ethylene; copolymers of ethylene and octene (PEO); copolymers of ethylene and vinyl acetate (EVA); copolymers of ethylene and butyl acrylate (EBA); copolymers of ethylene and methyl acrylate (EMA); copolymers of ethylene and ethyl acrylate (EEA); copolymers of ethylene and butyl acrylate (EBA); copolymers of ethylene and ethyl acrylate (EEA); copolymers of ethylene, propylene and rubber (EPR); copolymers of ethyl propylene diene monomer (EPDM); or a mixture thereof.
  • the polymer matrix of the first composition comprises at least 95% by weight of thermoplastic polymer, preferably said polymer matrix comprises only one or more thermoplastic polymers.
  • the first composition does not comprise more than 5% by weight of polyorganosiloxane, preferably not more than 2% by weight of polyorganosiloxane, and even more preferably the first composition does not comprise polyorganosiloxane.
  • the ceramic forming filler used in the first composition allows the first layer to convert at least superficially in the ceramic state at high temperatures corresponding to fire conditions, and thus form a first so-called "ceramizing" layer. This ceramizing layer thus provides sufficient insulation when the second layer (outer layer) has disappeared due to combustion phenomena.
  • the ceramic forming filler according to the invention may be chosen from a fusible ceramic filler and a refractory filler, or a mixture thereof.
  • the ceramic forming filler preferably comprises at least one fusible ceramic filler and at least one refractory filler.
  • the fusible ceramic filler has a melting temperature lower than an elevated temperature T, and the refractory filler has a melting temperature greater than said temperature T.
  • This temperature T is advantageously at least 75 ° C., and can reach HOO 0 C.
  • the fusible ceramic filler may be at least one mineral filler selected from boron oxides (eg B 2 O 3 ), anhydrous zinc borates (eg 2ZnO 3B 2 O 3 ) or hydrated borates (eg 4ZnO B 2 O 3 H 2 O or 2ZnO 3B 2 O 3 3.5H 2 O), anhydrous boron phosphates (eg BPO 4 ) or hydrated, or one of their precursors.
  • boron oxides eg B 2 O 3
  • anhydrous zinc borates eg 2ZnO 3B 2 O 3
  • hydrated borates eg 4ZnO B 2 O 3 H 2 O or 2ZnO 3B 2 O 3 3.5H 2 O
  • anhydrous boron phosphates eg BPO 4
  • calcium borosilicates may be mentioned as boron oxide precursor.
  • This fusible ceramic charge typically has a melting point below 500 ° C. and gives rise to an amorphous phase (eg a glass) when the temperature exceeds 500 ° C.
  • the refractory filler may be at least one mineral filler selected from magnesium oxides (eg MgO), calcium oxides (eg CaO), silicon oxides (eg SiO 2 or quartz), aluminum oxides (eg Al 2 O 3 ), chromium oxides (eg Cr 2 O 3 ), zirconium oxides (eg ZrO 2 ) and phyllosilicates such as, for example, montmorillonites, sepiolites, illites, attapulgites, talcs, kaolins or micas (eg muscovite mica 6 SiO 2 - 3 Al 2 O 3 - K 2 O - 2H 2 O), or a mixture thereof.
  • magnesium oxides eg MgO
  • CaO calcium oxides
  • silicon oxides eg SiO 2 or quartz
  • aluminum oxides eg Al 2 O 3
  • chromium oxides eg Cr 2 O 3
  • zirconium oxides eg ZrO 2
  • the ceramic forming filler consists of two refractory fillers such as, for example, muscovite mica and calcium oxide CaO or one of its precursors (eg calcium carbonate CaCO 3 ), and a fusible ceramic filler. such as, for example, a boron oxide precursor.
  • two refractory fillers such as, for example, muscovite mica and calcium oxide CaO or one of its precursors (eg calcium carbonate CaCO 3 ), and a fusible ceramic filler.
  • a fusible ceramic filler such as, for example, a boron oxide precursor.
  • the amount of ceramic-forming fillers can be defined in that the first composition comprises at least 90 parts by weight of said fillers per 100 parts by weight of polymer, preferably at most 250 parts by weight of said fillers per 100 parts by weight of polymers in order to limit the problems of rheologies in the composition. More particularly, the amount of fusible ceramic filler can range from 5 to 100 parts by weight, preferably from 20 to 80, and the amount of refractory filler can range from 50 to 200 parts by weight, preferably from 70 to 120 parts by weight. weight per 100 parts by weight of polymers in the first composition. In a preferred embodiment, the first composition is not crosslinked, or in other words the first layer formed around the electrical conductor is uncrosslinked.
  • the first polymeric layer does not comprise halogenated compound.
  • the second crosslinked polymeric layer is distinct from the first polymeric layer because it is said to be "non-ceramizing" since it does not substantially comprise any ceramic-forming filler.
  • substantially means that the second composition may further comprise a ceramic forming filler but as an additive.
  • the second layer can not have the properties of being converted at least superficially into the ceramic state at high temperatures corresponding to fire conditions, for example, for example when the second composition comprises less than 50 parts by weight. ceramic forming charge.
  • the polyolefin of the second composition may be advantageously chosen from homopolymers and copolymers of ethylene, or a mixture thereof.
  • LDPE low density polyethylene
  • the copolymers of ethylene can be advantageously chosen from copolymers of ethylene and octene (PEO); copolymers of ethylene and vinyl acetate (EVA); the copolymers of ethylene and butyl acrylate (EBA); copolymers of ethylene and methyl acrylate (EMA); copolymers of ethylene and ethyl acrylate (EEA); copolymers of ethylene, propylene and rubber (EPR); and copolymers of ethylene propylene diene monomer (EPDM); or a mixture thereof.
  • Copolymers of ethylene and vinyl acetate (EVA) as the preferred ethylene copolymer may be mentioned.
  • the polymer matrix of the second composition is distinct from the polymer matrix of the first composition.
  • the polymer matrix of the second composition comprises at least 95% by weight of polyolefin, preferably said polymer matrix comprises only one or more polyolefins.
  • the second composition does not comprise more than 5% by weight of polyorganosiloxane, preferably not more than 2% by weight of polyorganosiloxane, and even more preferably the second composition does not comprise polyorganosiloxane.
  • the second composition may further comprise at least one mineral filler different from a ceramic forming filler.
  • the inorganic filler may be a hydrated flame retardant mineral filler, chosen in particular from metal hydroxides such as, for example, magnesium dihydroxide (MDH) or aluminum trihydroxide (ATH).
  • MDH magnesium dihydroxide
  • ATH aluminum trihydroxide
  • the mineral filler may also be a carbonate, such as calcium carbonate.
  • the amount of mineral fillers can be defined in that the second composition comprises at least 90 parts by weight of said fillers per 100 parts by weight of polymer, preferably at most 200 parts by weight of said fillers per 100 parts by weight of polymers in order to to limit the problems of rheologies in the composition.
  • the second crosslinked polymeric layer of this first variant is particularly advantageous when associated with a first non-crosslinked polymeric layer comprising, as a ceramic-forming filler, only one or more refractory filler (s).
  • the second layer is said to be "uncharged", or in other words the second layer, in addition to not including a ceramic-forming filler, does not comprise a hydrated flame retardant mineral filler, and more particularly not mineral charge.
  • Crosslinking of the second composition to obtain the second crosslinked layer can be carried out by conventional crosslinking techniques well known to those skilled in the art such as, for example, silane crosslinking in the presence of a crosslinking agent, peroxide crosslinking under the action of heat, or photochemically crosslinking such as irradiation under beta radiation, or irradiation under ultraviolet radiation in the presence of a photoinitiator.
  • silane crosslinking in the presence of a crosslinking agent in the second composition is preferred since it avoids the use of specific additional equipment such as lamps or irradiation chambers for cross-linking under radiation, or salt bath lines or steam tubes for peroxide crosslinking.
  • the second composition comprises only the polymer matrix, and, if necessary, the components intended to crosslink said second composition such as, for example, a crosslinking agent, and thus form the second crosslinked layer.
  • a crosslinking agent such as, for example, a crosslinking agent
  • first polymeric layer and / or the second polymeric layer of the invention may contain additives that are well known to those skilled in the art, for example surface-treatment agents, antioxidants, waxes, etc. .etc.
  • the method of manufacturing the (electrically) insulating layer, and more generally the electric cable, is well known to those skilled in the art.
  • the preferred technique for shaping the first and second compositions is extrusion using an extruder.
  • the first and second compositions may be extruded in two successive steps or concomitantly. In the latter case, we speak of co-extrusion.
  • the crosslinking of the second layer is typically carried out after the extrusion shaping of the second composition.
  • the crosslinking step is typically either directly after the extrusion forming step of the first composition or after the extrusion forming step of the second composition.
  • the first and second layers of the invention are preferably directly in contact with each other, or in other words the insulating layer comprises no intermediate layer between the first layer and the second layer.
  • the insulating layer can then be defined as a "bilayer".
  • the electrical cable of the invention may further comprise an outer sheath surrounding the isolated electrical conductor or conductors.
  • This outer sheath is well known to those skilled in the art. It can burn completely locally and turn into residual ash under the effect of the high temperatures of a fire without spreading the fire.
  • the material that composes the outer sheath may be, for example, a polyolefin-based polymer matrix and at least one hydrated flame retardant mineral filler selected in particular from metal hydroxides such as, for example, magnesium dihydroxide or aluminum trihydroxide.
  • the outer sheath may be a tubular sheath or a so-called "jamming" sheath, these two types of sheath being well known to those skilled in the art.
  • the tubular sheath is preferred to ensure a circular shape of the cross section of the cable, while the sheath is preferred when the insulated electrical conductors are arranged in parallel to each other in the same plane. In all cases, the outer sheath is conventionally obtained by extrusion.
  • the electric cable when the electric cable comprises an outer sheath as defined above, the electric cable may further comprise voids provided between the outer sheath on the one hand, and the isolated electrical conductor or conductors go.
  • the outer sheath is preferably tubular.
