EP2437597A2 - Flubendiamide-nützlings-kombinationen - Google Patents
Flubendiamide-nützlings-kombinationenInfo
- Publication number
- EP2437597A2 EP2437597A2 EP10722615A EP10722615A EP2437597A2 EP 2437597 A2 EP2437597 A2 EP 2437597A2 EP 10722615 A EP10722615 A EP 10722615A EP 10722615 A EP10722615 A EP 10722615A EP 2437597 A2 EP2437597 A2 EP 2437597A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- spp
- plants
- flubendiamide
- plant
- combinations
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N41/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom
- A01N41/02—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom containing a sulfur-to-oxygen double bond
- A01N41/10—Sulfones; Sulfoxides
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N63/00—Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
- A01N63/10—Animals; Substances produced thereby or obtained therefrom
- A01N63/14—Insects
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N63/00—Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
- A01N63/20—Bacteria; Substances produced thereby or obtained therefrom
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N63/00—Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
- A01N63/40—Viruses, e.g. bacteriophages
Definitions
- the present invention relates to flubendiamide-beneficial combinations comprising 3-iodo-N '- (2-mesyl-1, 1-dimethyl-ethyl) -N- ⁇ 4- [1,2,2,2-tetrafluoro-1 - (Trifluoromethyl) ethyl] o-tolyl ⁇ phthalamides, known as flubendiamides, and at least one type of use for the effective and environmentally friendly control of animal pests such as insects and / or unwanted acarids.
- EP-A-1 380 209 and WO 2004/034786 describe the increase in activity of combinations comprising flubendiamides and further insecticides. Furthermore, the insecticidal and acaricidal activity enhancement for flubendiamides by means of addition of ammonium or phosphonium salts is described (WO 2007/068357).
- pest control uses are well known (e.g., from "Knowing and Recognizing", M. H. Malais, WJ, Ravensberg, published by Koppert B.V., Reed Business Information (2003)).
- Benefits are usually referred to as arachnids or insects that are useful to humans in some way, mainly because they need other insects, which in turn are called pests, as food or as hosts.
- the term “beneficials” is not limited to arachnids and insects. In the present case, it also includes fungi or bacterial or viral strains suitable for pest control.
- Beneficial insects are particularly suitable for pest control in greenhouses.
- the use of uses has the advantage that no resistance forms, that there are no waiting times for cultural and nursing measures as well as harvesting.
- the use of the beneficial organisms does not put any strain on users with pesticides.
- beneficial insects are usually used only when pest infestation (curative). Because beneficial insects are the natural enemies of the pests to be controlled, their spectrum of activity is often limited to the specific pest and sometimes even only to specific stages of development of these pests. Since, however, within a culture, several pests with different control requirements, such as time of use, Nauerlingsart and Nauerlingsrius can occur, the culture must be monitored regularly and requires infestation fast reaction. The user also needs intensive knowledge of the culture, pests and beneficials.
- the useful organisms which can be used in the combination according to the invention are microorganisms such as fungi (eg Metarhizium anisopliae or Beauveria bassiana) or bacterial or viral strains (eg Bacillus strains or baculoviruses such as granulosis viruses) as well as insects and arachnids from the orders or suborders of Araneae, Acari, Dermaptera , Hymenoptera, Coleoptera, Neuroptera, Thysanoptera, Heteroptera, Diptera, Hemiptera, Dermaptera and / or Parasitiformes, Plannipennia, more preferably from the families of Vespidae, Aphelinidae, Trichogrammatidae, Encyrtidae, Mymaridae, Eulophidae, Alloxystidae, Megaspilidae, Braconidae, Cantharidae, Cocci
- Hymenoptera from the orders Trichogramma spp., Aphidius spp. (Parasitic wasps) such as Aphidius colemani, A. aphidius ervi., Lariophagus spp. (Lagerzwespe) such as Lariophagus distinguendus, Lysiphlebus spp. such as Lysiphlebus testaceipes, Encarsia spp. (Parasitic wasp) such as Encarsia formosa, Dacnusa spp. such as Dacnusa sibirica, Aphelinus spp. such as Aphelinus abdominalis, Diglyphus spp.
- Leptomastix spp. such as, for example, Leptomastix abnormis, Dabnusa spp. such as Dabnusa sibirica, Trichogramma spp. (Parasitic wasp) such as Trichogramma brassicae, Trichogramma dendrolimi and Trichogramma evanescens. Campbird Lariophagus distinguendus;
- Bacillus thuringiensis Bacillus firmus, Bacillus subtilis, baculoviruses, Beauveria brongniartii and Beauveria bassiana, Metarhizium anisopliae, Metarhizium acridum and Thanasimus formicarius.
- Flubendiamide beneficial combinations containing flubendiamides and at least one type of use selected from the uses mentioned in Table 1 are preferred.
- Flubendiamide beneficial combinations for the purposes of the present invention are also those combinations in which the use of Flubendiamide on the one hand and the beneficial agent on the other hand takes place temporally and / or spatially separated.
- flubendiamide can be used in the soil or in a bottomless substrate and for use on the plant - or vice versa.
- Flubendiamide useful combinations according to the invention are also present if the use is already present on the plant before the treatment and by the treatment with Flubendiamide the balance between pest and use is shifted in favor of N ⁇ tzlings.
- the invention also relates to the use of flubendiamides in combination with uses, preferably with a use selected from one of the groups (1) to (7), for controlling animal pests.
- Flubendiamide is preferably used in combination with the uses mentioned in Table 1 for controlling the animal pests mentioned in the same line
- the flubendiamide beneficials combination can be used in annual or perennial crops.
- One-year crops are, for example: vegetables such as fruit vegetables and inflorescences (eg peppers, hot peppers, tomatoes, aubergines, cucumbers, pumpkins, zucchini, field beans, Runner beans, bush beans, peas, artichokes), leafy vegetables (eg lettuce, chicory, endives, kraken, ravens, lamb's lettuce, iceberg lettuce, leeks, spinach, chard), tubers, root and stem vegetables (eg celery, beetroot, carrots, radishes , Horseradish, salsify, asparagus, turnips, palm sprouts, bamboo shoots, as well as onions, for example onions, leeks, fennel, garlic), cabbage (eg cauliflower, broccoli, kohlrabi, red cabbage, cabbage, kale, savoy cabbage, Brussels sprouts, Chinese cabbage), ornamental plants, such as cut flowers (eg roses, carnations, gerberas, lilies, daisies, chrysanthemums, tulips,
- Perennial crops include citrus (eg orange, grapefruit, mandarin, lemon, lime, bitter orange, kumquat, satsumas), pome fruit (eg apples, pears and quince), stone fruit (eg peaches, nectarines, cherries, plums, plums, apricots), Wine, hops, olives, tea and tropical crops such as mangoes, papayas, figs, pineapples, dates, bananas, durians, kakis, coconuts, cocoa, coffee, avocados, lychees, passion fruits, guavas, almonds and nuts hazelnuts, walnuts, pistachios, cashew nuts, Brazil nuts, pecans, butternuts, chestnuts, hickory nuts, macadamia nuts, peanuts, berries (eg currants, gooseberries, raspberries, blackberries, blueberries, strawberries, cranberries, kiwis, cranberries), ornamentals such as cut flowers ( eg roses
- Roses Tagetes, Pansies, Geraniums, Fuchsias, Hibiscus, Chrysanthemums, Hardy Lichens, Cyclamen, African Violets, Sunflowers, Begonias), Shrubs and Conifers (eg Ficus, Rhododendron, Spruce, Fir, Pine, Yew, Juniper, Pine, Oleander), Spices (eg anise, chilli, paprika, pepper, vanilla, marjoram, thyme, cloves, juniper berries, cinnamon, tarragon, koryander, saffron, ginger).
- Shrubs and Conifers eg Ficus, Rhododendron, Spruce, Fir, Pine, Yew, Juniper, Pine, Oleander
- Spices eg anise, chilli, paprika, pepper, vanilla, marjoram, thyme, cloves, juniper berries, cinnamon, tarragon, koryander,
- the invention relates to the preventive or curative use of flubendiamides in combination with uses in the cultivation of annual or perennial crops, preferably of greenhouse crops.
- Flubendiamide is preferably used in combination with the uses mentioned in Table 2 in the cultivation of the cultures mentioned in the same line.
- the application rate of flubendiamide can be varied within a relatively wide range, depending on the mode of administration. It is in the treatment of parts of plants, e.g. Leaves from 0.1 to 1000 g / ha, preferably from 1 to 500 g / ha, particularly preferably from 10 to 300 g / ha.
- the application rate is from 0.01 to 50 mg / plant, preferably from 0.1 to 10 mg / plant, more preferably from 0.5 to 5 mg / plant.
- the flubendiamide-beneficial insect combination according to the invention is used to protect plants against attack by animal pests within a certain period of time after the treatment.
- the Flubendiamide-beneficials combination according to the invention is used to liberate plants from infestation by the animal pests.
- Flubendiamide is applied by treatment of the culture substrate.
- the Flubendiamide- Nönlingskombination invention is particularly easy and effective to use and Flubendiamide can be used in a lower dose.
- the culture substrate By application of the culture substrate is meant contacting flubendiamides with bottomless substrate. This can be done in particular by spraying, casting, side-dressing, shower-drenching, overhead-drenching or by drip irrigation, i. Application done in the context of an irrigation system.
- the addition of the active ingredient into the water phase enclosing the plant roots can be carried out, for example, in the floating, boxing or paddy field method.
- Bottomless substrates are understood to mean, in particular, those substrates which are not grown naturally or are produced artificially from inorganic minerals and organic humus.
- Bottomless substrates are, for example, special substrates based on peat moss, coconut fibers, rock wool (eg Grodan®), pumice, expanded clay (eg Lecaton® or Lecadan®), clay granules (eg Seramis®), foams (eg Baystrat®), vermiculite, perlite, artificial Soils (eg Hygromull®), or combinations thereof.
- Preferred substrates are perlite and rock wool.
- the flubendiamide beneficial insecticidal combinations according to the invention are suitable for the protection of plants and plant organs with good plant tolerance and in particular good environmental compatibility. This can increase crop yields and improve the quality of the crop.
- the combination is preferably used in crop protection. Especially in agriculture, horticulture, forests, gardens and recreational facilities. Likewise, the combination can be used in stock and material protection. The combination is effective against normally sensitive and resistant species as well as against all or individual stages of development.
- Heliopeltis spp. Horcias nobilellus, Leptocorisa spp., Leptoglossus phyllopus, Lygus spp., Macropes excavatus, Miridae, Monalonion atratum, Nezara spp., Oebalus spp., Pentomidae, Piesma quadrata, Piezodorus spp., Psallus spp., Pseudacysta persea, Rhodnius spp., Sahlbergella singularis, Scaptocoris castanea, Scotinophora spp., Stephanitis nashi, Tibraca spp., Triatoma spp.
- Aonidiella spp. Aphanostigma piri, Aphis spp., Arboridia apicalis, Aspidiella spp., Aspidiotus spp., Atanus spp., Aulacorthum solani, Bemisia spp., Brachycaudus helichrysii, Brachycolus spp., Brevicoryne brassicae, Calligypona marginata, Carneocephala fulgida, Ceratovacuna lanigera, Cercopidae, Ceroplastes spp., Chaetosiphon fragaefolii, Chionaspis tegalensis, Chlorita onukii, Chromaphis juglandicola, Chrysomphalus ficus, Cicadulina mbila, Coccomytilus halli, Coccus spp., Cryptomyzus ribis, Dalbulus
- Orthoptera e.g. Acheta domesticus, Blatta orientalis, Blattella germanica, Gryllotalpa spp., Leucophaea maderae, Locusta spp., Melanoplus spp., Periplaneta americana, Schistocerca gregaria.
- Flubendiamide can be converted into the usual formulations, such as solutions, emulsions, wettable powders, water- and oil-based suspensions, powders, dusts, pastes, soluble powders, soluble granules, scattering granules, suspension-emulsion concentrates, flubendiamide-impregnated natural products, flubendiamide-impregnated synthetic substances, fertilizers and microencapsulation in polymeric substances.
- solutions such as solutions, emulsions, wettable powders, water- and oil-based suspensions, powders, dusts, pastes, soluble powders, soluble granules, scattering granules, suspension-emulsion concentrates, flubendiamide-impregnated natural products, flubendiamide-impregnated synthetic substances, fertilizers and microencapsulation in polymeric substances.
- formulations are prepared in a known manner, e.g. by mixing the active compounds with extenders, ie liquid solvents and / or solid carriers, if appropriate using surface-active agents, ie emulsifiers and / or dispersants and / or foam-forming agents.
- extenders ie liquid solvents and / or solid carriers
- surface-active agents ie emulsifiers and / or dispersants and / or foam-forming agents.
- Excipients which can be used are those which are suitable for imparting special properties to the composition itself and / or preparations derived therefrom (for example spray liquor, seed dressing), such as certain technical properties and / or specific biological properties.
- Typical auxiliaries are: extenders, solvents and carriers.
- polar and non-polar organic chemical liquids e.g. from the classes of aromatic and non-aromatic hydrocarbons (such as paraffins,
- Alkylbenzenes alkylnaphthalenes, chlorobenzenes
- alcohols and polyols which may also be substituted, etherified and / or esterified
- ketones such as acetone, cyclohexanone
- Esters (including fats and oils) and (poly) ethers, of simple and substituted amines, amides,
- Lactams such as N-alkyl pyrrolidones
- lactones such as N-alkyl pyrrolidones
- sulfones such as dimethyl sulfoxide
- organic solvents can also be used as auxiliary solvents.
- liquid solvents are essentially in question: Aromatics, such as xylene, toluene, or alkylnaphthalenes, chlorinated aromatic hydrocarbons and chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons, such as cyclohexane or paraffins, for example petroleum fractions, mineral and vegetable oils, alcohols, such as butanol or glycol, and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strong polar solvents such as dimethyl sulfoxide, and water.
- Aromatics such as xylene, toluene, or alkylnaphthalenes
- chlorinated aromatic hydrocarbons and chlorinated aliphatic hydrocarbons such as chlorobenzen
- the carrier means a natural or synthetic, organic or inorganic substance which may be solid or liquid, with which the active ingredients are mixed or combined for better applicability, in particular for application to plants or plant parts or seeds.
- the solid or liquid carrier is generally inert and should be useful in agriculture.
- Suitable solid or liquid carriers are:
- Ammonium salts and ground natural minerals such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic minerals, such as fumed silica, alumina and silicates, as solid carriers for granules are suitable: e.g. crushed and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite and synthetic granules of inorganic and organic flours and granules of organic material such as paper, sawdust, coconut shells, corn cobs and tobacco stems; suitable emulsifying and / or foaming agents are: e.g.
- nonionic and anionic emulsifiers such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, e.g. Alkylaryl polyglycol ethers, alkylsulfonates, alkyl sulfates, arylsulfonates and protein hydrolysates;
- suitable dispersants are non-ionic and / or ionic substances, e.g.
- adhesives such as carboxymethylcellulose, natural and synthetic powdery, granular or latex-like polymers, such as rubbers. arabic, polyvinyl alcohol, polyvinyl acetate, and natural phospholipids such as cephalins and lecithins and synthetic phospholipids.
- Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
- inorganic pigments e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
- additives may be fragrances, mineral or vegetable optionally modified oils, waxes and nutrients (also trace nutrients), such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
- Stabilizers such as cold stabilizers, preservatives, antioxidants, light stabilizers or other chemical and / or physical stability-improving agents may also be present.
- the active substance content of the application forms prepared from the commercial formulations can vary within wide ranges.
- the total active ingredient concentration or the active ingredient concentration of the individual active substances of the use forms is in the range from 0.000001 to 97% by weight of active compound, preferably in the range from 0.0001 to 80% by weight, particularly preferably in the range from 0.001 to 65% by weight. -% and most preferably in the range of 0.01 to 50 wt .-%.
- flubendiamide-beneficial agent combinations according to the invention can be used in their commercial formulations and in the formulations prepared from these formulations in admixture with other active ingredients such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides, safeners, fertilizers or semiochemicals available.
- active ingredients such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides, safeners, fertilizers or semiochemicals available.
- a mixture with other known active ingredients, such as herbicides, fertilizers, growth regulators, safeners, semiochemicals, or with agents for improving the plant properties is possible.
- Flubendiamide can be present in the flubendiamide-beneficial insect combination according to the invention in its commercial formulations as well as in the formulations prepared from these formulations in admixture with synergists.
- Synergists are compounds that increase the effect of the active ingredients without the added synergist itself having to be active.
- the inventive FIubendiamide-beneficial combinations may also be present when used as insecticides in their commercial formulations as well as in the formulations prepared from these formulations in mixtures with inhibitors which degradation of the active ingredient after application in the environment of the plant, on the surface of plant parts or in plant tissues.
- the application is done in a custom forms adapted to the application forms.
- plants are understood as meaning all plants and plant populations, such as desired and undesired wild plants or crop plants (including naturally occurring crop plants).
- Crop plants can be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the transgenic plants and including the plant varieties which can or can not be protected by plant breeders' rights.
- Preferably one- or perennial crops are treated.
- Plant parts are to be understood as meaning all aboveground and underground parts and organs of the plants, such as shoot, leaf, flower and root, examples of which include leaves, needles, stems, stems, flowers, fruiting bodies, fruits and seeds, as well as roots, tubers and rhizomes.
- the plant parts also include crops and vegetative and generative propagation material, for example fruits, seeds, cuttings, tubers, rhizomes, offshoots, seeds, bulbs, sinkers and shoots.
- the treatment according to the invention of the plants and plant parts with the flubendiamide beneficial insects combinations takes place directly or by acting on their environment, habitat or storage space according to the usual treatment methods, e.g. by dipping, spraying, evaporating, atomizing, spreading, brushing, inoculating or applying the beneficial insect or injecting.
- wild species or plant species obtained by conventional biological breeding methods such as crossing or protoplast fusion and plant cultivars and parts thereof are treated.
- transgenic plants and plant cultivars which have been obtained by genetic engineering methods such as antisense or cosuppression technology, RNA interference RNAi technology, optionally in combination with conventional methods (Genetically Modified Organisms), and parts thereof treated.
- the terms "parts” or “parts of plants” or “plant parts” have been explained above. It is particularly preferred according to the invention to treat plants of the respective commercially available or in use plant cultivars.
- Plant varieties are understood to be plants with new traits which have been bred either by conventional breeding, by mutagenesis or by recombinant DNA techniques. Crop plants can therefore be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the transgenic plants and including the plant varieties protectable or non-protectable plant varieties.
- the treatment method according to the invention can thus also for the treatment of genetically modified organisms (GMOs), z.
- GMOs genetically modified organisms
- Genetically modified plants are plants in which a heterologous gene has been stably integrated into the genome.
- heterologous gene essentially refers to a gene that is provided or assembled outside the plant and that when introduced into the nuclear genome, chloroplast genome or mitochondrial genome imparts new or improved agronomic or other properties to the transformed plant Protein or polypeptide expressed or that it is another gene that in the
- RNAi for example by antisense technology, co-suppression technology or RNAi
- a heterologous gene present in the genome is also referred to as a transgene.
- a transgene defined by its specific presence in the plant genome is referred to as a transformation or transgenic event.
- Plants and plant varieties which are preferably treated according to the invention include all plants which have genetic material conferring on these plants particularly advantageous, useful features (whether obtained by breeding and / or biotechnology).
- Plants and plant varieties which can also be treated according to the invention are those plants which are resistant to one or more abiotic stress factors.
- Abiotic stress conditions may include, for example, drought, cold and heat conditions, osmotic stress, waterlogging, increased soil salinity, increased exposure to minerals, ozone conditions, high light conditions, limited availability of nitrogen nutrients, limited availability of phosphorous nutrients, or avoidance of shade.
- Plants and plant varieties which can also be treated according to the invention are those plants which are characterized by increased yield properties.
- An increased yield can in these plants z. B. based on improved plant physiology, improved plant growth and improved plant development, such as water efficiency, water retention efficiency, improved nitrogen utilization, increased carbon assimilation, improved photosynthesis, increased germination and accelerated Abreife.
- Yield can be further influenced by improved plant architecture (under stress and non-stress conditions), including early flowering, control of flowering for hybrid seed production, germination, plant size, internode count and distance, root growth, seed size, Fruit size, pod size, pod or ear number, number of seeds per pod or ear, seed mass, increased seed filling, reduced seed drop, reduced pod popping and stability.
- Other yield-related traits include seed composition such as carbohydrate content, protein content, oil content and composition, nutritional value, reduction in nontoxic compounds, improved processability, and improved shelf life.
- Plants which can be treated according to the invention are hybrid plants which already express the properties of the heterosis or the hybrid effect, which generally leads to higher yield, higher vigor, better health and better resistance to biotic and abiotic stress factors.
- Such plants are typically produced by crossing an inbred male sterile parental line (the female crossbred partner) with another inbred male fertile parent line (the male crossbred partner).
- the hybrid seed is typically harvested from the male sterile plants and sold to propagators.
- Pollen sterile plants can sometimes be produced (eg in maize) by delaving (ie mechanical removal of the male reproductive organs or the male flowers); however, it is more common for male sterility to be due to genetic determinants in the plant genome.
- cytoplasmic male sterility have been described, for example, for Brassica species (WO 1992/005251, WO 1995/009910, WO 1998/27806, WO 2005/002324, WO 2006/021972 and US 6,229,072).
- pollen sterile plants can also be used with methods of vegetable biotechnology, such as genetic engineering.
- a particularly convenient means of producing male-sterile plants is described in WO 89/10396, wherein, for example, a ribonuclease such as a barnase is selectively expressed in the tapetum cells in the stamens. The fertility can then be restorated by expression of a ribonuclease inhibitor such as barstar in the tapetum cells (eg WO 1991/002069).
- Plants or plant varieties obtained by methods of plant biotechnology, such as genetic engineering which can be treated according to the invention are herbicide-tolerant plants, i. H. Plants tolerant to one or more given herbicides. Such plants can be obtained either by genetic transformation or by selection of plants containing a mutation conferring such herbicide tolerance.
- Herbicide-tolerant plants are, for example, glyphosate-tolerant plants, i. H. Plants tolerant to the herbicide glyphosate or its salts.
- glyphosate-tolerant plants can be obtained by transforming the plant with a gene encoding the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS).
- EPSPS 5-enolpyruvylshikimate-3-phosphate synthase
- EPSPS 5-enolpyruvylshikimate-3-phosphate synthase
- AroA gene mutant CT7 of the bacterium Salmonella typhimurium (Comai et al., Science (1983), 221, 370-371)
- the CP4 gene of the bacterium Agrobacterium sp. Barry et al., Curr Topics Plant Physiol.
- Glyphosate-tolerant plants can also be obtained by expressing a gene coding for a glyphosate oxidoreductase enzyme as described in US 5,776,760 and US 5,463,175. Glyphosate-tolerant plants can also be obtained by expressing a gene encoding a glyphosate acetyltransferase enzyme as described in e.g. As WO 2002/036782, WO 2003/092360, WO 2005/012515 and WO 2007/024782 is encoded. Glyphosate-tolerant plants can also be obtained by selecting plants containing naturally-occurring mutations of the above-mentioned genes, as described, for example, in WO 2001/024615 or WO 2003/013226.
- herbicide-resistant plants are, for example, plants which have been tolerated to herbicides which inhibit the enzyme glutamine synthase, such as bialaphos, phosphinotricin or glufosinate.
- Such plants can be obtained by having an enzyme which detoxifies the herbicide or a mutant of the enzyme glutamine synthase, which is resistant to inhibition.
- an effective detoxifying enzyme is, for example, an enzyme encoding a phosphinotricin acetyltransferase (such as the bar or pat protein of Streptomyces species).
- Plants expressing an exogenous phosphinotricin acetyltransferase are described, for example, in US 5,561,236; US 5,648,477; US 5,646,024; US 5,273,894; US 5,637,489; US 5,276,268; US 5,739,082; US 5,908,810 and US 7,112,665.
- hydroxyphenylpyruvate dioxygenase HPPD
- HPPD hydroxyphenylpyruvate dioxygenases
- HPPD inhibitors may be treated with a gene encoding a naturally occurring resistant HPPD enzyme or a gene encoding an mimetic HPPD enzyme as described in WO 1996/038567, WO 1999/024585 and WO 1999 / 024586, are transformed.
- Tolerance to HPPD inhibitors can also be achieved by transforming plants with genes encoding certain enzymes that allow the formation of homogentisate despite inhibition of the native HPPD enzyme by the HPPD inhibitor. Such plants and genes are described in WO 1999/034008 and WO 2002/36787.
- the tolerance of plants to HPPD inhibitors can also be improved by transforming plants in addition to a gene coding for an HPPD-tolerant enzyme with a gene coding for a prephenate dehydrogenase enzyme, as described in WO 2004 / 024928 is described.
- ALS inhibitors include sulfonylurea, imidazolinone, triazolopyrimidines, pyrimidinyloxy (thio) benzoates and / or sulfonylaminocarbonyltriazolinone herbicides.
- ALS also known as acetohydroxy acid synthase, AHAS
- AHAS acetohydroxy acid synthase
- plants which are tolerant to imidazolinone and / or sulfonylurea can be obtained by induced mutagenesis, selection in cell cultures in the presence of the herbicide or by mutation breeding, as for example for the soybean in US 5,084,082, for rice in WO 1997/41218, for the sugar beet in US 5,773,702 and WO 1999/057965, for salad in US 5,198,599 or for the sunflower in WO 2001/065922.
- Plants or plant varieties obtained by plant biotechnology methods such as genetic engineering which can also be treated according to the invention are insect-resistant transgenic plants, i. Plants that have been made resistant to attack by certain target insects. Such plants can be obtained by genetic transformation or by selection of plants containing a mutation conferring such insect resistance.
- insect-resistant transgenic plant includes any plant containing at least one transgene comprising a coding sequence encoding:
- an insecticidal crystal protein from Bacillus thuringiensis or an insecticidal portion thereof such as the insecticidal crystal proteins described by Crickmore et al., Microbiology and Molecular Biology Reviews (1998), 62, 807-813, by Crickmore et al. (2005) in the Bacillus // zwr / wg / e "s / s toxin nomenclature, online at:
- a crystal protein from Bacillus thuringiensis or a part thereof which is insecticidal in the presence of a second, different crystal protein than Bacillus thuringiensis or a part thereof, such as the binary toxin consisting of the crystal proteins Cy34 and Cy35 (Moellenbeck et al., Nat Biotechnol. (2001), 19, 668-72; Schnepf et al., Applied Environment Microb. (2006), 71, 1765-1774); or
- an insecticidal hybrid protein comprising parts of two different insecticidal crystal proteins from Bacillus thuringiensis, such as a hybrid of the
- Proteins of 1) above or a hybrid of the proteins of 2) above e.g.
- VIP vegetative insecticidal proteins
- a secreted protein from Bacillus thuringiensis or Bacillus cereus which is insecticidal in the presence of a second secreted protein from Bacillus thuringiensis or B. cereus, such as the binary toxin consisting of the proteins VIPlA and VIP2A (WO 1994/21795); or
- a hybrid insecticidal protein comprising parts of various secreted proteins of Bacillus thuringiensis or Bacillus cereus, such as a hybrid of the proteins of 1) or a hybrid of the proteins of 2) above; or
- Coding DNA were induced during cloning or transformation (preserving the coding for an insecticidal protein), such as the protein VIP3Aa in cotton event COT 102.
- insect-resistant transgenic plants in the present context also include any plant comprising a combination of genes encoding the proteins of any of the above classes 1 to 8.
- insect resistant transgenic plants in the present context also include any plant comprising a combination of genes encoding the proteins of any of the above classes 1 to 8.
- an insect resistant transgenic plant in the present context also include any plant comprising a combination of genes encoding the proteins of any of the above classes 1 to 8.
- an insect resistant transgenic plants in the present context also include any plant comprising a combination of genes encoding the proteins of any of the above classes 1 to 8.
- an insect resistant transgenic plants in the present context also include any plant comprising a combination of genes encoding the proteins of any of the above classes 1 to 8.
- Plants or plant varieties obtained by plant biotechnology methods such as genetic engineering), which can also be treated according to the invention, are tolerant to abiotic stress factors. Such plants can be obtained by genetic transformation or by selection of plants containing a mutation conferring such stress resistance. Particularly useful plants with stress tolerance include the following:
- Plants which contain a transgene capable of reducing the expression and / or activity of the gene for the poly (ADP-ribose) polymerase (PARP) in the plant cells or plants, as described in WO 2000/004173 or EP 04077984.5 or EP 06009836.5 is described.
- Plants or plant varieties obtained by plant biotechnology methods such as genetic engineering which can also be treated according to the invention have a changed amount, quality and / or storability of the harvested product and / or altered characteristics of certain components of the harvested product, such as:
- Plants or plant varieties obtained by plant biotechnology methods such as genetic engineering
- Plants or plant varieties which can also be treated according to the invention are plants such as cotton plants with altered fiber properties.
- Such plants can be obtained by genetic transformation or by selection of plants containing a mutation conferring such altered fiber properties; these include:
- plants such as cotton plants, which contain an altered form of rsw2 or rsw3 homologous nucleic acids, as described in WO 2004/053219;
- plants such as cotton plants having increased expression of sucrose phosphate synthase as described in WO 2001/017333;
- plants such as cotton plants with an increased expression of sucrose synthase, as described in WO 02/45485;
- plants such as cotton plants with modified reactivity fibers, e.g. By expression of the N-acetylglucosamine transferase gene, including nodC, and chitin synthase genes, as described in WO 2006/136351.
- Plants or plant varieties obtained by plant biotechnology methods such as genetic engineering which can also be treated according to the invention are plants such as oilseed rape or related Brassica plants with altered oil composition properties. Such plants can be obtained by genetic transformation or by selection of plants containing a mutation conferring such altered oil properties; these include:
- plants such as rape plants producing oil of high oleic acid content, as described, for example, in US 5,969,169, US 5,840,946 or US 6,323,392 or US 6,063,947;
- plants such as oilseed rape plants which produce low linolenic acid oil, as described in US 6,270,828, US 6,169,190 or US 5,965,755.
- plants such as oilseed rape plants which produce oil with a low saturated fatty acid content, such as e.g. As described in US 5,434,283.
