EP0132647B1 - Lining for an electrolytic cell for the production of aluminium - Google Patents

Lining for an electrolytic cell for the production of aluminium Download PDF

Info

Publication number
EP0132647B1
EP0132647B1 EP84107810A EP84107810A EP0132647B1 EP 0132647 B1 EP0132647 B1 EP 0132647B1 EP 84107810 A EP84107810 A EP 84107810A EP 84107810 A EP84107810 A EP 84107810A EP 0132647 B1 EP0132647 B1 EP 0132647B1
Authority
EP
European Patent Office
Prior art keywords
lining
graphite blocks
graphite
blocks
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84107810A
Other languages
German (de)
French (fr)
Other versions
EP0132647A2 (en
EP0132647A3 (en
Inventor
Karl Wilhelm Friedrich Dr. Etzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigri GmbH
Original Assignee
Sigri GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigri GmbH filed Critical Sigri GmbH
Publication of EP0132647A2 publication Critical patent/EP0132647A2/en
Publication of EP0132647A3 publication Critical patent/EP0132647A3/en
Application granted granted Critical
Publication of EP0132647B1 publication Critical patent/EP0132647B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/085Cell construction, e.g. bottoms, walls, cathodes characterised by its non electrically conducting heat insulating parts

Definitions

  • the invention relates to a tub for the melt flow electrolytic production of aluminum, which consists of a steel tub lined with graphite blocks, a heat-insulating layer between the tub and the lining, and cathodic power supply lines let into the lining.
  • Cells for the production of aluminum by electrolysis of aluminum oxide, which is dissolved in a fluoride melt, consist of a trough-shaped cathodic part which receives the molten electrolyte and the cathodically separated molten aluminum.
  • Metallic materials have only limited resistance to the electrolyte and the electrolysis products at the electrolyte temperature of 940 to 980 ° C and must therefore be protected against the attack of electrolyte and electrolysis products.
  • the cathodic part of the electrolytic cell therefore usually consists of a trough or a trough made of steel, which is lined with a temperature and corrosion-resistant material.
  • the lining also connects the actual molten aluminum cathode with the cathodic power supply, so that the material must also be a good electrical conductor. Therefore, almost exclusively carbon and graphite blocks are used for the lining of the tub, which are connected to one another by carbon-containing tamping and cementing compounds and form a layer impermeable to molten metal and electrolyte.
  • the functionality of the lining is essentially determined by its chemical and thermal resistance and its electrical resistance.
  • Joulesche heat is developed in the lining, which is partly necessary for setting the electrolysis temperature. Because of the temperature difference between the electrolyte and the tub, greater energy losses due to heat conduction can only be avoided if the thermal resistance of the lining is very high.
  • a heat-insulating layer of ceramic insulating materials is usually arranged between the lining made of carbon or graphite blocks and the tub.
  • carbon-bonded graphite blocks are also used, without the geometry and type of heat insulation being adapted to the changed material properties.
  • blocks consisting essentially of petroleum coke and heated to a high temperature, preferably at least 2000 ° C., have a particularly favorable resistance to the electrolyte (DE-OS 2 112 287).
  • the properties of these blocks are approximately: bulk density - 1.57 g / cm 3 , porosity - 27%, spec. electrical resistance - 14 ⁇ m.
  • the heat-insulating layer usually consists of refractory stones or powders with a thickness between 50 and 250 mm (US Pat. No. 3,434,957) and it is also known to assemble the heat-insulating layer from several individual layers (US Pat. No. 3,723,286). Finally, it is known to change the temperature gradients between the bottom and the side part of the lining by means of special insulating elements between these parts (US Pat. No. 4,118,304). These measures are not tailored to the material quality of the lining and their effects are limited accordingly.
  • the invention is therefore based on the object of extending the life of electrolysis cells for producing aluminum and reducing the energy requirement by coordinating the heat-insulating layer and a lining of graphite stones.
  • the accessible porosity of the graphite blocks is at most 18% and according to another embodiment, the thermal conductivity is 100 to 120 W / m - K and the spec. electrical resistance 6 to 10 ⁇ m.
  • graphite blocks which have been impregnated with a carbonizable impregnating agent and impregnated for pyrolysis of the impregnating agent and have been heated to about 700 to 1,000 ° C. for pyrolysis of the impregnating agent.
  • Coal tar pitch and petroleum pitch are particularly suitable as impregnating agents.
  • the heat-insulating layer advantageously consists of chamotte, the compressive strength of which is more than 10 MPa.
  • graphite is understood to mean carbon bodies which have been subjected to a graphitization treatment and have been heated to a temperature above about 2500 ° C.
  • the result of this treatment depends essentially on the starting products, e.g. B. type of coke used, and the manufacturing parameters, e.g. B. the molding process, so that the products referred to as graphite are only able to a small extent to meet the requirements in a cell for the melt flow electrolytic production of aluminum. It has been found that the useful for this purpose part 'of the material group graphite can be sorted out with the help of its material properties.
  • the mixture is formed into blocks and the blocks in a first stage for carbonizing the binder to about 1,000 ° C. and heated to 2600 to 3000 ° C in a second stage.
  • the use of raw materials with upstream structural elements and the use of higher temperatures result in graphite blocks with a comparatively high thermal conductivity and a low specific electrical resistance.
  • the thermal conductivity of the blocks is 80 to 120 W / m-K and the specific electrical resistance is 6 to 13 ⁇ m.
  • the comparatively low resistance brings about a substantial reduction in the voltage drop in the lining, in which less Joule heat is generated accordingly.
  • the open pore volume of the graphite blocks accessible to the melt must also be reduced.
  • the accessible pore volume should be at most 22% and, according to a preferred embodiment of the invention, at most 18%.
  • the graphite blocks forming the lining of the trough are expediently glued to one another without any joints, the term “seamless joints being understood to have a width of at most 1 mm.
  • the plastic compounds described in EP 0 027 534 are particularly suitable as joint cement.
  • the usual joints with a width of 20 mm and more are weak points in the lining, which are easily destroyed by thermal stress or by diffusing melt.
  • the steel trough is designated 1.
  • the heat-insulating layer consists of the sub-layers 2 and 3, the thermal conductivity of which is 0.1 to 0.2 W / m - K and 0.8 to 1.2 W / m - K.
  • the ratio of the thermal resistance of the layers is about 0.05.
  • Current bars or rails 5 are embedded in the graphite blocks 4 resting on the layer 3.
  • the thermal conductivity of the graphite blocks is 80 to 120 W / m - K, the specific electrical resistance 6 to 13 ⁇ m and the accessible pore volume is at most 22%.
  • the thickness ratio of the graphite layer 4 to the sum of the layers 2 and 3 is 1.5 to 1.6.
  • the graphite blocks 4 completely line the tub floor, the tub side surfaces are shielded by the block 6, which consists of graphite or carbon.
  • the actual cathode is the aluminum layer 7.
  • the anodes 9 with the anodic power supply 10 are immersed in the molten electrolyte 8 and are protected against the attack of atmospheric oxygen by the crust 11, which mainly consists of alumina.
  • the voltage drop measured when commissioning a cell to extract aluminum is essentially a function of the lining.
  • the voltage drop of a lining made of carbon blocks is about 400 mV
  • a lining made of carbon-bonded graphite blocks is about 300 mV
  • a lining made of graphite blocks according to the invention is only about 200 mV.
  • the temperature of the tub for these linings and a heat-insulating layer, formed from two sub-layers A and B with the thermal conductivity 1.0 and 0.1 W / m - K, is approximately 150 to 50 ° C (Table 1).
  • the low energy losses of the lining according to the invention can of course only be realized if the parameters measured when the electrolysis cell is started up do not change or change only slightly during the operation of the cell.
  • 2 shows the increase in the voltage drop as a function of the operating time; A is a liner made of carbon blocks, B is a liner made of carbon-bonded graphite and C is one made of graphite blocks.
  • the increase in the voltage drop with the operating time is essentially caused by the increasing decomposition and destruction of the lining.
  • the original advantage of linings according to the invention not only remains when the electrolysis cell is in operation, but also increases as the operating time progresses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