  • the electric cable when the electric cable comprises an outer sheath as defined above, the electric cable may further comprise a stuffing material (or stuffing) between the outer sheath on the one hand, and the isolated electrical conductor or conductors on the other hand.
  • a stuffing material or stuffing
  • This stuffing material is well known to those skilled in the art and is intended to ensure a cylindrical shape to the cable over its entire length.
  • the stuffing consists for example of a polyolefin-based polymer matrix in which mineral fillers such as for example calcium carbonate have been added, and particularly hydrated flame retardant fillers as described above. To obtain greater ash cohesion of the stuffing material, the use of hydrated flame retardant mineral fillers combined with phyllosilicate mineral fillers is preferred.
  • the outer sheath may be jamming, especially when the electric cable does not comprise any empty space or stuffing material.
  • the electrical cable or in other words the elements that make up said electric cable, preferably does not comprise halogenated compounds.
  • first polymeric layer (or inner layer) and the second crosslinked polymeric layer (or outer layer) do not comprise a halogenated compound.
  • Another object according to the invention is a method of manufacturing an electric cable as described above according to the invention, characterized in that it comprises the steps of: i. forming the insulating layer as described above around an electrical conductor, ii. optionally, assembling at least two insulated electrical conductors as obtained in step i, iii. optionally, extruding a stuffing material as defined above around the isolated electrical conductor or conductors of step i or ii, and iv. optionally, extruding an outer sheath as defined above around the isolated electrical conductor (s) of step i, ii, or iii.
  • the thickness of the first layer ranges from 0.10 mm to
  • the thickness of the second layer (outer layer) ranges from 0.05 mm to 1.50 mm, especially when the
  • the thickness of the first layer is preferably from 0.30 mm to 0.80 mm, and more preferably to 0.60 mm.
  • the thickness of the second layer is preferably from 0.10 mm to 0.50 mm.
  • the thickness of the first layer is preferably from 0.30 mm to 0.90 mm. In this case, the thickness of the second layer is preferably 0.10 mm to 0.60 mm.
  • the thickness of the first layer is preferably from 0.35 mm to 1 mm.
  • the thickness of the second layer is preferably 0.10 mm to 0.70 mm.
  • Figure 1 shows a schematic cross-sectional view of an electric cable according to a first embodiment according to the invention.
  • FIG. 2 represents a schematic cross-sectional view of an electric cable according to a second embodiment in accordance with the invention.
  • FIG. 3 represents a schematic cross-sectional view of an electric cable according to a third embodiment in accordance with the invention.
  • the electric cable shown in Figure 1 comprises three insulated electrical conductors 1,2a, 2b and an outer sheath 3 surrounding all three isolated electrical conductors assembled in particular in twist, the insulated electrical conductors being of substantially circular cross section.
  • Each of the three insulated conductors consists of an electrical conductor 1 surrounded by a first insulating layer 2a (inner layer) and a second insulating layer 2b (outer layer) directly in contact with said first insulating layer 2a.
  • the first and the second insulating layer 2a, 2b are as defined in the present invention.
  • the outer sheath 3 provides empty spaces 4 between it and all the insulated electrical conductors that it surrounds.
  • This outer sheath 3 is tubular since it has an annular shape in cross section.
  • the outer sheath 3 is made from a flame retardant composition comprising a polymer matrix based on polyolefin.
  • the electric cable shown in Figure 2 comprises five insulated electrical conductors 1,2a, 2b or 1,2b and an outer sheath 3 surrounding all five insulated electrical conductors, the insulated electrical conductors being of substantially circular cross section.
  • Four of the five insulated electrical conductors 1,2a, 2b are respectively surrounded by a first insulating layer 2a (inner layer) and by a second insulating layer 2b (outer layer) directly in contact with said first insulating layer 2a.
  • the first and the second insulating layer 2a, 2b are as defined in the present invention.
  • the isolated electrical conductor 1,2c remaining is typically grounded. It comprises an electrical conductor surrounded by an insulating layer 2c of polymeric type. This layer may be a monolayer or a bilayer, for example of the same nature as the first layer 2a and / or the second layer 2b of the invention.
  • the five insulated conductors are assembled, and in particular twisted, around a reinforcing rod 5.
  • a stuffing material 6 surrounds all five isolated electrical conductors. Finally, an outer sheath 3 is extruded around all five electrical insulated conductors and the stuffing material.
  • FIG. 3 represents an electric cable according to the invention in which the isolated electrical conductors 1,2a, 2b, four in number in this embodiment. embodiment, are arranged in parallel with each other in the same longitudinal median plane P of the electric cable.
  • the set of insulated electrical conductors thus formed forms a strip of insulated electrical conductors, this strip being covered with an outer sheath 3 in order to maintain the insulated electrical conductors 1,2a, 2b in the longitudinal median plane P.
  • Electrical cables have been made with electrical conductors surrounded by different types of insulating layers according to the prior art and according to the invention.
  • the structure and nature of these cables are detailed in Table 1 below, broken down into two tables la and Ib.
  • Each of the electrical cables comprises N insulated electrical conductors including an electrical conductor connected to the ground.
  • the NI electrical conductors are detailed in table la, while said insulated electrical conductor grounded is detailed in Table Ib.
  • the term "ceramizing thermoplastic layer 1" refers to a layer obtained from an uncrosslinked EVA material comprising from 100 to 200 parts by weight of a mixture of two refractory fillers such as mica muscovite (50 to 150 parts by weight) and CaO (5 to 50 parts by weight), and 5 to 50 parts by weight of zinc borate, parts by weight being based on 100 parts by weight of EVA ;
  • “Ceramicizing thermoplastic layer 2” refers to a layer obtained from an uncrosslinked PEO material having from 100 to 200 parts by weight of magnesium oxide and from 5 to 50 parts by weight of zinc borate, the parts by weight being expressed relative to 100 parts by weight of PEO;
  • “Ceramicizing thermoplastic layer 3” refers to a layer obtained from an uncrosslinked PEO material having from 100 to 200 parts by weight of muscovite mica and from 5 to 50 parts by weight of zinc borate, the parts by weight being expressed relative to 100 parts by weight of PEO;
  • “Ceramicizing thermoplastic layer 4" refers to
  • Each of the cables referenced 1 to 7 in Table 1 will undergo fire resistance tests.
  • the fire resistance tests are carried out according to the following two standards: IEC 60331-21 and DIN 4102-12.
  • the IEC 60331-21 standard consists of subjecting an electric cable to its nominal voltage when it is suspended horizontally over a flame of at least 75O 0 C for a determined period of time but without mechanical stress. This period is checked if there is a short-circuit or breakage of the electrical conductors. The test is successful when there is no short circuit or breakage of the electrical conductors during the test and the next 15 minutes. The electrical cable that has passed the test for 30 minutes is then classified FE30. When it passes the test for 90 minutes or 180 minutes, it is respectively classified FE90 and FE180.
  • DIN 4102-12 consists in subjecting an electrical cable with its fixing devices in an oven with a minimum length of 3 meters for a specified period of time according to a standard temperature curve (ISO 834).
  • the electrical cable and its fasteners are subject to the maximum permissible weight and specified loads. Electrical conductors are under their operating voltage must not break or give rise to short circuits otherwise the test would be considered a failure.
  • the electrical cable having passed the test for 30 minutes at 842 0 C is then classified E30. When it passes the test for 60 minutes at 945 0 C or for 90 minutes at 1006 0 C, it is then respectively classified E60 and E90. This type of test close to the reality of a fire relates not only to the electric cable but also to the fastening systems of said cable.
  • Table 2 below shows the very satisfactory results of the fire resistance tests of the electric cables according to the present invention (cables referenced 1 to 5 and 9 to 11) in accordance with the IEC 60331-21 standard. It can also be noted that even without jamming, the cable referenced 3 according to the present invention satisfactorily satisfies this standard.
  • the cables referenced 1 to 5 and 9 to 11 have fire resistance properties at least equivalent to or even better than the cable referenced 6, the cost of which is much higher (because of the presence of polyorganosiloxane in the insulating layers of electrical conductors).
  • the cables referenced 2, 4 and 8 in Table 1 will undergo electrical resistance tests, the outer sheaths of said cables being previously removed. Electrical resistance tests are performed according to IEC 60502-1 (paragraph 17.2).
  • the IEC 60502-1 standard consists in immersing a ring of insulated electrical conductors of at least 5 meters in water at the maximum temperature of the electrical conductors in normal service (eg 9O 0 C) for at least 1 hour before 'trial. Then a DC voltage between 80V and 500V is applied between the ring of isolated electrical conductors and water for a sufficient time (between 1 and 5 minutes). Finally, the transverse resistivity is calculated from the insulation resistance according to the following formula:
  • Table 3 below shows the very satisfactory results of the electrical resistance tests of the electric cables according to the present invention (cables referenced 2, 4 and 10) unlike the cable referenced 8 according to the prior art.
  • the standard NF EN 60811-2-1 describes the measurement of the hot flow of a material under load.
  • the corresponding test is commonly referred to as the Anglicism Hot Set Test.
  • test piece of material with a mass corresponding to the application of a stress equivalent to 0.2 MPa, and placing the assembly in an oven heated to 200 +/- 1 0 C for a duration of 15 minutes. At the end of this period, the hot elongation under load of the test piece, expressed in%, is recorded. The suspended mass is then removed, and the test piece is kept in the oven for another 5 minutes. longer remaining permanent, also called remanence, is then measured before being expressed in%.

