EP2440688B1 - Cathode bottom, method for producing a cathode bottom, and use of the same in an electrolytic cell for producing aluminum - Google Patents

Cathode bottom, method for producing a cathode bottom, and use of the same in an electrolytic cell for producing aluminum Download PDF

Info

Publication number
EP2440688B1
EP2440688B1 EP10721169.0A EP10721169A EP2440688B1 EP 2440688 B1 EP2440688 B1 EP 2440688B1 EP 10721169 A EP10721169 A EP 10721169A EP 2440688 B1 EP2440688 B1 EP 2440688B1
Authority
EP
European Patent Office
Prior art keywords
cathode
cathode block
block
blocks
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10721169.0A
Other languages
German (de)
French (fr)
Other versions
EP2440688B8 (en
EP2440688A1 (en
Inventor
Oswin ÖTTINGER
Frank Hiltmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Cobex GmbH
Original Assignee
Sgl Cfl Ce GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sgl Cfl Ce GmbH filed Critical Sgl Cfl Ce GmbH
Priority to PL10721169T priority Critical patent/PL2440688T3/en
Publication of EP2440688A1 publication Critical patent/EP2440688A1/en
Application granted granted Critical
Publication of EP2440688B1 publication Critical patent/EP2440688B1/en
Publication of EP2440688B8 publication Critical patent/EP2440688B8/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Definitions

  • the present invention relates to a cathode bottom, a process for its production and its use in an electrolytic cell for the production of aluminum.
  • An electrolytic cell generally comprises a tray of sheet iron or steel whose bottom is lined with thermal insulation.
  • cathode blocks made of carbon or graphite which are connected to the negative pole of a power source, form the bottom of another trough, the wall of which consists of side stones made of carbon, graphite or silicon carbide.
  • a gap is formed between two cathode blocks in each case a gap is formed.
  • the arrangement of the cathode block and possibly filled gap is generally referred to as the cathode bottom.
  • the joints between the cathode blocks are filled conventionally by ramming of carbon and / or graphite with tar.
  • the cathode blocks and the ramming mass serve as the cathode bottom.
  • As an anode serve short coal blocks, which depend on a connected to the positive pole of the power source support frame.
  • an electrolytic cell is a molten mixture of alumina (Al 2 O 3 ) and cryolite (Na 3 AlF 6 ), preferably about 15-20% alumina and about 85-80% cryolite, a molten electrolysis at a temperature of about 960 ° C. subjected.
  • the dissolved one reacts Alumina with the solid carbon block anode and forms liquid aluminum and gaseous carbon dioxide.
  • the melt mixture coats the sidewalls of the electrolytic cell with a protective crust, while aluminum accumulates under the melt due to its greater density compared to the density of the melt at the bottom of the electrolytic cell to be protected from reoxidation by atmospheric oxygen. The aluminum thus produced is removed from the electrolysis cell and further processed.
  • the anode During electrolysis, the anode is consumed while the cathode bottom behaves chemically inert during electrolysis.
  • the anode therefore represents a wearing part which is replaced during operation while the cathode bottom is designed for long-term and durable use. Nevertheless, current cathode bottoms are subject to wear.
  • aluminum layer By moving over the cathode bottom aluminum layer is a mechanical abrasion of the cathode surface.
  • aluminum carbide formation and sodium incorporation result in (electro) chemical corrosion of the cathode bottom. Particle adhesion to the cathode surface also leads to its structural weakening.
  • a disadvantage of the above-described electrolytic cell having ramming mass of carbon and / or graphite with tar is that for technical reasons such as mechanical stability or the stamping procedure thin layers of coarse-grained ramming mass not to are realized, so that joints are present, which on the one hand reduce the cathode surface and in the other hand, aluminum and particles can store, increasing the wear of the cathode bottom.
  • the most commonly used anthracite ramming masses are electrically and thermally less conductive than in particular graphitized cathode blocks.
  • effective cathode area is lost and the higher total resistance results in higher energy consumption, which lowers the economy of the process.
  • the cathode floor wear increases due to the higher specific load.
  • the present invention is therefore based on the object to provide a means that increases the cathode area and is suitable for forming a cathode bottom with a large cathode area. Furthermore, the present invention is based on the object to provide a simple method for producing a cathode bottom with a high cathode area.
  • the cathode bottom comprises a material which is arranged on at least one cathode block and which is characterized in that the material comprises a pre-compressed plate based on expanded graphite, wherein the at least one cathode block in a predetermined distance to at least one further cathode block and / or a side wall of the electrolytic cell is arranged such that at least one joint is formed between them, wherein the material fills the joint.
  • the precompressed sheet based on expanded graphite will also be referred to as the precompressed graphite sheet.
  • the means for increasing the cathode area therefore represents the material comprising a precompressed graphite plate.
  • the material can be frictionally connected to the cathode block.
  • the pre-compressed graphite plate used in the invention can be used in the areas of an electrolytic cell, where ramming mass is used conventionally, ie in particular joints formed between cathode blocks, but also in intermediate spaces, which are located between side walls of the electrolysis cell and cathode blocks.
  • the precompressed graphite plate is used in particular as a sealing means between cathode blocks of a cathode bottom.
  • a cathode bottom which has a pre-compressed graphite plate, has a high effective cathode area by means of a juxtaposition of a plurality of cathode blocks whose producible size dimensions are set by the economically and technically possible manufacturability limits by means of non-positive connection.
  • the precompressed graphite plate has the conventional tarry carbon mass a higher electrical and thermal conductivity and thus increases the cathode surface.
  • Expanded graphite has the following advantageous properties: It is harmless to health, environmentally friendly, soft, compressible, lightweight, resistant to aging, chemically and thermally resistant, technically gas and liquid-tight, non-combustible and easy to work. In addition, it does not form an alloy with liquid aluminum. It is therefore suitable as a material for a cathode bottom for an electrolytic cell for the production of aluminum.
  • Expanded graphite is available by chemical and thermal treatment of graphite such as natural graphite.
  • the graphite can undergo a volume size by a factor of 200 to 400, while maintaining the thermal and electrical conductivity.
  • graphite is treated with an intercalating solution such as sulfuric acid to form a graphite intercalation compound (a graphite salt).
  • a thermal decomposition is carried out at about 1000 ° C, wherein the expanded graphite, the stored agents are removed.
  • the expanded graphite thus obtained can be further processed, for example, by compounding, pressing, impregnating, laminating and calendering.
  • the expanded graphite may be further densified into graphite sheets or plates.
  • the precompressed graphite plate may also be further impregnated with resins.
  • Expanded graphites are commercially available, for example, from SGL Carbon SE.
  • a precompressed sheet based on expanded graphite comprises an expanded graphite that has been compacted but is still compressible. That is, as the precompressed graphite plate is meant an expanded graphite in the form of a plate which is partially compressed and therefore both pressed and pressable.
  • the pre-compressed graphite plate is formed as at least one plate.
  • the precompressed plate comprising more than one plate has stacked plates. The stacked plates may be adhered by means of an adhesive such as a phenolic resin.
  • the material disposed on the cathode block consists of a precompressed graphite plate based on expanded graphite.
  • inorganic or organic additives for example, titanium diboride and zirconium diboride may be incorporated.
  • the precompressed graphite plate is formed as a film.
  • Sheets are thin, flexible and can be easily adapted to the shape of their environment.
  • the film can be easily adapted to the dimensions of a joint between cathode blocks and to the surface condition of cathode blocks.
  • a film has a leaf-shaped structure. Therefore, a film further has the advantage of being stackable without forming voids.
  • the cathode bottom comprises at least one cathode block, which is arranged at a predetermined distance from a further cathode block such that at least one joint is formed between them.
  • the material comprising the precompressed sheet based on expanded graphite fills the joint and frictionally connects the cathode blocks.
  • the material serves as a filler between the two cathode blocks, which is not only able to seal the joint between the two cathode blocks, but also, due to its compressible character, is able to compensate for expansions of the cathode blocks that occur during electrolysis.
  • the material and the cathode blocks are non-positively connected and preferably terminate flush.
  • the material and cathode block can be glued together, for example by means of a phenolic resin.
  • the cathode blocks preferably have a greater length than width dimension, while the width and height dimensions are approximately equal.
  • cathode blocks are up to 3800 mm long, 700 mm wide and 500 mm high.
  • the at least two cathode blocks are arranged such that their length dimensions are parallel.
  • the predetermined distance between two cathode blocks is about 1/10 to 1/100 of the width dimension of the cathode block. A reduction in the distance between cathode blocks is possible by using the material according to the present invention.
  • the distance between cathode blocks using conventional ramming masses as filler between them must be at least 40 mm, while it can be reduced to 10 mm by using the precompacted graphite plate.
  • the effective cathode block surface increases by approximately 5%.
  • the at least one cathode block comprises at least one means for connection to a current source.
  • the cathode block at least one recess for receiving a busbar, which is connectable to a power source. If at least two cathode blocks are aligned so that their length dimensions are parallel, the recess is preferably oriented in the longitudinal direction of the cathode block, ie the recess runs parallel to the gap formed between two cathode blocks.
  • the cathode bottom may further comprise a composite element between the cathode block and the bus bar such as a contact mass and the like.
  • the at least one cathode block is designed such that it is electrically and thermally conductive, is resistant to high temperatures, is chemically stable with respect to bath components of the electrolysis and can not form an alloy with aluminum.
  • the cathode block is preferably formed from graphite, semi-graphitic, graphitized, semi-graphitized and / or amorphous carbon. Most preferably, the cathode block comprises graphite or graphitized carbon because it most satisfies the thermal and electrical conductivity and chemical resistance requirements for forming a cathode bottom in an electrolytic cell for producing aluminum.
  • the cathode bottom according to the invention comprises regions having a high conductivity with the at least two cathode blocks, and regions which are typically lower in conductivity than the cathode blocks but capable of the material comprising the precompressed expanded graphite plate are to seal the joints formed between the cathode blocks in such a way that no bath components can penetrate into areas of the cathode bottom during electrolysis.
  • the two components, ie cathode blocks and precompressed graphite plate, therefore fulfill different functions of the cathode bottom. Due to its multifunctional design this is Cathode bottom therefore dimensioned for large-scale use.
  • a surface of the at least one cathode block, which is opposite to a surface of a further cathode block is structured.
  • a structured surface can be produced, for example, by roughening the surface.
  • a surface of the at least one cathode block, which is opposite to a surface of a further cathode block has at least one groove, which may extend in a zigzag shape, for example. The grooving or structuring of the surface of the cathode block improves the fitting of the precompressed graphite plate in the joint.
  • the precompressed graphite plate is arranged on the structured or grooved surface and optionally glued to it, thereby filling the grooved or structured surface of the cathode block.
  • the pre-compressed graphite plate By filling the grooved or structured surface with the pre-compressed graphite plate, it fits into the surface of the cathode block in a form-fitting manner.
  • the connection between the precompressed graphite plate and the cathode block is both positive and positive in this embodiment.
  • the number and dimensions of the grooves in the surface of the cathode block depend on the dimensions of the cathode block. Likewise, the degree of roughening of the surface of the cathode block depends on its dimensions.
  • the material is disposed on two opposing surfaces of a cathode block adjacent to the seam-forming surface and on and in the seam so that the material is flush. That the material is flush, in the sense of present invention, that the material is arranged on the cathode blocks such that the cathode bottom in each case uniform dimensions along its. Length, height and width. In a cathode bottom in an electrolytic cell, there is a gap between the sidewalls of the electrolytic cell and cathode blocks. The material in this case is arranged to fill the joints between the cathode blocks as well as the areas between cathode blocks and sidewalls and the areas between the joints filled with the material and the sidewalls.
  • the cathode bottom thus forms the entire bottom of the electrolytic cell, ie it extends to all side walls of the electrolytic cell, wherein he areas of high thermal and electrical conductivity in the form of cathode blocks and areas of lower thermal and electrical conductivity in the form of the expanded graphite material having.
  • all surfaces of a cathode block are structured and / or grooved, which are in contact with the material comprising the precompressed sheet based on expanded graphite, so that the material is not only non-positively but also positively connected to these surfaces.
  • a cathode bottom having a precompressed sheet based on expanded graphite By manufacturing a cathode bottom having a precompressed sheet based on expanded graphite, a high effective cathode area is achieved by allowing a plurality of cathode blocks to be stacked together.
  • the preparation of the cathode block is carried out such that the material is frictionally connected by its arrangement on the at least one cathode block with this, if necessary, an additional adhesive is used.
  • a frictional connection between the cathode blocks is achieved by means of the precompressed graphite plate.
  • the arrangement of the further cathode block is realized by hydraulic or mechanical pressing, possibly with the use of adhesive.
  • the inventive method it is possible to reduce the width of the joint between cathode blocks compared to conventional joint widths and thus to increase the effective cathode area.
  • the pre-compressed graphite plate filling the joint is compressible, but partially reversible, so that it can compensate for expansions of the cathode blocks.
  • a precompressed graphite plate is understood to mean a partially compressed expanded graphite which is pressed and can still be pressed. After arranging the further cathode block, a pre-compressed graphite plate is obtained in the joint, which is a little elastic material that seals the joint without formation of voids.
  • the step of arranging at least one further cathode block may be before or after Arranging the material can be performed on the at least one cathode block.
  • the method step of arranging the material on at least one surface of the at least one cathode block comprises attachment to the surface of at least one cathode block by means of an adhesive.
  • an adhesive for example, a phenol resin can be used.
  • the cathode blocks can be provided with filters before or after their supply, which allow their connection to a power source.
  • a cathode block can be provided with at least one recess, into which at least one bus bar is inserted, which can be connected to a current source.
  • a treated cathode block can be provided before or after its provision with further means, for example, a contact mass can be arranged between the cathode block and the busbar.
  • the precompressed sheet used in the process of the invention is formed as a sheet based on expanded graphite.
  • the use as a film is advantageous because the film can easily adapt to the shape of the joint or to the surface texture of a cathode block.
  • the film can be optimally arranged on the cathode block, without resulting in edges, beads or other unevenness in areas of the Adjacent or cover cathode block or without an uneven filling of a formed between cathode blocks gap is formed, which leads to cavities within the cathode bottom.
  • the adaptation of the film is realized for example by means of cutting the film according to the dimensions of the cathode block.
  • the method according to the invention further comprises, before or after the provision of the at least one cathode block, the following method step: structuring at least one surface of the at least cathode block.
  • the structuring can be realized by roughening the surface or by grooving the surface.
  • at least one surface of a cathode block is structured, which lies opposite a surface of at least one further cathode block.
  • a grooving can be realized for example by means of cutting tools, while a roughening can be generated by an abrasive tool.
  • the cathode bottom according to the invention is used in an electrolysis cell for the production of aluminum.
  • the electrolysis cell comprises a trough, which as a rule comprises iron sheet or steel and has a round or quadrangular, preferably rectangular, shape.
  • the side walls of the tub may be lined with carbon, carbide or silicon carbide.
  • at least the bottom of the tub is lined with a thermal insulation.
  • On the bottom of the tub or on the heat insulation of the cathode bottom is arranged.
  • At least two, preferably 10 to 24, cathode blocks are arranged parallel to each other with respect to their length dimension at a predetermined distance, so that between each one a gap is formed, which is filled with at least one precompressed sheet based on expanded graphite.
  • the spaces between side walls and filled gap and between side walls and cathode blocks are optionally with material that is a pre-compressed Comprises expanded graphite board, or filled with conventional anthracite ramming mass.
  • the cathode blocks are connected to the negative pole of a power source.
  • At least one anode such as a Soderberg electrode, hangs from a support frame connected to the positive pole of the power source and projects into the tub without touching the cathode bottom or sidewalls of the tub.
  • the distance of the anode to the walls is greater than to the cathode bottom or the forming aluminum layer.
  • a solution of alumina in molten cryolite at a temperature of about 960 ° C is subjected to fused-salt electrolysis, with the sidewalls of the well coating a solid crust of the melt mixture while the aluminum is heavier than the melt , accumulated under the melt.
  • FIG. 1 shows a schematic cross-sectional view of a cathode bottom according to the invention 1.
  • the cathode bottom 1 comprises material 3 from a pre-compressed graphite plate, which fills a gap 5, which is formed between two cathode blocks 7.
  • the cathode blocks 7 have a sufficient electrical and thermal conductivity for use in a fused-salt electrolysis and are made for example of graphitized carbon.
  • the cathode blocks 7 each have a recess 9 for receiving a bus bar (not shown), which allow their connection to a power source.
  • the material 3 and the cathode blocks 7 are flush.
  • FIG. 2 shows a schematic cross-sectional view of another cathode bottom according to the invention 21.
  • the cathode bottom comprises material 23 of a pre-compressed graphite plate, which fills a joint 25 which is formed between two cathode blocks 27.
  • the material 23 and the cathode blocks 27 are flush.
  • the cathode blocks 27 have sufficient electrical and thermal conductivity for use in fused-salt electrolysis and are made, for example, from graphitized carbon.
  • the cathode blocks 27 each have a recess 29 for receiving a bus bar (not shown), which allow their connection to a power source, the cathode blocks 27 further each have two grooves 211 on.
  • the grooves 211 are respectively disposed on a surface of a cathode block 27, which faces a surface of the other cathode block 27.
  • the material 23 fills the groove 25 and the grooves 211.
  • the grooves 211 support the frictional connection between the material 23 and the cathode blocks 27 by a positive connection with the material 23.
  • Each cathode block 27 has two grooves 211, but the number of grooves 211 formed in a cathode block 27 is arbitrary and depends on the dimensions of the cathode block 27.
  • FIG. 3 shows a schematic cross-sectional view of a portion of an electrolytic cell 313 for the production of aluminum.
  • the electrolytic cell 313 has a tub 315 made of steel.
  • the side walls 317 of the trough 315, one of which in Fig. 3 are lined with blocks 319 of graphite, one of which is in Fig. 3 is shown.
  • the bottom of the tub 315 is lined with a heat-insulating layer 321 so that it is completely covered by it.
  • the cathode bottom 31 has material 33 and cathode blocks 37, two of which are in Fig. 3 are shown, which are arranged at a predetermined distance, and ramming mass 34.
  • the material 33 comprises a precompressed graphite plate.
  • Ramming mass 34 includes conventional ramming mass of carbon. Between the cathode blocks 37, a joint 35 is formed in each case.
  • the material 33 fills the gap 35, and the ramming mass 34 fills the respective space between the cathode block 37 and side wall 317 such that the heat-insulating layer 321 is completely covered with the cathode bottom 31 comprising the ramming mass 34, the material 33 and the cathode blocks 37.
  • the material 33 is flush with the cathode blocks 37.
  • the cathode blocks 37 each have a recess 39 suitable for receiving a bus bar (not shown) which is connectable to a negative pole of a current source (not shown).
  • the electrolytic cell 313 anodes 323, of which two in Fig. 3 , each of which is suspended from a support 325 connected to a positive pole of a power source (not shown).
  • a solution 327 of alumina in molten cryolite In the electrolytic cell 313 is a solution 327 of alumina in molten cryolite. During electrolysis, aluminum 329 collects between the solution 327 and the cathode bottom 31.
  • FIG. 4 shows a schematic cross-sectional view of part of another electrolytic cell 413 for the production of aluminum
  • the electrolytic cell 413 has a tub 415 made of steel.
  • the side walls 417 of the tub 415, one of which is in Fig. 4 are lined with blocks 419 of graphite, one of which is in Fig. 4 is shown.
  • Prefabricated blocks 431 made of carbon or graphite, of which one is in. Are also arranged on the blocks 419 made of graphite Fig. 4 is shown.
  • the bottom of the tub 415 is lined with a heat-insulating layer 421 so that it is completely covered by it. On the heat-insulating layer 421, a cathode bottom 41 is disposed.
  • the cathode bottom 41 has material 43 and cathode blocks 47, two of which are in Fig. 4 are shown, which are arranged at a predetermined distance.
  • the material 43 comprises a precompressed graphite plate. Between the cathode blocks 47, a joint 45 is formed in each case.
  • the material 43 fills the gap 45 and further material 43 fills a gap between a cathode block 47 and the block 431 such that the heat insulating layer 421 is completely covered with the cathode bottom 41 comprising the material 43 and the cathode blocks 47.
  • the material 43 is flush with the cathode blocks 47.
  • the cathode blocks 47 each have a recess 49 suitable for receiving a bus bar (not shown) which is connectable to a negative pole of a current source (not shown).
  • the electrolytic cell 413 anodes 423, in front of which two in Fig. 4 2, which respectively hang on a support 425 connected to a positive pole of a power source (not shown).
  • a solution 427 of alumina in molten cryolite In the electrolytic cell 413 is a solution 427 of alumina in molten cryolite. During electrolysis, aluminum 429 collects between the solution 427 and the cathode bottom 41.
  • FIGS. 5a to 5c show a schematic representation of a process sequence for producing a cathode bottom 51 according to the invention.
  • FIG. 5a shows the provision of two cathode blocks 57, which are arranged at a predetermined distance such that a gap 55 is formed.
  • the material 53 is inserted, which comprises a pre-compressed graphite plate.
  • FIG. 5c shows the cathode bottom 51, as it can be used for an electrolytic cell for the production of aluminum. The material 53 fills the gap 55. The amount and dimensions of the material 53 are selected such that the material 53 is flush with the cathode blocks 57 and fills the gap 55 completely. It should be noted that any connections and connecting means of the cathode bottom 51 to a power source in the FIGS. 5a to 5c have been omitted for clarity.
  • FIGS. 6a to 6c show a schematic representation of a further process sequence for producing a cathode bottom 61 according to the invention.
  • FIG. 6a shows the provision of a cathode block 67 having a recess 69 for receiving a bus bar (not shown).
  • material 63 comprising a precompressed graphite plate is planarized on a surface of the cathode block 67, optionally using an adhesive for attachment.
  • further material 63 may be arranged to form a stack of material 63 (not shown) disposed on the cathode block 67.
  • FIG. 6c shows that a further cathode block 67 is arranged with a recess 69 on the material 63 such that it is frictionally connected to the cathode block 67 by means of the material 63.
  • FIG. 6c shows the cathode bottom 61, as it can be used for an electrolytic cell for the production of aluminum.
  • a cathode bottom can be fabricated with a plurality of cathode blocks arranged side by side. It should be noted that any connections and connecting means of the cathode bottom 61 to a power source in Figures 6a to 6c have been omitted for clarity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