Die Erfindung betrifft eine Wanne für die schmelzflußelektrolytische Herstellung von Aluminium, die aus einer mit-Graphitblöcken ausgekleideten Stahlwanne, einer wärmedämmenden Isolationsschicht zwischen Wanne und Auskleidung und in die Auskleidung eingelassene kathodische Stromzuführungen besteht.The invention relates to a tub for the melt flow electrolytic production of aluminum, which consists of a steel tub lined with graphite blocks, a heat-insulating layer between the tub and the lining, and cathodic power supply lines let into the lining.

Zellen für die Gewinnung von Aluminium durch Elektrolyse von Aluminiumoxid, das in einer Fluorid-Schmelze gelöst ist, bestehen aus einem wannenförmigen kathodischen Teil, der den schmelzflüssigen Elektrolyten und das kathodisch abgeschiedene schmelzflüssige Aluminium aufnimmt. Metallische Werkstoffe sind unter der Elektrolyttemperatur von 940 bis 980 °C gegen den Elektrolyten und die Elektrolyseprodukte nur begrenzt beständig und müssen daher gegen den Angriff von Elektrolyt und Elektrolyseprodukten geschützt werden. Der kathodische Teil der Elektrolysezelle besteht daher üblicherweise aus einer Wanne oder einem Trog aus Stahl, der mit einem temperatur- und korrosionsbeständigen Werkstoff ausgekleidet ist. Die Auskleidung verbindet zugleich die eigentliche, aus schmelzflüssigem Aluminium bestehende Kathode mit den kathodischen Stromzuführungen, so daß der Werkstoff auch ein guter elektrischer Leiter sein muß. Man verwendet daher für die Auskleidung der Wanne fast ausschließlich Kohlenstoff- und Graphitblöcke, die durch kohlenstoffhaltige Stampf- und Kittmassen miteinander verbunden sind und eine gegen schmelzflüssiges Metall und Elektrolyt undurchlässige Schicht bilden.Cells for the production of aluminum by electrolysis of aluminum oxide, which is dissolved in a fluoride melt, consist of a trough-shaped cathodic part which receives the molten electrolyte and the cathodically separated molten aluminum. Metallic materials have only limited resistance to the electrolyte and the electrolysis products at the electrolyte temperature of 940 to 980 ° C and must therefore be protected against the attack of electrolyte and electrolysis products. The cathodic part of the electrolytic cell therefore usually consists of a trough or a trough made of steel, which is lined with a temperature and corrosion-resistant material. The lining also connects the actual molten aluminum cathode with the cathodic power supply, so that the material must also be a good electrical conductor. Therefore, almost exclusively carbon and graphite blocks are used for the lining of the tub, which are connected to one another by carbon-containing tamping and cementing compounds and form a layer impermeable to molten metal and electrolyte.