Abstract

The present invention relates to an electric cable that includes one or more insulated electric conductors, each of the insulated electric conductors comprising an electric conductor surrounded by an insulation layer, the insulation layer including a first polymer layer (2a) surrounding the electric conductor, the first layer (2a) being obtained from a first composition including a matrix polymer formed from a thermoplastic polymer, and at least one ceramic-forming feedstock, characterized in that the insulation layer further includes a second cross-linked polymer layer (2b) surrounding said first layer, the second layer (2b) being obtained from a second position including a matrix polymer containing polyolefins and substantially free from any ceramic-forming feedstock or halogen compound.

Description

Câble électrique apte à assurer la continuité de distribution électrique en cas d'incendie Electrical cable capable of ensuring the continuity of electrical distribution in case of fire
La présente invention se rapporte à un câble électrique apte à assurer la continuité de distribution électrique en cas d'incendie comprenant un ou plusieurs conducteurs électriques isolés.The present invention relates to an electrical cable adapted to ensure the continuity of electrical distribution in case of fire comprising one or more insulated electrical conductors.
Elle s'applique typiquement, mais non exclusivement, au domaine des câbles de sécurité résistant au feu et notamment sans halogène, susceptible de fonctionner pendant un laps de temps donné dans des conditions d'incendie, sans être pour autant propagateur d'incendie ni générateur de fumées importantes. Ces câbles de sécurité sont en particulier des câbles de transport d'énergie ou des câbles de transmission basse fréquence, tels que des câbles de contrôle ou de signalisation.It applies typically, but not exclusively, to the field of fire-resistant and in particular halogen-free security cables, capable of operating for a given period of time in fire conditions, without being a fire propagator or generator. important fumes. These safety cables are in particular power transmission cables or low frequency transmission cables, such as control or signaling cables.
Un des enjeux majeurs de l'industrie du câble est l'amélioration du comportement et des performances des câbles dans des conditions thermiques extrêmes, notamment celles rencontrées lors d'un incendie. Pour des raisons essentiellement de sécurité, il est en effet indispensable de maximiser les capacités du câble à résister au feu afin d'assurer une continuité de fonctionnement, notamment des équipements de secours et d'aide à l'évacuation.One of the major challenges of the cable industry is the improvement of the behavior and performance of cables in extreme thermal conditions, especially those encountered during a fire. For reasons of safety in particular, it is indeed essential to maximize the capabilities of the cable to withstand fire to ensure continuity of operation, including emergency equipment and evacuation aid.
En cas d'incendie, le câble doit pouvoir résister au feu afin de fonctionner le plus longtemps possible et limiter sa dégradation. Un câble de sécurité se doit en outre de ne pas être dangereux pour son environnement, c'est-à-dire de ne pas propager l'incendie et de ne pas dégager de fumées toxiques et/ou opaques lorsqu'il est soumis à des conditions thermiques extrêmes.In case of fire, the cable must be able to withstand the fire in order to operate as long as possible and limit its degradation. A safety cable must also not be dangerous for its environment, that is to say not to spread the fire and not to release toxic fumes and / or opaque when subjected to extreme thermal conditions.
Du document EP 0 942 439 est connu un câble électrique de sécurité résistant au feu et sans halogène comportant un ensemble de conducteurs électriques isolés, ledit ensemble étant entouré par une gaine externe. Chaque conducteur électrique isolé est formé par un conducteur électrique entouré par une monocouche isolante polymérique obtenue à partir d'une composition comprenant une matière polymérique et au moins une charge formatrice de céramique, ladite couche isolante polymérique étant ainsi apte à se convertir au moins superficiellement en l'état de céramique à des hautes températures correspondant à des conditions d'incendie. La matière polymérique de cette unique couche isolante est choisie parmi un polysiloxane (polyorganosiloxane) et un copolymère d'éthylène, ou leur mélange.From EP 0 942 439 is known a halogen-free and fire-resistant electrical safety cable comprising a set of insulated electrical conductors, said assembly being surrounded by a outer sheath. Each insulated electrical conductor is formed by an electrical conductor surrounded by a polymeric insulating monolayer obtained from a composition comprising a polymeric material and at least one ceramic-forming filler, said polymeric insulating layer thus being able to convert at least superficially into the ceramic state at high temperatures corresponding to fire conditions. The polymeric material of this single insulating layer is selected from a polysiloxane (polyorganosiloxane) and a copolymer of ethylene, or a mixture thereof.
On connaît également d'autres câbles électriques de sécurité résistant au feu et sans halogène comportant des conducteurs électriques entourées par une isolation polymérique bicouche. Par exemple, le document EP 1 347 464 décrit un isolant bicouche apte à se convertir au moins superficiellement en l'état de céramique à des hautes températures correspondant à des conditions d'incendie. Chacune des couches de l'isolant bicouche comprend un copolymère d'éthylène-octène et une charge formatrice de céramique.Other fire-resistant and halogen-free electrical safety cables with electrical conductors surrounded by a two-layer polymeric insulation are also known. For example, the document EP 1 347 464 describes a bilayer insulator adapted to be converted at least superficially in the ceramic state at high temperatures corresponding to fire conditions. Each of the layers of the bilayer insulation comprises an ethylene-octene copolymer and a ceramic-forming filler.
Toutefois, il a été constaté que ces câbles de sécurité de l'art antérieur, même s'ils présentent de bonnes propriétés de résistance au feu, sont fragiles mécaniquement. Plus particulièrement, les conducteurs électriques isolés sont sensibles aux différentes contraintes mécaniques que subissent typiquement ces câbles lors de leur fabrication, leur transport, leur manipulation, leur installation ou leur raccordement. En outre, leur résistance électrique à haute température et en milieu humide, notamment selon la norme IEC 60502-1, n'est pas suffisante du fait de la présence des charges formatrices de céramiques.However, it has been found that these security cables of the prior art, even if they have good fire resistance properties, are mechanically fragile. More particularly, insulated electrical conductors are sensitive to the various mechanical stresses typically experienced by these cables during their manufacture, transport, handling, installation or connection. In addition, their electrical resistance at high temperature and in a humid medium, in particular according to the IEC 60502-1 standard, is not sufficient because of the presence of ceramic forming charges.
Le but de la présente invention est de pallier les inconvénients des techniques de l'art antérieur en proposant notamment un câble électrique facilement manipulable, limitant les risques de dégradation mécanique des conducteurs électriques isolés qui le composent, tout en conservant des propriétés de résistance au feu excellentes satisfaisant la norme IEC 60331-21 et une résistance électrique améliorée satisfaisant la norme IEC 60502-1. La présente invention a pour objet un câble électrique comprenant un ou plusieurs conducteurs électriques isolés, chacun desdits conducteurs électriques isolés comportant un conducteur électrique entouré par une couche isolante, de préférence une couche électriquement isolante, la couche isolante comprenant une première couche (2a) polymérique entourant le conducteur électrique, la première couche (2a) étant obtenue à partir d'une première composition comprenant une matrice polymère à base de polymère thermoplastique, et au moins une charge formatrice de céramique, caractérisé en ce que la couche isolante comprend en outre une deuxième couche (2b) polymérique réticulée entourant ladite première couche, la deuxième couche (2b) étant obtenue à partir d'une deuxième composition comprenant une matrice polymère à base de polyoléfine et ne comprenant sensiblement ni de charge formatrice de céramique, ni de composé halogène. Dans ce qui suit, les termes « première composition comprenant une matrice polymère à base de polymère thermoplastique » signifient que le ou les polymères utilisé(s) dans la première composition sont majoritairement un ou des polymères thermoplastiques (en % en poids dans la matrice), les termes « deuxième composition comprenant une matrice polymère à base de polyoléfine » signifient que le ou les polymères utilisé(s) dans la deuxième composition sont majoritairement un ou des polyoléfines (en % en poids dans la matrice).The purpose of the present invention is to overcome the drawbacks of the techniques of the prior art by proposing in particular an easily manipulated electric cable, limiting the risk of degradation mechanically insulated electrical conductors that compose it, while maintaining excellent fire resistance properties meeting the IEC 60331-21 standard and an improved electrical resistance meeting the IEC 60502-1 standard. The present invention relates to an electrical cable comprising one or more insulated electrical conductors, each of said insulated electrical conductors comprising an electrical conductor surrounded by an insulating layer, preferably an electrically insulating layer, the insulating layer comprising a first polymeric layer (2a) surrounding the electrical conductor, the first layer (2a) being obtained from a first composition comprising a polymer matrix based on thermoplastic polymer, and at least one ceramic forming filler, characterized in that the insulating layer further comprises a second crosslinked polymeric layer (2b) surrounding said first layer, the second layer (2b) being obtained from a second composition comprising a polyolefin-based polymer matrix and comprising substantially no ceramic forming filler or halogenated compound . In what follows, the terms "first composition comprising a polymer matrix based on thermoplastic polymer" mean that the polymer (s) used in the first composition are predominantly one or more thermoplastic polymers (in% by weight in the matrix) , the terms "second composition comprising a polyolefin-based polymer matrix" mean that the polymer (s) used in the second composition are predominantly one or more polyolefins (in% by weight in the matrix).
On entend en outre par « composés halogènes » un composé de toutes natures comprenant au moins un élément halogène, tel que par exemple des polymères fluorés ou des polymères chlorés comme le polychlorure de vinyle (PVC), des plastifiants halogènes, des charges minérales halogénées, ...etc.The term "halogenated compounds" furthermore means a compound of all kinds comprising at least one halogen element, such as, for example, fluorinated polymers or chlorinated polymers such as polyvinyl chloride (PVC), halogenated plasticizers, halogenated mineral fillers, ... etc.
Grâce à l'invention, la deuxième couche polymérique réticuléeThanks to the invention, the second crosslinked polymeric layer
(couche externe) à base de polyoléfine protège mécaniquement la première couche polymérique (couche interne) à base de polymère thermoplastique. Cette propriété permet à la couche isolante de chaque conducteur électrique isolé d'améliorer les propriétés mécaniques du câble, notamment la dureté, la résistance à l'abrasion et à la déchirure des conducteurs électriques isolés qui le composent, de faciliter l'installation dudit câble, et de rendre le câble plus robuste lors de sa fabrication, tout en garantissant une très bonne adhésion entre la première couche et la deuxième couche de la couche isolante.(outer layer) based on polyolefin mechanically protects the first polymeric layer (inner layer) based on thermoplastic polymer. This property allows the insulating layer of each isolated electrical conductor to improve the mechanical properties of the cable, including the hardness, resistance to abrasion and tearing of the insulated electrical conductors that compose it, to facilitate the installation of said cable , and make the cable more robust during its manufacture, while ensuring a very good adhesion between the first layer and the second layer of the insulating layer.
Plus particulièrement, la couche isolante du câble électrique de l'invention présente une excellente tenue mécanique en température (ou fluage à chaud) satisfaisant la norme EN 60811-2-1.More particularly, the insulating layer of the electric cable of the invention has excellent mechanical strength in temperature (or hot creep) meeting the EN 60811-2-1 standard.
De plus, le câble électrique comprenant la couche isolante selon l'invention satisfait à la norme IEC 60331-21 avec des propriétés de résistance au feu excellentes. Les conducteurs électriques sont ainsi protégés contre l'incendie, ou en d'autres termes, le câble électrique permet de garantir un comportement au feu de haute qualité en termes au moins de cohésion des cendres électriquement isolantes.In addition, the electrical cable comprising the insulating layer according to the invention meets the IEC 60331-21 standard with excellent fire resistance properties. The electrical conductors are thus protected against fire, or in other words, the electric cable ensures a fire behavior of high quality in terms of at least cohesion electrically insulating ash.
Un autre avantage de la couche isolante du câble électrique de l'invention concerne sa résistance électrique. Du fait de l'absence de charge formatrice de céramique dans la couche externe de la couche isolante de l'invention, les propriétés de résistance électrique du câble à haute température selon la norme IEC 60502-1 sont améliorées de façon significative.Another advantage of the insulating layer of the electric cable of the invention relates to its electrical resistance. Due to the absence of ceramic forming charge in the outer layer of the insulating layer of the invention, the electrical resistance properties of the cable to high temperature according to IEC 60502-1 are significantly improved.
Un autre avantage de la couche isolante du câble électrique de l'invention réside en ce qu'elle limite de façon significative le dégagement de fumées toxiques lorsqu'elle est soumise à des conditions thermiques extrêmes.Another advantage of the insulating layer of the electrical cable of the invention is that it significantly limits the release of toxic fumes when subjected to extreme thermal conditions.