Die vorliegende Erfindung betrifft einen Kathodenboden, ein Verfahren zu seiner Herstellung und seine Verwendung in einer Elektrolysezelle zur Herstellung von Aluminium.The present invention relates to a cathode bottom, a process for its production and its use in an electrolytic cell for the production of aluminum.

Aluminium wird im Allgemeinen durch Schmelzflusselektrolyse in so genannten Elektrolysezellen hergestellt. Eine Elektrolysezelle umfasst im Allgemeinen eine Wanne aus Eisenblech oder Stahl, deren Boden mit einer Wärmeisolierung ausgekleidet ist. In dieser Wanne bilden bis zu 24 Kathodenblöcke aus Kohlenstoff oder Graphit, die mit dem negativen Pol einer Stromquelle verbunden sind, den Boden einer weiteren Wanne, deren Wand aus Seitensteinen aus Kohlenstoff, Graphit oder Siliciumcarbid besteht. Zwischen zwei Kathodenblöcken ist jeweils eine Fuge ausgebildet. Die Anordnung von Kathodenblock und ggf. gefüllter Fuge wird im Allgemeinen als Kathodenboden bezeichnet. Die Fugen zwischen den Kathodenblöcken werden konventionell durch Stampfmasse aus Kohlenstoff und/oder Graphit mit Teer gefüllt. Dies dient zur Abdichtung gegen schmelzflüssige Bestandteile und Kompensation mechanischer Spannungen während der Inbetriebnahme. Die Kathodenblöcke und die Stampfmasse dienen als Kathodenboden. Als Anode dienen kurze Kohlenblöcke, die an einem mit dem positiven Pol der Stromquelle verbundenen Traggerüst hängen.Aluminum is generally produced by fused-salt electrolysis in so-called electrolysis cells. An electrolytic cell generally comprises a tray of sheet iron or steel whose bottom is lined with thermal insulation. In this trough, up to 24 cathode blocks made of carbon or graphite, which are connected to the negative pole of a power source, form the bottom of another trough, the wall of which consists of side stones made of carbon, graphite or silicon carbide. Between two cathode blocks in each case a gap is formed. The arrangement of the cathode block and possibly filled gap is generally referred to as the cathode bottom. The joints between the cathode blocks are filled conventionally by ramming of carbon and / or graphite with tar. This serves to seal against molten components and to compensate for mechanical stresses during commissioning. The cathode blocks and the ramming mass serve as the cathode bottom. As an anode serve short coal blocks, which depend on a connected to the positive pole of the power source support frame.