- transgenic plants which can be treated according to the invention are plants with one or more genes coding for one or more toxins, the transgenic plants offered under the following commercial names: YIELD GARD® (for example maize, cotton, Soybeans), KnockOut® (for example corn), BiteGard® (for example maize), BT-Xtra® (for example corn), StarLink® (for example maize), Bollgard® (cotton), Nucotn® (cotton), Nucotn 33B® (cotton), NatureGard® (for example corn), Protecta® and NewLeaf® (potato).
- YIELD GARD® for example maize, cotton, Soybeans
- KnockOut® for example corn
- BiteGard® for example maize
- BT-Xtra® for example corn
- StarLink® for example maize
- Bollgard® cotton
- Nucotn® cotton
- Nucotn 33B® cotton
- NatureGard® for example corn
- Protecta® and NewLeaf® pot
- Herbicide-tolerant crops to be mentioned are, for example, corn, cotton and soybean varieties sold under the following tradenames: Roundup Ready® (glyphosate tolerance, for example corn, cotton, soybean), Liberty Link® (phosphinotricin tolerance, for example rapeseed) , IMI® (imidazolinone tolerance) and SCS® (sylphonylurea tolerance), for example corn.
- Herbicide-resistant plants (plants traditionally grown for herbicide tolerance) to be mentioned include the varieties sold under the name Clearfield® (for example corn).
- transgenic plants that can be treated according to the invention are plants that contain transformation events, or a combination of transformation events, and that are listed, for example, in the files of various national or regional authorities (see, for example, http: // /gmoinfo.jrc.it/gmp_browse.aspx and http://www.agbios.com/dbase.php).
- Flubendiamide-beneficial combinations are also suitable for controlling animal pests in household, hygiene and storage protection, in particular of insects, arachnids and mites, which are used in enclosed spaces, such as apartments, factory buildings, offices, vehicle cabins u.a. occurrence. They are effective against sensitive and resistant species and against all stages of development. These pests include:
- Scorpionidea eg Buthus occitanus.
- Acarina eg Argas persicus, Argas reflexus, Bryobia ssp., Dermanyssus gallinae, Glyciphagus domesticus, Ornithodorus moubat, Rhipicephalus sanguineus, Trombicula alfreddugesi, Neutrombicula autumnalis, Dermatophagoides pteronissimus, Dermatophagoides forinae.
- Araneae eg Aviculariidae, Araneidae.
- Opiliones eg Pseudoscorpiones chelifer, Pseudoscorpiones cheiridium, Opiliones phalangium.
- Isopoda eg Oniscus asellus, Porcellio scaber.
- Diplopoda eg Blaniulus guttulatus, Polydesmus spp.
- Chilopoda eg Geophilus spp.
- Zygentoma eg Ctenolepisma spp., Lepisma saccharina, Lepismodes inquilinus.
- Psocoptera eg Lepinatus spp.
- Liposcelis spp. From the order of Coleoptera, for example, Anthrenus spp., Attagenus spp., Dermestes spp., Latheticus oryzae, Necrobia spp., Ptinus spp., Rhizopertha dominica, Sitophilus granarius, Sitophilus oryzae, Sitophilus zeamais, Stegobium paniceum.
- Hymenoptera for example, Camponotus herculeanus, Lasius fuliginosus, Lasius niger, Lasius umbratus, Monomorium pharaonis, Paravespula spp., Tetramorium caespitum.
- Anoplura for example, Pediculus humanus capitis, Pediculus humanus corporis, Pemphigus spp., Phylloera vastatrix, Phthirus pubis. From the order of Heteroptera eg Cimex hemipterus, Cimex lectularius, Rhodinus prolixus, Triatoma infestans.
- flubendiamide can be carried out in aerosols, non-pressurized sprays, e.g. Pump and atomizer sprays, misting machines, foggers, foams, gels, evaporator products with cellulose or plastic evaporator plates, liquid evaporators, gel and membrane evaporators, propeller driven evaporators, energyless or passive evaporation systems, moth papers, moth cakes and moth gels, as granules or dusts, in litter or bait stations.
- non-pressurized sprays e.g. Pump and atomizer sprays, misting machines, foggers, foams, gels, evaporator products with cellulose or plastic evaporator plates, liquid evaporators, gel and membrane evaporators, propeller driven evaporators, energyless or passive evaporation systems, moth papers, moth cakes and moth gels, as granules or dusts, in litter or bait stations.
- a dust is obtained by mixing 10 parts by weight of flubendiamide and 90 parts by weight of talc as an inert material and comminuting in a hammer mill.
- a wettable powder readily dispersible in water is obtained by mixing 25 parts by weight of flubendiamide, 64 parts by weight of kaolin-containing quartz as inert substance, 10 parts by weight of lignosulfonic acid potassium and 1 part by weight of oleoylmethyltaurine sodium as wetting and dispersing agent and in a Pin mill grinds.
- a dispersion concentrate readily dispersible in water is obtained by reacting 20 parts by weight of flubendiamides with 6 parts by weight of alkylphenol polyglycol ether (®Triton X 207), 3 parts by weight of isotridecanol polyglycol ether (8 EO) and 71 parts by weight of paraffinic mineral oil (boiling range eg about 255 to about 277 C) and ground in a ball mill to a fineness of less than 5 microns.
- An emulsifiable concentrate is obtained from 15 parts by weight of flubendiamide, 75 parts by weight of cyclohexanone as solvent and 10 parts by weight of ethoxylated nonylphenol as emulsifier.
- a water-dispersible granules are obtained by mixing 75 parts by weight Flubendiamide, 10 parts by weight of calcium lignosulfonate, 5 parts by weight of sodium lauryl sulfate, 3 parts by weight of polyvinyl alcohol and 7 parts by weight of kaolin mixed on a Grinds pin mill and the powder granulated in a fluidized bed by spraying water as Granulier crampkeit.
- a water-dispersible granule is also obtained by adding 25 parts by weight of flubendiamide, 5 parts by weight of sodium 2,2'-dinaphthylmethane-6,6'-disulfonate, 2 parts by weight of oleoylmethyltaurinate sodium, 1 wt Part of polyvinyl alcohol, 17
- Parts by weight of calcium carbonate and 50 parts by weight of water were homogenized on a colloid mill and pre-comminuted, then ground on a bead mill and the suspension thus obtained in a spray tower by means of a Einstoffdüse atomized and dried.
- a synergistic effect is always present in the case of insecticides and acaricides whenever the effect of the flubendiamide-beneficial agent combinations is greater than the sum of the effects of the individually applied active substances or beneficials.
- the expected effect for a given combination of two drugs can be calculated according to SR Colby, Weeds (1967), 20-22 as follows:
- X the degree of killing, expressed in% of the untreated control, when using the active substance A at a rate of m g / ha, m mg ai / plant or in a
- Y is the degree of killing, expressed in% of the untreated control, when using the beneficial insect at a rate of n animals or n units, and
- E is the kill rate, expressed in% of the untreated control, when using the active substance A and the beneficial agent B at application rates of m ppm, mgm ai / plant or g / ha and n means animals or units,
- the combination in its killing is over-additive, i. there is a synergistic effect.
- the actually observed kill rate must be greater than the expected kill rate (E) value calculated from the above formula.
- Emulsifier parts by weight of alkylaryl polyglycol ether
- active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with emulsifier-containing water to the desired concentration.
- Cabbages (Brassica oleracea) that are strongly of the green peach aphid (Myzus persicae) are treated by casting with the preparation of active compound in the desired concentration.
- the predatory bugs (Macrolophus caliginosus) are added after the application in a defined amount. After the desired time, the kill of the pest is determined in%. 100% means that all aphids have been killed; 0% means that no aphids have been killed.
- the determined mortality values are calculated according to the Colby formula (see above).
- Emulsifier parts by weight of alkylaryl polyglycol ether
- active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
- Cabbage plants (Brassica oleracea) are cast with a preparation of active compound in the desired concentration and infected with larvae of the cabbage moth ⁇ Plutella xylostella).
- the kill of the pest is determined in%. 100% means that all caterpillars have been killed; 0% means that no caterpillars have been killed.
- flubendiamide when applied to bottomless substrates, shows surprisingly good systemic potency
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Dentistry (AREA)
- Plant Pathology (AREA)
- Pest Control & Pesticides (AREA)
- Agronomy & Crop Science (AREA)
- Environmental Sciences (AREA)
- Virology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Insects & Arthropods (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
Die neuen Flubendiamide-Nützlings-Kombinationen enthaltend Flubendiamide und mindestens einen Nutzung aus den Ordnungen bzw. Unterordnungen der Araneae, Acari, Dermaptera, Hymenoptera, Coleoptera, Neuroptera, Thysanoptera, Heteroptera, Diptera, Hemiptera, Dermaptera und/oder Parasitiformes oder mindestens einen Bakterienstamm oder mindestens einen Virenstamm zur effektiven Bekämpfung von unerwünschten Schädlingen.
Description
- -
Flubendiamide - Nützlings-Kombinationen
Die vorliegende Erfindung betrifft Flubendiamide-Nützlings-Kombinationen, umfassend 3-Iodo- N'-(2-mesy 1- 1 , 1 -dimethylethy I)-N- {4-[ 1 ,2,2,2-tetrafluoro- 1 -(trifluoromethy l)ethyl]-o-tolyl} phthal- amide, bekannt als Flubendiamide, und mindestens eine Art von Nutzungen zur effektiven und umweltfreundlichen Bekämpfung von tierischen Schädlingen wie Insekten und/oder unerwünschten Akariden.
Die insektizide und akarizide Wirkung von 3-Iodo-N'-(2-mesyl-l,l-dimethylethyl)-N-{4-[l,2,2,2- tetrafluoro-l-(trifluoromethyl)ethyl]-o-tolyl}phthalamide (Flubendiamide) und auch seine Verwendbarkeit als Mittel zur Schädlingsbekämpfung sind seit langem bekannt und wurden erstmals in EP-A-I 006 107 beschrieben. Es ist auch bekannt, dass sich die Wirkung von Flubendiamide durch das Kombinieren mit weiteren Chemikalien, wie beispielsweise Insektiziden, steigern lässt. So beschreiben beispielsweise die EP-A-I 380 209 und die WO 2004/034786 die Wirkungssteigerung von Kombinationen enthaltend Flubendiamide und weitere Insektizide. Des Weiteren ist die insektizide und akarizide Wirkungssteigerung für Flubendiamide mittels Zugabe von Ammonium- oder Phosphoniumsalzen beschrieben (WO 2007/068357).
Der Einsatz von Nutzungen zur Schädlingsbekämpfung ist allgemein bekannt (z.B. aus "Knowing and recognizing"; M.H. Malais, WJ. Ravensberg publiziert von Koppert B.V., Reed Business Information (2003)). Als Nützlinge bezeichnet man zumeist Spinnentiere oder Insekten, die für den Menschen in irgendeiner Weise nützlich sind, vor allem dadurch, dass sie andere Insekten, welche ihrerseits als Schädlinge bezeichnet werden, als Nahrung oder Wirt brauchen. Der Ausdruck "Nützlinge" ist jedoch nicht auf Spinnentiere und Insekten beschränkt. Er umfasst vorliegend auch zur Schädlingsbekämpfung geeignete Pilze oder Bakterien- oder Virenstämme. Nützlinge eignen sich besonders zur Schädlingsbekämpfung in Gewächshäusern. Der Einsatz von Nutzungen hat den Vorteil, dass sich keine Resistenzen bilden, dass es zu keinen Wartezeiten für Kultur- und Pflegemaßnahmen sowie Ernte kommt. Außerdem kommt es durch den Einsatz der Nützlinge zu keiner Belastung der Anwender mit Pflanzenschutzmitteln.
Zur Schädlingsbekämpfung wird eine ausreichende Menge an Nutzungen am Wirkort (z.B. im Gewächshaus) freigelassen bzw. inokuliert. Die Nützlinge werden in der Regel erst bei Schädlingsbefall (kurativ) eingesetzt werden. Weil Nützlinge die natürlichen Feinde der zu bekämpfenden Schädlinge sind, beschränkt sich deren Wirkungsspektrum oftmals nur auf den spezifischen Schädling und teilweise sogar nur auf spezielle Entwicklungsstadien dieser Schädlinge. Da aber innerhalb einer Kultur auch mehrere Schädlingsarten mit unterschiedlichen Bekämpfungsanforderungen, wie z.B. Einsatzzeitpunkt, Nützlingsart und Nützlingsklima vorkommen können, muss die Kultur regelmäßig überwacht werden und erfordert bei Befall ein
schnelles Reagieren. Der Anwender braucht außerdem intensive Kenntnisse der Kultur, Schädlinge und der Nützlinge.
Wird der Schädlingsbefall zu spät festgestellt und ist deshalb die Schädlingspopulation zu stark vermehrt, reichen Nützlinge alleine zur Schädlingsbekämpfung nicht mehr aus, weshalb ein kombinierter Einsatz der Nützlinge mit chemischen Schädlingsbekämpfungsmitteln notwendig ist.
Es wurde nun gefunden, dass eine Flubendiamide-Nützlings-Kombination die oben genannten Nachteile vermeidet und zudem ein hohes Maß an Wirksamkeit besitzt.
Die in der erfindungsgemäßen Kombination verwendbaren Nützlinge sind Mikroorganismen wie Pilze (z.B. Metarhizium anisopliae oder Beauveria bassiana) oder Bakterien- oder Virenstämme (z.B. Bacillus - Stämme oder Baculoviren wie Granuloseviren) sowie Insekten und Spinnentiere aus den Ordnungen bzw. Unterordnungen der Araneae, Acari, Dermaptera, Hymenoptera, Coleoptera, Neuroptera, Thysanoptera, Heteroptera, Diptera, Hemiptera, Dermaptera und/oder Parasitiformes, Plannipennia, besonders bevorzugt aus den Familien der Vespidae, Aphelinidae, Trichogrammatidae, Encyrtidae, Mymaridae, Eulophidae, Alloxystidae, Megaspilidae, Braconidae, Cantharidae, Coccinellidae, Cleridae, Chrysopidae, Hemerobiidae, Anthocoridae, Miridae, Forfϊculidae, Phytoseiidae, Carabidae, Staphylenidae, Ichneumonidae, Bracconidae, Aphidiidae, Eumenidae, Sphecidae, Tachnidae, Syrphidae, Cecidomyiidae, Stigmaeidae, Angstidae, Trombidiidae, Nabidae, Pentatomidae, Reduviidae, Coniopterygidae, Chameiidae, Asilidae und Euzetidae (Soil mites). Ferner Räuberische Milben und Nematoden.