L'invention telle qu'ainsi définie présente enfin l'avantage d'être économique puisqu'elle permet de limiter significativement, voire d'éviter totalement, l'utilisation de polyorganosiloxane dans la couche isolante des conducteurs électriques isolés, tout en ayant de très bonnes propriétés de résistance au feu.The invention as thus defined finally has the advantage of being economical since it makes it possible to significantly limit, or even completely avoid, the use of polyorganosiloxane in the insulating layer of the isolated electrical conductors, while having very low good fire resistance properties.
La première couche polvmériαue fou couche interne)The first layer polvmériαue crazy inner layer)
Selon la présente invention, le polymère thermoplastique de la première composition peut être avantageusement choisi parmi les polymères d'oléfine, les polymères d'acrylate ou de méthacrylate, les polymères de vinyle comme par exemple le polychlorure de vinyle, et les polymères fluorés, ou un de leurs mélanges. A titre d'exemple préféré, les polymères d'oléfine sont choisis parmi les homopolymères d'éthylène ; les copolymères d'éthylène et d'octène (PEO) ; les copolymères d'éthylène et d'acétate de vinyle (EVA) ; les copolymères d'éthylène et de butyle acrylate (EBA) ; les copolymères d'éthylène et d'acrylate de méthyle (EMA) ; les copolymères d'éthylène et d'éthyle acrylate (EEA) ; les copolymères d'éthylène et d'acrylate de butyle (EBA) ; les copolymères d'éthylène et d'acrylate d'éthyle (EEA) ; les copolymères d'éthylène, de propylène et de caoutchouc (EPR) ; les copolymères d'éthyle propylène diène monomère (EPDM) ; ou un de leurs mélanges. Dans un mode de réalisation préféré, la matrice polymère de la première composition comprend au moins 95% en poids de polymère thermoplastique, de préférence ladite matrice polymère ne comprend que un ou des polymères thermoplastiques. Dans un autre mode de réalisation préféré, la première composition ne comprend pas plus de 5% en poids de polyorganosiloxane, de préférence pas plus de 2% en poids de polyorganosiloxane, et encore plus préférentiellement la première composition ne comprend pas de polyorganosiloxane. La charge formatrice de céramique utilisée dans la première composition permet à la première couche de se convertir au moins superficiellement en l'état de céramique à des hautes températures correspondant à des conditions d'incendie, et ainsi former une première couche dite « céramisante ». Cette couche céramisante assure donc une isolation suffisante lorsque la deuxième couche (couche externe) a disparu suite aux phénomènes de combustion.According to the present invention, the thermoplastic polymer of the first composition may be advantageously chosen from olefin polymers, acrylate or methacrylate polymers, vinyl polymers such as, for example, polyvinyl chloride, and fluoropolymers, or one of their mixtures. By way of preferred example, the olefin polymers are chosen from homopolymers of ethylene; copolymers of ethylene and octene (PEO); copolymers of ethylene and vinyl acetate (EVA); copolymers of ethylene and butyl acrylate (EBA); copolymers of ethylene and methyl acrylate (EMA); copolymers of ethylene and ethyl acrylate (EEA); copolymers of ethylene and butyl acrylate (EBA); copolymers of ethylene and ethyl acrylate (EEA); copolymers of ethylene, propylene and rubber (EPR); copolymers of ethyl propylene diene monomer (EPDM); or a mixture thereof. In a preferred embodiment, the polymer matrix of the first composition comprises at least 95% by weight of thermoplastic polymer, preferably said polymer matrix comprises only one or more thermoplastic polymers. In another preferred embodiment, the first composition does not comprise more than 5% by weight of polyorganosiloxane, preferably not more than 2% by weight of polyorganosiloxane, and even more preferably the first composition does not comprise polyorganosiloxane. The ceramic forming filler used in the first composition allows the first layer to convert at least superficially in the ceramic state at high temperatures corresponding to fire conditions, and thus form a first so-called "ceramizing" layer. This ceramizing layer thus provides sufficient insulation when the second layer (outer layer) has disappeared due to combustion phenomena.
La charge formatrice de céramique selon l'invention peut être choisie parmi une charge céramique fusible et une charge réfractaire, ou un de leur mélange. La charge formatrice de céramique comprend de préférence au moins une charge céramique fusible et au moins une charge réfractaire.The ceramic forming filler according to the invention may be chosen from a fusible ceramic filler and a refractory filler, or a mixture thereof. The ceramic forming filler preferably comprises at least one fusible ceramic filler and at least one refractory filler.
Plus particulièrement, la charge céramique fusible a une température de fusion inférieure à une température élevée T, et la charge réfractaire a une température de fusion supérieure à ladite température T. Cette température T est avantageusement d'au moins 75O0C, et peut atteindre HOO0C.More particularly, the fusible ceramic filler has a melting temperature lower than an elevated temperature T, and the refractory filler has a melting temperature greater than said temperature T. This temperature T is advantageously at least 75 ° C., and can reach HOO 0 C.
La charge céramique fusible peut être au moins une charge minérale choisie parmi les oxydes de bore (e.g. B2O3), les borates de zinc anhydres (e.g. 2ZnO 3B2O3) ou hydratés (e.g. 4ZnO B2O3 H2O ou 2ZnO 3B2O3 3,5H2O), les phosphates de bore anhydres (e.g. BPO4) ou hydratés, ou un de leurs précurseurs. A titre d'exemple, on peut citer comme précurseur d'oxyde de bore, les borosilicates de calcium.The fusible ceramic filler may be at least one mineral filler selected from boron oxides (eg B 2 O 3 ), anhydrous zinc borates (eg 2ZnO 3B 2 O 3 ) or hydrated borates (eg 4ZnO B 2 O 3 H 2 O or 2ZnO 3B 2 O 3 3.5H 2 O), anhydrous boron phosphates (eg BPO 4 ) or hydrated, or one of their precursors. By way of example, calcium borosilicates may be mentioned as boron oxide precursor.
Cette charge céramique fusible a typiquement un point de fusion inférieure à 500 0C et donne naissance à une phase amorphe (e.g. un verre) lorsque la température dépasse 5000C.This fusible ceramic charge typically has a melting point below 500 ° C. and gives rise to an amorphous phase (eg a glass) when the temperature exceeds 500 ° C.
La charge réfractaire peut être au moins une charge minérale choisie parmi les oxydes de magnésium (e.g. MgO), les oxydes de calcium (e.g. CaO), les oxydes de silicium (e.g. SiO2 ou quartz), les oxydes d'aluminium (e.g. AI2O3), les oxydes de chrome (e.g. Cr2O3), les oxydes de zirconium (e.g. ZrO2) et les phyllosilicates tels que par exemple les montmorillonites, les sépiolites, les illites, les attapulgites, les talcs, les kaolins ou les micas (e.g. mica muscovite 6 SiO2 - 3 AI2O3 - K2O - 2H2O), ou un de leurs mélanges.The refractory filler may be at least one mineral filler selected from magnesium oxides (eg MgO), calcium oxides (eg CaO), silicon oxides (eg SiO 2 or quartz), aluminum oxides (eg Al 2 O 3 ), chromium oxides (eg Cr 2 O 3 ), zirconium oxides (eg ZrO 2 ) and phyllosilicates such as, for example, montmorillonites, sepiolites, illites, attapulgites, talcs, kaolins or micas (eg muscovite mica 6 SiO 2 - 3 Al 2 O 3 - K 2 O - 2H 2 O), or a mixture thereof.
De préférence, la charge formatrice de céramique se compose de deux charges réfractaires telle que par exemple du mica muscovite et de l'oxyde de calcium CaO ou un de ses précurseurs (e.g. carbonate de calcium CaCO3), et d'une charge céramique fusible telle que par exemple un précurseur d'oxyde de bore.Preferably, the ceramic forming filler consists of two refractory fillers such as, for example, muscovite mica and calcium oxide CaO or one of its precursors (eg calcium carbonate CaCO 3 ), and a fusible ceramic filler. such as, for example, a boron oxide precursor.
La quantité de charges formatrices de céramique peut être définie en ce que la première composition comprend au moins 90 parties en poids desdites charges pour 100 parties en poids de polymère, de préférence au plus 250 parties en poids desdites charges pour 100 parties en poids de polymères afin de limiter les problèmes de rhéologies dans la composition. Plus particulièrement, la quantité de charge céramique fusible peut aller de 5 à 100 parties en poids, de préférence de 20 à 80, et la quantité de charge réfractaire peut aller de 50 à 200 parties en poids, de préférence de 70 à 120 parties en poids pour 100 parties en poids de polymères dans la première composition. Dans un mode de réalisation préféré, la première composition n'est pas réticulée, ou en d'autres termes la première couche formée autour du conducteur électrique est non réticulée.The amount of ceramic-forming fillers can be defined in that the first composition comprises at least 90 parts by weight of said fillers per 100 parts by weight of polymer, preferably at most 250 parts by weight of said fillers per 100 parts by weight of polymers in order to limit the problems of rheologies in the composition. More particularly, the amount of fusible ceramic filler can range from 5 to 100 parts by weight, preferably from 20 to 80, and the amount of refractory filler can range from 50 to 200 parts by weight, preferably from 70 to 120 parts by weight. weight per 100 parts by weight of polymers in the first composition. In a preferred embodiment, the first composition is not crosslinked, or in other words the first layer formed around the electrical conductor is uncrosslinked.
Par ailleurs, et dans un mode de réalisation particulier, la première couche polymérique (ou couche interne) ne comprend pas de composé halogène.Moreover, and in a particular embodiment, the first polymeric layer (or inner layer) does not comprise halogenated compound.
La deuxième couche polvmériαue réticulée fou couche externe)The second layer polvmériαue reticulated crazy outer layer)
La deuxième couche polymérique réticulée est distincte de la première couche polymérique car elle est dite « non céramisante » puisqu'elle ne comprend sensiblement pas de charge formatrice de céramique. Le terme « sensiblement » signifie que la deuxième composition peut en outre comprendre une charge formatrice de céramique mais en tant qu'additif. De ce fait, la deuxième couche ne peut avoir les propriétés de se convertir au moins superficiellement en l'état de céramique à des hautes températures correspondant à des conditions d'incendie, notamment par exemple lorsque la deuxième composition comprend moins de 50 parties en poids de charge formatrice de céramique.The second crosslinked polymeric layer is distinct from the first polymeric layer because it is said to be "non-ceramizing" since it does not substantially comprise any ceramic-forming filler. The term "substantially" means that the second composition may further comprise a ceramic forming filler but as an additive. As a result, the second layer can not have the properties of being converted at least superficially into the ceramic state at high temperatures corresponding to fire conditions, for example, for example when the second composition comprises less than 50 parts by weight. ceramic forming charge.
La polyoléfine de la deuxième composition peut être avantageusement choisie parmi les homopolymères et les copolymères d'éthylène, ou un de leurs mélanges.The polyolefin of the second composition may be advantageously chosen from homopolymers and copolymers of ethylene, or a mixture thereof.
A titre d'exemple préféré d'homopolymères d'éthylène, on peut citer le polyéthylène basse densité (LDPE).As a preferred example of homopolymers of ethylene, low density polyethylene (LDPE) can be mentioned.
Les copolymères d'éthylène peuvent quant à eux être choisis avantageusement parmi les copolymères d'éthylène et d'octène (PEO) ; les copolymères d'éthylène et d'acétate de vinyle (EVA) ; les copolymères d'éthylène et de butyle acrylate (EBA) ; les copolymères d'éthylène et de méthyle acrylate (EMA) ; les copolymères d'éthylène et d'éthyle acrylate (EEA) ; les copolymères d'éthylène, de propylène et de caoutchouc (EPR) ; et les copolymères d'éthylène propylène diène monomère (EPDM) ; ou un de leurs mélanges. On peut citer les copolymères d'éthylène et d'acétate de vinyle (EVA) comme copolymère d'éthylène préféré.The copolymers of ethylene can be advantageously chosen from copolymers of ethylene and octene (PEO); copolymers of ethylene and vinyl acetate (EVA); the copolymers of ethylene and butyl acrylate (EBA); copolymers of ethylene and methyl acrylate (EMA); copolymers of ethylene and ethyl acrylate (EEA); copolymers of ethylene, propylene and rubber (EPR); and copolymers of ethylene propylene diene monomer (EPDM); or a mixture thereof. Copolymers of ethylene and vinyl acetate (EVA) as the preferred ethylene copolymer may be mentioned.
De préférence, la matrice polymère de la deuxième composition est distincte de la matrice polymère de la première composition. Dans un mode de réalisation préféré, la matrice polymère de la deuxième composition comprend au moins 95% en poids de polyoléfine, de préférence ladite matrice polymère ne comprend que une ou des polyoléfines.Preferably, the polymer matrix of the second composition is distinct from the polymer matrix of the first composition. In a preferred embodiment, the polymer matrix of the second composition comprises at least 95% by weight of polyolefin, preferably said polymer matrix comprises only one or more polyolefins.
Dans un autre mode de réalisation préféré, la deuxième composition ne comprend pas plus de 5% en poids de polyorganosiloxane, de préférence pas plus de 2% en poids de polyorganosiloxane, et encore plus préférentiellement la deuxième composition ne comprend pas de polyorganosiloxane.In another preferred embodiment, the second composition does not comprise more than 5% by weight of polyorganosiloxane, preferably not more than 2% by weight of polyorganosiloxane, and even more preferably the second composition does not comprise polyorganosiloxane.
Selon une première variante, la deuxième composition peut comprend en outre au moins une charge minérale différente d'une charge formatrice de céramique.According to a first variant, the second composition may further comprise at least one mineral filler different from a ceramic forming filler.