In eine derartige Elektrolysezelle wird eine geschmolzene Mischung aus Aluminiumoxid (Al2O3) und Kryolith (Na3AlF6), bevorzugt etwa 15-20% Aluminiumoxid und etwa 85-80% Kryolith, einer Schmelzelektrolyse bei einer Temperatur von etwa 960°C unterzogen. Dabei reagiert das gelöste Aluminiumoxid mit der festen Kohlenblock-Anode und bildet flüssiges Aluminium und gasförmiges Kohlendioxid. Das Schmelzgemisch überzieht die Seitenwände der Elektrolysezelle mit einer schützenden Kruste, während sich Aluminium aufgrund seiner größeren Dichte im Vergleich zu der Dichte der Schmelze am Boden der Elektrolysezelle unter der Schmelze ansammelt, um vor einer Rückoxidation durch Luftsauerstoff geschützt zu sein. Das so hergestellte Aluminium wird aus der Elektrolysezelle entnommen und weiterverarbeitet.In such an electrolytic cell is a molten mixture of alumina (Al 2 O 3 ) and cryolite (Na 3 AlF 6 ), preferably about 15-20% alumina and about 85-80% cryolite, a molten electrolysis at a temperature of about 960 ° C. subjected. The dissolved one reacts Alumina with the solid carbon block anode and forms liquid aluminum and gaseous carbon dioxide. The melt mixture coats the sidewalls of the electrolytic cell with a protective crust, while aluminum accumulates under the melt due to its greater density compared to the density of the melt at the bottom of the electrolytic cell to be protected from reoxidation by atmospheric oxygen. The aluminum thus produced is removed from the electrolysis cell and further processed.

Bei der Elektrolyse wird die Anode verbraucht, während sich der Kathodenboden während der Elektrolyse chemisch inert verhält. Die Anode stellt daher ein Verschleißteil dar, das im Laufe der Betriebszeit ausgewechselt wird, während der Kathodenboden für einen langfristigen und dauerhaften Einsatz ausgelegt ist. Dennoch unterliegen gegenwärtige Kathodenböden einem Verschleiß. Durch die sich über den Kathodenboden bewegende Aluminiumschicht erfolgt ein mechanischer Abrieb der Kathodenoberfläche. Weiterhin erfolgt durch Aluminiumcarbid-Bildung und Natriumeinlagerung eine (elektro-)chemische Korrosion des Kathodenbodens. Auch eine Partikelanhaftung an die Kathodenoberfläche führt zu ihrer Strukturschwächung. Da im Allgemeinen 100 bis 300 Elektrolysezellen in Reihe geschaltet werden, um eine wirtschaftliche Anlage zur Herstellung von Aluminium darzustellen, und eine derartige Anlage im Allgemeinen mindestens 4 bis 10 Jahre eingesetzt werden soll, kann der Ausfall und Ersatz eines Kathodenblocks in einer Elektrolysezelle in einer derartigen Anlage teuer sein und aufwendige Reparaturen erfordern, die die Wirtschaftlichkeit der Anlage stark herabsetzen.During electrolysis, the anode is consumed while the cathode bottom behaves chemically inert during electrolysis. The anode therefore represents a wearing part which is replaced during operation while the cathode bottom is designed for long-term and durable use. Nevertheless, current cathode bottoms are subject to wear. By moving over the cathode bottom aluminum layer is a mechanical abrasion of the cathode surface. Furthermore, aluminum carbide formation and sodium incorporation result in (electro) chemical corrosion of the cathode bottom. Particle adhesion to the cathode surface also leads to its structural weakening. Since generally 100 to 300 electrolysis cells are connected in series to represent an economical plant for the production of aluminum, and such a plant should generally be used for at least 4 to 10 years, the failure and replacement of a cathode block in an electrolytic cell in such a To be expensive and costly repairs require that greatly reduce the efficiency of the system.

Ein Nachteil der vorstehend dargestellten Elektrolysezelle, die Stampfmasse aus Kohlenstoff und/oder Graphit mit Teer aufweist, ist, dass aus technischen Gründen wie beispielsweise die mechanische Stabilität oder die Stampfprozedur dünne Schichten der grobkörnigen Stampfmasse nicht zu realisieren sind, sodass Fugen vorhanden sind, welche einerseits die Kathodenoberfläche verkleinern und in die sich andererseits Aluminium und Partikel einlagern können, die den Verschleiß des Kathodenbodens erhöhen.A disadvantage of the above-described electrolytic cell having ramming mass of carbon and / or graphite with tar, is that for technical reasons such as mechanical stability or the stamping procedure thin layers of coarse-grained ramming mass not to are realized, so that joints are present, which on the one hand reduce the cathode surface and in the other hand, aluminum and particles can store, increasing the wear of the cathode bottom.

Die meist verwendeten Anthrazit-Stampfmassen sind elektrisch und thermisch weniger leitfähig als insbesondere graphitierte Kathodenblöcke. So geht effektive Kathodenfläche verloren und durch den größeren Gesamtwiderstand resultiert ein höherer Energieverbrauch, was die Wirtschaftlichkeit des Prozesses erniedrigt. Zudem erhöht sich der Kathodenbodenverschleiß durch die höhere spezifische Belastung.The most commonly used anthracite ramming masses are electrically and thermally less conductive than in particular graphitized cathode blocks. Thus, effective cathode area is lost and the higher total resistance results in higher energy consumption, which lowers the economy of the process. In addition, the cathode floor wear increases due to the higher specific load.

Eine Alternative ist das Verkleben der Blöcke zu einem monolithischen Kathodenboden, was aber aufgrund dessen thermisch-mechanischer Beanspruchung problematisch ist und so kaum Anwendung findet.An alternative is the bonding of the blocks to a monolithic cathode bottom, but this is problematic due to its thermal-mechanical stress and thus finds little application.

Der vorliegenden Erfindung liegt somit die Aufgabe zu Grunde, ein Mittel bereit zu stellen, das die Kathodenfläche erhöht und zur Bildung eines Kathodenbodens mit großer Kathodenfläche geeignet ist. Weiterhin liegt der vorliegenden Erfindung die Aufgabe zu Grunde, ein einfaches Verfahren zur Herstellung eines Kathodenbodens mit einer hohen Kathodenfläche bereit zu stellen.The present invention is therefore based on the object to provide a means that increases the cathode area and is suitable for forming a cathode bottom with a large cathode area. Furthermore, the present invention is based on the object to provide a simple method for producing a cathode bottom with a high cathode area.

Diese Aufgabe wird durch einen Kathodenboden mit den Merkmalen von Anspruch 1 und durch ein Verfahren mit den Merkmalen von Anspruch 7 gelöst.This object is achieved by a cathode bottom having the features of claim 1 and by a method having the features of claim 7.

Erfindungsgemäß ist vorgesehen, dass der Kathodenboden ein Material umfasst, das an mindestens einen Kathodenblock angeordnet ist und das dadurch gekennzeichnet ist, dass das Material eine vorverdichtete Platte basierend auf expandiertem Graphit umfasst, wobei der mindestens eine Kathodenblock in einem vorbestimmten Abstand zu mindestens einem weiteren Kathodenblock und/oder einer Seitenwand der Elektrolysezelle derart angeordnet ist, dass mindestens eine Fuge zwischen ihnen ausgebildet ist, wobei das Material die Fuge füllt. Nachfolgend wird die vorverdichtete Platte basierend auf expandiertem Graphit auch als vorverdichtete Graphitplatte bezeichnet. Diese beiden Begriffe sind im Sinne der vorliegenden Erfindung austauschbar und bezeichnen eine vorverdichtete Platte aus expandiertem Graphit, die weiterhin weitere Additive umfassen kann. Das Mittel zum Erhöhen der Kathodenfläche stellt daher das Material dar, das eine vorverdichtete Graphitplatte umfasst. Das Material ist an dem Kathodenblock kraftschlüssig verbindbar. Die erfindungsgemäß verwendete vorverdichtete Graphitplatte kann in den Bereichen einer Elektrolysezelle eingesetzt werden, wo herkömmlich Stampfmasse eingesetzt wird, d.h. insbesondere in Fugen, die zwischen Kathodenblöcken ausgebildet sind, aber auch in Zwischenräumen, die sich zwischen Seitenwänden der Elektrolysezelle und Kathodenblöcken befinden. Die vorverdichtete Graphitplatte wird insbesondere als Abdichtmittel zwischen Kathodenblöcken eines Kathodenbodens verwendet.According to the invention, the cathode bottom comprises a material which is arranged on at least one cathode block and which is characterized in that the material comprises a pre-compressed plate based on expanded graphite, wherein the at least one cathode block in a predetermined distance to at least one further cathode block and / or a side wall of the electrolytic cell is arranged such that at least one joint is formed between them, wherein the material fills the joint. Hereinafter, the precompressed sheet based on expanded graphite will also be referred to as the precompressed graphite sheet. These two terms are interchangeable in the sense of the present invention and refer to a precompressed expanded graphite plate which may further comprise further additives. The means for increasing the cathode area therefore represents the material comprising a precompressed graphite plate. The material can be frictionally connected to the cathode block. The pre-compressed graphite plate used in the invention can be used in the areas of an electrolytic cell, where ramming mass is used conventionally, ie in particular joints formed between cathode blocks, but also in intermediate spaces, which are located between side walls of the electrolysis cell and cathode blocks. The precompressed graphite plate is used in particular as a sealing means between cathode blocks of a cathode bottom.

Ein Kathodenboden, der eine vorverdichtete Graphitplatte aufweist, weist durch Ermöglichung einer Aneinanderreihung einer Vielzahl von Kathodenblöcken, deren erzeugbaren Größenabmessungen durch die wirtschaftlich und technisch mögliche Herstellbarkeit Grenzen gesetzt sind, mittels kraftschlüssiger Verbindung, eine hohe effektive Kathodenfläche auf.A cathode bottom, which has a pre-compressed graphite plate, has a high effective cathode area by means of a juxtaposition of a plurality of cathode blocks whose producible size dimensions are set by the economically and technically possible manufacturability limits by means of non-positive connection.

Ein vorteilhafter Effekt ist die physiologische Unbedenklichkeit der vorverdichteten Graphitplatte im Vergleich zur herkömmlichen teerpechhaltigen Kohlenstoffmasse, welche polycyclische aromatische Kohlenwasserstoffe enthält, die gesundheitsbedenklich sind. Zudem weist die vorverdichtete Graphitplatte im Hinblick auf die herkömmliche teerpechhaltige Kohlenstoffmasse eine höhere elektrische und thermische Leitfähigkeit auf und erhöht auch damit die Kathodenfläche.An advantageous effect is the physiological safety of the precompressed graphite plate compared to the conventional tarry carbonaceous mass which contains polycyclic aromatic hydrocarbons which are harmful to health. In addition, the precompressed graphite plate has the conventional tarry carbon mass a higher electrical and thermal conductivity and thus increases the cathode surface.

Expandierter Graphit weist folgende vorteilhafte Eigenschaften auf: Er ist gesundheitlich unbedenklich, umweltverträglich, weich, kompressibel, leicht, alterungsbeständig, chemisch und thermisch beständig, technisch gas- und flüssigkeitsdicht, nicht brennbar und leicht bearbeitbar. Zudem bildet er mit flüssigem Aluminium keine Legierung. Er eignet sich daher als Material für einen Kathodenboden für eine Elektrolysezelle zur Herstellung von Aluminium.Expanded graphite has the following advantageous properties: It is harmless to health, environmentally friendly, soft, compressible, lightweight, resistant to aging, chemically and thermally resistant, technically gas and liquid-tight, non-combustible and easy to work. In addition, it does not form an alloy with liquid aluminum. It is therefore suitable as a material for a cathode bottom for an electrolytic cell for the production of aluminum.

Expandierter Graphit ist durch chemische und thermische Behandlung von Graphit wie beispielsweise Naturgraphit erhältlich. Im Herstellungsverfahren kann der Graphit eine Volumengröße um den Faktor 200 bis 400 erfahren, wobei die thermische und elektrische Leitfähigkeit erhalten bleibt.Expanded graphite is available by chemical and thermal treatment of graphite such as natural graphite. In the manufacturing process, the graphite can undergo a volume size by a factor of 200 to 400, while maintaining the thermal and electrical conductivity.