Bevorzugt sind Flubendiamide-Nützlings-Kombinationen enthaltend Flubendiamide und mindestens eine Art von Nutzungen ausgewählt aus den Insekten und Spinnentieren der Gruppen (1) bis (7):
(1) Räuberische Milben aus der Ordnung Amblyseius spp. wie beispielsweise Amblyseius barker i und Amblyseius cucumeris sowie aus der Ordnung Hypoaspis spp. wie beispielsweise Hypoaspis miles, Hypoaspis aculeifer und aus der Ordnung Phytoseiulus spp. wie beispielsweise Phytoseiulus persimilis;
(2) Nematoden aus der Ordnung Steinernema spp. wie beispielsweise Steinernema feltiae und Steinernema carpocapsae und aus der Ordnung Heterorhabditis spp. wie beispielsweise Heterorhabditis bacteriophora;
(3) Wanzen (Heteroptera) aus den Ordnungen Anthocoris spp. (Blumenwanzen) wie beispielsweise Anthocoris nemorum, Orius spp. wie beispielsweise Orius majusculus, und Macrolophus spp. (Raubwanzen) wie beispielsweise Macrolophus caliginosus und Macrolophus pygmaeus;
(4) Netzflügler (Plannipennia) aus den Ordnungen Chrysoperla spp. wie beispielsweise Chrysoperla carnea (gemeine Florfliege) und Chrysopa perla (grünes Perlauge), und Hemerobius spp. wie beispielsweise Hemerobius humulinus (Blattlauslöwen);
(5) Hautflügler (Hymenoptera) aus den Ordnungen Trichogramma spp., Aphidius spp. (Schlupfwespen) wie beispielsweise Aphidius colemani, A. Aphidius ervi., Lariophagus spp. (Lagererzwespe) wie beispielsweise Lariophagus distinguendus, Lysiphlebus spp. wie beispielsweise Lysiphlebus testaceipes, Encarsia spp. (Schlupfwespe) wie beispielsweise Encarsia formosa, Dacnusa spp. wie beispielsweise Dacnusa sibirica, Aphelinus spp. wie beispielsweise Aphelinus abdominalis, Diglyphus spp. wie beispielsweise Diglyphus isaea, Leptomastix spp. wie beispielsweise, Leptomastix abnormis, Dabnusa spp. wie beispielsweise Dabnusa sibirica, Trichogramma spp. (Schlupfwespe) wie beispielsweise Trichogramma brassicae, Trichogramma dendrolimi und Trichogramma evanescens. Lagererzwespe Lariophagus distinguendus;
(6) Käfer (Coleoptera) aus den Ordnungen Coccinella spp. wie beispielsweise Coccinella septempunctata und Cryptolaemus spp. wie beispielsweise Cryptolaemus montrouzieri;
(7) Diptera aus den Ordnungen Episyrphus spp. wie beispielsweise Episyrphus balteatus, Feltiella spp. wie beispielsweise Feltiella acarisuga, und Aphidoletes spp. wie beispielsweise Aphidoletes aphidimyza (räuberische Gallmücke);
oder ausgewählt unter folgenden Mikroorganismen: Bacillus thuringiensis, Bacillus firmus, Bacillus subtilis, Baculoviren, Beauveria brongniartii und Beauveria bassiana, Metarhizium anisopliae, Metarhizium acridum und Thanasimus formicarius.
Bevorzugt sind Flubendiamide-Nützlings-Kombinationen enthaltend Flubendiamide und mindestens eine Art von Nutzungen ausgewählt aus den in Tabelle 1 genannten Nutzungen.
Flubendiamide-Nützlings-Kombinationen im Sinne der vorliegenden Erfindung sind auch solche Kombinationen, bei denen der Einsatz von Flubendiamide einerseits und des Nützlings andererseits zeitlich und/oder räumlich getrennt erfolgt. So kann Flubendiamide im Boden oder in bodenlosem Substrat und der Nutzung auf der Pflanze - oder umgekehrt - eingesetzt werden. Erfindungsgemäße Flubendiamide-Nützlings-Kombinationen liegen auch dann vor, wenn der Nutzung bereits vor der Behandlung auf der Pflanze vorhanden ist und durch die Behandlung mit
Flubendiamide das Gleichgewicht zwischen Schädling und Nutzung zu Gunsten des Nϋtzlings verschoben wird.
Demzufolge bezieht sich die Erfindung auch auf die Verwendung von Flubendiamide in Kombination mit Nutzungen, vorzugsweise mit einem Nutzung ausgewählt aus einer der Gruppen (1) bis (7), zur Bekämpfung von tierischen Schädlingen. Bevorzugt wird Flubendiamide in Kombination mit den in Tabelle 1 genannten Nutzungen zur Bekämpfung der in der gleichen Zeile genannten tierischen Schädlinge verwendet
Tabelle 1:
Die Flubendiamide-Nützlings-Kombination kann in einjährigen oder mehrjährigen Kulturen verwendet werden.
Einjährige Kulturen sind beispielsweise: Gemüse wie Fruchtgemüse und Blütenstände (z.B. Paprika, Peperoni, Tomaten, Auberginen, Gurken, Kürbisse, Zucchini, Ackerbohnen,
Stangenbohnen, Buschbohnen, Erbsen, Artischocken), Blattgemüse (z.B. Kopfsalat, Chicoree, Endivien, Kressen, Rauken, Feldsalat, Eisbergsalat, Lauch, Spinat, Mangold), Knollen-, Wurzel- und Stängelgemüse (z.B. Sellerie, Rote Beete, Möhren, Radieschen, Meerrettich, Schwarzwurzeln, Spargel, Speiserüben, Palmsprossen, Bambussprossen, außerdem Zwiebelgemüse, beispielsweise Zwiebeln, Lauch, Fenchel, Knoblauch), Kohlgemüse (z.B. Blumenkohl, Broccoli, Kohlrabi, Rotkohl, Weißkohl, Grünkohl, Wirsing, Rosenkohl, Chinakohl), Zierpflanzen, wie Schnittblumen (z.B. Rosen, Nelken, Gerbera, Lilien, Margeriten, Chrysanthemen, Tulpen, Narzissen, Anemonen, Mohn, Amaryllis, Dahlien, Azaleen, Malven, Sonnenblumen), Beetpflanzen, Topfpflanzen und Stauden (z.B. Tagetes, Stiefmütterchen, Fleißige Lieschen, Begonien), Melonen und Mais.
Mehrjährige Kulturen sind beispielsweise Zitrus (z.B. Orangen, Grapefruits, Mandarinen, Zitronen, Limetten, Bitterorangen, Kumquats, Satsumas), Kernobst (z.B. Äpfel, Birnen und Quitten), Steinobst (z.B. Pfirsiche, Nektarinen, Kirschen, Pflaumen, Zwetschgen, Aprikosen), Wein, Hopfen, Oliven, Tee und tropische Kulturen, wie beispielsweise Mangos, Papayas, Feigen, Ananas, Datteln, Bananen, Durians (Stinkfrüchte), Kakis, Kokosnüsse, Kakao, Kaffee, Avocados, Litschis, Maracujas, Guaven, Mandeln und Nüsse wie beispielsweise Haselnüsse, Walnüsse, Pistazien, Cashewnüsse, Paranüsse, Pekannüsse, Butternüsse, Kastanien, Hickorynüsse, Macadamianüsse, Erdnüsse, Beerenfrüchte (z.B. Johannisbeeren, Stachelbeeren, Himbeeren, Brombeeren, Heidelbeeren, Erdbeeren, Preiselbeeren, Kiwis, Cranberries), Zierpflanzen, wie Schnittblumen (z.B. Rosen, Nelken, Gerbera, Lilien, Margeriten, Chrysanthemen, Tulpen, Narzissen, Anemonen, Mohn, Amaryllis, Dahlien, Azaleen, Malven), Beetpflanzen, Topfpflanzen und Stauden (z.B. Rosen, Tagetes, Stiefmütterchen, Geranien, Fuchsien, Hibiscus, Chrysanthemen, Fleißige Lieschen, Alpenveilchen, Usambaraveilchen, Sonnenblumen, Begonien), Sträucher und Koniferen (z.B. Ficus, Rhododendron, Fichten, Tannen, Kiefern, Eiben, Wacholder, Pinien, Oleander), Gewürze (z.B. Anis, Chilli, Paprika, Pfeffer, Vanille, Majoran, Thymian, Gewürznelken, Wacholderbeeren, Zimt, Estragon, Koryander, Safran, Ingwer).
In einem weiteren Aspekt bezieht sich die Erfindung auf die präventive oder kurative Verwendung von Flubendiamide in Kombination mit Nutzungen beim Anbau von ein- oder mehrjährigen Kulturen, vorzugsweise von Gewächshauskulturen. Bevorzugt wird Flubendiamide in Kombination mit den in Tabelle 2 genannten Nutzungen beim Anbau der in der gleichen Zeile genannten Kulturen verwendet.
Tabelle 2:
Beim Einsatz der erfindungsgemäßen Flubendiamide-Nützlings-Kombinationen zur Bekämpfung tierischer Schädlinge, d.h. als Insektizide und/oder Akarizide kann die Aufwandmenge von Flubendiamide je nach Applikationsart innerhalb eines größeren Bereiches variiert werden. Sie beträgt bei der Behandlung von Pflanzenteilen, z.B. Blättern von 0,1 bis 1000 g/ha, bevorzugt von 1 bis 500 g/ha, besonders bevorzugt von 10 bis 300 g/ha. Bei Anwendung durch Gießen oder Tropfen, insbesondere in Kombination mit bodenlosen Substraten beträgt die Aufwandmenge 0,01 bis 50 mg/Pflanze, bevorzugt von 0,1 bis 10 mg/Pflanze, besonders bevorzugt von 0,5 bis 5 mg/Pflanze.
In der präventiven Anwendung wird die erfindungsgemäße Flubendiamide-Nützlings-Kombination eingesetzt, um Pflanzen innerhalb eines gewissen Zeitraumes nach der Behandlung gegen den Befall durch tierische Schädlinge zu schützen.
In der kurativen Anwendung wird die erfindungsgemäße Flubendiamide-Nützlings-Kombination eingesetzt, um Pflanzen vom Befall durch die tierischen Schädlinge zu befreien.
Sowohl in der kurativen als auch in der präventiven Verwendung der erfindungsgemäßen Kombination ist es vorteilhaft, Pflanzen ein- oder mehrjähriger Kulturen zu behandeln, die auf bodenlosen Substraten heranwachsen. Vorteilhafterweise wird hier Flubendiamide durch Behandlung des Kultursubstrats appliziert. Hierdurch ist die erfindungsgemäße Flubendiamide- Nützlingskombination besonders einfach und effektiv zu verwenden und Flubendiamide kann in geringerer Dosis verwendet werden.
Unter Applikation des Kultursubstrats wird das in Kontakt bringen von Flubendiamide mit bodenlosem Substrat verstanden. Das kann insbesondere durch Spritzen, Angießen, Side-Dressing, Shower-Drenching, Overhead-Drenching oder durch Drip irrigation, d.h. Anwendung im Rahmen eines Bewässerungssystems geschehen. Die Zugabe des Wirkstoffes in die die Pflanzenwurzeln umschließende Wasserphase kann beispielsweise im Floating-, Box-, oder Paddy field- Verfahren erfolgen.
Unter bodenlosen Substraten werden vor allem solche Substrate verstanden, die nicht natürlich gewachsen oder künstlich aus anorganischen Mineralien und organischem Humus hergestellt sind. Bodenlose Substrate sind beispielsweise spezielle Substrate auf Basis von Torfmoosen, Kokosfasern, Steinwolle (z.B. Grodan®), Bims, Blähton (z.B. Lecaton® oder Lecadan®) Tongranulate (z.B. Seramis®), Schaumstoffe (z.B. Baystrat®), Vermiculite, Perlite, künstliche Erden (z.B. Hygromull®), oder Kombinationen hiervon. Bevorzugte Substrate sind Perlite und Steinwolle.
Die erfindungsgemäßen Flubendiamide-Nützlings-Kombinationen eignen sich bei guter Pflanzenverträglichkeit und insbesondere guter Umweltverträglichkeit zum Schutz von Pflanzen und Pflanzenorganen. Dadurch kann es zur Steigerung der Ernteerträge und zur Verbesserung der Qualität des Erntegutes kommen.
Die Kombination wird vorzugsweise im Pflanzenschutz eingesetzt. Hier vor allem in der Landwirtschaft, im Gartenbau, in Forsten, in Gärten und Freizeiteinrichtungen. Gleichfalls kann die Kombination im Vorrats- und Materialschutz eingesetzt werden. Die Kombination ist gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam.
Aus der Ordnung der Coleoptera z.B. Acanthoscelides obtectus, Adoretus spp., Agelastica alni, Agriotes spp., Amphimallon solstitialis, Anobium punctatum, Anoplophora spp., Anthonomus spp., Anthrenus spp., Apogonia spp., Atomaria spp., Attagenus spp., Bruchidius obtectus, Bruchus
spp., Cerotoma trifϊircata, Ceuthorhynchus spp., Cleonus mendicus, Conoderus spp., Cosmopolites spp., Costelytra zealandica, Ctenicera spp., Curculio spp., Cryptorhynchus lapathi, Dermestes spp., Diabrotica spp., Dichocrocis spp., Diloboderus spp., Epilachna spp., Epitrix spp., Faustinus cubae, Gibbium psylloides, Hellula undalis, Heteronychus arator, Heteronyx spp., Hylamorpha elegans, Hylotrupes bajulus, Hypera postica, Hypothenemus spp., Lachnosterna consanguinea, Lema spp., Leptinotarsa decemlineata, Leucoptera spp., Lissorhoptrus oryzophilus, Lixus spp., Lyctus spp., Meligethes aeneus, Melolontha spp., Migdolus spp., Monochamus spp., Naupactus xanthographus, Niptus hololeucus, Oryctes rhinoceros, Oryzaephilus surinamensis, Otiorrhynchus spp., Oxycetonia jucunda, Per i leucoptera spp., Phaedon cochleariae, Phyllophaga spp., Phyllotreta spp., Popillia japonica, Premnotrypes spp., Psylliodes spp., Ptinus spp., Rhizobius ventralis, Rhizopertha dominica, Sitophilus spp., Sphenophorus spp., Sternechus spp., Symphyletes spp., Tenebrio molitor, Tribolium spp., Trogoderma spp., Tychius spp., Xylotrechus spp., Zabrus spp..
Aus der Ordnung der Dermaptera z.B. Forficula auricularia.
Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus.
Aus der Ordnung der Diptera z.B. Aedes spp., Agromyza spp., Anopheles spp., Bactrocera spp., Bibio hortulanus, Calliphora erythrocephala, Ceratitis capitata, Chrysomyia spp., Cochliomyia spp., Contarinia spp., Cordylobia anthropophaga, Culex spp., Cuterebra spp., Dacus oleae, Delia spp., Dermatobia hominis, Drosophila spp., Fannia spp., Gastrophilus spp., Hylemyia spp., Hyppo- bosca spp., Hypoderma spp., Liriomyza spp.. Lucilia spp., Musca spp., Nezara spp., Oestrus spp., Oscinella frit, Pegomyia hyoscyami, Phorbia spp., Prodiplosis spp., Rhagoletis spp., Stomoxys spp., Tabanus spp., Tannia spp., Tipula spp..
Aus der Ordnung der Heteroptera z.B. Anasa tristis, Antestiopsis spp., Blissus spp., Calocoris spp., Campylomma livida, Cavelerius spp., Cimex spp., Creontiades dilutus, Dasynus piperis, Dichelops furcatus, Diconocoris hewetti, Dysdercus spp., Euschistus spp., Eurygaster spp., Heliopeltis spp., Horcias nobilellus, Leptocorisa spp., Leptoglossus phyllopus, Lygus spp., Macropes excavatus, Miridae, Monalonion atratum, Nezara spp., Oebalus spp., Pentomidae, Piesma quadrata, Piezodorus spp., Psallus spp., Pseudacysta persea, Rhodnius spp., Sahlbergella singularis, Scaptocoris castanea, Scotinophora spp., Stephanitis nashi, Tibraca spp., Triatoma spp.