Die Funktionstüchtigkeit der Auskleidung wird im wesentlichen durch ihre chemische und thermische Beständigkeit und ihren elektrischen Widerstand bestimmt. Beim Betrieb der Elektrolysezelle wird in der Auskleidung Joulesche Wärme entwickelt, die zu einem Teil für die Einstellung der Elektrolysetemperatur nötig ist. Wegen der Temperaturdifferenz zwischen Elektrolyt und Wanne sind größere Energieverluste durch Wärmeleitung nur vermeidbar, wenn der Wärmewiderstand der Auskleidung sehr groß ist. Zur Verringerung der Verluste ordnet man üblicherweise zwischen der Auskleidung aus Kohlenstoff- oder Graphitblöcken und der Wanne eine wärmedämmende Schicht aus keramischen Isolierstoffen an. Obgleich Auskleidung und wärmedämmende Schicht eine funktionelle Einheit sind, hat man bisher nicht erkannt, daß Auskleidung und wärmedämmende Isolierschicht nur dann eine für den Elektrolysebetrieb vorteilhafte Einheit bilden, wenn die Stoffeigenschaften und die geometrische Auslegung aufeinander abgestimmt sind. Der Austausch von Kohlenstoffblöcken durch Graphitblöcke ohne gleichzeitige Änderung der Wärmeisolation hat aus diesem Grund keine größere Wirkung, obwohl Graphit einen vergleichsweise kleineren elektrischen Widerstand hat und gegen den Elektrolyten beständiger als Kohlenstoff ist. So ist es beispielsweise durch die US-PS 3 369 986 bekannt, die Wanne alternativ mit Kohlenstoffblöcken und Graphitblöcken ohne Änderung der Wärmeisolation auszukleiden, obwohl der elektrische Widerstand der Auskleidung sich etwa wie 4 : 1 und der gemessene Spannungsabfall in der Auskleidung etwa wie 2,5:1 1 verhält. Nach der DE-PS2105247, wird die kathodische Stromdichte durch eine Auskleidung verbessert, die Kohlenstoffblöcke und Graphitblöcke enthält. Statt der Graphitblöcke verwendet man auch kohlenstoffgebundene Graphitblöcke (Semigraphit, Hartgraphit), ohne daß Geometrie und Art der Wärmeisolierung an die geänderten Stoffeigenschaften angepaßt sind. Es ist auch bekannt, daß im wesentlichen aus Petrolkoks bestehende und auf eine hohe Temperatur, bevorzugt wenigstens 2000°C, erhitzte Blöcke eine besonders günstige Beständigkeit gegen den Elektrolyten haben (DE-OS 2 112 287). Die Eigenschaften dieser Blöcke sind etwa : Rohdichte - 1,57 g/cm3, Porosität - 27 %, spez. elektrischer Widerstand - 14 µΩm. Über die Beschaffenheit der wärmedämmenden Schicht ist nichts bekannt geworden.The functionality of the lining is essentially determined by its chemical and thermal resistance and its electrical resistance. When operating the electrolysis cell, Joulesche heat is developed in the lining, which is partly necessary for setting the electrolysis temperature. Because of the temperature difference between the electrolyte and the tub, greater energy losses due to heat conduction can only be avoided if the thermal resistance of the lining is very high. In order to reduce the losses, a heat-insulating layer of ceramic insulating materials is usually arranged between the lining made of carbon or graphite blocks and the tub. Although the lining and the heat-insulating layer are a functional unit, it has not hitherto been recognized that the lining and the heat-insulating layer only form an advantageous unit for the electrolysis operation if the material properties and the geometric design are coordinated. For this reason, replacing carbon blocks with graphite blocks without simultaneously changing the thermal insulation has no greater effect, although graphite has a comparatively lower electrical resistance and is more resistant to the electrolyte than carbon. For example, it is known from US Pat. No. 3,369,986 to alternatively line the tub with carbon blocks and graphite blocks without changing the heat insulation, although the electrical resistance of the lining is approximately 4: 1 and the measured voltage drop in the lining approximately as 2. 5: 1 1 behaves. According to DE-PS2105247, the cathodic current density is improved by a lining that contains carbon blocks and graphite blocks. Instead of the graphite blocks, carbon-bonded graphite blocks (semigraphite, hard graphite) are also used, without the geometry and type of heat insulation being adapted to the changed material properties. It is also known that blocks consisting essentially of petroleum coke and heated to a high temperature, preferably at least 2000 ° C., have a particularly favorable resistance to the electrolyte (DE-OS 2 112 287). The properties of these blocks are approximately: bulk density - 1.57 g / cm 3 , porosity - 27%, spec. electrical resistance - 14 µΩm. Nothing is known about the nature of the insulating layer.