Beispielsweise wird Graphit mit einer Einlagerungslösung wie beispielsweise Schwefelsäure behandelt, um eine Graphiteinlagerungsverbindung (ein Graphitsalz) zu bilden. Anschließend wird eine thermische Zersetzung bei etwa 1000°C durchgeführt, wobei dem expandiertem Graphit die eingelagerten Agenzien entfernt werden. Der so erhaltene expandierte Graphit kann beispielsweise durch Compoundieren, Pressen, Imprägnieren, Laminieren und Kalandrieren weiter verarbeitet werden. Beispielsweise kann der expandierte Graphit zu Graphitfolien oder -platten weiterhin verdichtet werden. In der vorliegenden Erfindung wird bevorzugt eine vorverdichtete Platte basierend auf expandiertem Graphit verwendet, die wie vorstehend erwähnt hergestellt ist. Die vorverdichtete Graphitplatte kann aber auch weiterhin mit Harzen imprägniert sein. Expandierte Graphite sind beispielsweise von der Firma SGL Carbon SE kommerziell erhältlich.For example, graphite is treated with an intercalating solution such as sulfuric acid to form a graphite intercalation compound (a graphite salt). Subsequently, a thermal decomposition is carried out at about 1000 ° C, wherein the expanded graphite, the stored agents are removed. The expanded graphite thus obtained can be further processed, for example, by compounding, pressing, impregnating, laminating and calendering. For example, the expanded graphite may be further densified into graphite sheets or plates. In the present invention, it is preferable to use a precompressed expanded graphite plate manufactured as mentioned above. However, the precompressed graphite plate may also be further impregnated with resins. Expanded graphites are commercially available, for example, from SGL Carbon SE.

Im Sinne der vorliegenden Erfindung umfasst eine vorverdichtete Platte basierend auf expandiertem Graphit einen expandierten Graphit, der verdichtet worden ist, aber weiterhin verdichtbar ist. D. h., als vorverdichtete Graphitplatte wird ein expandierter Graphit in Form einer Platte bezeichnet, der teilkomprimiert ist und daher sowohl gepresst ist als auch pressbar ist. Bevorzugt ist die vorverdichtete Graphitplatte als mindestens eine Platte ausgebildet. Im Sinne der vorliegenden Erfindung weist die vorverdichtete Platte, die mehr als eine Platte umfasst, übereinander gestapelte Platten auf. Die übereinander gestapelten Platten können mittels eines Klebstoffs wie beispielsweise ein Phenolharz verklebt sein.For the purposes of the present invention, a precompressed sheet based on expanded graphite comprises an expanded graphite that has been compacted but is still compressible. That is, as the precompressed graphite plate is meant an expanded graphite in the form of a plate which is partially compressed and therefore both pressed and pressable. Preferably, the pre-compressed graphite plate is formed as at least one plate. For the purposes of the present invention, the precompressed plate comprising more than one plate has stacked plates. The stacked plates may be adhered by means of an adhesive such as a phenolic resin.

Bevorzugt besteht das an dem Kathodenblock angeordnete Material aus einer vorverdichteten Graphitplatte basierend auf expandiertem Graphit Zusätzlich können anorganische oder organische Additive zum Beispiel Titandiborid und Zirkondiborid eingebracht werden.Preferably, the material disposed on the cathode block consists of a precompressed graphite plate based on expanded graphite. In addition, inorganic or organic additives, for example, titanium diboride and zirconium diboride may be incorporated.

In einer bevorzugten Ausführungsform ist die vorverdichtete Graphitplatte als eine Folie ausgebildet. Folien sind dünn, flexibel und lassen sich leicht an die Form ihrer Umgebung anpassen. Beispielsweise kann die Folie leicht an die Abmessungen einer Fuge zwischen Kathodenblöcken und an die Oberflächenbeschaffenheit von Kathodenblöcken angepasst werden. Weiterhin weist eine Folie eine blattförmige Struktur auf. Daher hat eine Folie weiterhin den Vorteil stapelbar zu sein, ohne Hohlräume zu bilden.In a preferred embodiment, the precompressed graphite plate is formed as a film. Sheets are thin, flexible and can be easily adapted to the shape of their environment. For example, the film can be easily adapted to the dimensions of a joint between cathode blocks and to the surface condition of cathode blocks. Furthermore, a film has a leaf-shaped structure. Therefore, a film further has the advantage of being stackable without forming voids.

Erfindungsgemäß umfasst der Kathodenboden mindestens einen Kathodenblock, der in einem vorbestimmten Abstand zu einem weiteren Kathodenblock derart angeordnet ist, dass mindestens eine Fuge zwischen ihnen ausgebildet ist. Das die vorverdichtete Platte basierend auf expandiertem Graphit umfassende Material füllt die Fuge und verbindet die Kathodenblöcke kraftschlüssig. Durch Verwendung einer vorverdichteten Graphitplatte statt herkömmlich verwendeter Kohlenstoff-Stampfmasse kann die Breite der Fuge zwischen Kathodenblöcken reduziert werden und so die wirksame Kathodenfläche vergrößert werden. Das Material dient als ein Füllstoff zwischen den beiden Kathodenblöcken, der nicht nur in der Lage ist, die Fuge zwischen den beiden Kathodenblöcken abzudichten, sondern zudem aufgrund seines kompressiblen Charakters in der Lage ist, Ausdehnungen der Kathodenblöcken zu kompensieren, die während einer Elektrolyse auftreten. Das Material und die Kathodenblöcke sind kraftschlüssig verbunden und schließen bevorzugt bündig ab. Das Material und Kathodenblock können miteinander verklebt sein, beispielsweise mittels eines Phenolharzes.According to the invention, the cathode bottom comprises at least one cathode block, which is arranged at a predetermined distance from a further cathode block such that at least one joint is formed between them. The material comprising the precompressed sheet based on expanded graphite fills the joint and frictionally connects the cathode blocks. By using a Pre-compressed graphite plate instead of conventionally used carbon ramming mass, the width of the joint between cathode blocks can be reduced and so the effective cathode area can be increased. The material serves as a filler between the two cathode blocks, which is not only able to seal the joint between the two cathode blocks, but also, due to its compressible character, is able to compensate for expansions of the cathode blocks that occur during electrolysis. The material and the cathode blocks are non-positively connected and preferably terminate flush. The material and cathode block can be glued together, for example by means of a phenolic resin.

Die Kathodenblöcke weisen bevorzugt eine größere Längen- als Breitenabmessung auf, während die Breiten- und Höhenabmessungen ungefähr gleich sind. Im Allgemeinen sind Kathodenblöcke bis zu 3800 mm lang, 700 mm breit und 500 mm hoch. Bevorzugt sind die mindestens zwei Kathodenblöcke derart angeordnet, dass ihre Längenabmessungen parallel sind. Der vorbestimmte Abstand zwischen zwei Kathodenblöcken beträgt ungefähr 1/10 bis 1/100 der Breitenabmessung des Kathodenblocks. Eine Reduzierung des Abstands zwischen Kathodenblöcken ist durch Verwendung des Materials gemäß der vorliegenden Erfindung möglich. So muss beispielsweise bei dem Einsatz von 650 mm breiten Kathodenblöcken der Abstand zwischen Kathodenblöcken unter Verwendung herkömmlicher Stampfmassen als Füllmasse zwischen ihnen mindestens 40 mm betragen, während er durch Verwendung der vorverdichteten Graphitplatte auf bis zu 10 mm reduziert werden kann. In der AP30-Technologie erhöht sich beispielsweise mit 650 mm breiten Kathodenblöcken und 40 mm breiten Fugen bei einer Reduzierung auf 10 mm die effektive Kathodenblockoberfläche um ca. 5 %.The cathode blocks preferably have a greater length than width dimension, while the width and height dimensions are approximately equal. In general, cathode blocks are up to 3800 mm long, 700 mm wide and 500 mm high. Preferably, the at least two cathode blocks are arranged such that their length dimensions are parallel. The predetermined distance between two cathode blocks is about 1/10 to 1/100 of the width dimension of the cathode block. A reduction in the distance between cathode blocks is possible by using the material according to the present invention. For example, with the use of 650 mm wide cathode blocks, the distance between cathode blocks using conventional ramming masses as filler between them must be at least 40 mm, while it can be reduced to 10 mm by using the precompacted graphite plate. In AP30 technology, for example, with 650 mm wide cathode blocks and 40 mm wide joints, with a reduction to 10 mm, the effective cathode block surface increases by approximately 5%.

Bevorzugt umfasst der mindestens eine Kathodenblock mindestens ein Mittel zur Verbindung mit einer Stromquelle. Beispielsweise weist der Kathodenblock mindestens eine Aussparung zur Aufnahme einer Stromschiene auf, welche mit einer Stromquelle verbindbar ist. Wenn mindestens zwei Kathodenblöcke ausgerichtet sind, sodass ihre Längenabmessungen parallel sind, ist die Aussparung bevorzugt in die Längsrichtung des Kathodenblocks ausgerichtet, d.h. die Aussparung verläuft parallel zu der zwischen zwei Kathodenblöcken ausgebildeten Fuge. Selbstverständlich kann der Kathodenboden weiterhin ein Verbundelement zwischen Kathodenblock und Stromschiene wie beispielsweise eine Kontaktmasse und dergleichen aufweisen.Preferably, the at least one cathode block comprises at least one means for connection to a current source. For example, the cathode block at least one recess for receiving a busbar, which is connectable to a power source. If at least two cathode blocks are aligned so that their length dimensions are parallel, the recess is preferably oriented in the longitudinal direction of the cathode block, ie the recess runs parallel to the gap formed between two cathode blocks. Of course, the cathode bottom may further comprise a composite element between the cathode block and the bus bar such as a contact mass and the like.

Der mindestens eine Kathodenblock ist derart ausgestaltet, dass er elektrisch und thermisch leitfähig ist, gegen hohe Temperaturen resistent ist, gegenüber Badkomponenten der Elektrolyse chemisch stabil ist und keine Legierung mit Aluminium bilden kann. Der Kathodenblock ist bevorzugt aus Graphit, halbgraphitischem, graphitiertem, halb-graphitiertem und/oder amorphem Kohlenstoff gebildet. Besonders bevorzugt umfasst der Kathodenblock Graphit oder graphitierten Kohlenstoff, weil sie den Ansprüchen an die thermische und elektrische Leitfähigkeit und die chemische Beständigkeit zur Bildung eines Kathodenbodens in einer Elektrolysezelle zur Herstellung von Aluminium am meisten genügen.The at least one cathode block is designed such that it is electrically and thermally conductive, is resistant to high temperatures, is chemically stable with respect to bath components of the electrolysis and can not form an alloy with aluminum. The cathode block is preferably formed from graphite, semi-graphitic, graphitized, semi-graphitized and / or amorphous carbon. Most preferably, the cathode block comprises graphite or graphitized carbon because it most satisfies the thermal and electrical conductivity and chemical resistance requirements for forming a cathode bottom in an electrolytic cell for producing aluminum.

Der erfindungsgemäße Kathodenboden umfasst mit den mindestens zwei Kathodenblöcken Bereiche, die eine hohe Leitfähigkeit aufweisen, und mit dem Material, das die vorverdichtete Platte basierend auf expandiertem Graphit umfasst, Bereiche, die in der Regel eine geringere Leitfähigkeit aufweisen als die Kathodenblöcke, aber in der Lage sind, die zwischen den Kathodenblöcken ausgebildeten Fugen derart abzudichten, dass keine Badkomponenten bei einer Elektrolyse in Bereiche des Kathodenbodens eindringen können. Die beiden Komponenten, d.h. Kathodenblöcke und vorverdichtete Graphitplatte, erfüllen daher verschiedene Funktionen des Kathodenbodens. Durch seine multifunktionale Bauweise ist dieser Kathodenboden daher für den großtechnischen Einsatz dimensionierbar. Durch die Anordnung einer Vielzahl von Kathodenblöcken wird eine große leitfähige Kathodenfläche erhalten und durch die effektive Abdichtung der Fugen zwischen den Kathodenblöcken mit der vorverdichteten Graphitplatte werden ein Verschleiß und eine Abnutzung der Kathodenflächen zwischen den Kathodenblöcken verhindert.The cathode bottom according to the invention comprises regions having a high conductivity with the at least two cathode blocks, and regions which are typically lower in conductivity than the cathode blocks but capable of the material comprising the precompressed expanded graphite plate are to seal the joints formed between the cathode blocks in such a way that no bath components can penetrate into areas of the cathode bottom during electrolysis. The two components, ie cathode blocks and precompressed graphite plate, therefore fulfill different functions of the cathode bottom. Due to its multifunctional design this is Cathode bottom therefore dimensioned for large-scale use. By disposing a plurality of cathode blocks, a large conductive cathode area is obtained, and the effective sealing of the joints between the cathode blocks with the precompressed graphite plate prevents wear and erosion of the cathode areas between the cathode blocks.