Aus der Ordnung der Homoptera z.B. Acyrthosipon spp., Aeneolamia spp., Agonoscena spp., Aleurodes spp., Aleurolobus barodensis, Aleurothrixus spp., Amrasca spp., Anuraphis cardui,
Aonidiella spp., Aphanostigma piri, Aphis spp., Arboridia apicalis, Aspidiella spp., Aspidiotus spp., Atanus spp., Aulacorthum solani, Bemisia spp., Brachycaudus helichrysii, Brachycolus spp.,
Brevicoryne brassicae, Calligypona marginata, Carneocephala fulgida, Ceratovacuna lanigera, Cercopidae, Ceroplastes spp., Chaetosiphon fragaefolii, Chionaspis tegalensis, Chlorita onukii, Chromaphis juglandicola, Chrysomphalus ficus, Cicadulina mbila, Coccomytilus halli, Coccus spp., Cryptomyzus ribis, Dalbulus spp., Dialeurodes spp., Diaphorina spp., Diaspis spp., Drosicha spp., Dysaphis spp., Dysmicoccus spp., Empoasca spp., Eriosoma spp., Erythroneura spp., Euscelis bilobatus, Geococcus coffeae, Hieroglyphus spp., Homalodisca coagulata, Hyalopterus arundinis, Icerya spp., Idiocerus spp., Idioscopus spp., Laodelphax striatellus, Lecanium spp., Lepidosaphes spp., Lipaphis erysimi, Macrosiphum spp., Mahanarva fimbriolata, Melanaphis sacchari, Met- calfiella spp., Metopolophium dirhodum, Monellia costalis, Monelliopsis pecanis, Myzus spp., Nasonovia ribisnigri, Nephotettix spp., Nilaparvata lugens, Oncometopia spp., Orthezia praelonga, Parabemisia myricae, Paratrioza spp., Parlatoria spp., Pemphigus spp., Peregrinus maidis, Phenacoccus spp., Phloeomyzus passerinii, Phorodon humuli, Phylloxera spp., Pinnaspis aspidistrae, Planococcus spp., Protopulvinaria pyriformis, Pseudaulacaspis pentagona, Pseudococcus spp., Psylla spp., Pteromalus spp., Pyrilla spp., Quadraspidiotus spp., Quesada gigas, Rastrococcus spp., Rhopalosiphum spp., Saissetia spp., Scaphoides titanus, Schizaphis graminum, Selenaspidus articulatus, Sogata spp., Sogatella furcifera, Sogatodes spp., Stictocephala festina, Tenalaphara malayensis, Tinocallis caryaefoliae, Tomaspis spp., Toxoptera spp., TYi- aleurodes spp., Trioza spp., Typhlocyba spp., Unaspis spp., Viteus vitifolii, Zygina spp..
Aus der Ordnung der Isoptera z.B. Acromyrmex spp., Reticulitermes spp, Cornitermes cumulans, Microtermes obesi.
Aus der Ordnung der Lepidoptera z.B. Acronicta major, Adoxophyes spp., Aedia leucomelas, Agrotis spp., Alabama argillacea, Amyelois transitella, Anarsia lineatella, Anticarsia spp., Barathra brassicae, Borbo cinnara, Bucculatrix thurberiella, Bupalus piniarius, Cacoecia spp., Caloptilia theivora, Capua reticulana, Carpocapsa pomonella, Carposina niponensis, Cheimatobia brumata, Chilo spp., Choristoneura fumiferana, Clysia ambiguella, Cnaphalocerus spp., Dalaca noctuides, Diaphania indica, Diatraea saccharalis, Earias spp., Ecdytolopha aurantium, Elasmopalpus lignosellus, Eidana saccharina, Ephestia kuehniella, Eulia spp., Eupoecilia ambiguella, Euproctis chrysorrhoea, Euxoa spp., Feltia spp., Galleria mellonella, Gracillaria spp., Grapholitha spp., Helicoverpa spp., Heliothis spp., Hofmannophila pseudospretella, Homona spp., Hyponomeuta padella, Kakivoria flavofasciata, Laphygma spp., Laspeyresia molesta, Leucinodes orbonalis, Leucoptera spp., Lithocolletis spp., Lithophane antennata, Lobesia spp., Loxagrotis albicosta, Lymantria spp., Lyonetia spp., Malacosoma neustria, Maruca testulalis, Mamestra brassicae, Mocis repanda, Mythimna separata, Nymphula spp., Oiketicus spp., Oria spp., Ostrinia spp., Oulema oryzae, Panolis flammea, Pectinophora spp., Phthorimaea spp., Phyllocnistis citrella,
Pieris spp., Platynota stultana, Plusia spp., Plutella xylostella, Prays spp., Prodenia spp., Pseu- daletia spp., Pseudoplusia includens, Pyrausta nubilalis, Rachiplusia nu, Scirpophaga spp., Sesamia spp., Sparganothis spp., Spodoptera spp., Stomopteryx subsecivella, Tecia solanivora, Thermesia gemmatalis, Tinea pellionella, Tineola bisselliella, Tortrix spp., Trichoplusia spp., Tuta absoluta.
Aus der Ordnung der Orthoptera z.B. Acheta domesticus, Blatta orientalis, Blattella germanica, Gryllotalpa spp., Leucophaea maderae, Locusta spp., Melanoplus spp., Periplaneta americana, Schistocerca gregaria.
Flubendiamide kann in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Spritzpulver, wasser- und ölbasierte Suspensionen, Pulver, Stäubemittel, Pasten, lösliche Pulver, lösliche Granulate, Streugranulate, Suspensions-Emulsions-Konzentrate, Flubendiamide-imprägnierte Naturstoffe, Flubendiamide-imprägnierte synthetische Stoffe, Düngemittel sowie Feinstverkapselungen in polymeren Stoffen.
Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Die Herstellung der Formulierungen erfolgt entweder in geeigneten Anlagen oder auch vor oder während der Anwendung.
Als Hilfsstoffe können solche Stoffe Verwendung finden, die geeignet sind, dem Mittel selbst oder und/oder davon abgeleitete Zubereitungen (z.B. Spritzbrühen, Saatgutbeizen) besondere Eigenschaften zu verleihen, wie bestimmte technische Eigenschaften und/oder auch besondere biologische Eigenschaften. Als typische Hilfsmittel kommen in Frage: Streckmittel, Lösemittel und Trägerstoffe.
Als Streckmittel eignen sich z.B. Wasser, polare und unpolare organische chemische Flüssigkeiten z.B. aus den Klassen der aromatischen und nicht-aromatischen Kohlenwasserstoffe (wie Paraffine,
Alkylbenzole, Alkylnaphthaline, Chlorbenzole), der Alkohole und Polyole (die ggf. auch substituiert, verethert und/oder verestert sein können), der Ketone (wie Aceton, Cyclohexanon),
Ester (auch Fette und Öle) und (poly-)Ether, der einfachen und substituierten Amine, Amide,
Lactame (wie N-Alkylpyrrolidone) und Lactone, der Sulfone und Sulfoxide (wie Dimethylsulfoxid).
Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösemittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösemittel kommen im wesentlichen in Frage:
Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte aromatische Kohlenwasserstoffe und chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylsulfoxid, sowie Wasser.
Erfindungsgemäß bedeutet Trägerstoff eine natürliche oder synthetische, organische oder anorganische Substanz, welcher fest oder flüssig sein kann, mit welchen die Wirkstoffe zur besseren Anwendbarkeit, insbesondere zum Aufbringen auf Pflanzen oder Pflanzenteile oder Saatgut, gemischt oder verbunden sind. Der feste oder flüssige Trägerstoff ist im Allgemeinen inert und sollte in der Landwirtschaft verwendbar sein.
Als feste oder flüssige Trägerstoffe kommen in Frage:
z.B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate, als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Papier, Sägemehl, Kokosnussschalen, Maiskolben und Tabakstängeln; als Emulgier- und/oder Schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen- Fettalkohol-Ether, z.B. Alkylaryl-polyglykolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate; als Dispergiermittel kommen in Frage nicht-ionische und/oder ionische Stoffe, z.B. aus den Klassen der Alkohol-POE- und/oder POP-Ether, Säure- und/oder POP- POE- Ester, Alkyl-Aryl- und/oder POP- POE-Ether, Fett- und/oder POP- POE-Addukte, POE- und/oder POP-Polyol Derivate, POE- und/oder POP-Sorbitan- oder Zucker-Addukte, Alky- oder Aryl- Sulfate, Sulfonate und Phosphate oder die entsprechenden PO-Ether-Addukte. Ferner geeignete Oligo- oder Polymere, z.B. ausgehend von vinylischen Monomeren, von Acrylsäure, aus EO und/oder PO allein oder in Verbindung mit z.B. (poly-) Alkoholen oder (poly-) Aminen. Ferner können Einsatz finden Lignin und seine Sulfonsäure-Derivate, einfache und modifizierte Cellulosen, aromatische und/oder aliphatische Sulfonsäuren sowie deren Addukte mit Formaldehyd.
Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvrige, körnige oder latexförmige Polymere verwendet werden, wie Gummi-
arabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine und synthetische Phospholipide.
Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spuren- nährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.
Weitere Additive können Duftstoffe, mineralische oder vegetabile gegebenenfalls modifizierte Öle, Wachse und Nährstoffe (auch Spurennährstoffe), wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink sein.
Weiterhin enthalten sein können Stabilisatoren wie Kältestabilisatoren, Konservierungsmittel, Oxidationsschutzmittel, Lichtschutzmittel oder andere die chemische und/oder physikalische Stabilität verbessernde Mittel.
Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren. Die Gesamtwirkstoffkonzentration oder die Wirkstoff- konzentration der Einzelwirkstoffe der Anwendungsformen liegt im Bereich von 0,000001 bis 97 Gew.-% Wirkstoff, vorzugsweise im Bereich von 0,0001 bis 80 Gew.-%, besonders bevorzugt im Bereich von 0,001 bis 65 Gew.-% und ganz besonders bevorzugt im Bereich von 0,01 bis 50 Gew.-%.
Die erfindungsgemäßen Flubendiamide-Nützlings-Kombinationen können in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit weiteren Wirkstoffen wie Insektiziden, Lockstoffen, Sterilantien, Bakteriziden, Akariziden, Nematiziden, Fungiziden, wachstumsregulierenden Stoffen, Herbiziden, Safenern, Düngemitteln oder Semiochemicals vorliegen.
Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden, Düngemitteln, Wachstumsregulatoren, Safenern, Semiochemicals, oder auch mit Mitteln zur Verbesserung der Pflanzeneigenschaften ist möglich.
Flubendiamide kann in der erfindungsgemäßen Flubendiamide-Nützlings-Kombination in seinen handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne dass der zugesetzte Synergist selbst aktiv wirksam sein muss.
Die erfϊndungsgemäßen FIubendiamide-Nützlings-Kombinationen können ferner beim Einsatz als Insektizide in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischungen mit Hemmstoffen vorliegen, die einen Abbau des Wirkstoffes nach Anwendung in der Umgebung der Pflanze, auf der Oberfläche von Pflanzenteilen oder in pflanzlichen Geweben vermindern.
Die Anwendung geschieht in einer den Anwendungsformen angepassten üblichen Weise.
Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Vorzugsweise werden ein- oder mehrjährige Kulturpflanzen behandelt. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Spross, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stängel, Stämme, Blüten, Fruchtkörper, Früchte und Saatgut sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Früchte, Samen, Stecklinge, Knollen, Rhizome, Ableger, Saatgut, Brutzwiebeln, Absenker und Ausläufer.
Neben der oben erwähnten Behandlung von bodenlosen Substraten, erfolgt die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Flubendiamide-Nützlings-Kombinationen direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, Sprühen, Verdampfen, Vernebeln, Streuen, Aufstreichen, Inokulieren bzw. Ausbringen des Nützlings oder Injizieren.
In einer bevorzugten Ausfuhrungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltene Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausfuhrungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden, wie beispielsweise Antisense- oder Cosuppressions-Technologie, RNA-Interferenz - RNAi - Technologie, gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetically Modified Organisms), und deren Teile behandelt. Die Begriffe "Teile" bzw. "Teile von Pflanzen" oder "Pflanzenteile" wurden oben erläutert.
Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzensorten versteht man Pflanzen mit neuen Eigenschaften ("Traits"), die sowohl durch konventionelle Züchtung, durch Mutagenese oder mit Hilfe rekombinanter DNA-Techniken, gezüchtet worden sind. Kulturpflanzen können demnach Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten.
Das erfindungsgemäße Behandlungsverfahren kann somit auch für die Behandlung von genetisch modifizierten Organismen (GMOs), z. B. Pflanzen oder Samen, verwendet werden. Genetisch modifizierte Pflanzen (oder transgene Pflanzen) sind Pflanzen, bei denen ein heterologes Gen stabil in das Genom integriert worden ist. Der Begriff "heterologes Gen" bedeutet im wesentlichen ein Gen, das außerhalb der Pflanze bereitgestellt oder assembliert wird und das bei Einführung in das Zellkerngenom, das Chloroplastengenom oder das Mitochondriengenom der transformierten Pflanze dadurch neue oder verbesserte agronomische oder sonstige Eigenschaften verleiht, dass es ein interessierendes Protein oder Polypeptid exprimiert oder dass es ein anderes Gen, das in der
Pflanze vorliegt bzw. andere Gene, die in der Pflanze vorliegen, herunterreguliert oder abschaltet
(zum Beispiel mittels Antisense-Technologie, Co-suppressionstechnologie oder RNAi-
Technologie [RNA Interference]). Ein heterologes Gen, das im Genom vorliegt, wird ebenfalls als Transgen bezeichnet. Ein Transgen, das durch sein spezifisches Vorliegen im Pflanzengenom definiert ist, wird als Transformations- bzw. transgenes Event bezeichnet.
Zu Pflanzen und Pflanzensorten, die vorzugsweise erfindungsgemäß behandelt werden, zählen alle Pflanzen, die über Erbgut verfügen, das diesen Pflanzen besonders vorteilhafte, nützliche Merkmale verleiht (unabhängig davon, ob dies durch Züchtung und/oder Biotechnologie erzielt wurde).
Pflanzen und Pflanzensorten, die ebenfalls erfindungsgemäß behandelt werden können, sind solche Pflanzen, die gegen einen oder mehrere abiotische Stressfaktoren resistent sind. Zu den abiotischen Stressbedingungen können zum Beispiel Dürre, Kälte- und Hitzebedingungen, osmotischer Stress, Staunässe, erhöhter Bodensalzgehalt, erhöhtes Ausgesetztsein an Mineralien, Ozonbedingungen, Starklichtbedingungen, beschränkte Verfügbarkeit von Stickstoffnährstoffen, beschränkte Verfügbarkeit von Phosphornährstoffen oder Vermeidung von Schatten zählen.