Die wärmedämmende Schicht besteht üblicherweise aus feuerfesten Steinen oder Pulvern in einer Dicke zwischen 50 und 250 mm (US-PS 3 434 957) und es ist auch bekannt, die wärmedämmende Schicht aus mehreren Einzelschichten zusammenzusetzen (US-PS 3 723 286). Schließlich ist es bekannt, die Temperaturgradienten zwischen Boden und Seitenteil der Auskleidung durch besondere Isolierelemente zwischen diesen Teilen zu ändern (US-PS 4118 304). Diese Maßnahmen sind nicht auf die stoffliche Qualität der Auskleidung abgestimmt und ihre Wirkungen entsprechend begrenzt.The heat-insulating layer usually consists of refractory stones or powders with a thickness between 50 and 250 mm (US Pat. No. 3,434,957) and it is also known to assemble the heat-insulating layer from several individual layers (US Pat. No. 3,723,286). Finally, it is known to change the temperature gradients between the bottom and the side part of the lining by means of special insulating elements between these parts (US Pat. No. 4,118,304). These measures are not tailored to the material quality of the lining and their effects are limited accordingly.

Der Erfindung liegt daher die Aufgabe zugrunde, durch die Abstimmung von wärmedämmender Schicht und einer Auskleidung aus Graphitsteinen die Lebensdauer von Elektrolysezellen zur Erzeugung von Aluminium zu verlängern und den Energiebedarf zu senken.The invention is therefore based on the object of extending the life of electrolysis cells for producing aluminum and reducing the energy requirement by coordinating the heat-insulating layer and a lining of graphite stones.

Die Aufgabe wird mit einer ausgekleideten Wanne der eingangs genannten Art gelöst, die

  • a) mit Graphitblöcken ausgekleidet ist, die eine Wärmeleitfähigkeit von 80 bis 120 W/m - K, einen spez. elektrischen Widerstand von 6 bis 12, µΩm und ein zugängliches Porenvolumen von höchstens 22 % haben,
  • b) eine aus wenigstens zwei Teilschichten mit einer Wärmeleitfähigkeit von 0,1 bis 0,2 und 0,8 bis 1,2 W/m - K bestehende wärmedämmende Isolierschicht enthält und
  • c) ein Dickenverhältnis von Auskleidung und Isolierschicht von 1,5 bis 3,0 hat.
The task is solved with a lined tub of the type mentioned, the
  • a) is lined with graphite blocks that have a thermal conductivity of 80 to 120 W / m - K, a spec. have electrical resistance of 6 to 12 µΩm and an accessible pore volume of at most 22%,
  • b) contains an insulating insulating layer consisting of at least two partial layers with a thermal conductivity of 0.1 to 0.2 and 0.8 to 1.2 W / m-K and
  • c) has a thickness ratio of lining and insulating layer of 1.5 to 3.0.

Nach einer bevorzugten Ausbildung der Erfindung beträgt die zugängliche Porosität der Graphitblöcke höchstens 18 % und nach einer anderen Ausführungsform ist die Wärmeleitfähigkeit 100 bis 120 W/m - K und der spez. elektrische Widerstand 6 bis 10 µΩm. Besonders geeignet sind auch Graphitblöcke, die mit einem carbonisierbaren Imprägniermittel imprägniert und zur Pyrolyse des Imprägniermittel imprägniert und zur Pyrolyse des Imprägniermittels auf etwa 700 bis 1 000 °C erhitzt worden sind. Als lmprägniermittel eignen sich besonders Steinkohlenteerpeche und Petrolpeche. Die wärmedämmende Isolationsschicht besteht vorteilhaft aus Schamotte, deren Druckfestigkeit mehr als 10 MPa beträgt.According to a preferred embodiment of the invention, the accessible porosity of the graphite blocks is at most 18% and according to another embodiment, the thermal conductivity is 100 to 120 W / m - K and the spec. electrical resistance 6 to 10 µΩm. Also particularly suitable are graphite blocks which have been impregnated with a carbonizable impregnating agent and impregnated for pyrolysis of the impregnating agent and have been heated to about 700 to 1,000 ° C. for pyrolysis of the impregnating agent. Coal tar pitch and petroleum pitch are particularly suitable as impregnating agents. The heat-insulating layer advantageously consists of chamotte, the compressive strength of which is more than 10 MPa.

Unter dem Terminus « Graphit versteht man Kohlenstoffkörper, die einer Graphitierungsbehandlung unterworfen und dabei auf eine Temperatur oberhalb etwa 2 500 °C erhitzt wurden. Das Ergebnis dieser Behandlung hängt wesentlich von den Ausgangsprodukten, z. B. Art des verwendeten Kokses, und den Herstellungsparametern ab, z. B. das Formungsverfahren, so daß die als Graphit bezeichneten Produkte nur zu einem kleinen Teil den Anforderungen in einer Zelle zur schmelzflußelektrolytischen Herstellung von Aluminium gewachsen sind. Es wurde gefunden, daß der für diesen Zweck brauchbare Teil' der Werkstoffgruppe Graphit mit Hilfe seiner Stoffeigenschaften ausgesondert werden kann.The term “graphite” is understood to mean carbon bodies which have been subjected to a graphitization treatment and have been heated to a temperature above about 2500 ° C. The result of this treatment depends essentially on the starting products, e.g. B. type of coke used, and the manufacturing parameters, e.g. B. the molding process, so that the products referred to as graphite are only able to a small extent to meet the requirements in a cell for the melt flow electrolytic production of aluminum. It has been found that the useful for this purpose part 'of the material group graphite can be sorted out with the help of its material properties.