In einer weiteren bevorzugten Ausführungsform ist eine Oberfläche des mindestens einen Kathodenblocks, die einer Oberfläche eines weiteren Kathodenblocks gegenüber liegt, strukturiert. Eine strukturierte Oberfläche kann beispielsweise durch Aufrauen der Oberfläche erzeugt werden. Alternativ weist eine Oberfläche des mindestens einen Kathodenblocks, die einer Oberfläche eines weiteren Kathodenblocks gegenüber liegt, mindestens eine Rille auf, die beispielsweise zickzackförmig verlaufen kann. Die Rillierung bzw. Strukturierung der Oberfläche des Kathodenblocks verbessert die Einpassung der vorverdichteten Graphitplatte in die Fuge. Die vorverdichtete Graphitplatte wird an der strukturierten bzw. rillierten Oberfläche angeordnet und ggf. mit ihr verklebt und füllt dabei die rillierte bzw. strukturierte Oberfläche des Kathodenblocks. Durch das Füllen der rillierten bzw. strukturierten Oberfläche mit der vorverdichteten Graphitplatte fügt sich diese in die Oberfläche des Kathodenblocks formschlüssig ein. Die Verbindung zwischen vorverdichteter Graphitplatte und Kathodenblock ist in dieser Ausführungsform sowohl kraft- als auch formschlüssig. Die Anzahl und die Abmessungen der Rillen in der Oberfläche des Kathodenblocks hängen von den Abmessungen des Kathodenblocks ab. Ebenso hängt der Grad der Aufrauung der Oberfläche des Kathodenblocks von seinen Abmessungen ab.In a further preferred embodiment, a surface of the at least one cathode block, which is opposite to a surface of a further cathode block, is structured. A structured surface can be produced, for example, by roughening the surface. Alternatively, a surface of the at least one cathode block, which is opposite to a surface of a further cathode block, has at least one groove, which may extend in a zigzag shape, for example. The grooving or structuring of the surface of the cathode block improves the fitting of the precompressed graphite plate in the joint. The precompressed graphite plate is arranged on the structured or grooved surface and optionally glued to it, thereby filling the grooved or structured surface of the cathode block. By filling the grooved or structured surface with the pre-compressed graphite plate, it fits into the surface of the cathode block in a form-fitting manner. The connection between the precompressed graphite plate and the cathode block is both positive and positive in this embodiment. The number and dimensions of the grooves in the surface of the cathode block depend on the dimensions of the cathode block. Likewise, the degree of roughening of the surface of the cathode block depends on its dimensions.

In einer weiteren bevorzugten Ausführungsform ist das Material an zwei sich gegenüber liegenden Oberflächen eines Kathodenblocks, die an die Fuge bildende Oberfläche angrenzen, und an die und in der Fuge angeordnet, sodass das Material bündig ist. Dass das Material bündig ist, bedeutet im Sinne der vorliegenden Erfindung, dass das Material an den Kathodenblöcken derart angeordnet ist, dass der Kathodenboden jeweils einheitliche Abmessungen entlang seiner. Länge, Höhe und Breite aufweist. Bei einem Kathodenboden in einer Elektrolysezelle befindet sich zwischen den Seitenwänden der Elektrolysezelle und Kathodenblöcken ein Zwischenraum. Das Material ist in diesem Fall derart angeordnet, dass es die Fugen zwischen den Kathodenblöcken sowie die Bereiche zwischen Kathodenblöcken und Seitenwänden und die Bereiche zwischen den mit dem Material gefüllten Fugen und den Seitenwänden füllt. Der Kathodenboden bildet somit den gesamten Boden der Elektrolysezelle, d.h. er erstreckt sich bis zu allen Seitenwänden der Elektrolysezelle, wobei er Bereiche mit hoher thermischer und elektrischer Leitfähigkeit in Form von Kathodenblöcken und Bereiche mit geringerer thermischer und elektrischer Leitfähigkeit in Form von dem Material aus expandiertem Graphit aufweist. In dieser Ausführungsform sind bevorzugt alle Oberflächen eines Kathodenblocks strukturiert und/oder rilliert, die mit dem die vorverdichtete Platte basierend auf expandiertem Graphit umfassenden Material in Kontakt stehen, sodass das Material mit diesen Oberflächen nicht nur kraft- sondern auch formschlüssig verbunden ist.In another preferred embodiment, the material is disposed on two opposing surfaces of a cathode block adjacent to the seam-forming surface and on and in the seam so that the material is flush. That the material is flush, in the sense of present invention, that the material is arranged on the cathode blocks such that the cathode bottom in each case uniform dimensions along its. Length, height and width. In a cathode bottom in an electrolytic cell, there is a gap between the sidewalls of the electrolytic cell and cathode blocks. The material in this case is arranged to fill the joints between the cathode blocks as well as the areas between cathode blocks and sidewalls and the areas between the joints filled with the material and the sidewalls. The cathode bottom thus forms the entire bottom of the electrolytic cell, ie it extends to all side walls of the electrolytic cell, wherein he areas of high thermal and electrical conductivity in the form of cathode blocks and areas of lower thermal and electrical conductivity in the form of the expanded graphite material having. In this embodiment, preferably all surfaces of a cathode block are structured and / or grooved, which are in contact with the material comprising the precompressed sheet based on expanded graphite, so that the material is not only non-positively but also positively connected to these surfaces.

Ein Verfahren zur Herstellung des erfindungsgemäßen Kathodenbodens umfasst die folgenden Verfahrensschritte

  • Bereitstellen von mindestens einem Kathodenblock, und
  • Anordnen eines Materials an mindestens einer Oberfläche des mindestens einen Kathodenblocks, wobei das Material mindestens eine vorverdichtete Platte basierend auf expandiertem Graphit umfasst,
  • Anordnen von mindestens einem weiteren Kathodenblock in einem vorbestimmten Abstand zu dem mindestens einen Kathodenblock derart, dass das Material eine Fuge füllt, die durch das Anordnen des weiteren Kathodenblocks in dem vorbestimmten Anbstand zu dem mindestens einen Kathodenblock ausgebildet wird.
A method for producing the cathode bottom according to the invention comprises the following method steps
  • Providing at least one cathode block, and
  • Arranging a material on at least one surface of the at least one cathode block, wherein the material comprises at least one precompressed sheet based on expanded graphite,
  • Arranging at least one further cathode block at a predetermined distance from the at least one cathode block such that the material fills a joint which is formed by arranging the further cathode block in the predetermined distance to the at least one cathode block.

Durch Herstellung eines Kathodenbodens, der eine vorverdichtete Platte basierend auf expandiertem Graphit aufweist, wird durch Ermöglichung einer Aneinanderreihung einer Vielzahl von Kathodenblöcken eine hohe effektive Kathodenfläche erzielt. Die Herstellung des Kathodenblocks erfolgt derart, dass das Material durch seine Anordnung an den mindestens einen Kathodenblock mit diesem kraftschlüssig verbunden ist, wenn notwendig, wird zusätzlich ein Klebstoff eingesetzt.By manufacturing a cathode bottom having a precompressed sheet based on expanded graphite, a high effective cathode area is achieved by allowing a plurality of cathode blocks to be stacked together. The preparation of the cathode block is carried out such that the material is frictionally connected by its arrangement on the at least one cathode block with this, if necessary, an additional adhesive is used.

Durch das Anordnen des weiteren Kathodenblocks an dem Kathodenblock wird eine kraftschlüssige Verbindung zwischen den Kathodenblöcken mittels der vorverdichteten Graphitplatte erzielt. Das Anordnen des weiteren Kathodenblocks wird durch hydraulisches oder mechanisches Andrücken ggf. unter Einsatz von Klebstoff realisiert. Durch das erfindungsgemäße Verfahren ist es möglich, die Breite der Fuge zwischen Kathodenblöcken im Vergleich zu herkömmlichen Fugenbreiten zu reduzieren und damit die wirksame Kathodenfläche zu erhöhen. Die die Fuge füllende vorverdichtete Graphitplatte ist kompressibel, aber teilreversibel, sodass sie Ausdehnungen der Kathodenblöcke kompensieren kann. An dieser Stelle sei noch einmal bemerkt, dass im Sinne der vorliegenden Erfindung unter einer vorverdichteten Graphitplatte ein teilkomprimierter expandierter Graphit verstanden wird, der gepresst ist und weiterhin pressbar ist. Nach dem Anordnen des weiteren Kathodenblocks wird eine vorverdichtete Graphitplatte in der Fuge erhalten, die ein wenig elastisches Material darstellt, das die Fuge ohne Bildung von Hohlräumen abdichtet. Der Schritt des Anordnens von mindestens einem weiteren Kathodenblock kann vor oder nach dem Anordnen des Materials an dem mindestens einen Kathodenblock durchgeführt werden.By arranging the further cathode block on the cathode block, a frictional connection between the cathode blocks is achieved by means of the precompressed graphite plate. The arrangement of the further cathode block is realized by hydraulic or mechanical pressing, possibly with the use of adhesive. The inventive method, it is possible to reduce the width of the joint between cathode blocks compared to conventional joint widths and thus to increase the effective cathode area. The pre-compressed graphite plate filling the joint is compressible, but partially reversible, so that it can compensate for expansions of the cathode blocks. At this point it should be noted once again that for the purposes of the present invention, a precompressed graphite plate is understood to mean a partially compressed expanded graphite which is pressed and can still be pressed. After arranging the further cathode block, a pre-compressed graphite plate is obtained in the joint, which is a little elastic material that seals the joint without formation of voids. The step of arranging at least one further cathode block may be before or after Arranging the material can be performed on the at least one cathode block.

In einer bevorzugten Ausführungsform umfasst der Verfahrensschritt Anordnen des Materials an mindestens einer Oberfläche des mindestens einen Kathodenblocks eine Befestigung an der Oberfläche mindestens einen Kathodenblock mittels eines Klebstoffs. Als Klebstoff kann beispielsweise ein Phenolharz verwendet werden.In a preferred embodiment, the method step of arranging the material on at least one surface of the at least one cathode block comprises attachment to the surface of at least one cathode block by means of an adhesive. As the adhesive, for example, a phenol resin can be used.

Die Kathodenblöcke können vor oder nach ihrer Bereitstellung mit Milteln versehen werden, die ihren Anschluss an eine Stromquelle erlauben. Beispielsweise kann ein Kathodenblock vor oder nach seiner Bereitstellung mit mindestens einer Aussparung versehen werden, in die mindestens eine Stromschiene eingeführt wird, der mit einer Stromquelle verbindbar ist. Weiterhin kann ein derart behandelter Kathodenblock vor oder nach seiner Bereitstellung mit weiteren Mitteln versehen werden, beispielsweise kann zwischen Kathodenblock und Stromschiene eine Kontaktmasse angeordnet werden.The cathode blocks can be provided with filters before or after their supply, which allow their connection to a power source. For example, before or after its provision, a cathode block can be provided with at least one recess, into which at least one bus bar is inserted, which can be connected to a current source. Furthermore, such a treated cathode block can be provided before or after its provision with further means, for example, a contact mass can be arranged between the cathode block and the busbar.

In einer bevorzugten Ausführungsform ist die bei dem erfindungsgemäßen Verfahren eingesetzte vorverdichtete Platte basierend auf expandiertem Graphit als eine Folie ausgebildet. Der Einsatz als Folie ist vorteilhaft, weil sich die Folie leicht an die Form der Fuge bzw. an die Oberflächenbeschaffenheit eines Kathodenblocks anpassen kann.In a preferred embodiment, the precompressed sheet used in the process of the invention is formed as a sheet based on expanded graphite. The use as a film is advantageous because the film can easily adapt to the shape of the joint or to the surface texture of a cathode block.

In einer bevorzugten Ausführungsform umfasst das erfindungsgemäße Verfahren den folgenden Verfahrensschritt

  • Anpassen der Folie an die Abmessungen des mindestens einen Kathodenblocks.
In a preferred embodiment, the method according to the invention comprises the following method step
  • Adapting the foil to the dimensions of the at least one cathode block.

Mittels des Anpassens der Folie an die Abmessungen des Kathodenblocks kann die Folie optimal an dem Kathodenblock angeordnet werden, ohne dass Ränder, Wülste oder sonstige Unebenheiten entstehen, die an Bereiche des Kathodenblocks angrenzen oder sie bedecken bzw. ohne dass eine ungleichmäßige Füllung einer zwischen Kathodenblöcken ausgebildeten Fuge entsteht, die zu Hohlräumen innerhalb des Kathodenbodens führt. Das Anpassen der Folie wird beispielsweise mittels Zuschneiden der Folie entsprechend den Abmessungen des Kathodenblocks realisiert.By means of adapting the film to the dimensions of the cathode block, the film can be optimally arranged on the cathode block, without resulting in edges, beads or other unevenness in areas of the Adjacent or cover cathode block or without an uneven filling of a formed between cathode blocks gap is formed, which leads to cavities within the cathode bottom. The adaptation of the film is realized for example by means of cutting the film according to the dimensions of the cathode block.

In einer weiteren bevorzugten Ausführungsform umfasst das erfindungsgemäße Verfahren weiterhin vor oder nach der Bereitstellung des mindestens einen Kathodenblocks den folgenden Verfahrensschritt • Strukturieren mindestens einer Oberfläche des mindestens Kathodenblocks. Die Strukturierung kann durch eine Aufrauung der Oberfläche oder durch Rillierung der Oberfläche realisiert werden. Vorteilhaft wird mindestens eine Oberfläche eines Kathodenblocks strukturiert, die einer Oberfläche von mindestens einem weiteren Kathodenblock gegenüber liegt. Eine Rillierung kann beispielsweise mittels Schneidwerkzeugen realisiert werden, während eine Aufrauung durch ein Abriebwerkzeug erzeugt werden kann.In a further preferred embodiment, the method according to the invention further comprises, before or after the provision of the at least one cathode block, the following method step: structuring at least one surface of the at least cathode block. The structuring can be realized by roughening the surface or by grooving the surface. Advantageously, at least one surface of a cathode block is structured, which lies opposite a surface of at least one further cathode block. A grooving can be realized for example by means of cutting tools, while a roughening can be generated by an abrasive tool.

Der erfindungsgemäße Kathodenboden wird in einer Elektrolysezelle zur Herstellung von Aluminium verwendet. Die Elektrolysezelle umfasst in einer bevorzugten Ausführungsform eine Wanne, die in der Regel Eisenblech oder Stahl umfasst und eine runde oder viereckige, bevorzugt rechteckige, Form aufweist. Die Seitenwände der Wanne können mit Kohlenstoff, Carbid oder Siliciumcarbid ausgekleidet sein. Bevorzugt ist zumindest der Boden der Wanne mit einer Wärmeisolierung ausgekleidet. Auf dem Boden der Wanne bzw. auf der Wärmeisolierung ist der Kathodenboden angeordnet. Mindestens zwei, bevorzugt 10 bis 24, Kathodenblöcke sind parallel zueinander in Bezug auf ihre Längenabmessung in einem vorbestimmten Abstand angeordnet, sodass zwischen ihnen jeweils eine Fuge ausgebildet ist, die jeweils mit mindestens einer vorverdichteten Platte basierend auf expandiertem Graphit gefüllt ist. Die Zwischenräume zwischen Seitenwänden und gefüllter Fuge und zwischen Seitenwänden und Kathodenblöcken sind wahlweise mit Material, das eine vorverdichtete Platte basierend auf expandiertem Graphit umfasst, oder mit herkömmlicher Anthrazit-Stampfmasse gefüllt. Die Kathodenblöcke sind mit dem negativen Pol einer Stromquelle verbunden. Mindestens eine Anode wie beispielsweise eine Söderberg-Elektrode hängt an einem mit dem positiven Pol der Stromquelle verbundenen Traggerüst und ragt in die Wanne hinein, ohne den Kathodenboden oder die Seitenwände der Wanne zu berühren. Bevorzugt ist der Abstand der Anode zu den Wänden größer als zu dem Kathodenboden bzw. der sich bildenden Aluminiumschicht.The cathode bottom according to the invention is used in an electrolysis cell for the production of aluminum. In a preferred embodiment, the electrolysis cell comprises a trough, which as a rule comprises iron sheet or steel and has a round or quadrangular, preferably rectangular, shape. The side walls of the tub may be lined with carbon, carbide or silicon carbide. Preferably, at least the bottom of the tub is lined with a thermal insulation. On the bottom of the tub or on the heat insulation of the cathode bottom is arranged. At least two, preferably 10 to 24, cathode blocks are arranged parallel to each other with respect to their length dimension at a predetermined distance, so that between each one a gap is formed, which is filled with at least one precompressed sheet based on expanded graphite. The spaces between side walls and filled gap and between side walls and cathode blocks are optionally with material that is a pre-compressed Comprises expanded graphite board, or filled with conventional anthracite ramming mass. The cathode blocks are connected to the negative pole of a power source. At least one anode, such as a Soderberg electrode, hangs from a support frame connected to the positive pole of the power source and projects into the tub without touching the cathode bottom or sidewalls of the tub. Preferably, the distance of the anode to the walls is greater than to the cathode bottom or the forming aluminum layer.

Zur Herstellung des Aluminiums wird eine Lösung von Aluminiumoxid in geschmolzenen Kryolith bei einer Temperatur von etwa 960°C einer Schmelzflusselektrolyse unterzogen, wobei sich die Seitenwände der Wanne mit einer festen Kruste des Schmelzgemisches überziehen, während sich das Aluminium, weil es schwerer als die Schmelze ist, unter der Schmelze ansammelt.To produce the aluminum, a solution of alumina in molten cryolite at a temperature of about 960 ° C is subjected to fused-salt electrolysis, with the sidewalls of the well coating a solid crust of the melt mixture while the aluminum is heavier than the melt , accumulated under the melt.

Weitere Merkmale und Vorteile der Erfindung werden nun unter Bezugnahme auf die nachfolgenden Figuren erläutert, ohne diese auf sie einzuschränken.Further features and advantages of the invention will now be explained with reference to the following figures, without restricting them to them.

Es zeigt:

Figur 1
eine schematische Querschnittsansicht eines erfindungsgemäßen Kathodenbodens;
Figur 2
eine schematische Querschnittsansicht eines weiteren erfindungsgemäßen Kathodenbodens;
Figur 3
eine schematische Querschnittsansicht eines Teils einer Elektrolysezelle zur Herstellung von Aluminium, die einen erfindungsgemäßen Kathodenboden aufweist;
Figur 4
eine schematische Querschnittsansicht eines Teils einer weiteren Elektrolysezelle zur Herstellung von Aluminium, die einen erfindungsgemäßen Kathodenboden aufweist;
Figuren 5a bis 5c
eine schematische Darstellung eines Verfahrensablaufes zur Herstellung eines erfindungsgemäßen Kathodenbodens; und
Figuren 6a bis 6c
eine schematische Darstellung eines weiteren Verfahrensablaufes zur Herstellung eines erfindungsgemäßen Kathodenbodens.
It shows:
FIG. 1
a schematic cross-sectional view of a cathode bottom according to the invention;
FIG. 2
a schematic cross-sectional view of another cathode bottom according to the invention;
FIG. 3
a schematic cross-sectional view of a portion of an electrolytic cell for producing aluminum, having a cathode bottom according to the invention;
FIG. 4
a schematic cross-sectional view of part of another electrolysis cell for the production of aluminum, having a cathode bottom according to the invention;
FIGS. 5a to 5c
a schematic representation of a process flow for the preparation of a cathode bottom according to the invention; and
FIGS. 6a to 6c
a schematic representation of another process sequence for the preparation of a cathode bottom according to the invention.

Figur 1 zeigt eine schematische Querschnittsansicht eines erfindungsgemäßen Kathodenbodens 1. Der Kathodenboden 1 weist Material 3 aus einer vorverdichteten Graphitplatte auf, das eine Fuge 5 füllt, die zwischen zwei Kathodenblöcken 7 ausgebildet ist. Die Kathodenblöcke 7 weisen eine zur Verwendung in einer Schmelzflusselektrolyse hinreichende elektrische und thermische Leitfähigkeit auf und sind beispielsweise aus graphitiertem Kohlenstoff gefertigt. Die Kathodenblöcke 7 weisen jeweils eine Aussparung 9 zur Aufnahme einer Stromschiene (nicht gezeigt) auf, die ihren Anschluss an eine Stromquelle ermöglichen. Das Material 3 und die Kathodenblöcke 7 schließen bündig ab. FIG. 1 shows a schematic cross-sectional view of a cathode bottom according to the invention 1. The cathode bottom 1 comprises material 3 from a pre-compressed graphite plate, which fills a gap 5, which is formed between two cathode blocks 7. The cathode blocks 7 have a sufficient electrical and thermal conductivity for use in a fused-salt electrolysis and are made for example of graphitized carbon. The cathode blocks 7 each have a recess 9 for receiving a bus bar (not shown), which allow their connection to a power source. The material 3 and the cathode blocks 7 are flush.

Figur 2 zeigt eine schematische Querschnittsansicht eines weiteren erfindungsgemäßen Kathodenbodens 21. Der Kathodenboden weist Material 23 aus einer vorverdichteten Graphitplatte auf, das eine Fuge 25 füllt, die zwischen zwei Kathodenblöcken 27 ausgebildet ist. Das Material 23 und die Kathodenblöcke 27 schließen bündig ab. Die Kathodenblöcke 27 weisen eine zur Verwendung in einer Schmelzflusselektrolyse hinreichende elektrische und thermische Leitfähigkeit auf und sind beispielsweise aus graphitiertem Kohlenstoff gefertigt. Die Kathodenblöcke 27 weisen jeweils eine Aussparung 29 zur Aufnahme einer Stromschiene (nicht gezeigt) auf, die ihren Anschluss an eine Stromquelle ermöglichen, Die Kathodenblöcke 27 weisen weiterhin jeweils zwei Rillen 211 auf. Die Rillen 211 sind jeweils an einer Oberfläche eines Kathodenblocks 27 angeordnet, die einer Oberfläche des anderen Kathodenblocks 27 gegenüber liegt. Das Material 23 füllt die Fuge 25 und die Rillen 211. Die Rillen 211 unterstützen die kraftschlüssige Verbindung zwischen dem Material 23 und den Kathodenblöcken 27 durch eine formschlüssige Verbindung mit dem Material 23. In Figur 2 weist jeder Kathodenblock 27 zwei Rillen 211 auf, die Anzahl der in einem Kathodenblock 27 ausgebildeten Rillen 211 ist jedoch willkürlich gewählt und hängt von den Abmessungen des Kathodenblocks 27 ab. FIG. 2 shows a schematic cross-sectional view of another cathode bottom according to the invention 21. The cathode bottom comprises material 23 of a pre-compressed graphite plate, which fills a joint 25 which is formed between two cathode blocks 27. The material 23 and the cathode blocks 27 are flush. The cathode blocks 27 have sufficient electrical and thermal conductivity for use in fused-salt electrolysis and are made, for example, from graphitized carbon. The cathode blocks 27 each have a recess 29 for receiving a bus bar (not shown), which allow their connection to a power source, the cathode blocks 27 further each have two grooves 211 on. The grooves 211 are respectively disposed on a surface of a cathode block 27, which faces a surface of the other cathode block 27. The material 23 fills the groove 25 and the grooves 211. The grooves 211 support the frictional connection between the material 23 and the cathode blocks 27 by a positive connection with the material 23. In FIG. 2 Each cathode block 27 has two grooves 211, but the number of grooves 211 formed in a cathode block 27 is arbitrary and depends on the dimensions of the cathode block 27.