Pflanzen und Pflanzensorten, die ebenfalls erfindungsgemäß behandelt werden können, sind solche Pflanzen, die durch erhöhte Ertragseigenschaften gekennzeichnet sind. Ein erhöhter Ertrag kann
bei diesen Pflanzen z. B. auf verbesserter Pflanzenphysiologie, verbessertem Pflanzenwuchs und verbesserter Pflanzenentwicklung, wie Wasserverwertungseffizienz, Wasserhalteeffizienz, verbesserter Stickstoffverwertung, erhöhter Kohlenstoffassimilation, verbesserter Photosynthese, verstärkter Keimkraft und beschleunigter Abreife beruhen. Der Ertrag kann weiterhin durch eine verbesserte Pflanzenarchitektur (unter Stress- und nicht-Stress-Bedingungen) beeinflusst werden, darunter frühe Blüte, Kontrolle der Blüte für die Produktion von Hybridsaatgut, Keim- pflanzenwüchsigkeit, Pflanzengröße, Internodienzahl und -abstand, Wurzelwachstum, Samengröße, Fruchtgröße, Schotengröße, Schoten- oder Ährenzahl, Anzahl der Samen pro Schote oder Ähre, Samenmasse, verstärkte Samenfüllung, verringerter Samenausfall, verringertes Schotenplatzen sowie Standfestigkeit. Zu weiteren Ertragsmerkmalen zählen Samen- zusammensetzung wie Kohlenhydratgehalt, Proteingehalt, Ölgehalt und Ölzusammensetzung, Nährwert, Verringerung der nährwidrigen Verbindungen, verbesserte Verarbeitbarkeit und verbesserte Lagerfähigkeit.
Pflanzen, die erfindungsgemäß behandelt werden können, sind Hybridpflanzen, die bereits die Eigenschaften der Heterosis bzw. des Hybrideffekts exprimieren, was im allgemeinen zu höherem Ertrag, höherer Wüchsigkeit, besserer Gesundheit und besserer Resistenz gegen biotische und abiotische Stressfaktoren führt. Solche Pflanzen werden typischerweise dadurch erzeugt, dass man eine eingezüchtete pollensterile Elternlinie (den weiblichen Kreuzungspartner) mit einer anderen eingezüchteten pollenfertilen Elternlinie (dem männlichen Kreuzungspartner) kreuzt. Das Hybridsaatgut wird typischerweise von den pollensterilen Pflanzen geerntet und an Vermehrer verkauft. Pollensterile Pflanzen können manchmal (z. B. beim Mais) durch Entfahnen (d. h. mechanischem Entfernen der männlichen Geschlechtsorgane bzw. der männlichen Blüten), produziert werden; es ist jedoch üblicher, dass die Pollensterilität auf genetischen Determinanten im Pflanzengenom beruht. In diesem Fall, insbesondere dann, wenn es sich bei dem gewünschten Produkt, das man von den Hybridpflanzen ernten will, um die Samen handelt, ist es üblicherweise günstig, sicherzustellen, dass die Pollenfertilität in Hybridpflanzen, die die für die Pollensterilität verantwortlichen genetischen Determinanten enthalten, völlig restoriert wird. Dies kann erreicht werden, indem sichergestellt wird, dass die männlichen Kreuzungspartner entsprechende Fertilitätsrestorergene besitzen, die in der Lage sind, die Pollenfertilität in Hybridpflanzen, die die genetischen Determinanten, die für die Pollensterilität verantwortlich sind, enthalten, zu restorieren. Genetische Determinanten für Pollensterilität können im Cytoplasma lokalisiert sein. Beispiele für cytoplasmatische Pollensterilität (CMS) wurden zum Beispiel für Brassica-Arten beschrieben (WO 1992/005251, WO 1995/009910, WO 1998/27806, WO 2005/002324, WO 2006/021972 und US 6,229,072). Genetische Determinanten für Pollensterilität können jedoch auch im Zellkerngenom lokalisiert sein. Pollensterile Pflanzen können auch mit Methoden der
pflanzlichen Biotechnologie, wie Gentechnik, erhalten werden. Ein besonders günstiges Mittel zur Erzeugung von pollensterilen Pflanzen ist in WO 89/10396 beschrieben, wobei zum Beispiel eine Ribonuklease wie eine Barnase selektiv in den Tapetumzellen in den Staubblättern exprimiert wird. Die Fertilität kann dann durch Expression eines Ribonukleasehemmers wie Barstar in den Tapetumzellen restoriert werden (z. B. WO 1991/002069).
Pflanzen oder Pflanzensorten (die mit Methoden der Pflanzenbiotechnologie, wie der Gentechnik, erhalten werden), die erfindungsgemäß behandelt werden können, sind herbizidtolerante Pflanzen, d. h. Pflanzen, die gegenüber einem oder mehreren vorgegebenen Herbiziden tolerant gemacht worden sind. Solche Pflanzen können entweder durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solch eine Herbizidtoleranz verleiht, erhalten werden.
Herbizidtolerante Pflanzen sind zum Beispiel glyphosatetolerante Pflanzen, d. h. Pflanzen, die gegenüber dem Herbizid Glyphosate oder dessen Salzen tolerant gemacht worden sind. So können zum Beispiel glyphosatetolerante Pflanzen durch Transformation der Pflanze mit einem Gen, das für das Enzym 5-Enolpyruvylshikimat-3-phosphatsynthase (EPSPS) kodiert, erhalten werden. Beispiele für solche EPSPS-Gene sind das AroA-Gen (Mutante CT7) des Bakterium Salmonella typhimurium (Comai et al., Science (1983), 221, 370-371), das CP4-Gen des Bakteriums Agrobacterium sp. (Barry et al., Curr. Topics Plant Physiol. (1992), 7, 139-145), die Gene, die für eine EPSPS aus der Petunie (Shah et al., Science (1986), 233, 478-481), für eine EPSPS aus der Tomate (Gasser et al., J. Biol. Chem. (1988), 263, 4280-4289) oder für eine EPSPS aus Eleusine (WO 2001/66704) kodieren. Es kann sich auch um eine mutierte EPSPS handeln, wie sie zum Beispiel in EP-A 0837944, WO 2000/066746, WO 2000/066747 oder WO 2002/026995 beschrieben ist. Glyphosatetolerante Pflanzen können auch dadurch erhalten werden, dass man ein Gen exprimiert, das für ein Glyphosate-Oxidoreduktase-Enzym, wie es in US 5,776,760 und US 5,463,175 beschrieben ist, kodiert. Glyphosatetolerante Pflanzen können auch dadurch erhalten werden, dass man ein Gen exprimiert, das für ein Glyphosate-acetyltransferase-Enzym, wie es in z. B. WO 2002/036782, WO 2003/092360, WO 2005/012515 und WO 2007/024782 beschrieben ist, kodiert. Glyphosatetolerante Pflanzen können auch dadurch erhalten werden, dass man Pflanzen, die natürlich vorkommende Mutationen der oben erwähnten Gene, wie sie zum Beispiel in WO 2001/024615 oder WO 2003/013226 beschrieben sind, enthalten, selektiert.
Sonstige herbizidresistente Pflanzen sind zum Beispiel Pflanzen, die gegenüber Herbiziden, die das Enzym Glutaminsynthase hemmen, wie Bialaphos, Phosphinotricin oder Glufosinate, tolerant gemacht worden sind. Solche Pflanzen können dadurch erhalten werden, dass man ein Enzym
exprimiert, das das Herbizid oder eine Mutante des Enzyms Glutaminsynthase, das gegenüber Hemmung resistent ist, entgiftet. Solch ein wirksames entgiftendes Enzym ist zum Beispiel ein Enzym, das für ein Phosphinotricin-acetyltransferase kodiert (wie zum Beispiel das bar- oder pat- Protein aus Streptomyces-Arten). Pflanzen, die eine exogene Phosphinotricin-acetyltransferase exprimieren, sind zum Beispiel in US 5,561,236; US 5,648,477; US 5,646,024; US 5,273,894; US 5,637,489; US 5,276,268; US 5,739,082; US 5,908,810 und US 7,1 12,665 beschrieben.
Weitere herbizidtolerante Pflanzen sind auch Pflanzen, die gegenüber den Herbiziden, die das Enzym Hydroxyphenylpyruvatdioxygenase (HPPD) hemmen, tolerant gemacht worden sind. Bei den Hydroxyphenylpyruvatdioxygenasen handelt es sich um Enzyme, die die Reaktion, in der para-Hydroxyphenylpyruvat (HPP) zu Homogentisat umgesetzt wird, katalysieren. Pflanzen, die gegenüber HPPD-Hemmern tolerant sind, können mit einem Gen, das für ein natürlich vorkommendes resistentes HPPD-Enzym kodiert, oder einem Gen, das für ein imitiertes HPPD- Enzym gemäß WO 1996/038567, WO 1999/024585 und WO 1999/024586 kodiert, transformiert werden. Eine Toleranz gegenüber HPPD-Hemmern kann auch dadurch erzielt werden, dass man Pflanzen mit Genen transformiert, die für gewisse Enzyme kodieren, die die Bildung von Homogentisat trotz Hemmung des nativen HPPD-Enzyms durch den HPPD-Hemmer ermöglichen. Solche Pflanzen und Gene sind in WO 1999/034008 und WO 2002/36787 beschrieben. Die Toleranz von Pflanzen gegenüber HPPD-Hemmern kann auch dadurch verbessert werden, dass man Pflanzen zusätzlich zu einem Gen, das für ein HPPD-tolerantes Enzym kodiert, mit einem Gen transformiert, das für ein Prephenatdehydrogenase-Enzym kodiert, wie dies in WO 2004/024928 beschrieben ist.
Weitere herbizidresistente Pflanzen sind Pflanzen, die gegenüber Acetolactatsynthase (ALS)- Hemmern tolerant gemacht worden sind. Zu bekannten ALS-Hemmern zählen zum Beispiel Sulfonylharnstoff, Imidazolinon, Triazolopyrimidine, Pyrimidinyloxy(thio)benzoate und/oder Sulfonylaminocarbonyltriazolinon-Herbizide. Es ist bekannt, dass verschiedene Mutationen im Enzym ALS (auch als Acetohydroxysäure-Synthase, AHAS, bekannt) eine Toleranz gegenüber unterschiedlichen Herbiziden bzw. Gruppen von Herbiziden verleihen, wie dies zum Beispiel bei Tranel und Wright, Weed Science (2002), 50, 700-712, jedoch auch in US 5,605,01 1, US 5,378,824, US 5,141,870 und US 5,013,659, beschrieben ist. Die Herstellung von sulfonylharnstofftoleranten Pflanzen und imidazolinontoleranten Pflanzen ist in US 5,605,011; US 5,013,659; US 5,141,870; US 5,767,361; US 5,731,180; US 5,304,732; US 4,761,373; US 5,331,107; US 5,928,937; und US 5,378,824; sowie in der internationalen Veröffentlichung WO 1996/033270 beschrieben. Weitere imidazolinontolerante Pflanzen sind auch in z. B. WO 2004/040012, WO 2004/106529, WO 2005/020673, WO 2005/093093, WO 2006/007373, WO
2006/015376, WO 2006/024351 und WO 2006/060634 beschrieben. Weitere Sulfonylharnstoff- und Imidazolinon-tolerante Pflanzen sind auch in z.B. WO 2007/024782 beschrieben.
Weitere Pflanzen, die gegenüber Imidazolinon und/oder Sulfonylharnstoff tolerant sind, können durch induzierte Mutagenese, Selektion in Zellkulturen in Gegenwart des Herbizids oder durch Mutationszüchtung erhalten werden, wie dies zum Beispiel für die Sojabohne in US 5,084,082, für Reis in WO 1997/41218, für die Zuckerrübe in US 5,773,702 und WO 1999/057965, für Salat in US 5,198,599 oder für die Sonnenblume in WO 2001/065922 beschrieben ist.
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind insektenresistente transgene Pflanzen, d.h. Pflanzen, die gegen Befall mit gewissen Zielinsekten resistent gemacht wurden. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solch eine Insektenresistenz verleiht, erhalten werden.
Der Begriff "insektenresistente transgene Pflanze" umfasst im vorliegenden Zusammenhang jegliche Pflanze, die mindestens ein Transgen enthält, das eine Kodiersequenz umfasst, die für folgendes kodiert:
1) ein insektizides Kristallprotein aus Bacillus thuringiensis oder einen insektiziden Teil davon, wie die insektiziden Kristallproteine, die von Crickmore et al., Microbiology and Molecular Biology Reviews (1998), 62, 807-813, von Crickmore et al. (2005) in der Bacillus //zwr/wg/e«s/s-Toxinnomenklatur aktualisiert, online bei:
http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/), zusammengestellt wurden, oder insektizide Teile davon, z.B. Proteine der Cry-Proteinklassen CrylAb, CrylAc, CrylF, Cry2Ab, Cry3Ae oder Cry3Bb oder insektizide Teile davon; oder
2) ein Kristallprotein aus Bacillus thuringiensis oder einen Teil davon, der in Gegenwart eines zweiten, anderen Kristallproteins als Bacillus thuringiensis oder eines Teils davon insektizid wirkt, wie das binäre Toxin, das aus den Kristallproteinen Cy34 und Cy35 besteht (Moellenbeck et al., Nat. Biotechnol. (2001), 19, 668-72; Schnepf et al., Applied Environm. Microb. (2006), 71, 1765-1774); oder
3) ein insektizides Hybridprotein, das Teile von zwei unterschiedlichen insektiziden Kristallproteinen aus Bacillus thuringiensis umfasst, wie zum Beispiel ein Hybrid aus den
Proteinen von 1) oben oder ein Hybrid aus den Proteinen von 2) oben, z. B. das Protein
CrylA.105, das von dem Mais-Event MON98034 produziert wird (WO 2007/027777); oder
4) ein Protein gemäß einem der Punkte 1) bis 3) oben, in dem einige, insbesondere 1 bis 10, Aminosäuren durch eine andere Aminosäure ersetzt wurden, um eine höhere insektizide Wirksamkeit gegenüber einer Zielinsektenart zu erzielen und/oder um das Spektrum der entsprechenden Zielinsektenarten zu erweitern und/oder wegen Veränderungen, die in die Kodier- DNA während der Klonierung oder Transformation induziert wurden, wie das Protein Cry3Bbl in Mais-Events MON863 oder MON88017 oder das Protein Cry3A im Mais-Event MIR 604; oder
5) ein insektizides sezerniertes Protein aus Bacillus thuringiensis oder Bacillus cereus oder einen insektiziden Teil davon, wie die vegetativ wirkenden insektentoxischen Proteine (vegetative insecticidal proteins, VIP), die unter http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/vip.html angeführt sind, z. B. Proteine der Proteinklasse VIP3Aa; oder
6) ein sezerniertes Protein aus Bacillus thuringiensis oder Bacillus cereus, das in Gegenwart eines zweiten sezernierten Proteins aus Bacillus thuringiensis oder B. cereus insektizid wirkt, wie das binäre Toxin, das aus den Proteinen VIPlA und VIP2A besteht (WO 1994/21795); oder
7) ein insektizides Hybridprotein, das Teile von verschiedenen sezernierten Proteinen von Bacillus thuringiensis oder Bacillus cereus umfasst, wie ein Hybrid der Proteine von 1) oder ein Hybrid der Proteine von 2) oben; oder
8) ein Protein gemäß einem der Punkte 1) bis 3) oben, in dem einige, insbesondere 1 bis 10, Aminosäuren durch eine andere Aminosäure ersetzt wurden, um eine höhere insektizide Wirksamkeit gegenüber einer Zielinsektenart zu erzielen und/oder um das Spektrum der entsprechenden Zielinsektenarten zu erweitern und/oder wegen Veränderungen, die in die
Kodier- DNA während der Klonierung oder Transformation induziert wurden (wobei die Kodierung für ein insektizides Protein erhalten bleibt), wie das Protein VIP3Aa im Baumwoll-Event COT 102.