La charge minérale peut être une charge minérale ignifugeante hydratée, choisie notamment parmi les hydroxydes métalliques tels que par exemple le dihydroxyde de magnésium (MDH) ou le trihydroxyde d'aluminium (ATH). Les charges minérales ignifugeantes employées agissent principalement par voie physique en se décomposant de manière endothermique, ce qui a pour conséquence d'abaisser la température de la couche isolante et de limiter la propagation des flammes le long du câble. La charge minérale peut également être un carbonate, tel que du carbonate de calcium.The inorganic filler may be a hydrated flame retardant mineral filler, chosen in particular from metal hydroxides such as, for example, magnesium dihydroxide (MDH) or aluminum trihydroxide (ATH). The flame retardant inorganic fillers employed mainly act physically by decomposing endothermically, which results in lowering the temperature of the insulating layer and limiting the propagation of the flames along the cable. The mineral filler may also be a carbonate, such as calcium carbonate.
La quantité de charges minérales peut être définie en ce que la deuxième composition comprend au moins 90 parties en poids desdites charges pour 100 parties en poids de polymère, de préférence au plus 200 parties en poids desdites charges pour 100 parties en poids de polymères afin de limiter les problèmes de rhéologies dans la composition.The amount of mineral fillers can be defined in that the second composition comprises at least 90 parts by weight of said fillers per 100 parts by weight of polymer, preferably at most 200 parts by weight of said fillers per 100 parts by weight of polymers in order to to limit the problems of rheologies in the composition.
La deuxième couche polymérique réticulée de cette première variante est tout particulièrement avantageuse lorsqu'elle est associée à une première couche polymérique non réticulée comprenant, en tant que charge formatrice de céramique, uniquement une ou plusieurs charge(s) réfractaire(s).The second crosslinked polymeric layer of this first variant is particularly advantageous when associated with a first non-crosslinked polymeric layer comprising, as a ceramic-forming filler, only one or more refractory filler (s).
Selon une deuxième variante, la deuxième couche est dite « non chargée », ou en d'autres termes la deuxième couche, en plus de ne pas comprendre de charge formatrice de céramique, ne comprend pas de charge minérale ignifugeante hydratée, et plus particulièrement pas de charge minérale.According to a second variant, the second layer is said to be "uncharged", or in other words the second layer, in addition to not including a ceramic-forming filler, does not comprise a hydrated flame retardant mineral filler, and more particularly not mineral charge.
La réticulation de la deuxième composition pour obtenir la deuxième couche réticulée peut s'effectuer par les techniques classiques de réticulation bien connues de l'homme du métier telles que par exemple la réticulation silane en présence d'un agent de réticulation, la réticulation peroxyde sous l'action de la chaleur, ou la réticulation par voie photochimique telle que l'irradiation sous rayonnement béta, ou irradiation sous rayonnement ultraviolet en présence d'un photoamorceur. La réticulation silane en présence d'un agent de réticulation dans la deuxième composition est préférée puisqu'elle évite l'utilisation d'équipements supplémentaires spécifiques tels que des lampes ou des chambres d'irradiation pour la réticulation sous rayonnement, ou des lignes à bain de sel ou des tubes à vapeur pour la réticulation peroxyde.Crosslinking of the second composition to obtain the second crosslinked layer can be carried out by conventional crosslinking techniques well known to those skilled in the art such as, for example, silane crosslinking in the presence of a crosslinking agent, peroxide crosslinking under the action of heat, or photochemically crosslinking such as irradiation under beta radiation, or irradiation under ultraviolet radiation in the presence of a photoinitiator. The silane crosslinking in the presence of a crosslinking agent in the second composition is preferred since it avoids the use of specific additional equipment such as lamps or irradiation chambers for cross-linking under radiation, or salt bath lines or steam tubes for peroxide crosslinking.
Dans un mode de réalisation particulièrement préféré, la deuxième composition ne comprend que la matrice polymère, et, si nécessaire, les composants destinés à réticuler ladite deuxième composition tels que par exemple un agent de réticulation, et ainsi former la deuxième couche réticulée. Cette dernière est donc une couche réticulée non chargée.In a particularly preferred embodiment, the second composition comprises only the polymer matrix, and, if necessary, the components intended to crosslink said second composition such as, for example, a crosslinking agent, and thus form the second crosslinked layer. The latter is therefore an uncharged crosslinked layer.
Que ce soient la première couche polymérique et/ou la deuxième couche polymérique de l'invention, elles peuvent contenir des additifs bien connus de l'homme du métier comme par exemple des agents de traitements de surface, des antioxydants, des cires, ...etc.Whether they are the first polymeric layer and / or the second polymeric layer of the invention, they may contain additives that are well known to those skilled in the art, for example surface-treatment agents, antioxidants, waxes, etc. .etc.
Procédé de fabrication de la couche isolanteMethod of manufacturing the insulating layer
Le procédé de fabrication de la couche (électriquement) isolante, et plus généralement du câble électrique, est bien connu de l'homme du métier. La technique préférée pour mettre en forme les première et deuxième compositions est l'extrusion à l'aide d'une extrudeuse.The method of manufacturing the (electrically) insulating layer, and more generally the electric cable, is well known to those skilled in the art. The preferred technique for shaping the first and second compositions is extrusion using an extruder.
La première et la deuxième compositions peuvent être extrudées en deux étapes successives ou concomitamment. Dans ce dernier cas, on parle de co-extrusion. La réticulation de la deuxième couche s'effectue typiquement après la mise en forme par extrusion de la deuxième composition.The first and second compositions may be extruded in two successive steps or concomitantly. In the latter case, we speak of co-extrusion. The crosslinking of the second layer is typically carried out after the extrusion shaping of the second composition.
Dans le cas où la première couche est également réticulée, l'étape de réticulation se fait typiquement soit directement après l'étape de mise en forme par extrusion de la première composition, soit après l'étape de mise en forme par extrusion de la deuxième composition. Les première et deuxième couches de l'invention sont de préférence directement en contact entre elles, ou en d'autres termes la couche isolante ne comprend aucune couche intermédiaire entre la première couche et la deuxième couche. La couche isolante peut alors être définie comme un « bicouche ».In the case where the first layer is also crosslinked, the crosslinking step is typically either directly after the extrusion forming step of the first composition or after the extrusion forming step of the second composition. The first and second layers of the invention are preferably directly in contact with each other, or in other words the insulating layer comprises no intermediate layer between the first layer and the second layer. The insulating layer can then be defined as a "bilayer".
La αaine extérieureThe outer age
Le câble électrique de l'invention peut comprendre en outre une gaine extérieure entourant le ou les conducteurs électriques isolés. Cette gaine extérieure est bien connue de l'homme du métier. Elle peut brûler complètement localement et se transformer en cendres résiduelles sous l'effet des températures élevées d'un incendie sans pour autant être propagateur de l'incendie. Le matériau qui compose la gaine extérieure peut être par exemple une matrice polymère à base de polyoléfine et au moins une charge minérale ignifugeante hydratée choisie notamment parmi les hydroxydes métalliques tels que par exemple le dihydroxyde de magnésium ou le trihydroxyde d'aluminium. La gaine extérieure peut être une gaine tubulaire ou bien une gaine dite « bourrante », ces deux types de gaine étant bien connus de l'homme du métier. La gaine tubulaire est préférée pour garantir une forme circulaire de la section transversale du câble, tandis que la gaine bourrante est préférée lorsque les conducteurs électriques isolés sont agencés en parallèle les uns à côtés des autres dans un même plan. Dans tous les cas, la gaine extérieure est classiquement obtenue par extrusion.The electrical cable of the invention may further comprise an outer sheath surrounding the isolated electrical conductor or conductors. This outer sheath is well known to those skilled in the art. It can burn completely locally and turn into residual ash under the effect of the high temperatures of a fire without spreading the fire. The material that composes the outer sheath may be, for example, a polyolefin-based polymer matrix and at least one hydrated flame retardant mineral filler selected in particular from metal hydroxides such as, for example, magnesium dihydroxide or aluminum trihydroxide. The outer sheath may be a tubular sheath or a so-called "jamming" sheath, these two types of sheath being well known to those skilled in the art. The tubular sheath is preferred to ensure a circular shape of the cross section of the cable, while the sheath is preferred when the insulated electrical conductors are arranged in parallel to each other in the same plane. In all cases, the outer sheath is conventionally obtained by extrusion.
Le câble électrique Selon une première variante, lorsque le câble électrique comprend une gaine extérieure telle que définie ci-avant, le câble électrique peut comprendre en outre des espaces vides prévus entre la gaine extérieure d'une part, et le ou les conducteurs électriques isolés d'autre part. Dans ce cas, et afin de garantir une forme cylindrique au câble sur toute sa longueur, la gaine extérieure est de préférence tubulaire.The electric cable According to a first variant, when the electric cable comprises an outer sheath as defined above, the electric cable may further comprise voids provided between the outer sheath on the one hand, and the isolated electrical conductor or conductors go. In this case, and to ensure a cylindrical shape to the cable over its entire length, the outer sheath is preferably tubular.
Selon une deuxième variante, lorsque le câble électrique comprend une gaine extérieure telle que définie ci-avant, le câble électrique peut comprendre en outre un matériau bourrant (ou bourrage) entre la gaine extérieure d'une part, et le ou les conducteurs électriques isolés d'autre part.According to a second variant, when the electric cable comprises an outer sheath as defined above, the electric cable may further comprise a stuffing material (or stuffing) between the outer sheath on the one hand, and the isolated electrical conductor or conductors on the other hand.
Ce matériau bourrant est bien connu de l'homme du métier et a pour objet de garantir une forme cylindrique au câble sur toute sa longueur.This stuffing material is well known to those skilled in the art and is intended to ensure a cylindrical shape to the cable over its entire length.
Il est typiquement extrudé autour du ou des conducteurs électriques isolés. Le bourrage se compose par exemple d'une matrice polymère à base de polyoléfine dans laquelle ont été ajoutées des charges minérales telles que par exemple du carbonate de calcium, et de façon particulièrement préférée des charges ignifugeantes hydratées telles que décrites ci-avant. Pour obtenir une cohésion des cendres plus importante du matériau bourrant, l'utilisation des charges minérales ignifugeantes hydratées combinées à des charges minérales du type phyllosilicate sont préférées. Selon une troisième variante, lorsque le câble électrique comprend une gaine extérieure telle que définie ci-avant, la gaine extérieure peut être bourrante, notamment lorsque le câble électrique ne comprend ni d'espace vide ni de matériau bourrant.It is typically extruded around the isolated electrical conductor (s). The stuffing consists for example of a polyolefin-based polymer matrix in which mineral fillers such as for example calcium carbonate have been added, and particularly hydrated flame retardant fillers as described above. To obtain greater ash cohesion of the stuffing material, the use of hydrated flame retardant mineral fillers combined with phyllosilicate mineral fillers is preferred. According to a third variant, when the electric cable comprises an outer sheath as defined above, the outer sheath may be jamming, especially when the electric cable does not comprise any empty space or stuffing material.
Selon une autre caractéristique de l'invention, et afin de garantir un câble dit HFFR pour l'anglicisme « Halogen-Free Flame Retardant », le câble électrique, ou en d'autres termes les éléments qui composent ledit câble électrique, ne comprend/comprennent de préférence pas de composés halogènes.According to another characteristic of the invention, and in order to guarantee a so-called HFFR cable for Anglicism "Halogen-Free Flame Retardant", the electrical cable, or in other words the elements that make up said electric cable, preferably does not comprise halogenated compounds.
Plus particulièrement, la première couche polymérique (ou couche interne) et la deuxième couche polymérique réticulée (ou couche externe) ne comprennent pas de composé halogène.More particularly, the first polymeric layer (or inner layer) and the second crosslinked polymeric layer (or outer layer) do not comprise a halogenated compound.
Procédé de fabrication de la couche isolanteMethod of manufacturing the insulating layer
Un autre objet selon l'invention est un procédé de fabrication d'un câble électrique tel que décrit ci-avant conformément à l'invention, caractérisé en ce qu'il comprend les étapes consistant à : i. former la couche isolante telle que décrite ci-avant autour d'un conducteur électrique, ii. optionnellement, assembler au moins deux conducteurs électriques isolés tels qu'obtenus à l'étape i, iii. optionnellement, extruder un matériau bourrant tel que défini ci-avant autour du ou des conducteurs électriques isolés de l'étape i ou ii, et iv. optionnellement, extruder une gaine extérieure telle que définie ci-avant autour du ou des conducteurs électriques isolés de l'étape i, ii, ou iii.Another object according to the invention is a method of manufacturing an electric cable as described above according to the invention, characterized in that it comprises the steps of: i. forming the insulating layer as described above around an electrical conductor, ii. optionally, assembling at least two insulated electrical conductors as obtained in step i, iii. optionally, extruding a stuffing material as defined above around the isolated electrical conductor or conductors of step i or ii, and iv. optionally, extruding an outer sheath as defined above around the isolated electrical conductor (s) of step i, ii, or iii.