Figur 3 zeigt eine schematische Querschnittsansicht eines Teils einer Elektrolysezelle 313 zur Herstellung von Aluminium. Die Elektrolysezelle 313 weist eine Wanne 315 aus Stahl auf. Die Seitenwände 317 der Wanne 315, von denen eine in Fig. 3 gezeigt ist, sind mit Blöcken 319 aus Graphit ausgekleidet, von denen einer in Fig. 3 gezeigt ist. Der Boden der Wanne 315 ist mit einer wärmeisolierenden Schicht 321 ausgekleidet, sodass er vollständig von ihr bedeckt ist. Auf der wärmeisolierenden Schicht 321 ist ein Kathodenboden 31 angeordnet. Der Kathodenboden 31 weist Material 33 und Kathodenblöcke 37, von denen zwei in Fig. 3 gezeigt sind, die in einem vorbestimmten Abstand angeordnet sind, sowie Stampfmasse 34 auf. Das Material 33 umfasst eine vorverdichtete Graphitplatte. Stampfmasse 34 umfasst herkömmliche Stampfmasse aus Kohlenstoff. Zwischen den Kathodenblöcken 37 ist jeweils eine Fuge 35 ausgebildet. Das Material 33 füllt die Fuge 35, und die Stampfmasse 34 füllt den jeweiligen Zwischenraum zwischen Kathodenblock 37 und Seitenwand 317 derart, dass die wärmeisolierende Schicht 321 mit dem die Stampfmasse 34, das Material 33 und die Kathodenblöcke 37 umfassenden Kathodenboden 31 vollständig bedeckt ist. Wie in der Figur 3 gezeigt ist, schließt das Material 33 mit den Kathodenblöcken 37 bündig ab. Die Kathodenblöcke 37 weisen jeweils eine Aussparung 39 auf, die zur Aufnahme einer Stromschiene (nicht gezeigt) geeignet ist, die an einen negativen Pol einer Stromquelle (nicht gezeigt) anschließbar ist. Weiterhin weist die Elektrolysezelle 313 Anoden 323, von denen zwei in Fig 3 gezeigt sind, auf, die jeweils an einem mit einem positiven Pol einer Stromquelle (nicht gezeigt) verbundenen Träger 325 hängen. In der Elektrolysezelle 313 befindet sich eine Lösung 327 aus Aluminiumoxid in geschmolzenem Kryolith. Während der Elektrolyse sammelt sich Aluminium 329 zwischen der Lösung 327 und dem Kathodenboden 31. FIG. 3 shows a schematic cross-sectional view of a portion of an electrolytic cell 313 for the production of aluminum. The electrolytic cell 313 has a tub 315 made of steel. The side walls 317 of the trough 315, one of which in Fig. 3 are lined with blocks 319 of graphite, one of which is in Fig. 3 is shown. The bottom of the tub 315 is lined with a heat-insulating layer 321 so that it is completely covered by it. On the heat-insulating layer 321, a cathode bottom 31 is disposed. The cathode bottom 31 has material 33 and cathode blocks 37, two of which are in Fig. 3 are shown, which are arranged at a predetermined distance, and ramming mass 34. The material 33 comprises a precompressed graphite plate. Ramming mass 34 includes conventional ramming mass of carbon. Between the cathode blocks 37, a joint 35 is formed in each case. The material 33 fills the gap 35, and the ramming mass 34 fills the respective space between the cathode block 37 and side wall 317 such that the heat-insulating layer 321 is completely covered with the cathode bottom 31 comprising the ramming mass 34, the material 33 and the cathode blocks 37. Like in the FIG. 3 is shown, the material 33 is flush with the cathode blocks 37. The cathode blocks 37 each have a recess 39 suitable for receiving a bus bar (not shown) which is connectable to a negative pole of a current source (not shown). Furthermore, the electrolytic cell 313 anodes 323, of which two in Fig. 3 , each of which is suspended from a support 325 connected to a positive pole of a power source (not shown). In the electrolytic cell 313 is a solution 327 of alumina in molten cryolite. During electrolysis, aluminum 329 collects between the solution 327 and the cathode bottom 31.

Figur 4 zeigt eine schematische Querschnittsansicht eines Teils einer weiteren Elektrolysezelle 413 zur Herstellung von Aluminium, Die Elektrolysezelle 413 weist eine Wanne 415 aus Stahl auf. Die Seitenwände 417 der Wanne 415, von denen eine in Fig. 4 gezeigt ist, sind mit Blöcken 419 aus Graphit ausgekleidet, von denen einer in Fig. 4 gezeigt ist. An den Blöcken 419 aus Graphit sind weiterhin vorgebrannte Blöcke 431 aus Kohlenstoff oder Graphit angeordnet, von denen einer in Fig. 4 gezeigt ist. Der Boden der Wanne 415 ist mit einer wärmeisolierenden Schicht 421 ausgekleidet, sodass er vollständig von ihr bedeckt ist. Auf der wärmeisolierenden Schicht 421 ist ein Kathodenboden 41 angeordnet. Der Kathodenboden 41 weist Material 43 und Kathodenblöcke 47, von denen zwei in Fig. 4 gezeigt sind, auf, die in einem vorbestimmten Abstand angeordnet sind. Das Material 43 umfasst eine vorverdichtete Graphitplatte. Zwischen den Kathodenblöcken 47 ist jeweils eine Fuge 45 ausgebildet. Das Material 43 füllt die Fuge 45 und weiterhin füllt weiteres Material 43 einen Zwischenraum zwischen einem Kathodenblock 47 und dem Block 431 derart, dass die wärmeisolierende Schicht 421 mit dem das Material 43 und die Kathodenblöcke 47 umfassenden Kathodenboden 41 vollständig bedeckt ist. Wie in der Figur 4 gezeigt ist, schließt das Material 43 mit den Kathodenblöcken 47 bündig ab. Die Kathodenblöcke 47 weisen jeweils eine Aussparung 49 auf, die zur Aufnahme einer Stromschiene (nicht gezeigt) geeignet ist, die an einen negativen Pol einer Stromquelle (nicht gezeigt) anschließbar ist. Weiterhin weist die Elektrolysezelle 413 Anoden 423, vor denen zwei in Fig. 4 gezeigt sind, auf, die jeweils an einem mit einem positiven Pol einer Stromquelle (nicht gezeigt) verbundenen Träger 425 hängen. In der Elektrolysezelle 413 befindet sich eine Lösung 427 aus Aluminiumoxid in geschmolzenem Kryolith. Während der Elektrolyse sammelt sich Aluminium 429 zwischen der Lösung 427 und dem Kathodenboden 41. FIG. 4 shows a schematic cross-sectional view of part of another electrolytic cell 413 for the production of aluminum, The electrolytic cell 413 has a tub 415 made of steel. The side walls 417 of the tub 415, one of which is in Fig. 4 are lined with blocks 419 of graphite, one of which is in Fig. 4 is shown. Prefabricated blocks 431 made of carbon or graphite, of which one is in. Are also arranged on the blocks 419 made of graphite Fig. 4 is shown. The bottom of the tub 415 is lined with a heat-insulating layer 421 so that it is completely covered by it. On the heat-insulating layer 421, a cathode bottom 41 is disposed. The cathode bottom 41 has material 43 and cathode blocks 47, two of which are in Fig. 4 are shown, which are arranged at a predetermined distance. The material 43 comprises a precompressed graphite plate. Between the cathode blocks 47, a joint 45 is formed in each case. The material 43 fills the gap 45 and further material 43 fills a gap between a cathode block 47 and the block 431 such that the heat insulating layer 421 is completely covered with the cathode bottom 41 comprising the material 43 and the cathode blocks 47. Like in the FIG. 4 is shown, the material 43 is flush with the cathode blocks 47. The cathode blocks 47 each have a recess 49 suitable for receiving a bus bar (not shown) which is connectable to a negative pole of a current source (not shown). Furthermore, the electrolytic cell 413 anodes 423, in front of which two in Fig. 4 2, which respectively hang on a support 425 connected to a positive pole of a power source (not shown). In the electrolytic cell 413 is a solution 427 of alumina in molten cryolite. During electrolysis, aluminum 429 collects between the solution 427 and the cathode bottom 41.

Figuren 5a bis 5c zeigen eine schematische Darstellung eines Verfahrensablaufes zur Herstellung eines erfindungsgemäßen Kathodenbodens 51. FIGS. 5a to 5c show a schematic representation of a process sequence for producing a cathode bottom 51 according to the invention.

Figur 5a zeigt die Bereitstellung von zwei Kathodenblöcken 57, die in einem vorbestimmten Abstand derart angeordnet werden, dass eine Fuge 55 ausgebildet wird. In Figur 5b ist gezeigt, dass in die Fuge 55 das Material 53 eingeschoben wird, das eine vorverdichtete Graphitplatte umfasst. Figur 5c zeigt den Kathodenboden 51, wie er für eine Elektrolysezelle zur Herstellung von Aluminium verwendet werden kann. Das Material 53 füllt die Fuge 55. Die Menge und Abmessungen des Materials 53 sind derart gewählt, dass das Material 53 mit den Kathodenblöcken 57 bündig abschließt und die Fuge 55 vollständig füllt. Es sei bemerkt, dass etwaige Anschlüsse und Verbindungsmittel des Kathodenbodens 51 an eine Stromquelle in den Figuren 5a bis 5c der Übersichtlichkeit halber weggelassen wurden. FIG. 5a shows the provision of two cathode blocks 57, which are arranged at a predetermined distance such that a gap 55 is formed. In FIG. 5b It is shown that in the gap 55, the material 53 is inserted, which comprises a pre-compressed graphite plate. FIG. 5c shows the cathode bottom 51, as it can be used for an electrolytic cell for the production of aluminum. The material 53 fills the gap 55. The amount and dimensions of the material 53 are selected such that the material 53 is flush with the cathode blocks 57 and fills the gap 55 completely. It should be noted that any connections and connecting means of the cathode bottom 51 to a power source in the FIGS. 5a to 5c have been omitted for clarity.

Figuren 6a bis 6c zeigen eine schematische Darstellung eines weiteren Verfahrensablaufes zur Herstellung eines erfindungsgemäßen Kathodenbodens 61. FIGS. 6a to 6c show a schematic representation of a further process sequence for producing a cathode bottom 61 according to the invention.

Figur 6a zeigt die Bereitstellung von einem Kathodenblock 67, der eine Aussparung 69 zur Aufnahme einer Stromschiene (nicht gezeigt) aufweist. In Figur 6b ist gezeigt, dass Material 63, das eine vorverdichtete Graphitplatte umfasst, an einer Oberfläche des Kathodenblocks 67 flächig angeordnet wird, wobei gegebenenfalls ein Klebstoff zur Befestigung verwendet wird. Gegebenenfalls kann weiteres Material 63 angeordnet werden, sodass ein Stapel aus dem Material 63 entsteht (nicht gezeigt), der an dem Kathodenblock 67 angeordnet ist. Figur 6c zeigt, dass ein weiterer Kathodenblock 67 mit einer Aussparung 69 an dem Material 63 derart angeordnet wird, dass er mit dem Kathodenblock 67 mittels des Materials 63 kraftschlüssig verbunden ist. Figur 6c zeigt den Kathodenboden 61, wie er für eine Elektrolysezelle zur Herstellung von Aluminium verwendet werden kann. Durch Wiederholen der in Figuren 6b und 6c gezeigten Schritten kann ein Kathodenboden mit einer Vielzahl von aneinander gereihten Kathodenblöcken hergestellt werden. Es sei bemerkt, dass etwaige Anschlüsse und Verbindungsmittel des Kathodenbodens 61 an eine Stromquelle in den Figuren 6a bis 6c der Übersichtlichkeit halber weggelassen wurden. FIG. 6a shows the provision of a cathode block 67 having a recess 69 for receiving a bus bar (not shown). In FIG. 6b For example, it is shown that material 63 comprising a precompressed graphite plate is planarized on a surface of the cathode block 67, optionally using an adhesive for attachment. Optionally, further material 63 may be arranged to form a stack of material 63 (not shown) disposed on the cathode block 67. FIG. 6c shows that a further cathode block 67 is arranged with a recess 69 on the material 63 such that it is frictionally connected to the cathode block 67 by means of the material 63. FIG. 6c shows the cathode bottom 61, as it can be used for an electrolytic cell for the production of aluminum. By repeating the in Figures 6b and 6c As shown, a cathode bottom can be fabricated with a plurality of cathode blocks arranged side by side. It should be noted that any connections and connecting means of the cathode bottom 61 to a power source in Figures 6a to 6c have been omitted for clarity.

Claims (11)

  1. Cathode base (1, 21, 31, 41, 51, 61) for an electrolytic cell for producing aluminium, comprising a material (3, 23, 33, 43, 53, 63) arranged on at least one cathode block (7, 27, 37, 47, 57, 67), characterised in that the material (3, 23, 33, 43, 53, 63) comprises a pre-compressed plate based on expanded graphite, the at least one cathode block (7, 27, 37, 47, 57) being arranged at a predetermined distance from at least one other cathode block (7, 27, 37, 47, 57, 67) and/or a side wall (317, 417) of the electrolytic cell in such a way that at least one gap (5, 25, 35, 45, 55, 65, 65) is formed therebetween, the material (3, 23, 33, 43, 53, 63) filling the gap (5, 25, 35, 45, 55, 65).
  2. Cathode base (1, 21, 31, 41, 51, 61) according to claim 1, characterised in that the material arranged on the cathode block consists of a pre-compressed graphite plate based on expanded graphite.
  3. Cathode base (1, 21, 31, 41, 51, 61) according to either claim 1 or claim 2, characterised in that the pre-compressed plate is formed as a film.
  4. Cathode base (21) according to any of claims 1 to 3, characterised in that a surface of the cathode block (27) which is opposite a surface of the other cathode block (27) has a structured surface.
  5. Cathode base (21) according to any of claims 1 to 3, characterised in that a surface of the cathode block (27) which is opposite a surface of the other cathode block (27) has at least one groove (211).
  6. Cathode base (41) according to any of claims 1 to 5, characterised in that the material (43) is arranged on two opposite surfaces of a cathode block (47) which are adjacent to the surface of the cathode block (47) forming the gap (45), and is arranged on and in the gap (45) such that the material (43) is flush.
  7. Method for producing a cathode base (1, 21, 31, 41, 51, 61), comprising the following method steps
    • providing at least one cathode block (7, 27, 37, 47, 57, 67),
    • arranging a material (3, 23, 33, 43, 53, 63) on at least one surface of the at least one cathode block (7, 27, 37, 47, 57, 67), wherein the material (3, 23, 33, 43, 53, 63) comprises at least one pre-compressed plate based on expanded graphite,
    • arranging at least one other cathode block (7, 27, 37, 47, 57, 67) at a predetermined distance from the at least one cathode block (7, 27, 37, 47, 57, 67) in such a way that the material (3, 23, 33, 43, 53, 63) fills a gap (5, 25, 35, 45, 55, 65) formed by arranging the other cathode block (7, 27, 37, 47, 57, 67) at the predetermined distance from the at least one cathode block (7, 27, 37, 47, 57, 67).
  8. Method according to claim 7, characterised in that arranging the material on at least one surface of the at least one cathode block comprises fastening to the surface by means of an adhesive.
  9. Method according to either claim 7 or claim 8, characterised in that the material (3, 23, 33, 43, 53, 63) is formed as film.
  10. Method according to any of claims 7 to 9, further comprising the following method step before or after providing the at least one cathode block (27)
    • structuring at least one surface of the at least one cathode block (27).
  11. Use of a cathode base (31, 41) according to any of claims 1 to 6 in an electrolytic cell (313, 413) for producing aluminium.
EP10721169.0A 2009-06-09 2010-06-01 Cathode bottom, method for producing a cathode bottom, and use of the same in an electrolytic cell for producing aluminum Active EP2440688B8 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL10721169T PL2440688T3 (en) 2009-06-09 2010-06-01 Cathode bottom, method for producing a cathode bottom, and use of the same in an electrolytic cell for producing aluminum

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009024881A DE102009024881A1 (en) 2009-06-09 2009-06-09 Cathode bottom, method for producing a cathode bottom and use thereof in an electrolytic cell for the production of aluminum
PCT/EP2010/057667 WO2010142580A1 (en) 2009-06-09 2010-06-01 Cathode bottom, method for producing a cathode bottom, and use of the same in an electrolytic cell for producing aluminum

Publications (3)

Publication Number Publication Date
EP2440688A1 EP2440688A1 (en) 2012-04-18
EP2440688B1 true EP2440688B1 (en) 2018-11-21
EP2440688B8 EP2440688B8 (en) 2019-02-27

Family

ID=42470541

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10721169.0A Active EP2440688B8 (en) 2009-06-09 2010-06-01 Cathode bottom, method for producing a cathode bottom, and use of the same in an electrolytic cell for producing aluminum

Country Status (13)

Country Link
US (1) US20120085639A1 (en)
EP (1) EP2440688B8 (en)
JP (1) JP5832996B2 (en)
CN (1) CN102449202B (en)
AU (1) AU2010257604B2 (en)
BR (1) BRPI1011421B1 (en)
CA (1) CA2757336C (en)
DE (1) DE102009024881A1 (en)
PL (1) PL2440688T3 (en)
RU (1) RU2567777C2 (en)
UA (1) UA109767C2 (en)
WO (1) WO2010142580A1 (en)
ZA (1) ZA201106928B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA111247C2 (en) * 2011-11-11 2016-04-11 Сгл Карбон Се METHOD OF MEASURING SURFACES OF SURFACES IN OPERATING ALUMINUM ELECTROLYZERS
DE102012218958A1 (en) 2012-10-17 2014-04-30 Sgl Carbon Se Block, useful in cathode of electrolysis cell, which is useful for producing aluminum, where block has cross section perpendicular to a longitudinal axis of the cathode block and shape of trapezium
DE102012218960B4 (en) 2012-10-17 2014-11-27 Sgl Carbon Se Cathode comprising cathode blocks with a partially trapezoidal cross-section
WO2014060422A2 (en) 2012-10-17 2014-04-24 Sgl Carbon Se Cathode block with trapezoidal cross section
DE102012218959A1 (en) 2012-10-17 2014-04-30 Sgl Carbon Se Block, useful in cathode of electrolysis cell, which is useful for producing aluminum, where block has cross section perpendicular to a longitudinal axis of the cathode block and shape of trapezium
DE102015011952A1 (en) * 2015-09-18 2017-03-23 Sgl Carbon Se Cathode bottom, method for producing a cathode bottom and use thereof in an electrolytic cell for the production of aluminum
EP3491175A1 (en) 2016-07-26 2019-06-05 COBEX GmbH Cathode assembly for the production of aluminum

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2008215A1 (en) * 1970-02-21 1971-09-02 Sigri Elektrographit Gmbh Graphite sheathing for aluminium electrolysi
DE2240886A1 (en) * 1972-08-19 1974-02-28 Sigri Elektrographit Gmbh PROCEDURE FOR EXTENDING THE SERVICE LIFE OF A Blast furnace shaft
US4175022A (en) * 1977-04-25 1979-11-20 Union Carbide Corporation Electrolytic cell bottom barrier formed from expanded graphite
FR2546183B1 (en) * 1983-05-16 1985-07-05 Pechiney Aluminium SUB-CATHODIC SCREEN COMPRISING DEFORMABLE AREAS, FOR HALL-HEROULT ELECTROLYSIS TANKS
SU1477786A1 (en) * 1987-05-22 1989-05-07 Красноярский Политехнический Институт Hearth of aluminium production electrolyzer
WO1996007773A1 (en) * 1994-09-08 1996-03-14 Moltech Invent S.A. Aluminium electrowinning cell with improved carbon cathode blocks
CA2354007C (en) * 1998-12-16 2004-04-27 Alcan International Limited Multi-layer cathode structures
RU2221087C2 (en) * 2002-02-26 2004-01-10 Леонов Виктор Васильевич Aluminum cell hearth
RU2224937C1 (en) * 2002-08-26 2004-02-27 Закрытое акционерное общество "ИЛЬМА" Sealing tape
US20050175062A1 (en) * 2004-01-20 2005-08-11 Brian Bowman End-face seal for graphite electrodes
EP1676928A1 (en) * 2004-12-30 2006-07-05 Sgl Carbon Ag Furnace expansion joint with compressible expanded graphite sheet filler and manufacturing method
EP1801264A1 (en) * 2005-12-22 2007-06-27 Sgl Carbon Ag Cathodes for aluminium electrolysis cell with expanded graphite lining
US20070284259A1 (en) * 2006-06-12 2007-12-13 Macleod Andrew S Preheating of electrolytic cell
EP2006419A1 (en) * 2007-06-22 2008-12-24 Sgl Carbon Ag Reduced voltage drop anode assembly for aluminium electrolysis cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
AU2010257604B2 (en) 2015-05-28
AU2010257604A1 (en) 2011-11-10
EP2440688B8 (en) 2019-02-27
DE102009024881A1 (en) 2010-12-16
RU2011138837A (en) 2013-03-27
JP2012529567A (en) 2012-11-22
CN102449202A (en) 2012-05-09
RU2567777C2 (en) 2015-11-10
BRPI1011421A2 (en) 2016-03-15
PL2440688T3 (en) 2019-07-31
CA2757336C (en) 2017-11-21
CN102449202B (en) 2016-09-28
CA2757336A1 (en) 2010-12-16
JP5832996B2 (en) 2015-12-16
UA109767C2 (en) 2015-10-12
BRPI1011421B1 (en) 2019-10-08
EP2440688A1 (en) 2012-04-18
ZA201106928B (en) 2012-12-27
WO2010142580A1 (en) 2010-12-16
US20120085639A1 (en) 2012-04-12

Similar Documents

Publication Publication Date Title
EP2440688B1 (en) Cathode bottom, method for producing a cathode bottom, and use of the same in an electrolytic cell for producing aluminum
DE69532052T2 (en) Horizontal cathode surface drained with recessed grooves for aluminum electrical extraction
DE2817202A1 (en) EXPANDED GRAPHITE BARRIER ON THE BOTTOM OF AN ELECTROLYTIC CELL
DE102011004009A1 (en) Cathode arrangement and cathode block with a guide groove having a groove
DE102010041081B4 (en) Cathode for electrolysis cells
DE3880940T2 (en)
EP0132647B1 (en) Lining for an electrolytic cell for the production of aluminium
WO2012107400A2 (en) Graphitized cathode block having an abrasion-proof surface
WO2017216243A1 (en) Cathode block having a slot geometry
EP3350358B1 (en) Cathode bottom for producing aluminum
EP2673401A2 (en) Surface-profiled graphite cathode block having an abrasion-proof surface
EP2931945A1 (en) Side-wall block for a wall in an electrolytic cell for reducing aluminum
DE1092216B (en) Current-carrying elements and their use in electrolytic cells for the extraction or refining of aluminum
DE1174516B (en) Furnace and process for the production of aluminum by fused salt electrolysis
EP2673397A1 (en) Cathode assembly comprising a surface-profiled cathode block having variable groove depth
WO2014124970A1 (en) Cathode block having an abrasion-resistant surface that can be wetted
DE102012218960B4 (en) Cathode comprising cathode blocks with a partially trapezoidal cross-section
DE102011004011A1 (en) Cathode assembly having a surface profiled cathode block with a graphite foil-lined groove of variable depth
DE102012218959A1 (en) Block, useful in cathode of electrolysis cell, which is useful for producing aluminum, where block has cross section perpendicular to a longitudinal axis of the cathode block and shape of trapezium
AT207578B (en) Furnace for the production of aluminum by fused-salt electrolysis from alumina, and processes therefor
DE102012218958A1 (en) Block, useful in cathode of electrolysis cell, which is useful for producing aluminum, where block has cross section perpendicular to a longitudinal axis of the cathode block and shape of trapezium
DE102010041083A1 (en) Electrolysis cell for the production of aluminum
DE102013214322A1 (en) Side brick for a wall in an electrolytic cell
EP2673398A2 (en) Surface-profiled cathode block containing hard material
WO2014060422A2 (en) Cathode block with trapezoidal cross section

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SGL CARBON SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161215

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SGL CFL CE GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180531

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010015581

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1067619

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: COBEX GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010015581

Country of ref document: DE

Owner name: TOKAI COBEX GMBH, DE

Free format text: FORMER OWNER: SGL CFL CE GMBH, 86405 MEITINGEN, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B8

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20181121

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190221

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190222

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190321

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 29822

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010015581

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010015581

Country of ref document: DE

Owner name: TOKAI COBEX GMBH, DE

Free format text: FORMER OWNER: COBEX GMBH, 86405 MEITINGEN, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1067619

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601

REG Reference to a national code

Ref country code: NO

Ref legal event code: CHAD

Owner name: TOKAI COBEX GMBH, DE

REG Reference to a national code

Ref country code: SK

Ref legal event code: PC4A

Ref document number: E 29822

Country of ref document: SK

Owner name: TOKAI COBEX GMBH, WIESBADEN, DE

Free format text: FORMER OWNER: COBEX GMBH, WIESBADEN, DE

Effective date: 20210118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230622

Year of fee payment: 14

Ref country code: FR

Payment date: 20230627

Year of fee payment: 14

Ref country code: DE

Payment date: 20230621

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230522

Year of fee payment: 14

Ref country code: PL

Payment date: 20230522

Year of fee payment: 14

Ref country code: IS

Payment date: 20230615

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230622

Year of fee payment: 14