Natürlich zählt zu den insektenresistenten transgenen Pflanzen im vorliegenden Zusammenhang auch jegliche Pflanze, die eine Kombination von Genen umfasst, die für die Proteine von einer der oben genannten Klassen 1 bis 8 kodieren. In einer Ausführungsform enthält eine insektenresistente
Pflanze mehr als ein Transgen, das für ein Protein nach einer der oben genannten 1 bis 8 kodiert,
um das Spektrum der entsprechenden Zielinsektenarten zu erweitern oder um die Entwicklung einer Resistenz der Insekten gegen die Pflanzen dadurch hinauszuzögern, dass man verschiedene Proteine einsetzt, die für dieselbe Zielinsektenart insektizid sind, jedoch eine unterschiedliche Wirkungsweise, wie Bindung an unterschiedliche Rezeptorbindungsstellen im Insekt, aufweisen.
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfϊndungsgemäß behandelt werden können, sind gegenüber abiotischen Stressfaktoren tolerant. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solch eine Stressresistenz verleiht, erhalten werden. Zu besonders nützlichen Pflanzen mit Stresstoleranz zählen folgende:
a. Pflanzen, die ein Transgen enthalten, das die Expression und/oder Aktivität des Gens für die Poly(ADP-ribose)polymerase (PARP) in den Pflanzenzellen oder Pflanzen zu reduzieren vermag, wie dies in WO 2000/004173 oder EP 04077984.5 oder EP 06009836.5 beschrieben ist.
b. Pflanzen, die ein Stresstoleranzförderndes Transgen enthalten, das die Expression und/oder Aktivität der für PARG kodierenden Gene der Pflanzen oder Pflanzenzellen zu reduzieren vermag, wie dies z.B. in WO 2004/090140 beschrieben ist;
c. Pflanzen, die ein Stresstoleranzförderndes Transgen enthalten, das für ein in Pflanzen funktionelles Enzym des Nicotinamidadenindinukleotid-Salvage-Biosynthesewegs kodiert, darunter Nicotinamidase, Nicotinatphosphoribosyltransferase,
Nicotinsäuremononukleotidadenyltransferase, Nicotinamidadenindinukleotidsynthetase oder Nicotinamidphosphoribosyltransferase, wie dies z. B. in EP 04077624.7 oder WO 2006/133827 oder PCT/EP07/002433 beschrieben ist.
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, weisen eine veränderte Menge, Qualität und/oder Lagerfähigkeit des Ernteprodukts und/oder veränderte Eigenschaften von bestimmten Bestandteilen des Ernteprodukts auf, wie zum Beispiel:
1) Transgene Pflanzen, die eine modifizierte Stärke synthetisieren, die bezüglich ihrer chemisch-physikalischen Eigenschaften, insbesondere des Amylosegehalts oder des Amylose/Amylopektin-Verhältnisses, des Verzweigungsgrads, der durchschnittlichen
Kettenlänge, der Verteilung der Seitenketten, des Viskositätsverhaltens, der Gelfestigkeit, der Stärkekorngröße und/oder Stärkekornmorphologie im Vergleich mit der synthetisierten
Stärke in Wildtyppflanzenzellen oder -pflanzen verändert ist, so dass sich diese modifizierte Stärke besser für bestimmte Anwendungen eignet. Diese transgenen Pflanzen, die eine modifizierte Stärke synthetisieren, sind zum Beispiel in EP 0571427, WO 1995/004826, EP 0719338, WO 1996/15248, WO 1996/19581, WO 1996/27674, WO 1997/1 1188, WO 1997/26362, WO 1997/32985, WO 1997/42328, WO 1997/44472, WO
1997/45545, WO 1998/27212, WO 1998/40503, WO 99/58688, WO 1999/58690, WO 1999/58654, WO 2000/008184, WO 2000/008185, WO 2000/28052, WO 2000/77229, WO 2001/12782, WO 2001/12826, WO 2002/101059, WO 2003/071860, WO 2004/056999, WO 2005/030942, WO 2005/030941, WO 2005/095632, WO 2005/095617, WO 2005/095619, WO 2005/095618, WO 2005/123927, WO 2006/018319, WO
2006/103107, WO 2006/108702, WO 2007/009823, WO 2000/22140, WO 2006/063862, WO 2006/072603, WO 2002/034923, EP 06090134.5, EP 06090228.5, EP 06090227.7, EP 07090007.1, EP 07090009.7, WO 2001/14569, WO 2002/79410, WO 2003/33540, WO 2004/078983, WO 2001/19975, WO 1995/26407, WO 1996/34968, WO 1998/20145, WO 1999/12950, WO 1999/66050, WO 1999/53072, US 6,734,341, WO 2000/11192, WO
1998/22604, WO 1998/32326, WO 2001/98509, WO 2001/98509, WO 2005/002359, US 5,824,790, US 6,013,861, WO 1994/004693, WO 1994/009144, WO 1994/1 1520, WO 1995/35026 bzw. WO 1997/20936 beschrieben.
2) Transgene Pflanzen, die Nichtstärkekohlenhydratpolymere synthetisieren, oder Nichtstärkekohlenhydratpolymere, deren Eigenschaften im Vergleich zu Wildtyppflanzen ohne genetische Modifikation verändert sind. Beispiele sind Pflanzen, die Polyfructose, insbesondere des Inulin- und Levantyps, produzieren, wie dies in EP 0663956, WO 1996/001904, Wo 1996/021023, WO 1998/039460 und WO 1999/024593 beschrieben ist, Pflanzen, die alpha- 1,4-Glucane produzieren, wie dies in WO 1995/031553, US 2002/031826, US 6,284,479, US 5,712,107, WO 1997/047806, WO 1997/047807, WO
1997/047808 und WO 2000/14249 beschrieben ist, Pflanzen, die alpha- 1,6-verzweigte alpha- 1,4-Glucane produzieren, wie dies in WO 2000/73422 beschrieben ist, und Pflanzen, die Alternan produzieren, wie dies in WO 2000/047727, EP 06077301.7, US 5,908,975 und EP 0728213 beschrieben ist.
3) Transgene Pflanzen, die Hyaluronan produzieren, wie dies zum Beispiel in WO 2006/032538, WO 2007/039314, WO 2007/039315, WO 2007/039316, JP 2006/304779 und WO 2005/012529 beschrieben ist.
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfϊndungsgemäß behandelt werden können, sind Pflanzen wie Baumwollpflanzen mit veränderten Fasereigenschaften. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solche veränderten Fasereigenschaften verleiht, erhalten werden; dazu zählen:
a) Pflanzen wie Baumwollpflanzen, die eine veränderte Form von Cellulosesynthasegenen enthalten, wie dies in WO 1998/000549 beschrieben ist,
b) Pflanzen wie Baumwollpflanzen, die eine veränderte Form von rsw2- oder rsw3- homologen Nukleinsäuren enthalten, wie dies in WO 2004/053219 beschrieben ist;
c) Pflanzen wie Baumwollpflanzen mit einer erhöhten Expression der Saccharosephosphatsynthase, wie dies in WO 2001/017333 beschrieben ist;
d) Pflanzen wie Baumwollpflanzen mit einer erhöhten Expression der Saccharosesynthase, wie dies in WO 02/45485 beschrieben ist;
e) Pflanzen wie Baumwollpflanzen bei denen der Zeitpunkt der Durchlasssteuerung der Plasmodesmen an der Basis der Faserzelle verändert ist, z. B. durch Herunterregulieren der faserselektiven ß-l,3-Glucanase, wie dies in WO 2005/017157 beschrieben ist;
f) Pflanzen wie Baumwollpflanzen mit Fasern mit veränderter Reaktivität, z. B. durch Expression des N-Acetylglucosamintransferasegens, darunter auch nodC, und von Chitinsynthasegenen, wie dies in WO 2006/136351 beschrieben ist.
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie Raps oder verwandte Brassica-Pflanzen mit veränderten Eigenschaften der Ölzusammensetzung. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solche veränderten Öleigenschaften verleiht, erhalten werden; dazu zählen:
a) Pflanzen wie Rapspflanzen, die Öl mit einem hohen Ölsäuregehalt produzieren, wie dies zum Beispiel in US 5,969,169, US 5,840,946 oder US 6,323,392 oder US 6,063, 947 beschrieben ist;
b) Pflanzen wie Rapspflanzen, die Öl mit einem niedrigen Linolensäuregehalt produzieren, wie dies in US 6,270828, US 6,169,190 oder US 5,965,755 beschrieben ist.
c) Pflanzen wie Rapspflanzen, die Öl mit einem niedrigen gesättigten Fettsäuregehalt produzieren, wie dies z. B. in US 5,434,283 beschrieben ist.
Besonders nützliche transgene Pflanzen, die erfindungsgemäß behandelt werden können, sind Pflanzen mit einem oder mehreren Genen, die für ein oder mehrere Toxine kodieren, sind die transgenen Pflanzen, die unter den folgenden Handelsbezeichnungen angeboten werden: YIELD GARD® (zum Beispiel Mais, Baumwolle, Sojabohnen), KnockOut® (zum Beispiel Mais), BiteGard® (zum Beispiel Mais), BT-Xtra® (zum Beispiel Mais), StarLink® (zum Beispiel Mais), Bollgard® (Baumwolle), Nucotn® (Baumwolle), Nucotn 33B® (Baumwolle), NatureGard® (zum Beispiel Mais), Protecta® und NewLeaf® (Kartoffel). Herbizidtolerante Pflanzen, die zu erwähnen sind, sind zum Beispiel Maissorten, Baumwollsorten und Sojabohnensorten, die unter den folgenden Handelsbezeichnungen angeboten werden: Roundup Ready® (Glyphosatetoleranz, zum Beispiel Mais, Baumwolle, Sojabohne), Liberty Link® (Phosphinotricintoleranz, zum Beispiel Raps), IMI® (Imidazolinontoleranz) und SCS® (Sylfonylharnstofftoleranz), zum Beispiel Mais. Zu den herbizidresistenten Pflanzen (traditionell auf Herbizidtoleranz gezüchtete Pflanzen), die zu erwähnen sind, zählen die unter der Bezeichnung Clearfield® angebotenen Sorten (zum Beispiel Mais).
Besonders nützliche transgene Pflanzen, die erfindungsgemäß behandelt werden können, sind Pflanzen, die Transformations-Events, oder eine Kombination von Transformations-Events, enthalten und die zum Beispiel in den Dateien von verschiedenen nationalen oder regionalen Behörden angeführt sind (siehe zum Beispiel http://gmoinfo.jrc. it/gmp_browse.aspx und http://www.agbios.com/dbase.php).
Die Flubendiamide-Nützlings-Kombinationen eignen sich auch zur Bekämpfung von tierischen Schädlingen im Haushalts-, Hygiene- und Vorratsschutz, insbesondere von Insekten, Spinnentieren und Milben, die in geschlossenen Räumen, wie beispielsweise Wohnungen, Fabrikhallen, Büros, Fahrzeugkabinen u.a. vorkommen. Sie sind gegen sensible und resistente Arten sowie gegen alle Entwicklungsstadien wirksam. Zu diesen Schädlingen gehören:
Aus der Ordnung der Scorpionidea z.B. Buthus occitanus. Aus der Ordnung der Acarina z.B. Argas persicus, Argas reflexus, Bryobia ssp., Dermanyssus gallinae, Glyciphagus domesticus, Ornithodorus moubat, Rhipicephalus sanguineus, Trombicula alfreddugesi, Neutrombicula autumnalis, Dermatophagoides pteronissimus, Dermatophagoides forinae. Aus der Ordnung der Araneae z.B. Aviculariidae, Araneidae. Aus der Ordnung der Opiliones z.B. Pseudoscorpiones chelifer, Pseudoscorpiones cheiridium, Opiliones phalangium. Aus der Ordnung der Isopoda z.B.
Oniscus asellus, Porcellio scaber. Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus, Polydesmus spp. Aus der Ordnung der Chilopoda z.B. Geophilus spp. Aus der Ordnung der Zygentoma z.B. Ctenolepisma spp., Lepisma saccharina, Lepismodes inquilinus. Aus der Ordnung der Blattaria z.B. Blatta orientalies, Blattella germanica, Blattella asahinai, Leucophaea maderae, Panchlora spp., Parcoblatta spp., Periplaneta australasiae, Periplaneta americana, Periplaneta brunnea, Periplaneta fuliginosa, Supella longipalpa. Aus der Ordnung der Saltatoria z.B. Acheta domesticus. Aus der Ordnung der Dermaptera z.B. Forficula auricularia. Aus der Ordnung der Isoptera z.B. Kalotermes spp., Reticulitermes spp. Aus der Ordnung der Psocoptera z.B. Lepinatus spp., Liposcelis spp. Aus der Ordnung der Coleoptera z.B. Anthrenus spp., Attagenus spp., Dermestes spp., Latheticus oryzae, Necrobia spp., Ptinus spp., Rhizopertha dominica, Sitophilus granarius, Sitophilus oryzae, Sitophilus zeamais, Stegobium paniceum. Aus der Ordnung der Diptera z.B. Aedes aegypti, Aedes albopictus, Aedes taeniorhynchus, Anopheles spp., Calliphora erythrocephala, Chrysozona pluvialis, Culex quinquefasciatus, Culex pipiens, Culex tarsalis, Drosophila spp., Fannia canicularis, Musca domestica, Phlebotomus spp., Sarcophaga carnaria, Simulium spp., Stomoxys calcitrans, Tipula paludosa. Aus der Ordnung der Lepidoptera z.B. Achroia grisella, Galleria mellonella, Plodia interpunctella, Tinea cloacella, Tinea pellionella, Tineola bisselliella. Aus der Ordnung der Siphonaptera z.B. Ctenocephalides canis, Ctenocephalides felis, Pulex irritans, Tunga penetrans, Xenopsylla cheopis. Aus der Ordnung der Hymenoptera z.B. Camponotus herculeanus, Lasius fuliginosus, Lasius niger, Lasius umbratus, Monomorium pharaonis, Paravespula spp., Tetramorium caespitum. Aus der Ordnung der Anoplura z.B. Pediculus humanus capitis, Pediculus humanus corporis, Pemphigus spp., Phylloera vastatrix, Phthirus pubis. Aus der Ordnung der Heteroptera z.B. Cimex hemipterus, Cimex lectularius, Rhodinus prolixus, Triatoma infestans.
Die Anwendung von Flubendiamide kann in Aerosolen, drucklosen Sprühmitteln, z.B. Pump- und Zerstäubersprays, Nebelautomaten, Foggern, Schäumen, Gelen, Verdampferprodukten mit Verdampferplättchen aus Cellulose oder Kunststoff, Flüssigverdampfern, Gel- und Membranverdampfern, propellergetriebenen Verdampfern, energielosen bzw. passiven Verdampfungssystemen, Mottenpapieren, Mottensäckchen und Mottengelen, als Granulate oder Stäube, in Streuködern oder Köderstationen.