Zur Herstellung der Graphitblöcke werden in bekannter Weise Petrolkoks, Anthracit und andere im wesentlichen aus Kohlenstoff bestehende Stoffe zusammen mit einem carbonisierbaren Binder gemischt, die Mischung wird zu Blöcken geformt und die Blöcke in einer ersten Stufe zur Carbonisierung des Binders auf etwa 1 000 °C und in einer zweiten Stufe auf 2600 bis 3000°C erhitzt. Durch die Verwendung von Rohstoffen mit vorgeordneten Strukturelementen und die Anwendung höherer Temperaturen erhält man Graphitblöcke mit vergleichsweise hoher Wärmeleitfähigkeit und einem kleinen spezifischen elektrischen Widerstand. Nach der Erfindung beträgt die Wärmeleitfähigkeit der Blöcke 80 bis 120 W/m - K und der spezifische elektrische Widerstand 6 bis 13 µΩm. Der vergleichsweise kleine Widerstand bewirkt eine wesentliche Senkung des Spannungsabfalls in der Auskleidung, in der entsprechend weniger Joulesche Wärme erzeugt wird. Durch die große Wärmeleitfähigkeit der Graphitblöcke werden größere, gegebenenfalls die Lebensdauer der Zelle beeinträchtigende Temperaturdifferenzen in der Auskleidung ausgeschlossen und in Verbindung mit der thermischen Isolierschicht wird ein stärkerer Energieabfluß aus dem schmelzflüssigen Elektrolyten vermieden. Der Effekt ist besonders günstig für Auskleidungen, die Graphitblöcke mit einer Wärmeleitfähigkeit von 100 bis 120 W/m - K und einem spez. elektrischen Widerstand von 6 bis 10 pnm enthalten. Es wurde schließlich gefunden, daß zur Erzielung einer großen Lebensdauer der Elektrolysezelle auch das offene, für die Schmelze zugängliche Porenvolumen der Graphitblöcke vermindert werden muß. Das zugängliche Porenvolumen soll höchstens 22 % und nach einer bevorzugten Ausführung der Erfindung höchstens 18 % betragen. Es ist bekannt, für die Auskleidung der Wannen von Elektrolysezellen bestimmte Kohlenstoff- und Graphitblöcke mit Furfurol oder Furfurylalkohol zu imprägnieren und das Imprägniermittel in situ zu verkoken (US-PS 3 616 045). Durch dieses Verfahren wird das zugängliche Porenvolumen verkleinert, die Größe des zugänglichen Porenvolumens dieser Blöcke ist aber nicht bekannt. Zur Verringerung des zugänglichen Porenvolumens ist besonders ein Verfahren geeignet, bei welchem der poröse Graphitkörper mit Steinkohlenteerpech oder Petrolpech imprägniert und zur Verkokung des Pechs auf etwa 700 bis 1 000 °C erhitzt wird. Der Graphitkörper enthält. in den Poren einen Pechkoks, durch welchen die Permeabilität des Körpers gesenkt und die mechanische Belastbarkeit verbessert wird.To produce the graphite blocks, petroleum coke, anthracite and other substances consisting essentially of carbon are mixed together with a carbonizable binder, the mixture is formed into blocks and the blocks in a first stage for carbonizing the binder to about 1,000 ° C. and heated to 2600 to 3000 ° C in a second stage. The use of raw materials with upstream structural elements and the use of higher temperatures result in graphite blocks with a comparatively high thermal conductivity and a low specific electrical resistance. According to the invention, the thermal conductivity of the blocks is 80 to 120 W / m-K and the specific electrical resistance is 6 to 13 µΩm. The comparatively low resistance brings about a substantial reduction in the voltage drop in the lining, in which less Joule heat is generated accordingly. Due to the high thermal conductivity of the graphite blocks, larger temperature differences in the lining, which may impair the service life of the cell, are excluded, and in conjunction with the thermal insulation layer, a greater outflow of energy from the molten electrolyte is avoided. The effect is particularly favorable for linings, the graphite blocks with a thermal conductivity of 100 to 120 W / m - K and a spec. electrical resistance from 6 to 10 pnm included. It was finally found that in order to achieve a long service life for the electrolytic cell, the open pore volume of the graphite blocks accessible to the melt must also be reduced. The accessible pore volume should be at most 22% and, according to a preferred embodiment of the invention, at most 18%. It is known to impregnate carbon and graphite blocks intended for lining the tubs of electrolysis cells with furfurol or furfuryl alcohol and to coke the impregnating agent in situ (US Pat. No. 3,616,045). The accessible pore volume is reduced by this method, but the size of the accessible pore volume of these blocks is not known. In order to reduce the accessible pore volume, a method is particularly suitable in which the porous graphite body is impregnated with coal tar pitch or petroleum pitch and heated to about 700 to 1,000 ° C. for coking the pitch. The graphite body contains. a pitch coke in the pores, through which the permeability of the body is reduced and the mechanical resilience is improved.