Dans un mode de réalisation particulier conforme à l'invention, l'épaisseur de la première couche (couche interne) va de 0,10 mm àIn a particular embodiment according to the invention, the thickness of the first layer (inner layer) ranges from 0.10 mm to
1,50 mm et l'épaisseur de la deuxième couche (couche externe) va quant à elle de 0,05 mm à 1,50 mm, notamment lorsque la section1.50 mm and the thickness of the second layer (outer layer) ranges from 0.05 mm to 1.50 mm, especially when the
(transversale) du conducteur électrique va de 1,5 mm2 à 4 mm2.(transversal) of the electrical conductor ranges from 1.5 mm 2 to 4 mm 2 .
Selon une première variante de ce mode de réalisation, lorsque la section (transversale) du conducteur électrique est de 1,5 mm2, l'épaisseur de la première couche va de préférence de 0,30 mm à 0,80 mm, et plus préférentiellement à 0,60 mm. Dans ce cas, l'épaisseur de la deuxième couche va quant à elle de préférence de 0, 10 mm à 0,50 mm. Selon une deuxième variante de ce mode de réalisation, lorsque la section (transversale) du conducteur électrique est de 2,5 mm2, l'épaisseur de la première couche va de préférence de 0,30 mm à 0,90 mm. Dans ce cas, l'épaisseur de la deuxième couche va quant à elle de préférence de 0,10 mm à 0,60 mm. Selon une troisième variante de ce mode de réalisation lorsque la section (transversale) du conducteur électrique est de 4 mm2, l'épaisseur de la première couche va de préférence de 0,35 mm à 1 mm. Dans ce cas, l'épaisseur de la deuxième couche va quant à elle de préférence de 0,10 mm à 0,70 mm. D'autres caractéristiques et avantages de la présente invention apparaîtront à la lumière des exemples qui vont suivre et des figures ci- annexées, lesdits exemples et figures étant donnés à titre illustratif et nullement limitatif.According to a first variant of this embodiment, when the section (transverse) of the electrical conductor is 1.5 mm 2, the thickness of the first layer is preferably from 0.30 mm to 0.80 mm, and more preferably to 0.60 mm. In this case, the thickness of the second layer is preferably from 0.10 mm to 0.50 mm. According to a second variant of this embodiment, when the (transversal) section of the electrical conductor is 2.5 mm 2 , the thickness of the first layer is preferably from 0.30 mm to 0.90 mm. In this case, the thickness of the second layer is preferably 0.10 mm to 0.60 mm. According to a third variant of this embodiment when the (transversal) section of the electrical conductor is 4 mm 2 , the thickness of the first layer is preferably from 0.35 mm to 1 mm. In this case, the thickness of the second layer is preferably 0.10 mm to 0.70 mm. Other features and advantages of the present invention will appear in the light of the examples which follow and the appended figures, said examples and figures being given for illustrative and not limiting.
La figure 1 représente une vue schématique en coupe transversale d'un câble électrique selon un premier mode de réalisation conforme à l'invention.Figure 1 shows a schematic cross-sectional view of an electric cable according to a first embodiment according to the invention.
La figure 2 représente une vue schématique en coupe transversale d'un câble électrique selon un deuxième mode de réalisation conforme à l'invention. La figure 3 représente une vue schématique en coupe transversale d'un câble électrique selon un troisième mode de réalisation conforme à l'invention.FIG. 2 represents a schematic cross-sectional view of an electric cable according to a second embodiment in accordance with the invention. FIG. 3 represents a schematic cross-sectional view of an electric cable according to a third embodiment in accordance with the invention.
Pour des raisons de clarté, les mêmes éléments ont été désignés par des références identiques dans cette figure. De même, seuls les éléments essentiels pour la compréhension de l'invention ont été représentés de manière schématique, et ceci sans respect de l'échelle.For the sake of clarity, the same elements have been designated by identical references in this figure. Similarly, only essential elements for understanding the invention have been shown schematically, and this without respect of the scale.
Le câble électrique représenté sur la figure 1 comporte trois conducteurs électriques isolés 1,2a, 2b et une gaine extérieure 3 entourant l'ensemble des trois conducteurs électriques isolés assemblés notamment en torsade, les conducteurs électriques isolés étant de section transversale sensiblement circulaire.The electric cable shown in Figure 1 comprises three insulated electrical conductors 1,2a, 2b and an outer sheath 3 surrounding all three isolated electrical conductors assembled in particular in twist, the insulated electrical conductors being of substantially circular cross section.
Chacun des trois conducteurs isolés se compose d'un conducteur électrique 1 entouré par une première couche isolante 2a (couche interne) et par une deuxième couche isolante 2b (couche externe) directement en contact avec ladite première couche isolante 2a. La première et la deuxième couche isolante 2a, 2b sont telles que définies dans la présente invention.Each of the three insulated conductors consists of an electrical conductor 1 surrounded by a first insulating layer 2a (inner layer) and a second insulating layer 2b (outer layer) directly in contact with said first insulating layer 2a. The first and the second insulating layer 2a, 2b are as defined in the present invention.
La gaine extérieure 3 ménage des espaces vides 4 entre elle et l'ensemble des conducteurs électriques isolés qu'elle entoure. Cette gaine extérieure 3 est tubulaire puisqu'elle présente une forme annulaire en section transversale.The outer sheath 3 provides empty spaces 4 between it and all the insulated electrical conductors that it surrounds. This outer sheath 3 is tubular since it has an annular shape in cross section.
La gaine extérieure 3 est réalisée à partir d'une composition ignifugeante comprenant une matrice polymère à base de polyoléfine. Le câble électrique représenté sur la figure 2 comporte cinq conducteurs électriques isolés 1,2a, 2b ou 1,2b et une gaine extérieure 3 entourant l'ensemble des cinq conducteurs électriques isolés, les conducteurs électriques isolés étant de section transversale sensiblement circulaire. Quatre des cinq conducteurs électriques isolés 1,2a, 2b sont respectivement entourés par une première couche isolante 2a (couche interne) et par une deuxième couche isolante 2b (couche externe) directement en contact avec ladite première couche isolante 2a. La première et la deuxième couche isolante 2a, 2b sont telles que définies dans la présente invention. Le conducteur électrique isolé 1,2c restant est typiquement relié à la terre. Il comporte un conducteur électrique entouré par une couche isolante 2c de type polymérique. Cette couche peut être une monocouche ou un bicouche par exemple de nature identique à la première couche 2a et/ou à la deuxième couche 2b de l'invention.The outer sheath 3 is made from a flame retardant composition comprising a polymer matrix based on polyolefin. The electric cable shown in Figure 2 comprises five insulated electrical conductors 1,2a, 2b or 1,2b and an outer sheath 3 surrounding all five insulated electrical conductors, the insulated electrical conductors being of substantially circular cross section. Four of the five insulated electrical conductors 1,2a, 2b are respectively surrounded by a first insulating layer 2a (inner layer) and by a second insulating layer 2b (outer layer) directly in contact with said first insulating layer 2a. The first and the second insulating layer 2a, 2b are as defined in the present invention. The isolated electrical conductor 1,2c remaining is typically grounded. It comprises an electrical conductor surrounded by an insulating layer 2c of polymeric type. This layer may be a monolayer or a bilayer, for example of the same nature as the first layer 2a and / or the second layer 2b of the invention.
Les cinq conducteurs isolés sont assemblés, et notamment torsadés, autour d'un jonc de renforcement 5.The five insulated conductors are assembled, and in particular twisted, around a reinforcing rod 5.
Un matériau bourrant 6 entoure l'ensemble des cinq conducteurs électriques isolés. Enfin, une gaine extérieure 3 est extrudée autour de l'ensemble des cinq conducteurs électriques isolés ainsi que du matériau bourrant.A stuffing material 6 surrounds all five isolated electrical conductors. Finally, an outer sheath 3 is extruded around all five electrical insulated conductors and the stuffing material.
La forme cylindrique, ou en d'autres termes la section transversale circulaire, du câble électrique de l'invention telle que représentée sur les figures 1 et 2 n'est nullement limitative. Le câble électrique peut également avoir une section transversale dite « plate » comme illustré sur la figure 3. La figure 3 représente un câble électrique conforme à l'invention dans lequel les conducteurs électriques isolés 1,2a, 2b, au nombre de quatre dans cet exemple de réalisation, sont disposés en parallèle les uns à côtés des autres dans un même plan médian longitudinal P du câble électrique. L'ensemble des conducteurs électriques isolés ainsi agencés forme une bande de conducteurs électriques isolés, cette bande étant recouverte d'une gaine extérieure 3 afin de maintenir les conducteurs électriques isolés 1,2a, 2b dans le plan médian longitudinal P.The cylindrical shape, or in other words the circular cross section, of the electric cable of the invention as shown in Figures 1 and 2 is not limiting. The electric cable may also have a so-called "flat" cross-section as illustrated in FIG. 3. FIG. 3 represents an electric cable according to the invention in which the isolated electrical conductors 1,2a, 2b, four in number in this embodiment. embodiment, are arranged in parallel with each other in the same longitudinal median plane P of the electric cable. The set of insulated electrical conductors thus formed forms a strip of insulated electrical conductors, this strip being covered with an outer sheath 3 in order to maintain the insulated electrical conductors 1,2a, 2b in the longitudinal median plane P.
ExemplesExamples
Des câbles électriques ont été réalisés avec des conducteurs électriques entourés par différents types de couches isolantes selon l'art antérieur et selon l'invention. La structure et la nature des ces câbles sont détaillées dans le tableau 1 ci-après, décomposé en deux tableaux la et Ib. Chacun des câbles électriques comporte N conducteurs électriques isolés dont un conducteur électrique relié à la terre. Les N-I conducteurs électriques sont détaillés dans le tableau la, tandis que ledit conducteur électrique isolé relié à la terre est détaillé dans le tableau Ib.Electrical cables have been made with electrical conductors surrounded by different types of insulating layers according to the prior art and according to the invention. The structure and nature of these cables are detailed in Table 1 below, broken down into two tables la and Ib. Each of the electrical cables comprises N insulated electrical conductors including an electrical conductor connected to the ground. The NI electrical conductors are detailed in table la, while said insulated electrical conductor grounded is detailed in Table Ib.
La structure de câble électrique en tant que telle, qui peut être prise en compte pour la compréhension des tableaux la et Ib, est celle représentée sur la figure 2. The electrical cable structure as such, which can be taken into account for the understanding of the tables 1a and 1b, is that represented in FIG.
Tableau 1a Table 1a
Tableau 1a (suite) Table 1a (continued)
Tableau 1bTable 1b
10 10
Tableau 1b (suite) Table 1b (continued)
Dans le tableau 1 : les termes « Couche thermoplastique céramisante 1 » font référence à une couche obtenue à partir d'un matériau non réticulé d'EVA comportant de 100 à 200 parties en poids d'un mélange de deux charges réfractaires telles que du mica muscovite (50 à 150 parties en poids) et du CaO (5 à 50 parties en poids), et de 5 à 50 parties en poids de borate de zinc, les parties en poids étant exprimées par rapport à 100 parties en poids d'EVA ; les termes « Couche thermoplastique céramisante 2 » font référence à une couche obtenue à partir d'un matériau non réticulé de PEO comportant de 100 à 200 parties en poids d'oxyde de magnésium et de 5 à 50 parties en poids de borate de zinc, les parties en poids étant exprimées par rapport à 100 parties en poids de PEO ; les termes « Couche thermoplastique céramisante 3 » font référence à une couche obtenue à partir d'un matériau non réticulé de PEO comportant de 100 à 200 parties en poids de mica muscovite et de 5 à 50 parties en poids de borate de zinc, les parties en poids étant exprimées par rapport à 100 parties en poids de PEO ; les termes « Couche thermoplastique céramisante 4 » font référence à une couche obtenue à partir d'un matériau non réticulé de PEO comportant de 100 à 200 parties en poids d'oxyde de magnésium (MgO), les parties en poids étant exprimées par rapport à 100 parties en poids de PEO ; les termes « Couche silicone » font référence à une couche obtenue à partir d'un matériau réticulé de polyorganosiloxane commercialisé par la société Wacker sous la référence R502/75 ; - le terme « XLPE non chargé » fait référence à un matériau réticulé de polyéthylène non chargé commercialisé par la société BOREALIS sous la référence Visico 4423 ; les termes « XEVA chargé » font référence à un matériau réticulé d'EVA comportant des charges ignifugeantes, commercialisé par la société Padanaplast sous la référence Cogegum GFR 360 ; les termes « XLPE chargé » font référence à un matériau réticulé de polyéthylène comportant des charges ignifugeantes, commercialisé par la société Padanaplast sous la référence Cogegum GFR 325 ; les termes « Cohésion 1 » font référence à un matériau bourrant (ou bourrage) HFFR, commercialisé par la société CONDOR sous la référence CC420 ; - les termes « Cohésion 2 » font référence à un matériau bourrant (ou bourrage) HFFR, commercialisé par la société CONDOR sous la référence Confill D-F0704; les termes « Epaisseur du bourrage » font référence à l'épaisseur du bourrage compris entre la périphérie interne de la gaine extérieure et la périphérie externe de la couche isolante du conducteur électrique isolé ; les termes « Gaine HFFR » font référence à un matériau HFFR non réticulé de polyoléfine commercialisé par la société Polyone sous la référence ECCOH 5860. Tests de résistance au feuIn Table 1: the term "ceramizing thermoplastic layer 1" refers to a layer obtained from an uncrosslinked EVA material comprising from 100 to 200 parts by weight of a mixture of two refractory fillers such as mica muscovite (50 to 150 parts by weight) and CaO (5 to 50 parts by weight), and 5 to 50 parts by weight of zinc borate, parts by weight being based on 100 parts by weight of EVA ; "Ceramicizing thermoplastic layer 2" refers to a layer obtained from an uncrosslinked PEO material having from 100 to 200 parts by weight of magnesium oxide and from 5 to 50 parts by weight of zinc borate, the parts by weight being expressed relative to 100 parts by weight of PEO; "Ceramicizing thermoplastic layer 3" refers to a layer obtained from an uncrosslinked PEO material having from 100 to 200 parts by weight of muscovite mica and from 5 to 50 parts by weight of zinc borate, the parts by weight being expressed relative to 100 parts by weight of PEO; "Ceramicizing thermoplastic layer 4" refers to a layer obtained from an uncrosslinked PEO material having from 100 to 200 parts by weight of magnesium oxide (MgO), the parts by weight being expressed relative to 100 parts by weight of PEO; the term "silicone layer" refers to a layer obtained from a crosslinked polyorganosiloxane material marketed by Wacker under the reference R502 / 75; the term "uncharged XLPE" refers to an uncured polyethylene crosslinked material marketed by the company BOREALIS under the reference Visico 4423; the terms "charged XEVA" refer to an EVA cross-linked material having flame retardant fillers, marketed by Padanaplast under the reference Cogegum GFR 360; the terms "charged XLPE" refer to a polyethylene crosslinked material having flame retardant fillers, sold by Padanaplast under the reference Cogegum GFR 325; the terms "Cohesion 1" refer to a stuffing material (or stuffing) HFFR, sold by CONDOR under the reference CC420; the terms "Cohesion 2" refer to a stuffing material (or stuffing) HFFR, marketed by CONDOR under the reference Confill D-F0704; "Thickness of the stuffing" refers to the thickness of the stuffing between the inner periphery of the outer sheath and the outer periphery of the insulating layer of the insulated electrical conductor; the terms "HFFR sheath" refer to an uncrosslinked polyolefin HFFR material marketed by Polyone under the reference ECCOH 5860. Fire resistance tests
Chacun des câbles référencés 1 à 7 dans le tableau 1 vont subir des tests de résistance au feu. Les tests de résistance au feu sont effectués selon les deux normes suivantes : IEC 60331-21 et DIN 4102- 12.Each of the cables referenced 1 to 7 in Table 1 will undergo fire resistance tests. The fire resistance tests are carried out according to the following two standards: IEC 60331-21 and DIN 4102-12.
La norme IEC 60331-21 consiste à soumettre un câble électrique à sa tension nominale lorsqu'il est suspendu horizontalement au-dessus d'une flamme d'au moins 75O0C pendant une durée déterminée mais sans contrainte mécanique. On vérifie sur cette période s'il y a court- circuit ou rupture des conducteurs électriques. Le test est réussi lorsqu'il n'y a ni court-circuit, ni rupture des conducteurs électriques pendant le test et les 15 minutes qui suivent. Le câble électrique ayant satisfait au test pendant 30 minutes est alors classé FE30. Lorsqu'il satisfait au test pendant 90 minutes ou pendant 180 minutes, il est respectivement classé FE90 et FE180.The IEC 60331-21 standard consists of subjecting an electric cable to its nominal voltage when it is suspended horizontally over a flame of at least 75O 0 C for a determined period of time but without mechanical stress. This period is checked if there is a short-circuit or breakage of the electrical conductors. The test is successful when there is no short circuit or breakage of the electrical conductors during the test and the next 15 minutes. The electrical cable that has passed the test for 30 minutes is then classified FE30. When it passes the test for 90 minutes or 180 minutes, it is respectively classified FE90 and FE180.
La norme DIN 4102-12 consiste à soumettre un câble électrique avec ses dispositifs de fixation dans un four de 3 mètres de long minimum pendant une durée déterminée selon une courbe de température normalisée (ISO 834). De plus, le câble électrique et ses dispositifs de fixation sont soumis au poids maximal admissible et aux charges prescrites. Les conducteurs électriques étant sous leur tension de service ne doivent ni se rompre, ni donner lieu à des court-circuits sinon le test serait considéré comme un échec. Le câble électrique ayant satisfait au test pendant 30 minutes à 8420C est alors classé E30. Lorsqu'il satisfait au test pendant 60 minutes à 9450C ou pendant 90 minutes à 10060C, il est alors respectivement classé E60 et E90. Ce type de test proche de la réalité d'un incendie porte non seulement sur le câble électrique mais aussi sur les systèmes de fixation dudit câble. Le tableau 2 ci-après montre les résultats très satisfaisants des tests de résistance au feu des câbles électriques selon la présente invention (câbles référencés 1 à 5 et 9 à 11) conformément à la norme IEC 60331-21. On peut également remarquer que même sans bourrage, le câble référencé 3 selon la présente invention satisfait à cette norme de façon remarquable.DIN 4102-12 consists in subjecting an electrical cable with its fixing devices in an oven with a minimum length of 3 meters for a specified period of time according to a standard temperature curve (ISO 834). In addition, the electrical cable and its fasteners are subject to the maximum permissible weight and specified loads. Electrical conductors are under their operating voltage must not break or give rise to short circuits otherwise the test would be considered a failure. The electrical cable having passed the test for 30 minutes at 842 0 C is then classified E30. When it passes the test for 60 minutes at 945 0 C or for 90 minutes at 1006 0 C, it is then respectively classified E60 and E90. This type of test close to the reality of a fire relates not only to the electric cable but also to the fastening systems of said cable. Table 2 below shows the very satisfactory results of the fire resistance tests of the electric cables according to the present invention (cables referenced 1 to 5 and 9 to 11) in accordance with the IEC 60331-21 standard. It can also be noted that even without jamming, the cable referenced 3 according to the present invention satisfactorily satisfies this standard.
En outre, la présence d'un bourrage permet de satisfaire plus facilement à la norme DIN 4102-12 (câbles référencés 1, 2, 4, 5, 10 et 11). Par ailleurs, on observe des résultats très satisfaisant avec les câbles référencés 9 à 11 dont les couches internes respectives comprennent, en tant que charge formatrice de céramique, uniquement une charge réfractaire.In addition, the presence of a jam makes it easier to satisfy the DIN 4102-12 standard (cables referenced 1, 2, 4, 5, 10 and 11). Furthermore, very satisfactory results are observed with the cables referenced 9 to 11, the respective inner layers of which comprise, as a ceramic forming filler, only a refractory filler.
Au vu des résultats des câbles référencés 10 et 11, on s'aperçoit également que l'association d'une part, d'une couche interne comprenant, en tant que charge formatrice de céramique, uniquement une charge réfractaire, et d'autre part d'une couche externe réticulée à base d'un polymère d'éthylène chargé comprenant notamment une charge ignifugeante, permettent de satisfaire de façon particulièrement surprenante la norme DIN 4102-12.In view of the results of the cables referenced 10 and 11, it can also be seen that the combination on the one hand, of an inner layer comprising, as a ceramic-forming filler, only a refractory filler, and on the other hand a crosslinked outer layer based on a charged ethylene polymer comprising in particular a fire-retardant filler, make it possible to satisfy in a particularly surprising manner the DIN 4102-12 standard.
Enfin, les câbles référencés 1 à 5 et 9 à 11 ont des propriétés de résistance au feu au moins équivalentes, voire meilleures, que le câble référencé 6 dont le coût de revient est beaucoup plus important (à cause de la présence de polyorganosiloxane dans les couches isolantes des conducteurs électriques).Finally, the cables referenced 1 to 5 and 9 to 11 have fire resistance properties at least equivalent to or even better than the cable referenced 6, the cost of which is much higher (because of the presence of polyorganosiloxane in the insulating layers of electrical conductors).
E30 E30 E30 E30 E30 E30 E30 E30
DIN 4102-12 Echec Echec Echec Echec (> 30mιn) (> 30mιn) (> 30mιn) (> 30mιn)DIN 4102-12 Failed Failed Failed Fault (> 30mnn) (> 30mnn) (> 30mnn) (> 30mnn)
Tableau 2Table 2
Test de résistance électriqueElectrical resistance test
Les câbles référencés 2, 4 et 8 dans le tableau 1 vont subir des tests de résistance électrique, les gaines extérieures desdits câbles étant préalablement enlevées. Les tests de résistance électriques sont effectués selon la norme IEC 60502-1 (paragraphe 17.2).The cables referenced 2, 4 and 8 in Table 1 will undergo electrical resistance tests, the outer sheaths of said cables being previously removed. Electrical resistance tests are performed according to IEC 60502-1 (paragraph 17.2).
La norme IEC 60502-1 consiste à immerger une couronne de conducteurs électriques isolés de 5 mètres de longueur minimum dans de l'eau à la température maximale des conducteurs électriques en service normal (ex: 9O0C) pendant au moins 1 heure avant l'essai. Puis une tension continue comprise entre 80V et 500V est appliquée entre la couronne de conducteurs électriques isolés et l'eau pendant une durée suffisante (entre 1 et 5 minutes). Enfin, la résistivité transversale est calculée à partir de la résistance d'isolement selon la formule suivante :The IEC 60502-1 standard consists in immersing a ring of insulated electrical conductors of at least 5 meters in water at the maximum temperature of the electrical conductors in normal service (eg 9O 0 C) for at least 1 hour before 'trial. Then a DC voltage between 80V and 500V is applied between the ring of isolated electrical conductors and water for a sufficient time (between 1 and 5 minutes). Finally, the transverse resistivity is calculated from the insulation resistance according to the following formula:
p = 2πRL / In (D/d) dans laquelle : p est la résistivité transversale en Ohm. m, R = résistance d'isolement en Ohm, L = longueur du conducteur isolé en m, D = diamètre extérieur de l'enveloppe isolante en mm, et d = diamètre intérieur de l'enveloppe isolante en mm.p = 2πRL / In (D / d) in which: p is the transverse resistivity in Ohm. m, R = insulation resistance in Ohm, L = insulated conductor length in m, D = outer diameter of the insulating enclosure in mm, and d = inside diameter of the insulating enclosure in mm.
Le tableau 3 ci-après montre les résultats très satisfaisants des tests de résistance électrique des câbles électriques selon la présente invention (câbles référencés 2, 4 et 10) contrairement au câble référencé 8 selon l'art antérieur.Table 3 below shows the very satisfactory results of the electrical resistance tests of the electric cables according to the present invention (cables referenced 2, 4 and 10) unlike the cable referenced 8 according to the prior art.
Tableau 3Table 3
Test du fluaαe à chaud sous chargeTest of hot fluaαe under load
La norme NF EN 60811-2-1 décrit la mesure du fluage à chaud d'un matériau sous charge. Le test correspondant est communément désigné par l'anglicisme Hot Set Test.The standard NF EN 60811-2-1 describes the measurement of the hot flow of a material under load. The corresponding test is commonly referred to as the Anglicism Hot Set Test.
Il consiste concrètement à lester une extrémité d'une éprouvette de matériau avec une masse correspondant à l'application d'une contrainte équivalente à 0,2MPa, et à placer l'ensemble dans une étuve chauffée à 200+/-10C pendant une durée de 15 minutes. Au terme de ce délai, on relève l'allongement à chaud sous charge de l'éprouvette, exprimé en %. La masse suspendue est alors retirée, et l'éprouvette est maintenue dans l'étuve pendant 5 nouvelles minutes. L'allongement permanent restant, également appelé rémanence, est alors mesuré avant d'être exprimé en %.Specifically, it consists in loading one end of a test piece of material with a mass corresponding to the application of a stress equivalent to 0.2 MPa, and placing the assembly in an oven heated to 200 +/- 1 0 C for a duration of 15 minutes. At the end of this period, the hot elongation under load of the test piece, expressed in%, is recorded. The suspended mass is then removed, and the test piece is kept in the oven for another 5 minutes. longer remaining permanent, also called remanence, is then measured before being expressed in%.
On rappelle que plus un matériau est réticulé, plus les valeurs d'allongement et de rémanence seront faibles. On précise par ailleurs que dans le cas où une éprouvette viendrait à se rompre en cours d'essai, sous l'action conjuguée de la contrainte mécanique et de la température, le résultat au test serait alors logiquement considéré comme un échec.It is recalled that the more a material is crosslinked, the longer the values of elongation and remanence will be low. It is also specified that in the case where a test piece breaks during the test, under the combined action of the mechanical stress and the temperature, the test result would then logically be considered a failure.
Ce test a été réalisé sur la couche isolante des N-I conducteurs électriques des câbles référencés 1 à 11. Les résultats sont rassemblés dans le tableau 4 ci-dessous.This test was carried out on the insulating layer of the N-I electrical conductors of the cables referenced 1 to 11. The results are summarized in Table 4 below.
Tableau 4Table 4
Tableau 4 (suite)Table 4 (continued)
On note que les couches isolantes conformes à l'invention (câble référencés 1 à 5 et 9 à 11) passent avec succès la norme NF EN 60811-It is noted that the insulating layers according to the invention (cable referenced 1 to 5 and 9 to 11) successfully pass the standard NF EN 60811-
2-1, en ce sens que l'allongement sous charge et la rémanence sont respectivement inférieurs à 175% et à 25%. Même si l'isolant bicouche du câble référencé 6 passe également de manière satisfaisante cette norme, il est bon de rappeler qu'il présente des propriétés de résistance au feu inférieure à celle des câbles selon l'invention tout en étant moins économique puisque comportant des polyorganosiloxanes. 2-1, in that the elongation under load and the remanence are respectively less than 175% and 25%. Even if the double-layer insulation of the cable referenced 6 also passes satisfactorily this standard, it is worth remembering that it has lower fire resistance properties than the cables of the invention while being less economical since comprising polyorganosiloxanes.

Claims

REVEN DICATIONS REVEN DICATIONS
1. Câble électrique comprenant un ou plusieurs conducteurs électriques isolés, chacun desdits conducteurs électriques isolés comportant un conducteur électrique entouré par une couche isolante, la couche isolante comprenant une première couche (2a) polymérique entourant le conducteur électrique, la première couche (2a) étant obtenue à partir d'une première composition comprenant une matrice polymère à base de polymère thermoplastique, et au moins une charge formatrice de céramique, caractérisé en ce que la couche isolante comprend en outre une deuxième couche (2b) polymérique réticulée entourant ladite première couche, la deuxième couche (2b) étant obtenue à partir d'une deuxième composition comprenant une matrice polymère à base de polyoléfine et ne comprenant sensiblement ni de charge formatrice de céramique, ni de composé halogène.An electrical cable comprising one or more insulated electrical conductors, each of said insulated electrical conductors having an electrical conductor surrounded by an insulating layer, the insulating layer comprising a first polymeric layer (2a) surrounding the electrical conductor, the first layer (2a) being obtained from a first composition comprising a polymer matrix based on thermoplastic polymer, and at least one ceramic-forming filler, characterized in that the insulating layer further comprises a second crosslinked polymeric layer (2b) surrounding said first layer, the second layer (2b) being obtained from a second composition comprising a polyolefin-based polymer matrix and comprising substantially neither ceramic-forming filler nor halogenated compound.
2. Câble selon la revendication 1, caractérisé en ce que le polymère thermoplastique de la première composition est choisi parmi les polymères d'oléfine, les polymères d'acrylate ou de méthacrylate, les polymères de vinyle, et les polymères fluorés, ou un de leurs mélanges.Cable according to Claim 1, characterized in that the thermoplastic polymer of the first composition is chosen from olefin polymers, acrylate or methacrylate polymers, vinyl polymers and fluoropolymers, or one of their mixtures.
3. Câble selon la revendication 1 ou 2, caractérisé en ce que la charge formatrice de céramique est choisi parmi une charge céramique fusible et une charge réfractaire, ou un de leur mélange.3. Cable according to claim 1 or 2, characterized in that the ceramic forming filler is selected from a fusible ceramic filler and a refractory filler, or a mixture thereof.
4. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que la première couche (2a) est non réticulée. 4. Cable according to any one of the preceding claims, characterized in that the first layer (2a) is uncrosslinked.
5. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que la polyoléfine de la deuxième composition est choisie parmi les homopolymères et les copolymères d'éthylène, ou un de leurs mélanges.5. Cable according to any one of the preceding claims, characterized in that the polyolefin of the second composition is selected from homopolymers and copolymers of ethylene, or a mixture thereof.
6. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que la première composition et/ou la deuxième composition ne comprennent pas plus de 5 % en poids de polyorganosiloxane.6. Cable according to any one of the preceding claims, characterized in that the first composition and / or the second composition does not comprise more than 5% by weight of polyorganosiloxane.
7. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce que la réticulation de la deuxième composition pour obtenir la deuxième couche réticulée (2b) est une réticulation silane en présence d'un agent de réticulation dans la deuxième composition.7. Cable according to any one of the preceding claims, characterized in that the crosslinking of the second composition to obtain the second crosslinked layer (2b) is a silane crosslinking in the presence of a crosslinking agent in the second composition.
8. Câble selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il comprend en outre une gaine extérieure (3) entourant le ou les conducteurs électriques isolés.8. Cable according to any one of claims 1 to 7, characterized in that it further comprises an outer sheath (3) surrounding the isolated electrical conductor or conductors.
9. Câble selon la revendication 8, caractérisé en ce qu'il comprend en outre un matériau bourrant (6) entre la gaine extérieure (3) d'une part, et le ou les conducteurs électriques isolés d'autre part.9. Cable according to claim 8, characterized in that it further comprises a stuffing material (6) between the outer sheath (3) on the one hand, and the isolated electrical conductor or conductors on the other hand.
10. Câble selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il ne comprend pas de composés halogènes. 10. Cable according to any one of the preceding claims, characterized in that it does not include halogenated compounds.
EP10737984.4A 2009-06-11 2010-06-10 Electric cable adapted for ensuring the continuity of power distribution in the event of fire Not-in-force EP2441076B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0953902A FR2946789B1 (en) 2009-06-11 2009-06-11 ELECTRICAL CABLE TO PROVIDE ELECTRICAL DISTRIBUTION CONTINUITY IN CASE OF FIRE.
PCT/FR2010/051154 WO2010142917A1 (en) 2009-06-11 2010-06-10 Electric cable adapted for ensuring the continuity of power distribution in the event of fire

Publications (2)

Publication Number Publication Date
EP2441076A1 true EP2441076A1 (en) 2012-04-18
EP2441076B1 EP2441076B1 (en) 2016-02-10

Family

ID=41449992

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10737984.4A Not-in-force EP2441076B1 (en) 2009-06-11 2010-06-10 Electric cable adapted for ensuring the continuity of power distribution in the event of fire

Country Status (9)

Country Link
EP (1) EP2441076B1 (en)
KR (1) KR101688505B1 (en)
AU (1) AU2010258513A1 (en)
BR (1) BRPI1011524A2 (en)
CA (1) CA2762001C (en)
CL (1) CL2011003125A1 (en)
ES (1) ES2568645T3 (en)
FR (1) FR2946789B1 (en)
WO (1) WO2010142917A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU200580U1 (en) * 2020-06-17 2020-10-29 Общество с ограниченной ответственностью "Камский кабель" FIRE RESISTANT POWER CABLE WITH RUBBER INSULATION AND SHELLS FROM FLAME RESISTANT, HALOGEN-FREE COMPOSITIONS
RU205775U1 (en) * 2020-04-17 2021-08-11 Закрытое акционерное общество "Москабельмет" (ЗАО "МКМ") Fireproof cable with increased flexibility for mobile use in cold climates

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11011283B2 (en) 2013-03-15 2021-05-18 General Cable Technologies Corporation Easy clean cable
CN103928157A (en) * 2014-04-15 2014-07-16 中利科技集团股份有限公司 Thermoplastic ceramic low smoke zero halogen polyolefin low pressure insulation refractory cable
EP3192082B1 (en) 2014-09-12 2019-02-27 Prysmian S.p.A. Fire resistant cable with ceramifiable layer
JP2016115510A (en) * 2014-12-15 2016-06-23 住友電気工業株式会社 Electrical line, shield wire and multicore cable using it
US10373738B2 (en) 2015-05-08 2019-08-06 Radix Wire & Cable, Llc Insulated wire construction with liner
FR3046288B1 (en) * 2015-12-29 2018-04-27 Nexans FIRE-RESISTANT INSULATING LAYER FOR CABLE
DE102016209607A1 (en) 2016-06-01 2017-12-07 Phoenix Contact E-Mobility Gmbh Charging cable for transmitting electrical energy, charging plug and charging station for delivering electrical energy to a receiver of electrical energy
FR3096314B1 (en) * 2019-05-22 2021-05-21 Acome Societe Cooperative Et Participative Sa Cooperative De Production A Capital Variable Fast charging device for electric or hybrid vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19717645C2 (en) * 1997-04-25 2001-01-18 Daetwyler Ag Altdorf Ceramicizable flame retardant composition, process for its manufacture and its use
FR2776119B1 (en) 1998-03-12 2000-06-23 Alsthom Cge Alcatel SECURITY CABLE, RESISTANT TO FIRE AND WITHOUT HALOGEN
DE19908818A1 (en) * 1999-03-01 2000-09-07 Huber & Suhner Ag Pfaeffikon Ceramicizing flame retardant insulation mixture for cables
FR2837614B1 (en) * 2002-03-22 2004-06-18 Nexans INSULATING COMPOSITION FOR ELECTRIC SECURITY CABLE
GB2436395A (en) * 2006-03-24 2007-09-26 Tyco Electronics A heat resistant cable

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010142917A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU205775U1 (en) * 2020-04-17 2021-08-11 Закрытое акционерное общество "Москабельмет" (ЗАО "МКМ") Fireproof cable with increased flexibility for mobile use in cold climates
RU200580U1 (en) * 2020-06-17 2020-10-29 Общество с ограниченной ответственностью "Камский кабель" FIRE RESISTANT POWER CABLE WITH RUBBER INSULATION AND SHELLS FROM FLAME RESISTANT, HALOGEN-FREE COMPOSITIONS

Also Published As

Publication number Publication date
KR20120027053A (en) 2012-03-20
BRPI1011524A2 (en) 2016-03-29
FR2946789A1 (en) 2010-12-17
FR2946789B1 (en) 2017-01-13
CA2762001A1 (en) 2010-12-16
KR101688505B1 (en) 2016-12-21
CA2762001C (en) 2017-07-11
ES2568645T3 (en) 2016-05-03
AU2010258513A1 (en) 2011-12-15
EP2441076B1 (en) 2016-02-10
WO2010142917A1 (en) 2010-12-16
CL2011003125A1 (en) 2012-04-20

Similar Documents

Publication Publication Date Title
EP2441076B1 (en) Electric cable adapted for ensuring the continuity of power distribution in the event of fire
EP2224459B1 (en) High voltage electrical cable
WO2007014983A1 (en) Fire-resistant safety cable provided with a single insulating covering
AU8859598A (en) Optical fibre cable having high tracking resistance
WO2007012703A1 (en) Substantially flat fire-resistant safety cable
EP2346931B1 (en) Fireproof electric cable
FR3006494A1 (en) ELECTRICAL DEVICE WITH MEDIUM OR HIGH VOLTAGE
EP3398194B1 (en) Cable having a fire-resistant insulating layer
EP3358575B1 (en) Electric cable resistant to partial discharges
EP2319053B1 (en) Ceramisable composition for a power and/or telecommunication cable
EP3764372A1 (en) Cable comprising a fire-resistant layer
EP3404673B1 (en) Fire resisting cable
JP7304909B2 (en) Power transmission cable and method for manufacturing power transmission cable
EP1172827A1 (en) Electrical safety cable
FR3044318A1 (en) COMPOSITION FOR MANUFACTURING A LAYER OF A CABLE AND CABLE COMPRISING SUCH A LAYER
FR2565024A1 (en) Electrical or optical cable which can burn only with difficulty
EP2498264B1 (en) Medium- or high-voltage electrical cable
EP3828900A1 (en) Cable comprising a fire-resistant layer
FR2601184A1 (en) Electrical safety (security) cable which is fire-resistant and does not propagate fire, and the process for manufacturing it
EP3503125A1 (en) Cable comprising at least one metallic layer of carbon material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20121109

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150917

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 775003

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010030554

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2568645

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160503

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160210

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 775003

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160610

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160613

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010030554

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

26N No opposition filed

Effective date: 20161111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160510

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160610

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160610

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160610

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100610

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160610

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180625

Year of fee payment: 9

Ref country code: CH

Payment date: 20180621

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180620

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180627

Year of fee payment: 9

Ref country code: ES

Payment date: 20180724

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010030554

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190610

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190611