Im Folgenden sind Formulierungsbeispiele für die Anwendung im Pflanzenschutz genannt, ohne die Anwendung von Flubendiamide auf diese Formulierungen einzuschränken.
a) Ein Stäubemittel wird erhalten, indem man 10 Gewichtsteile Flubendiamide und 90 Gewichtsteile Talkum als Inertstoff mischt und in einer Schlagmühle zerkleinert.
b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gewichtsteile Flubendiamide, 64 Gew.-Teile kaolinhaltigen Quarz als Inertstoff, 10 Gewichtsteile ligninsulfonsaures Kalium und 1 Gew.-Teil oleoylmethyltaurinsaures Natrium als Netz- und Dispergiermittel mischt und in einer Stiftmühle mahlt.
c) Ein in Wasser leicht dispergierbares Dispersionskonzentrat wird erhalten, indem man 20 Gewichtsteile Flubendiamide mit 6 Gew.-Teilen Alkylphenolpolyglykolether (®Triton X 207), 3 Gew.-Teilen Isotridecanolpolyglykolether (8 EO) und 71 Gew.-Teilen paraffinischem Mineralöl (Siedebereich z.B. ca. 255 bis über 277 C) mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt.
d) Ein emulgierbares Konzentrat wird erhalten aus 15 Gewichtsteilen Flubendiamide, 75 Gew.-Teilen Cyclohexanon als Lösungsmittel und 10 Gew.-Teilen oxethyliertes Nonylphenol als Emulgator.
e) Ein in Wasser dispergierbares Granulat wird erhalten indem man 75 Gew.-Teile Flubendiamide, 10 Gew.-Teile ligninsulfonsaures Calcium, 5 Gew.-Teile Natriumlaurylsulfat, 3 Gew.-Teile Polyvinylalkohol und 7 Gew.-Teile Kaolin mischt, auf einer Stiftmühle mahlt und das Pulver in einem Wirbelbett durch Aufsprühen von Wasser als Granulierflüssigkeit granuliert.
f) Ein in Wasser dispergierbares Granulat wird auch erhalten, indem man 25 Gew.-Teile Flubendiamide, 5 Gew.-Teile 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, 2 Gew.-Teile oleoylmethyltaurinsaures Natrium, 1 Gew.-Teil Polyvinylalkohol, 17
Gew.-Teile Calciumcarbonat und 50 Gew.-Teile Wasser auf einer Kolloidmühle homogenisiert und vorzerkleinert, anschließend auf einer Perlmühle mahlt und die so erhaltene Suspension in einem Sprühturm mittels einer Einstoffdüse zerstäubt und trocknet.
Die gute insektizide und akarizide Wirkung der erfindungsgemäßen Flubendiamide-Nützlings- Kombinationen geht aus den nachfolgenden Beispielen hervor. Während die einzelnen Wirkstoffe bzw. Nützlinge in der Wirkung Schwächen aufweisen, zeigen die Kombinationen eine Wirkung, die über eine einfache Wirkungssummierung hinausgeht.
Ein synergistischer Effekt liegt bei Insektiziden und Akariziden immer dann vor, wenn die Wirkung der Flubendiamide-Nützlings-Kombinationen größer ist als die Summe der Wirkungen der einzeln applizierten Wirkstoffe bzw. Nützlinge.
Die zu erwartende Wirkung für eine gegebene Kombination zweier Wirkstoffe kann nach S. R. Colby, Weeds ü (1967), 20-22 wie folgt berechnet werden:
Wenn
X den Abtötungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffes A in einer Aufwandmenge von m g/ha, m mg ai/Pflanze oder in einer
Konzentration von m ppm,
Y den Abtötungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Nützlings in einer Aufwandmenge von n Tieren oder n Einheiten, und
E den Abtötungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffes A und des Nützlings B in Aufwandmengen von m ppm, m mg ai/Pflanze oder g/ha und n Tieren oder Einheiten bedeutet,
dann ist
X Y
E=X + Y- 100
Ist der tatsächliche insektizide oder akarizide Abtötungsgrad größer als berechnet, so ist die Kom- bination in ihrer Abtötung überadditiv, d.h. es liegt ein synergistischer Effekt vor. In diesem Fall muss der tatsächlich beobachtete Abtötungsgrad größer sein als der aus der oben angeführten Formel errechnete Wert für den erwarteten Abtötungsgrad (E).
Die Erfindung wird durch die folgenden Beispiele näher erläutert, ohne sie dadurch einzuschränken.
Beispiel A
Myzus persicae -Test (Drenchapplikation)
Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.
Kohlpflanzen (Brassica oleracea), die stark von der Grünen Pfirsichblattlaus (Myzus persicae) sind, werden durch Angießen mit der Wirkstoffzubereitung in der gewünschten Konzentration behandelt.
Die Raubwanzen (Macrolophus caliginosus) werden nach der Applikation in definierter Menge zugegeben. Nach der gewünschten Zeit wird die Abtötung des Schädlings in % bestimmt. Dabei bedeutet 100%, dass alle Blattläuse abgetötet wurden; 0% bedeutet, dass keine Blattläuse abgetötet wurden.
Die ermittelten Abtötungswerte verrechnet man nach der Colby-Formel (siehe oben).
Bei diesem Test zeigt die folgende Flubendiamide-Raubwanzen-Kombination eine synergistisch verstärkte Wirksamkeit im Vergleich zu den einzeln angewendeten Komponenten ohne die Anmeldung auf diese Kombination einzuschränken.
Tabelle A: Myzus persicae - test
* gef. = gefundene Wirkung
** ber. = nach der Colby-Formel berechnete Wirkung
Beispiel B
Plutella xylostella -Test (Drenchapplikation auf Steinwolle)
Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: Gewichtsteile Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Kohlpflanzen (Brassica oleracea) werden mit einer Wirkstoffzubereitung in der gewünschten Konzentration angegossen und mit Larven der Kohlmotte {Plutella xylostella) infiziert.
Nach der gewünschten Zeit wird die Abtötung des Schädlings in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden. Bei diesem Test zeigt Flubendiamid, wenn auf bodenlosen Substraten appliziert, eine überraschend gute systemische Wirksamkeit
Tabelle B: Plutella xylostella - test in Steinwolle
Claims
1. Flubendiamide-Nützlings-Kombinationen enthaltend Flubendiamide und mindestens einen Nutzung ausgewählt aus der Gruppe bestehend aus Räuberischen Milben, Nematoden, Pilzen, Bakterien- oder Virenstämmen und Insekten oder Spinnentieren ausgewählt aus den Ordnungen bzw. Unterordnungen der Araneae, Acari, Dermaptera, Hymenoptera, Coleoptera, Neuroptera, Thysanoptera, Heteroptera, Diptera, Hemiptera, Dermaptera und/oder Parasitiformes, und Plannipennia.
2. Kombination nach Anspruch 1, wobei der mindestens eine Nutzung ausgewählt ist unter Räuberischen Milben, Nematoden, Heteroptera, Plannipennia, Hymenoptera, Coleoptera,
Diptera.
3. Verwendung von Flubendiamide-Nützlings-Kombinationen, wie in Anspruch 1 oder 2 definiert, zur Bekämpfung tierischer Schädlinge auf ein- oder mehrjährigen Kulturen.
4. Verwendung nach Anspruch 3, wobei die ein- oder mehrjährigen Kulturen ausgewählt sind unter Baumwolle, Kernobst, Steinobst, Nüsse, Mais, Reis und Soja.
5. Verwendung nach Anspruch 3 oder 4, wobei die ein- oder mehrjährigen Kulturen Gewächshauskulturen sind und/oder auf bodenlosen Substraten angebaut werden.
6. Verwendung nach Anspruch 5, wobei die bodenlosen Substrate ausgewählt sind unter Torfmoosen, Kokosfasern, Steinwolle, Bims, Blähton, Tongranulaten, Schaumstoffen, Vermiculiten, Perliten, künstlichen Erden oder Kombinationen hiervon.
7. Verfahren zur Bekämpfung tierischer Schädlinge, dadurch gekennzeichnet, dass man Flubendiamide-Nützlings-Kombinationen wie in Anspruch 1 oder 2 definiert, zeitlich und/oder räumlich getrennt auf tierische Schädlinge einwirken lässt.
8. Verfahren nach Anspruch 7, wobei Flubendiamide und das Kultursubstrat in Kontakt gebracht werden und die Nützlinge auf die Pflanzen der ein-oder mehrjährigen Kultur ausgebracht werden.
9. Verwendung von Flubendiamide-Nützlings-Kombinationen gemäß Anspruch 1 oder 2 zur Reduktion der Anzahl der Anwendungen pro Pflanzsaison.
10. Verwendung von Flubendiamide-Nützlings-Kombinatione gemäß Anspruch 1 oder 2 zur Verminderung der Gesamtrückstände an Insektiziden und/oder Akariziden auf dem Erntegut und in der Umwelt.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009026699 | 2009-06-03 | ||
PCT/EP2010/003147 WO2010139408A2 (de) | 2009-06-03 | 2010-05-21 | Flubendiamide-nützlings-kombinationen |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2437597A2 true EP2437597A2 (de) | 2012-04-11 |
Family
ID=43127804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10722615A Withdrawn EP2437597A2 (de) | 2009-06-03 | 2010-05-21 | Flubendiamide-nützlings-kombinationen |
Country Status (7)
Country | Link |
---|---|
US (1) | US20100310518A1 (de) |
EP (1) | EP2437597A2 (de) |
KR (1) | KR20120046122A (de) |
CN (1) | CN102480946A (de) |
BR (1) | BRPI1011982A2 (de) |
TW (1) | TW201108938A (de) |
WO (1) | WO2010139408A2 (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IN2014DN09381A (de) | 2012-05-30 | 2015-07-17 | Bayer Cropscience Ag | |
BR112015026129A2 (pt) * | 2013-04-19 | 2017-10-17 | Bayer Cropscience Ag | método para combater pragas |
CN104872203A (zh) * | 2015-06-01 | 2015-09-02 | 吴迪 | 一种防治草莓病害的植物源生物农药 |
CN112931533B (zh) * | 2021-02-02 | 2022-03-11 | 中国林业科学研究院森林生态环境与保护研究所 | 一种林业昆虫核型多角体病毒可湿性粉剂及其制备方法 |
WO2022269523A1 (en) | 2021-06-24 | 2022-12-29 | Pi Industries Ltd. | A combination of flubendiamide and seaweed extract |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4761373A (en) * | 1984-03-06 | 1988-08-02 | Molecular Genetics, Inc. | Herbicide resistance in plants |
US5359807A (en) * | 1993-05-28 | 1994-11-01 | The United States Of America As Represented By The Secretary Of Agriculture | Method and apparatus for autodissemination of insect pathogens |
WO2006055922A2 (en) * | 2004-11-18 | 2006-05-26 | E.I. Dupont De Nemours And Company | Anthranilamide insecticides |
DE102006027732A1 (de) * | 2006-06-16 | 2008-01-10 | Bayer Cropscience Ag | Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften |
DE102006027730A1 (de) * | 2006-06-16 | 2007-12-20 | Bayer Cropscience Ag | Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften |
DE102006027731A1 (de) * | 2006-06-16 | 2007-12-20 | Bayer Cropscience Ag | Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften |
US20100087542A1 (en) * | 2006-09-30 | 2010-04-08 | Bayer Cropscience Aktiengesellshaft | Improvement of the biological action of agrochemical compositions when applied to the cultivation substrate, suitable formulations and use thereof |
EP2525658B1 (de) * | 2010-01-22 | 2017-03-01 | Bayer Intellectual Property GmbH | Akarizide und/oder insektizide wirkstoffkombinationen |
-
2010
- 2010-05-21 WO PCT/EP2010/003147 patent/WO2010139408A2/de active Application Filing
- 2010-05-21 CN CN2010800244519A patent/CN102480946A/zh active Pending
- 2010-05-21 EP EP10722615A patent/EP2437597A2/de not_active Withdrawn
- 2010-05-21 KR KR1020117031384A patent/KR20120046122A/ko not_active Application Discontinuation
- 2010-05-21 BR BRPI1011982A patent/BRPI1011982A2/pt not_active IP Right Cessation
- 2010-06-02 TW TW099117693A patent/TW201108938A/zh unknown
- 2010-06-03 US US12/793,078 patent/US20100310518A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO2010139408A2 * |
Also Published As
Publication number | Publication date |
---|---|
BRPI1011982A2 (pt) | 2015-09-22 |
WO2010139408A2 (de) | 2010-12-09 |
TW201108938A (en) | 2011-03-16 |
KR20120046122A (ko) | 2012-05-09 |
WO2010139408A3 (de) | 2011-06-16 |
US20100310518A1 (en) | 2010-12-09 |
CN102480946A (zh) | 2012-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101894361B1 (ko) | 피리딜에틸벤즈아미드 및 기타 활성 성분을 포함하는 활성 성분 배합물 | |
TR201816272T4 (tr) | Bir biyolojik kontrol ajanı ve flopikolid içeren bileşim. | |
TR201816257T4 (tr) | Bir biyolojik kontrol ajanı ve trifloksistrobin içeren bileşim. | |
RU2567880C2 (ru) | Комбинации активных соединений | |
BR122022019343B1 (pt) | Composição, semente revestida e método de tratamento de uma planta | |
TR201816247T4 (tr) | Metalaksil ve metalaksil-m'den seçilen bir fungisit ve bir biyolojik kontrol ajanı içeren bileşim. | |
TR201808095T4 (tr) | Bir biyolojik kontrol ajanı ve bir insektisit içeren bileşimler. | |
JP5611968B2 (ja) | 殺虫および殺ダニ性を有する活性物質の組合せ | |
MX2013000797A (es) | Uso de derivados de antranilamina para combatir insectos y acaros por vertido sobre el suelo, mezclado con el suelo, tratamiento de los surcos, aplicacion por goteo, inyeccion en el suelo, los tallos o las flores, en sistemas hidroponicos, por tratamiento del hoyo de plantacion o aplicacion por inmersion, flotacion o semillero o por tratamiento de semillas, asi como para aumentar la tolerancia al estres en plantas frente al estres abiotico. | |
US20220007651A1 (en) | Bacillus thuringiensis strains and methods for controlling pests | |
BR112020007543A2 (pt) | combinações de composto ativo que têm propriedades inseticidas/acaricidas | |
BR112020007544A2 (pt) | combinações de composto ativo que têm propriedades inseticidas/acaricidas | |
EP2437597A2 (de) | Flubendiamide-nützlings-kombinationen | |
WO2010127787A2 (de) | Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften | |
EP2201838A1 (de) | Wirkstoff-Nützlings-Kombinationen mit insektiziden und akariziden Eigenschaften | |
JP7535037B2 (ja) | パエニバチルス・テラエによる動物害虫の防除方法 | |
BR112019016998A2 (pt) | composições que compreendem células recombinantes de bacillus e um inseticida | |
EP2531030A2 (de) | Wirkstoffkombination enthaltend azadirachtin und eine substituierte enaminocarbonylverbindung | |
BR112020007577A2 (pt) | combinações de composto ativo que têm propriedades inseticidas/acaricidas | |
WO2017174430A1 (en) | Combination of nuclear polyhedrosis virus and diamides | |
WO2021231757A1 (en) | Bacillus thuringiensis strains and methods for controlling pests | |
WO2023092050A1 (en) | Beneficial combinations with recombinant bacillus cells expressing a serine protease |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120103 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20130402 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20130813 |