Die die Auskleidung der Wanne bildenden Graphitblöcke sind zweckmäßig fugenlos miteinander verklebt, wobei unter dem Begriff « fugenlos Fugen mit einer Breite von höchstens 1 mm zu verstehen sind. Als Fugenkitt eignen sich besonders die in der EP 0 027 534 beschriebenen plastischen Massen. Die üblichen Fugen mit einer Breite von 20 mm und mehr sind Schwachstellen der Auskleidung, die durch thermische Spannungen oder eindiffundierende Schmelze leicht zerstört werden.The graphite blocks forming the lining of the trough are expediently glued to one another without any joints, the term “seamless joints being understood to have a width of at most 1 mm. The plastic compounds described in EP 0 027 534 are particularly suitable as joint cement. The usual joints with a width of 20 mm and more are weak points in the lining, which are easily destroyed by thermal stress or by diffusing melt.

Die Erfindung wird im folgenden anhand von Beispielen und Zeichnungen erläutert. Es zeigen

  • Figur 1 einen Längsschnitt durch eine Elektrolysezelle zur Gewinnung von Aluminium,
  • Figur 2 den Spannungsabfall verschiedener Auskleidungen als Funktion der Betriebszeit.
The invention is explained below with reference to examples and drawings. Show it
  • FIG. 1 shows a longitudinal section through an electrolysis cell for extracting aluminum,
  • Figure 2 shows the voltage drop of various liners as a function of operating time.

In Fig. 1 ist die Stahlwanne mit 1 bezeichnet. Die wärmeisolierende Schicht besteht aus den Teilschichten 2 und 3, deren Wärmeleitfähigkeit 0,1 bis 0,2 W/m - K und 0,8 bis 1,2 W/m - K beträgt. Das Verhältnis der Wärmedurchgangswiderstände der Schichten ist etwa 0.05. In die auf der Schicht 3 aufliegenden Graphitblöcken 4 sind Strombarren oder Schienen 5 eingelassen. Die Wärmeleitfähigkeit der Graphitblöcke beträgt 80 bis 120 W/m - K, der spezifische elektrische Widerstand 6 bis 13 µΩm und das zugängliche Porenvolumen höchstens 22 %. Das Dickenverhältnis der Graphitschicht 4 zur Summe der Schichten 2 und 3 ist 1,5 bis 1,6. Die Graphitblöcke 4 kleiden den Wannenboden vollständig aus, die Wannenseitenflächen sind durch den Block 6 abgeschirmt, der aus Graphit oder aus Kohlenstoff besteht. Die eigentliche Kathode ist die Aluminiumschicht 7. Die Anoden 9 mit der anodischen Stromzuführung 10 tauchen in den schmelzflüssigen Elektrolyten 8 ein und sind durch die vorwiegend aus Tonerde bestehende Kruste 11 gegen den Angriff von Luftsauerstoff geschützt.In Fig. 1 the steel trough is designated 1. The heat-insulating layer consists of the sub-layers 2 and 3, the thermal conductivity of which is 0.1 to 0.2 W / m - K and 0.8 to 1.2 W / m - K. The ratio of the thermal resistance of the layers is about 0.05. Current bars or rails 5 are embedded in the graphite blocks 4 resting on the layer 3. The thermal conductivity of the graphite blocks is 80 to 120 W / m - K, the specific electrical resistance 6 to 13 µΩm and the accessible pore volume is at most 22%. The thickness ratio of the graphite layer 4 to the sum of the layers 2 and 3 is 1.5 to 1.6. The graphite blocks 4 completely line the tub floor, the tub side surfaces are shielded by the block 6, which consists of graphite or carbon. The actual cathode is the aluminum layer 7. The anodes 9 with the anodic power supply 10 are immersed in the molten electrolyte 8 and are protected against the attack of atmospheric oxygen by the crust 11, which mainly consists of alumina.

Der bei der Inbetriebnahme einer Zelle zur Gewinnung von Aluminium gemessene Spannungsabfall, ist im wesentlichen eine Funktion der Auskleidung. Der Spannungsabfall einer Auskleidung aus Kohlenstoffblöcken beträgt etwa 400 mV, einer Auskleidung aus kohlenstoffgebundenen Graphitblöcken etwa 300 mV und einer erfindungsgemäßen Auskleidung aus Graphitblöcken nur etwa 200 mV. Die Temperatur der Wanne beträgt für diese Auskleidungen und einer wärmeisolierenden Schicht, gebildet aus zwei Teilschichten A und B mit der Wärmeleitfähigkeit 1,0 und 0,1 W/m - K etwa 150 bis 50 °C (Tabelle 1).

Figure imgb0001
The voltage drop measured when commissioning a cell to extract aluminum is essentially a function of the lining. The voltage drop of a lining made of carbon blocks is about 400 mV, a lining made of carbon-bonded graphite blocks is about 300 mV and a lining made of graphite blocks according to the invention is only about 200 mV. The temperature of the tub for these linings and a heat-insulating layer, formed from two sub-layers A and B with the thermal conductivity 1.0 and 0.1 W / m - K, is approximately 150 to 50 ° C (Table 1).
Figure imgb0001

Die geringen Energieverluste der erfindungsgemäßen Auskleidung lassen sich naturgemäß nur realisieren, wenn die bei Inbetriebnahme der Elektrolysezelle gemessenen Kenngrößen sich während des Betriebs der Zelle nicht oder nur geringfügig ändern. In der Fig. 2 ist die Zunahme des Spannungsabfalls als Funktion der Betriebszeit dargestellt ; A ist eine aus Kohlenstoffblöcken bestehende Auskleidung, B eine Auskleidung aus kohlenstoffgebundenem Graphit und C eine aus Graphitblöcken. Der Anstieg des Spannungsabfalls mit der Betriebszeit wird im wesentlichen durch die zunehmende Zersetzung und Zerstörung der Auskleidung verursacht. Der ursprüngliche Vorteil erfindungsgemäßer Auskleidungen bleibt beim Betrieb der Elektrolysezelle nicht nur erhalten, sondern vergrößert sich mit fortschreitender Betriebsdauer.The low energy losses of the lining according to the invention can of course only be realized if the parameters measured when the electrolysis cell is started up do not change or change only slightly during the operation of the cell. 2 shows the increase in the voltage drop as a function of the operating time; A is a liner made of carbon blocks, B is a liner made of carbon-bonded graphite and C is one made of graphite blocks. The increase in the voltage drop with the operating time is essentially caused by the increasing decomposition and destruction of the lining. The original advantage of linings according to the invention not only remains when the electrolysis cell is in operation, but also increases as the operating time progresses.

Claims (5)

1. Cell for the molten salt electrolytic production of aluminium, which consists of a steel shell lined with graphite blocks, a thermally insulating layer between shell and lining and, set in the lining, cathodic current conductors, characterised in that
a) the lining consists of graphite blocks with a thermal conductivity of 80 to 120W/m - K, a specific electrical resistance of 6 to 13 µΩm and an accessible pore volume of at the most 22 %,
b) the insulating layer contains at least two component layers with a thermal conductivity of 0.1 to 0.2 and 0.8 to 1.2 W/m . K,
c) the thickness ratio of lining and insulation layer amounts to 1.5 to 3.0.
2. Cell according to claim 1, characterised in that the graphite blocks have an accessible porosity of, at the most, 18 %.
3. Cell according to claim 1 and 2, characterised in that the graphite blocks have a thermal conductivity of 100 to 120 W/m - K and a specific electrical resistance of 6 to 10 µΩm.
4. Cell according to claim 1 to 3, characterised in that the graphite blocks contain coke formed by carbonization of an impregnating material from the group of coal tar pitch, petroleum pitch.
5. Cell according to claim 1 to 4, characterised in that the insulation layer consists of fireclay with a compressive strength of at least 10 MPa.
EP84107810A 1983-07-28 1984-07-05 Lining for an electrolytic cell for the production of aluminium Expired EP0132647B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3327230 1983-07-28
DE19833327230 DE3327230A1 (en) 1983-07-28 1983-07-28 LINING FOR ELECTROLYSIS PAN FOR PRODUCING ALUMINUM

Publications (3)

Publication Number Publication Date
EP0132647A2 EP0132647A2 (en) 1985-02-13
EP0132647A3 EP0132647A3 (en) 1985-03-13
EP0132647B1 true EP0132647B1 (en) 1987-03-04

Family

ID=6205144

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84107810A Expired EP0132647B1 (en) 1983-07-28 1984-07-05 Lining for an electrolytic cell for the production of aluminium

Country Status (7)

Country Link
US (1) US4589967A (en)
EP (1) EP0132647B1 (en)
JP (1) JPS6052589A (en)
AU (1) AU565836B2 (en)
CA (1) CA1248495A (en)
DE (1) DE3327230A1 (en)
NO (1) NO161008C (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8522138D0 (en) * 1985-09-06 1985-10-09 Alcan Int Ltd Linings for aluminium reduction cells
NO157462C (en) * 1985-10-24 1988-03-23 Hydro Aluminium As LAMINATED CARBON CATHOD FOR CELLS-MELT-ELECTROLYTIC ALUMINUM PREPARATION.
DE4201490A1 (en) * 1992-01-21 1993-07-22 Otto Feuerfest Gmbh FIRE-RESISTANT MATERIAL FOR ELECTROLYSIS OVENS, METHOD FOR THE PRODUCTION AND USE OF THE FIRE-RESISTANT MATERIAL
FR2789093B1 (en) 1999-02-02 2001-03-09 Carbone Savoie GRAPHITE CATHODE FOR ALUMINUM ELECTROLYSIS
FR2789091B1 (en) 1999-02-02 2001-03-09 Carbone Savoie GRAPHITE CATHODE FOR ALUMINUM ELECTROLYSIS
DK2042211T3 (en) * 2001-06-29 2019-06-11 Coloplast As catheter assembly
US7126928B2 (en) * 2003-08-05 2006-10-24 Qualcomm Incorporated Grant, acknowledgement, and rate control active sets
FR2900665B1 (en) * 2006-05-03 2008-06-27 Carbone Savoie Soc Par Actions ALUMINUM OBTAINING ELECTROLYSIS TANK
US20090236233A1 (en) * 2008-03-24 2009-09-24 Alcoa Inc. Aluminum electrolysis cell electrolyte containment systems and apparatus and methods relating to the same
UA111247C2 (en) * 2011-11-11 2016-04-11 Сгл Карбон Се METHOD OF MEASURING SURFACES OF SURFACES IN OPERATING ALUMINUM ELECTROLYZERS
RU2668615C2 (en) * 2012-12-13 2018-10-02 СГЛ КФЛ ЦЕ Гмбх Side bock for electrolytic cell wall for reducing aluminum

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1146259B (en) * 1960-10-28 1963-03-28 Aluminium Ind Ag Process for lining the walls of the cathode trough of an aluminum electrolysis cell and cathode trough manufactured using this process
US3434957A (en) * 1966-02-18 1969-03-25 Arthur F Johnson Aluminum reduction cell with aluminum and refractory layered bottom construction
US3616045A (en) * 1969-02-17 1971-10-26 Tatabanyai Aluminiumkoho Process for increasing the strength and electrical conductivity of graphite or carbon articles and/or for bonding such articles to each other to ceramic articles or to metals
JPS4941006B1 (en) * 1970-03-16 1974-11-06
US4046650A (en) * 1970-03-16 1977-09-06 Sumitomo Aluminum Smelting Co., Ltd. Carbon block for cathodes of aluminum
DE2105247C3 (en) * 1971-02-04 1980-06-12 Schweizerische Aluminium Ag, Zuerich (Schweiz) Furnace for the fused aluminum electrolysis
US3723286A (en) * 1971-11-08 1973-03-27 Kaiser Aluminium Chem Corp Aluminum reduction cell
JPS5332811A (en) * 1976-09-07 1978-03-28 Mitsubishi Keikinzoku Kogyo Reduction of heat radiation in the aluminium electrolytic cell
DE2942469C2 (en) * 1979-10-20 1983-09-15 Sigri Elektrographit Gmbh, 8901 Meitingen Contact mass containing carbon
CH653711A5 (en) * 1981-04-22 1986-01-15 Alusuisse ELECTROLYSIS PAN.
GB2103657A (en) * 1981-07-18 1983-02-23 British Aluminium Co Ltd Electrolytic cell for the production of aluminium
US4411758A (en) * 1981-09-02 1983-10-25 Kaiser Aluminum & Chemical Corporation Electrolytic reduction cell

Also Published As

Publication number Publication date
EP0132647A2 (en) 1985-02-13
US4589967A (en) 1986-05-20
NO161008B (en) 1989-03-13
AU565836B2 (en) 1987-10-01
DE3327230A1 (en) 1985-02-07
JPS6052589A (en) 1985-03-25
EP0132647A3 (en) 1985-03-13
DE3327230C2 (en) 1990-08-23
CA1248495A (en) 1989-01-10
NO842315L (en) 1985-01-29
NO161008C (en) 1989-06-21
AU3086284A (en) 1985-01-31

Similar Documents

Publication Publication Date Title
DE1251962B (en) Cathode for an electrolytic cell for the production of aluminum and process for the production of the same
DE69532052T2 (en) Horizontal cathode surface drained with recessed grooves for aluminum electrical extraction
DE69319721T2 (en) Refractory protective coatings, especially for electrolytic cell components
EP0132647B1 (en) Lining for an electrolytic cell for the production of aluminium
WO2004059039A1 (en) Cathode systems for electrolytically obtaining aluminium
DE2817202A1 (en) EXPANDED GRAPHITE BARRIER ON THE BOTTOM OF AN ELECTROLYTIC CELL
DE2446668B2 (en) METHOD OF MELT FLOW ELECTROLYSIS, IN PARTICULAR OF ALUMINUM OXIDE, AND ANODE FOR CARRYING OUT THE METHOD
EP2440688B1 (en) Cathode bottom, method for producing a cathode bottom, and use of the same in an electrolytic cell for producing aluminum
CH658674A5 (en) CATHODE TUB FOR AN ALUMINUM ELECTROLYSIS CELL AND METHOD FOR THE PRODUCTION OF THE COMPOSITE BODIES THEREOF THE SIDE WALL.
DE1092215B (en) Cathode and cell for the production of aluminum from aluminum oxide by fused-salt electrolysis
EP2673396A2 (en) Graphitized cathode block having an abrasion-proof surface
EP2673401A2 (en) Surface-profiled graphite cathode block having an abrasion-proof surface
EP2956573A1 (en) Cathode block having an abrasion-resistant surface that can be wetted
EP2931945A1 (en) Side-wall block for a wall in an electrolytic cell for reducing aluminum
EP0092704B1 (en) Use of temperature and corrosion resistant gas-tight material as a protective coating of the metal part of combination electrodes for the production of metals by igneous electrolysis, and guard rings made therefrom
EP2809833B1 (en) Method for producing a cathode block for an aluminum electrolytic cell
EP3350358B1 (en) Cathode bottom for producing aluminum
DE3012694A1 (en) DEVICE AND METHOD FOR GALVANICALLY DEPOSITING ALUMINUM BY ELECTROLYSIS
EP2598674B1 (en) Process for producing a cathode block for an aluminium electrolysis cell
EP2598673B1 (en) Process for producing a cathode block for an aluminium electrolysis cell
DE3638937A1 (en) Cathode for a molten-salt electrolysis cell
DE2112287B2 (en) Carbon block as cathode for an electrolytic aluminum cell and process for its production
DE3688830T2 (en) Brick for floor electrode, furnace lining or connection to a crucible.
DE3224969A1 (en) Electrolytic cell for producing aluminium
DE3306028A1 (en) Process for producing a carbon block for aluminium electrolysis cells

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): CH FR GB LI NL

AK Designated contracting states

Designated state(s): CH FR GB LI NL

17P Request for examination filed

Effective date: 19850326

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIGRI GMBH

17Q First examination report despatched

Effective date: 19860421

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH FR GB LI NL

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910614

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910625

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910627

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910731

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920731

Ref country code: CH

Effective date: 19920731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920705

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST