EP2427369B1 - Pivotable propeller nozzle for a watercraft - Google Patents

Pivotable propeller nozzle for a watercraft Download PDF

Info

Publication number
EP2427369B1
EP2427369B1 EP11705207.6A EP11705207A EP2427369B1 EP 2427369 B1 EP2427369 B1 EP 2427369B1 EP 11705207 A EP11705207 A EP 11705207A EP 2427369 B1 EP2427369 B1 EP 2427369B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
propeller
shaft
nozzle shaft
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11705207.6A
Other languages
German (de)
French (fr)
Other versions
EP2427369A1 (en
Inventor
Dirk Lehmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Becker Marine Systems GmbH and Co KG
Original Assignee
Becker Marine Systems GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Becker Marine Systems GmbH and Co KG filed Critical Becker Marine Systems GmbH and Co KG
Priority to PL11705207T priority Critical patent/PL2427369T3/en
Publication of EP2427369A1 publication Critical patent/EP2427369A1/en
Application granted granted Critical
Publication of EP2427369B1 publication Critical patent/EP2427369B1/en
Priority to HRP20191832TT priority patent/HRP20191832T1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/14Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in non-rotating ducts or rings, e.g. adjustable for steering purpose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/14Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in non-rotating ducts or rings, e.g. adjustable for steering purpose
    • B63H5/15Nozzles, e.g. Kort-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/08Steering gear
    • B63H25/14Steering gear power assisted; power driven, i.e. using steering engine
    • B63H25/34Transmitting of movement of engine to rudder, e.g. using quadrants, brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B3/40Stern posts; Stern frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/46Steering or dynamic anchoring by jets or by rudders carrying jets

Definitions

  • the present invention relates to a pivotable propeller nozzle for watercraft and a nozzle shaft for pivoting the propeller nozzle for watercraft.
  • propeller nozzle Drive units of water vehicles, in particular of ships, are referred to as the propeller nozzle, which comprise a propeller which is surrounded or encased by a nozzle ring.
  • nozzle rings are also called “Kortdüsen”.
  • the arranged inside the nozzle ring propeller is normally fixed, i.
  • the propeller can only be swiveled around the drive or propeller axis.
  • the propeller is connected to the hull via a rotatable but non-pivotable propeller shaft extending along the propeller axis.
  • the propeller shaft is driven by a drive arranged in the hull.
  • the propeller is not (horizontally or vertically) swiveled.
  • the nozzle ring surrounding the propeller is also fixed, d. H. not pivotable, and has only the function to increase the thrust of the drive.
  • propeller nozzles are often used in tugs, supply ships, u. Like., Used, each of which must apply a high thrust.
  • an additional maneuvering arrangement in particular a rudder, in the propeller outflow, ie in order to control the vessel or watercraft, must also be provided. H. in the direction of navigation behind the propeller nozzle, be arranged.
  • the present invention relates exclusively to pivotable propeller nozzles, and more particularly to such pivotal propeller nozzles having a fixed propeller and a nozzle ring pivotable about the fixed propeller.
  • a pivotable nozzle ring not only the thrust of the vessel is increased, but at the same time, the propeller nozzle can be used to control the vessel and can thereby additional Manövrieranlagen, such as rudder replace or make redundant.
  • the pivoting of the nozzle ring about the pivot axis the built-in If the condition is normally vertical, the direction of the propeller exhaust flow can be changed, controlling the vessel. Therefore, pivoting propeller nozzles are also referred to as "rudder nozzles".
  • the nozzle ring When installed, the nozzle ring is normally pivotable along a horizontal plane or about a vertical axis.
  • the term "pivotable” is to be understood in the present case that the nozzle ring is pivotable from its starting position to starboard as well as to port by a predetermined angle, but not by a full 360 ° rotatable.
  • the nozzle ring or the Kortdüse is normally a tapered, preferably rotationally symmetrical trained pipe which forms the wall of the nozzle ring.
  • the propeller nozzles can transfer an extra thrust to the vessel without increasing work efficiency. In addition to propulsion-enhancing properties, this also reduces ramming movements in rough seas, which can reduce speed losses and increase course stability in heavy seas. Since the intrinsic resistance of the propeller nozzle or a Kortdüse increases approximately quadratically with increasing ship speed, their advantages are particularly effective for slow ships that have to produce a large propeller thrust (tugs, fishing vessels, etc.).
  • each bearing for pivotal mounting are provided on the upper and lower sides of the nozzle ring on the outside of its wall.
  • the storage takes place via a mostly flanged shaft, the so-called nozzle shaft, which in turn is connected to a pivot drive or a rowing machine in the watercraft.
  • the propeller nozzle is pivotable by means of the nozzle shaft.
  • On the other hand there is a simple bearing via a track journal, which allows pivoting about the pivot axis or vertical axis.
  • Such lower bearings are also referred to as "Stevensole" storage. Normally, the nozzle ring is pivotable about 30 ° to 35 ° to both sides.
  • From the AT 362 250 B is a nozzle-like shell of a propeller known, which is rotatably mounted by means of a control shaft to a hull.
  • the control shaft is advantageously designed tubular.
  • the DE 1 018 741 B discloses a screw stem for ships with nozzle rudders, wherein the nozzle rudder is rotatably mounted in an upper bearing and in a lower bearing.
  • the US 3,179,081 A describes a combined propulsion and control device for ships, wherein a nozzle and a propeller in connection with an engine outside a ship hull by means of a tubular hanger is arranged so that they can be rotated together as a unit while maintaining fixed relative positions to each other.
  • Fig. 6 1 illustrates an exemplary embodiment of a kortzzle 200 pivotally mounted about the rudder axis of a ship and having a fixed propeller therein as known in the prior art.
  • the Kortdüse 200 is arranged around the fixed ship propeller 210 of a ship (not shown here) around.
  • the Kortdüse is pivoted at an angle ⁇ of about 30 ° about the ship's longitudinal axis 220.
  • the arrow 221 represents the direction of flow of the sea or seawater.
  • a fixed fin 230 is provided on the Kortdüse 200 by which the maneuvering forces of the Kort-rudder nozzle are positively influenced.
  • the nozzle profile is selected such that the entry region 201 is expanded (with respect to the direction of flow through the Kort nozzle 200) of the Kort nozzle 200. This means that the inner diameter of the entrance area is greater than the inner diameter in the remaining area of the Kortdüse 200. This increases the water flow through the Kortdüse 200 and the propeller 210 back, which in turn improves the Korddüse Propulsionseffizienz.
  • the nozzle shaft in known pivotable propeller nozzles is designed as a cylindrical shaft with a solid cross-section, which normally has a diameter of about 250 mm and is connected at its end via flange plates o. The like.
  • a corresponding Counterpart ie, a flange plate and additional reinforcements o.
  • Arranged or out of the wall material of the nozzle ring be formed. This reinforcement and complex flange with reinforcing plates is necessary, since otherwise it could come due to the interface between the relatively thin, solid shaft and the hollow body of the nozzle ring with its relatively thin profile to considerable problems and instability of the connection.
  • a propeller nozzle with the features of claim 1, wherein the pivotable by means of a nozzle shaft propeller nozzle having a fixed propeller and a propeller surrounding the nozzle ring, wherein the nozzle shaft is formed as a hollow body, wherein a nozzle ring facing the end portion of the nozzle shaft firmly the nozzle ring is connected, wherein the nozzle ring facing the end portion of the nozzle shaft is guided into the wall of the nozzle ring, and wherein a pivot drive for the nozzle shaft is at least partially disposed in the interior of the nozzle shaft.
  • the nozzle shaft of the pivotable propeller nozzle is formed as a hollow body or hollow cylinder, and in particular as a cylindrical tube.
  • the hollow body over its entire course in the axial direction, ie along the pivot axis, a constant diameter.
  • the hollow body could basically also be conical or stepped with a plurality of juxtaposed sections of different diameters or in a similar manner.
  • the straight-line course with constant diameter represents the easiest to produce and the most favorable with respect to the torsional and bending loads variant.
  • the nozzle stem has hitherto mostly been made solid, in particular from forged steel.
  • These massive solid-section nozzle shafts have a relatively small diameter, otherwise they would be too heavy.
  • the relatively small diameter has the already mentioned problems in the connection between nozzle shaft and thin-walled nozzle ring result.
  • the nozzle shaft designed as a hollow cylinder has a substantially larger diameter.
  • the diameter is at least twice as large as known from the prior art, conventional solid nozzle shafts.
  • the hollow cylinder has a diameter in the range of 600 mm to 1500 mm, preferably 750 mm to 1250 mm, particularly preferably 900 mm to 1100 mm.
  • the outer diameter of the nozzle shaft will be meant in connection with the aforementioned ranges. In principle, however, the inner diameter could be within the aforementioned ranges.
  • the advantage here is that a very good torsional rigidity is achieved by the large diameter of the hollow cylinder and further high bending moments can be absorbed.
  • a propeller nozzle is provided by the present invention, which has an improved torsional stiffness and can absorb higher bending moments and at the same time, especially in the connection region between the nozzle shaft and nozzle ring, is simple.
  • the wall thickness of the hollow cylinder is 10 mm to 100 mm, preferably 20 mm to 80 mm, particularly preferably 30 mm to 50 mm.
  • the hollow body or the hollow cylinder is made of steel.
  • the hollow cylinder can be provided as a steel tube.
  • the wall thickness of the hollow cylinder is advantageously constant over its entire length, provided there is no stepped or conical design.
  • the nozzle shaft may advantageously be formed in one piece, d. h., Include a single tube, which is fixed with its one end to a nozzle ring of a propeller nozzle and with its other end to a pivot drive.
  • the nozzle ring facing away from the end portion of the nozzle shaft is formed such that it can be connected to a rotary actuator, in particular a rowing machine, for transmitting a torque.
  • the end region is designed such that it can receive a pivoting drive for the nozzle shaft.
  • the pivot drive for the nozzle shaft is at least partially in the interior of the nozzle shaft, that is arranged in the cavity.
  • the outside dimensions of the pivoting drive substantially correspond to the internal dimensions of the hollow cylinder, so that a flush use of the pivoting drive in the hollow cylinder is possible.
  • the pivot drive preferably has a circular cross-section and its outer diameter substantially corresponds to the inner diameter of the nozzle shaft.
  • the assembly is facilitated because the nozzle shaft can be delivered and installed together with the rotary actuator directly as a module.
  • the rotary actuator can be directly attached to the nozzle shaft or, for example, by a resting at the end of the nozzle shaft flange o. The like., Attached to the hull.
  • the pivot drive as a rotary wing drive unit or rotary wing rudder machine is formed. This is compact and therefore particularly suitable for use in the nozzle shaft.
  • the nozzle shaft can advantageously have at one of its two end regions connecting means for connecting the nozzle shaft to a pivoting drive, in particular a rotary-wing drive unit or the like.
  • the nozzle shaft can be formed integrally with the connection means.
  • the connecting means are preferably detachable, in particular by means of a screw, mounted in the end region of the nozzle shaft.
  • the connecting means may further comprise a thrust bearing, with which the nozzle shaft is mounted in the axial direction.
  • the axial bearing can be formed, for example, by a suitably designed end flange, which is arranged on the end side of the end region of the nozzle shaft.
  • the propeller nozzle according to the invention is preferably dimensioned compact, so that disassembly in the dock is possible.
  • the nozzle shaft does not simply come into contact with the outer surface of the nozzle ring, but is inserted into the structure, ie into the interior of the nozzle ring.
  • the nozzle shaft is inserted into the wall of the nozzle ring in such a way that a portion of the nozzle shaft of the end of the nozzle shaft facing the nozzle ring is arranged with a complete nozzle shaft circumference in the interior of the nozzle ring. In other words, the entire end face of the nozzle shaft is completely integrated in the nozzle ring wall.
  • the length of the is in the nozzle ring introduced portion of the nozzle shaft at least 25% of the nozzle ring thickness, ie the profile thickness of the nozzle ring, preferably at least 50%, more preferably at least 75%.
  • This end region of the nozzle shaft is preferably connected to the inside of the inner nozzle profile surface, ie welded and stiffened. As a result, an extremely strong connection is achieved, which resists high loads.
  • the profile of a nozzle ring usually consists of an inner profile surface and an outer profile surface, which are each formed from steel plates. In between, connecting elements or ribs u. Like. Provided for stiffening.
  • the nozzle shaft is therefore passed through the outer profile surface or steel plate and through the entire space between the outer and inner profile surface until it substantially abuts or comes to rest against the inner steel plate or inner wall. As a result, a particularly strong connection can be created in a simple manner.
  • the length of the inserted section of the nozzle shaft corresponds approximately to the profile thickness of the nozzle ring.
  • the nozzle shaft is expediently designed according to the present invention continuously from the interior of the hull to the nozzle ring.
  • the nozzle shaft is connected in its end region to the nozzle ring and with its other end region to the steering machine.
  • Particularly useful in this case is a one-piece design of the nozzle shaft.
  • the propeller nozzle according to the invention thus does not comprise pipe sockets or similar connection pieces which are arranged on the nozzle ring and in turn engages a nozzle shaft, but the nozzle shaft according to the invention extends from the hull into the interior of the nozzle ring, so that no additional attachment means, such as pipe sockets, flange plates or the like, are necessary.
  • the invention does not provide that the cavity of the nozzle shaft is designed as a conduit for the passage of water or oil. Also, no separate lines are provided inside the nozzle shaft.
  • the nozzle shaft is thus used solely for supporting the nozzle ring and as means for pivoting the nozzle ring and not as a hollow guide body.
  • the nozzle shaft of the propeller nozzle according to the invention is pivotable only about its (vertical) longitudinal axis, not pivotable about a horizontal axis or other axis or tiltable.
  • the nozzle shaft is formed stationary or arranged and pivotable only about its own axis.
  • the maximum pivot angle, about which the nozzle shaft is pivotable is 180 °, preferably a maximum of 140 °, particularly preferably a maximum of 90 ° or even a maximum of only 60 °.
  • the propeller nozzle according to the invention is thus, in particular due to the fixed propeller, not rotatable by 360 °.
  • the nozzle ring surrounds the propeller on all sides.
  • the propeller nozzle according to the invention is not a tunneling rudder.
  • the propeller nozzle may be stored in a preferred embodiment only by means of the nozzle shaft and no further storage, in particular no storage in the Stevensohle in the lower region of the nozzle ring.
  • the structure of the entire propeller nozzle is simplified because the lower bearing is eliminated.
  • the propeller effluent is aerodynamically improved, since the lower bearing must be connected in the Stevensohle with the hull and here often generates the flow to the pulled out of the hull Stevensohle aerodynamically unfavorable turbulence.
  • the wall of the nozzle ring at least two, substantially oppositely arranged openings are provided.
  • the openings in each case run through the entire wall and thus consist of an inner and an outer opening area and a central area connecting these two areas.
  • the seawater or seawater can flow from outside the nozzle ring through the at least two openings into the interior of the nozzle ring.
  • This is advantageous to avoid flow recirculation in the outer region of the propeller and directly downstream of the propeller during pivoting or rotation of the nozzle ring, which without the breakthroughs can occur.
  • the two openings are each arranged in a lateral region of the nozzle ring in the installed state.
  • the remaining area of the nozzle ring is closed and provided without further opening.
  • the at least two openings, viewed in the flow direction are preferably to be arranged at the level of the propeller or downstream thereof.
  • the nozzle shaft is at least partially disposed in a Kokerrohr and stored in this.
  • the Kokerrohr is firmly connected to the structure of the vessel and may be located entirely within the vessel or partially outside of this.
  • at least one, in particular cylindrical slide bearing between Kokerrohr and nozzle shaft is preferably provided.
  • the region of the nozzle shaft facing the nozzle ring expediently projects beyond the coker tube, so that its end region can be connected to the nozzle ring.
  • Coker tubes themselves are basically well known from the prior art and typically designed as a hollow cylinder whose inner diameter corresponds approximately to the outer diameter of the nozzle shaft.
  • pivotable nozzle shaft is mounted only on its outer casing and has no inner bearing or the like.
  • Fig. 1 shows a nozzle ring 10 of a propeller nozzle with a designed as a hollow cylinder nozzle shaft 20.
  • the propeller is omitted for clarity.
  • Fig. 2 the same nozzle ring 10 is shown in the installed, ie mounted on a ship state, so that in Fig. 2 the ship propeller 30 is disposed inside the nozzle ring 10.
  • the propeller shaft is in Fig. 2 omitted for clarity.
  • the hull 31 of the ship is shown only in the area where the nozzle shaft is mounted on the same.
  • the hull 31 is shown partially transparent so that a swivel drive 40 mounted on the nozzle shank 20 and designed as a rotary-wing steering machine, which is arranged inside the hull 31, and its connecting structure 44 to the hull 31, are partially recognizable.
  • a swivel drive 40 mounted on the nozzle shank 20 and designed as a rotary-wing steering machine, which is arranged inside the hull 31, and its connecting structure 44 to the hull 31, are partially recognizable.
  • any known embodiment of rotary actuator is conceivable.
  • the nozzle ring 10 has at its propeller downstream end a fixed fin 11 which is arranged approximately centrally and extends from the upper wall portion 10 a of the nozzle ring 10 to the lower wall portion 10 b of the nozzle ring 10.
  • the fin is firmly connected to the nozzle ring 10.
  • the fin can basically be fixed or partially pivotable.
  • the propeller nozzle 100 per se has no lower bearing and is only by means of the upper wall portion 10a of the nozzle ring 10 fixedly mounted nozzle shank 20 suspended or stored (see also Fig. 3 ).
  • the nozzle shaft 20 formed as a cylindrical tube is at least partially supported within a Kokerrohrs 21 which is fixedly connected to the hull 31.
  • the nozzle shaft 20 is pivotable within the fixed Kokerrohrs 21.
  • a closure flange 22 of the nozzle shaft 20 is arranged, which extends beyond the nozzle shaft 20. This flange 22 in turn rests on the outwardly formed recess 21b of the coker tube 21.
  • the upper part of the Kokerrohrs 21 is covered by a cover or a skeg 23.
  • the pivot drive 40 is seated on a from the end flange 22 of the nozzle shaft 20 upwardly projecting, frusto-conical mandrel 24 and is firmly connected to this (see also Fig. 3 ).
  • the torque is transmitted from the pivot drive 40 to the nozzle shaft 20.
  • the nozzle shaft 20 projects with its lower, the nozzle ring 10 facing end portion 20a on the Kokerrohr 21.
  • Fig. 3 shows a longitudinal section through the in the Fig. 1 and 2 illustrated propeller 100.
  • a fin is for clarity in FIG Fig. 3 not shown.
  • the nozzle shaft 20 is mounted in the Kokerrohr 21 via an upper and a lower bearing 25a, 25b, which are both designed as sliding bearings.
  • At the lower end of the Kokerrohrs 21 20 further seals 26 are provided between Kokerrohr 21 and nozzle shank.
  • the lower end portion 20a of the nozzle shaft 20 is guided into the wall of the nozzle ring in the upper wall portion 10a. In this case, the end face 20c of the nozzle shaft 20 adjoins the inner wall side 13a.
  • the outer wall 13b side in the upper wall portion 10a is accordingly broken in the region of the nozzle shaft 20 so that it can be guided into the interior of the wall or of the nozzle ring 10.
  • the nozzle shaft 20 is connected both at its end face 20c and in the outer and inner shell region of the lower end portion 20a fixed to the wall of the nozzle ring 10 by means of weld.
  • nozzle shaft 20 On the upper side of the nozzle shaft 20 sits a fixedly connected to the nozzle shaft flange plate or a askflansch 22 which projects beyond the nozzle shaft 20 and comes in a designated axial bearing 21a in Kokerrohr 21 for support.
  • the Kokerrohr 21 is formed in this area to the outside as Rezess 21b, which receives the thrust bearing 21a.
  • the connection of the mandrel 24 to the pivot drive 40 is designed as a conical connection, but it is all common for rowing machines connection types, such as. by clamping, conceivable. In the case of the cone connection, the mandrel 24 engages in a corresponding receptacle 40a of the pivot drive 40.
  • the nozzle shaft 20 formed as a cylindrical tube has a comparatively large diameter, wherein the outer diameter a1 of the nozzle shaft 20 is greater than or equal to half the total length b1 of the nozzle ring 10.
  • the nozzle shaft 20 is preferably formed as a one-piece steel tube.
  • Fig. 4 shows a longitudinal section through the upper end portion 20b of the nozzle shaft 20 of a further embodiment.
  • the nozzle shaft 20 is mounted by means of two bearings 25a, 25b in a Kokerrohr 21.
  • the lower end portion 20a of the nozzle shaft 20 is also inserted into the wall of the nozzle ring 10 through the outer wall 13b.
  • a receiving flange 41a is provided as a support bearing which is screwed to the rotary drive unit designed as a pivot drive 40 and has an opening through which the pivot drive 40 projects into the nozzle shaft 20.
  • the flange is located on the nozzle shaft 20 and its end face and is connected by means of a screw 42 with this firmly.
  • the pivot drive 40 has a support flange 43 which rests on the hull and which introduces the torque in the hull 31.
  • Fig. 5 is a schematic diagram of a propeller nozzle 100 according to the invention in installed state on a ship. From the ship, only the hull 31 in the area of the stern is partially shown. On the hull 31, a protruding from the hull 31 Kokerrohr 21 is provided, within which a cylindrical nozzle shaft 20 is mounted. At the upper end of the cylindrical nozzle shaft 20, in turn, a pivot drive 40 is mounted for driving the nozzle shaft.
  • the lower end portion 20a of the nozzle shaft 20 is fixedly connected to a nozzle ring 10, in which the lower end 20a is guided into the wall of the nozzle ring 10 and firmly welded to the wall.
  • the ship propeller 30 arranged inside the nozzle ring 10 is indicated schematically, as well as the propeller shaft 32 leading from the ship propeller 30 into the interior of the hull 31.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Nozzles (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Earth Drilling (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Toys (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Die vorliegende Erfindung betrifft eine schwenkbare Propellerdüse für Wasserfahrzeuge sowie einen Düsenschaft zur Verschwenkung der Propellerdüse für Wasserfahrzeuge.The present invention relates to a pivotable propeller nozzle for watercraft and a nozzle shaft for pivoting the propeller nozzle for watercraft.

Als Propellerdüse werden Antriebseinheiten von Wasserfahrzeugen, insbesondere von Schiffen, bezeichnet, die einen Propeller umfassen, der von einem Düsenring umgeben bzw. ummantelt ist. Derartige Düsenringe werden auch "Kortdüsen" genannt. Der im Inneren des Düsenringes angeordnete Propeller ist dabei normalerweise feststehend ausgebildet, d.h. der Propeller ist nur um die Antriebs- bzw. Propellerachse schwenkbar. Hierfür ist der Propeller über eine drehbare, aber nicht schwenkbare, entlang der Propellerachse verlaufende Propellerwelle mit dem Schiffskörper verbunden. Die Propellerwelle wird über einen im Schiffskörper angeordneten Antrieb angetrieben. Der Propeller ist dagegen nicht (horizontal oder vertikal) schwenkbar.Drive units of water vehicles, in particular of ships, are referred to as the propeller nozzle, which comprise a propeller which is surrounded or encased by a nozzle ring. Such nozzle rings are also called "Kortdüsen". The arranged inside the nozzle ring propeller is normally fixed, i. The propeller can only be swiveled around the drive or propeller axis. For this purpose, the propeller is connected to the hull via a rotatable but non-pivotable propeller shaft extending along the propeller axis. The propeller shaft is driven by a drive arranged in the hull. The propeller, however, is not (horizontally or vertically) swiveled.

Bei einfach ausgebildeten Propellerdüsen ist der den Propeller umgebende Düsenring ebenfalls feststehend, d. h. nicht schwenkbar, und hat einzig die Funktion, den Schub des Antriebs zu vergrößern. Insofern werden derartige Propellerdüsen häufig bei Schleppern, Versorgungsschiffen, u. dgl., eingesetzt, die jeweils einen hohen Schub aufbringen müssen. Bei derartigen Propellerdüsen mit feststehenden Düsenringen muss zur Steuerung des Schiffes bzw. Wasserfahrzeuges noch eine zusätzliche Manövrieranordnung, insbesondere ein Ruder, im Propellerabstrom, d. h. in Schifffahrtsrichtung gesehen hinter der Propellerdüse, angeordnet sein.With simply designed propeller nozzles, the nozzle ring surrounding the propeller is also fixed, d. H. not pivotable, and has only the function to increase the thrust of the drive. In this respect, such propeller nozzles are often used in tugs, supply ships, u. Like., Used, each of which must apply a high thrust. In such propeller nozzles with fixed nozzle rings, an additional maneuvering arrangement, in particular a rudder, in the propeller outflow, ie in order to control the vessel or watercraft, must also be provided. H. in the direction of navigation behind the propeller nozzle, be arranged.

Im Gegensatz dazu bezieht sich die vorliegende Erfindung ausschließlich auf schwenkbare Propellerdüsen und insbesondere auf solche schwenkbaren Propellerdüsen, die einen feststehenden Propeller und einen um den feststehenden Propeller herum schwenkbaren Düsenring aufweisen. Durch einen solchen schwenkbaren Düsenring wird nicht nur der Schub des Wasserfahrzeuges erhöht, sondern gleichzeitig kann die Propellerdüse zur Steuerung des Wasserfahrzeuges eingesetzt werden und kann dadurch zusätzliche Manövrieranlagen, wie Ruder, ersetzen bzw. überflüssig machen. Durch die Schwenkung des Düsenringes um die Schwenkachse, die im eingebauten Zustand normalerweise vertikal verläuft, kann die Richtung des Propellerabstroms geändert und somit das Schiff gesteuert werden. Daher werden schwenkbare Propellerdüsen auch als "Ruderdüsen" bezeichnet. Im eingebauten Zustand ist der Düsenring normalerweise entlang einer Horizontalebene bzw. um eine Vertikalachse schwenkbar. Unter dem Begriff "schwenkbar" ist vorliegend zu verstehen, dass der Düsenring von seiner Ausgangsstellung sowohl nach Steuerbord als auch nach Backbord um einen vorgegebenen Winkel verschwenkbar, jedoch nicht um volle 360° drehbar ist.In contrast, the present invention relates exclusively to pivotable propeller nozzles, and more particularly to such pivotal propeller nozzles having a fixed propeller and a nozzle ring pivotable about the fixed propeller. By such a pivotable nozzle ring not only the thrust of the vessel is increased, but at the same time, the propeller nozzle can be used to control the vessel and can thereby additional Manövrieranlagen, such as rudder replace or make redundant. By the pivoting of the nozzle ring about the pivot axis, the built-in If the condition is normally vertical, the direction of the propeller exhaust flow can be changed, controlling the vessel. Therefore, pivoting propeller nozzles are also referred to as "rudder nozzles". When installed, the nozzle ring is normally pivotable along a horizontal plane or about a vertical axis. The term "pivotable" is to be understood in the present case that the nozzle ring is pivotable from its starting position to starboard as well as to port by a predetermined angle, but not by a full 360 ° rotatable.

Der Düsenring bzw. die Kortdüse ist dabei normalerweise ein konisch zulaufendes, bevorzugt rotationssymmetrisch ausgebildetes Rohr, welches die Wandung des Düsenringes bildet. Durch die Verjüngung des Rohres zum Heck des Schiffes hin, können die Propellerdüsen einen zusätzlichen Schub auf das Wasserfahrzeug übertragen, ohne dass die Arbeitsleistung erhöht zu werden braucht. Neben den propulsionsverbessernden Eigenschaften werden hierdurch ferner Stampfbewegungen bei Seegang vermindert, wodurch bei schwerer See die Geschwindigkeitsverluste reduziert und die Kursstabilität erhöht werden können. Da der Eigenwiderstand der Propellerdüse bzw. einer Kortdüse mit zunehmender Schiffsgeschwindigkeit etwa quadratisch ansteigt, werden ihre Vorteile besonders bei langsamen Schiffen wirksam, die einen großen Propellerschub erzeugen müssen (Schlepper, Fischereifahrzeuge, etc.).The nozzle ring or the Kortdüse is normally a tapered, preferably rotationally symmetrical trained pipe which forms the wall of the nozzle ring. By rejuvenating the pipe towards the stern of the ship, the propeller nozzles can transfer an extra thrust to the vessel without increasing work efficiency. In addition to propulsion-enhancing properties, this also reduces ramming movements in rough seas, which can reduce speed losses and increase course stability in heavy seas. Since the intrinsic resistance of the propeller nozzle or a Kortdüse increases approximately quadratically with increasing ship speed, their advantages are particularly effective for slow ships that have to produce a large propeller thrust (tugs, fishing vessels, etc.).

Bei aus dem Stand der Technik bekannten schwenkbaren Propellerdüsen sind an der Ober- und Unterseite des Düsenringes an der Außenseite seiner Wandung jeweils Lager zur schwenkbaren Lagerung vorgesehen. An der Oberseite erfolgt die Lagerung über eine meist angeflanschte Welle, den sogenannten Düsenschaft, der wiederum mit einem Schwenkantrieb bzw. einer Rudermaschine im Wasserfahrzeug verbunden ist. Über diesen Düsen- oder Drehschaft wird das zur Steuerung notwendige Drehmoment auf den Düsenring übertragen, d. h., die Propellerdüse ist mittels des Düsenschaftes schwenkbar. An der Unterseite ist dagegen eine einfache Lagerung über einen Spurzapfen vorhanden, die eine Schwenkung um die Schwenkachse bzw. Vertikalachse zulässt. Derartige untere Lagerungen werden auch als "Lagerung in der Stevensohle" bezeichnet. Normalerweise ist der Düsenring um etwa 30° bis 35° nach beiden Seiten hin schwenkbar.In known from the prior art swivel propeller nozzles each bearing for pivotal mounting are provided on the upper and lower sides of the nozzle ring on the outside of its wall. At the top, the storage takes place via a mostly flanged shaft, the so-called nozzle shaft, which in turn is connected to a pivot drive or a rowing machine in the watercraft. About this nozzle or rotary shaft necessary for the control torque is transmitted to the nozzle ring, ie, the propeller nozzle is pivotable by means of the nozzle shaft. On the other hand, on the underside there is a simple bearing via a track journal, which allows pivoting about the pivot axis or vertical axis. Such lower bearings are also referred to as "Stevensole" storage. Normally, the nozzle ring is pivotable about 30 ° to 35 ° to both sides.

Aus der AT 362 250 B ist eine düsenartige Ummantelung eines Propellers bekannt, welche mittels eines Steuerschaftes drehbar an einem Schiffskörper befestigt ist. Der Steuerschaft ist vorteilhafterweise rohrartig ausgebildet.From the AT 362 250 B is a nozzle-like shell of a propeller known, which is rotatably mounted by means of a control shaft to a hull. The control shaft is advantageously designed tubular.

Die DE 1 018 741 B offenbart einen Schraubensteven für Schiffe mit Düsenruder, wobei das Düsenruder in einem oberen Lager und in einem unteren Lager drehbar gelagert ist.The DE 1 018 741 B discloses a screw stem for ships with nozzle rudders, wherein the nozzle rudder is rotatably mounted in an upper bearing and in a lower bearing.

Die US 3,179,081 A beschreibt eine kombinierte Antriebs- und Steuerungsvorrichtung für Schiffe, wobei eine Düse und ein Propeller in Verbindung mit einem Motor außerhalb einer Schiffshülle mittels einer röhrenförmigen Aufhängevorrichtung derart angeordnet ist, dass diese gemeinsam als Einheit unter Beibehaltung fester relativer Positionen zueinander gedreht werden können.The US 3,179,081 A describes a combined propulsion and control device for ships, wherein a nozzle and a propeller in connection with an engine outside a ship hull by means of a tubular hanger is arranged so that they can be rotated together as a unit while maintaining fixed relative positions to each other.

Fig. 6 veranschaulicht ein Ausführungsbeispiel einer um die Ruderachse eines Schiffes schwenkbar gelagerten Kortdüse 200 mit einem darin angeordneten, feststehenden Schiffspropeller, wie sie aus dem Stand der Technik bekannt ist. Die Kortdüse 200 ist um den feststehenden Schiffspropeller 210 eines Schiffes (hier nicht dargestellt) herum angeordnet. Vorliegend ist die Kortdüse unter einem Winkel α von ca. 30° um die Schiffslängsachse 220 verschwenkt. Der Pfeil 221 stellt die Strömungsrichtung des Meer bzw. Seewassers dar. In Strömungsrichtung hinter dem Propeller ist an der Kortdüse 200 eine feststehende Flosse 230 vorgesehen, durch die die Manövrierkräfte der Kort-Ruderdüse positiv beeinflusst werden. Das Düsenprofil ist so gewählt, dass der Eingangsbereich 201 (in Bezug auf die Richtung des Strömungsdurchflusses durch die Kortdüse 200) der Kortdüse 200 erweitert ausgebildet ist. Das bedeutet, dass der innere Durchmesser des Eingangsbereiches größer ist als der innere Durchmesser im restlichen Bereich der Kortdüse 200. Hierdurch wird der Wasserdurchfluss durch die Kortdüse 200 und zum Propeller 210 hin erhöht, was wiederum die Propulsionseffizienz der Kortdüse verbessert. Fig. 6 1 illustrates an exemplary embodiment of a kortzzle 200 pivotally mounted about the rudder axis of a ship and having a fixed propeller therein as known in the prior art. The Kortdüse 200 is arranged around the fixed ship propeller 210 of a ship (not shown here) around. In the present case the Kortdüse is pivoted at an angle α of about 30 ° about the ship's longitudinal axis 220. The arrow 221 represents the direction of flow of the sea or seawater. In the flow direction behind the propeller, a fixed fin 230 is provided on the Kortdüse 200 by which the maneuvering forces of the Kort-rudder nozzle are positively influenced. The nozzle profile is selected such that the entry region 201 is expanded (with respect to the direction of flow through the Kort nozzle 200) of the Kort nozzle 200. This means that the inner diameter of the entrance area is greater than the inner diameter in the remaining area of the Kortdüse 200. This increases the water flow through the Kortdüse 200 and the propeller 210 back, which in turn improves the Korddüse Propulsionseffizienz.

Der Düsenschaft bei bekannten schwenkbaren Propellerdüsen ist als zylindrischer Schaft mit Vollquerschnitt ausgebildet, der normalerweise einen Durchmesser von ca. 250 mm aufweist und an seinem Endbereich über Flanschplatten o. dgl. mit dem Düsenring verbunden ist. Hierfür muss an der Außenwandung des Düsenringes ein entsprechendes Gegenstück, d. h. eine Flanschplatte und zusätzliche Verstärkungen o. dgl., angeordnet bzw. aus dem Wandungsmaterial des Düsenringes heraus, ausgebildet sein. Diese Verstärkung und aufwendige Anflanschung mit Verstärkungsplatten ist notwendig, da es ansonsten aufgrund der Schnittstelle zwischen dem relativ dünnen, massiven Schaft und dem Hohlkörper des Düsenringes mit seinem relativ dünnen Profil zu erheblichen Problemen und einer Instabilität der Verbindung kommen könnte.The nozzle shaft in known pivotable propeller nozzles is designed as a cylindrical shaft with a solid cross-section, which normally has a diameter of about 250 mm and is connected at its end via flange plates o. The like. With the nozzle ring. For this purpose, on the outer wall of the nozzle ring a corresponding Counterpart, ie, a flange plate and additional reinforcements o. The like., Arranged or out of the wall material of the nozzle ring, be formed. This reinforcement and complex flange with reinforcing plates is necessary, since otherwise it could come due to the interface between the relatively thin, solid shaft and the hollow body of the nozzle ring with its relatively thin profile to considerable problems and instability of the connection.

Daher ist es Aufgabe der vorliegenden Erfindung, eine Propellerdüse anzugeben, bei der die Verbindung zwischen Düsenschaft und Düsenring konstruktiv vereinfacht wird und die gleichzeitig torsionssteif ist und hohen Biegemomenten widerstehen kann.It is therefore an object of the present invention to provide a propeller nozzle, in which the connection between the nozzle shaft and nozzle ring is structurally simplified and which is also torsionally rigid and can withstand high bending moments.

Diese Aufgabe wird durch eine Propellerdüse mit den Merkmalen des Anspruches 1 gelöst, wobei die mittels eines Düsenschaftes schwenkbare Propellerdüse einen feststehenden Propeller und einen den Propeller ummantelnden Düsenring aufweist, wobei der Düsenschaft als Hohlkörper ausgebildet ist, wobei ein dem Düsenring zugewandter Endbereich des Düsenschaftes fest mit dem Düsenring verbunden ist, wobei der dem Düsenring zugewandte Endbereich des Düsenschaftes in die Wandung des Düsenringes hineingeführt ist, und wobei im Inneren des Düsenschaftes ein Schwenkantrieb für den Düsenschaft zumindest teilweise angeordnet ist.This object is achieved by a propeller nozzle with the features of claim 1, wherein the pivotable by means of a nozzle shaft propeller nozzle having a fixed propeller and a propeller surrounding the nozzle ring, wherein the nozzle shaft is formed as a hollow body, wherein a nozzle ring facing the end portion of the nozzle shaft firmly the nozzle ring is connected, wherein the nozzle ring facing the end portion of the nozzle shaft is guided into the wall of the nozzle ring, and wherein a pivot drive for the nozzle shaft is at least partially disposed in the interior of the nozzle shaft.

Gemäß der vorliegenden Erfindung ist der Düsenschaft der schwenkbaren Propellerdüse, um den die Propellerdüse schwenkt, als Hohlkörper oder Hohlzylinder ausgebildet, und insbesondere als zylindrisches Rohr. Bevorzugt weist der Hohlkörper über seinen gesamten Verlauf in Axialrichtung, d. h. entlang der Schwenkachse, einen konstanten Durchmesser auf. Allerdings könnte der Hohlkörper grundsätzlich auch konisch oder abgestuft mit mehreren aneinandergesetzten Abschnitten verschiedener Durchmesser oder in ähnlicher Art und Weise ausgebildet sein. Es hat sich jedoch gezeigt, dass der gradlinige Verlauf mit konstantem Durchmesser die am einfachsten herzustellende und die bezüglich der Torsions- und Biegebelastungen günstigste Variante darstellt. Mittels des als Hohlkörper ausgebildeten Düsenschaftes ist der Düsenring, der um den feststehenden Propeller der Propellerdüse angeordnet ist und diesen ummantelt, schwenkbar.According to the present invention, the nozzle shaft of the pivotable propeller nozzle, about which the propeller nozzle pivots, is formed as a hollow body or hollow cylinder, and in particular as a cylindrical tube. Preferably, the hollow body over its entire course in the axial direction, ie along the pivot axis, a constant diameter. However, the hollow body could basically also be conical or stepped with a plurality of juxtaposed sections of different diameters or in a similar manner. However, it has been shown that the straight-line course with constant diameter represents the easiest to produce and the most favorable with respect to the torsional and bending loads variant. By means of the nozzle body designed as a hollow body of the nozzle ring, which is arranged around the fixed propeller of the propeller nozzle and this encased, pivotable.

Im Gegensatz zur vorliegenden Erfindung wurde bisher der Düsenschaft meist massiv, insbesondere aus Schmiedestahl, hergestellt. Diese massiven Düsenschäfte mit Vollquerschnitt haben einen relativ geringen Durchmesser, da sie ansonsten zu schwer sein würden. Der relativ geringe Durchmesser hat die bereits eingangs erwähnten Probleme bei der Verbindung zwischen Düsenschaft und dünnwandigem Düsenring zur Folge.In contrast to the present invention, the nozzle stem has hitherto mostly been made solid, in particular from forged steel. These massive solid-section nozzle shafts have a relatively small diameter, otherwise they would be too heavy. The relatively small diameter has the already mentioned problems in the connection between nozzle shaft and thin-walled nozzle ring result.

Anders als die aus dem Stand der Technik bekannten massiven Düsenschäfte weist der als Hohlzylinder ausgebildete Düsenschaft einen wesentlich größeren Durchmesser auf. Insbesondere ist der Durchmesser mindestens doppelt so groß wie bei aus dem Stand der Technik bekannten, herkömmlichen massiven Düsenschäften. Der Hohlzylinder weist einen Durchmesser im Bereich von 600 mm bis 1500 mm, bevorzugt 750 mm bis 1250 mm, besonders bevorzugt 900 mm bis 1100 mm auf. Im Regelfall wird im Zusammenhang mit den vorhergenannten Bereichen der Außendurchmesser des Düsenschaftes gemeint sein. Grundsätzlich könnte jedoch auch der Innendurchmesser innerhalb der vorgenannten Bereiche liegen. Vorteil ist hierbei, dass durch den großen Durchmesser des Hohlzylinders eine sehr gute Torsionssteifigkeit erreicht wird und ferner hohe Biegemomente aufgenommen werden können. Gleichzeitig wird dies durch einen geringeren Materialaufwand als bei massiven Düsenschäften erreicht. Ferner wird die Schnittstelle bzw. die Verbindung zwischen Düsenschaft und Düsenring sehr viel stabiler und einfacher herzustellen. Durch den größeren Durchmesser werden die im Verbindungsbereich angreifenden Kräfte auf eine größere Fläche verteilt, so dass keine speziellen Austeifungen, wie Verstärkungsplatten o. dgl., die bei bekannten Propellerdüsen eingesetzt werden, vorgesehen sein müssen. Insgesamt wird daher durch die vorliegende Erfindung eine Propellerdüse geschaffen, die eine verbesserte Torsionssteifigkeit aufweist bzw. höhere Biegemomente aufnehmen kann und die gleichzeitig, insbesondere im Verbindungsbereich zwischen Düsenschaft und Düsenring, einfach aufgebaut ist.Unlike the solid nozzle shafts known from the prior art, the nozzle shaft designed as a hollow cylinder has a substantially larger diameter. In particular, the diameter is at least twice as large as known from the prior art, conventional solid nozzle shafts. The hollow cylinder has a diameter in the range of 600 mm to 1500 mm, preferably 750 mm to 1250 mm, particularly preferably 900 mm to 1100 mm. As a rule, the outer diameter of the nozzle shaft will be meant in connection with the aforementioned ranges. In principle, however, the inner diameter could be within the aforementioned ranges. The advantage here is that a very good torsional rigidity is achieved by the large diameter of the hollow cylinder and further high bending moments can be absorbed. At the same time this is achieved by a lower cost of materials than massive nozzle shafts. Furthermore, the interface or connection between nozzle shaft and nozzle ring becomes much more stable and easier to produce. Due to the larger diameter forces acting in the connection area are distributed over a larger area, so that no special Austeifungen, such as reinforcing plates o. The like., Which are used in known propeller nozzles, must be provided. Overall, therefore, a propeller nozzle is provided by the present invention, which has an improved torsional stiffness and can absorb higher bending moments and at the same time, especially in the connection region between the nozzle shaft and nozzle ring, is simple.

Alternativ oder zusätzlich zur vorgenannten Dimensionierung des Düsenschaftdurchmessers beträgt die Wandstärke des Hohlzylinders 10 mm bis 100 mm, bevorzugt 20 mm bis 80 mm, besonders bevorzugt 30 mm bis 50 mm. Durch Berechnungen und Tests der Anmelderin hat sich gezeigt, dass, wenn der Düsenschaft bezüglich seines Durchmessers bzw. die Wandstärke in den vorgenannten Bereichen liegt, besonders günstige Ergebnisse bezüglich Torsionssteifigkeit und Anschluss an den Düsenring erreicht werden können und gleichzeitig der für die Herstellung des Düsenschaftes benötigte Materialeinsatz möglichst gering gehalten wird.Alternatively or in addition to the aforementioned dimensioning of the nozzle stem diameter, the wall thickness of the hollow cylinder is 10 mm to 100 mm, preferably 20 mm to 80 mm, particularly preferably 30 mm to 50 mm. By calculations and tests of the Applicant has been found that when the nozzle shaft is in terms of its diameter or the wall thickness in the aforementioned ranges, especially favorable results in terms of torsional stiffness and connection to the nozzle ring can be achieved and at the same time the material required for the production of the nozzle shaft material is kept as low as possible.

Zweckmäßigerweise ist der Hohlkörper bzw. der Hohlzylinder aus Stahl gefertigt. Insbesondere kann der Hohlzylinder dabei als Stahlrohr vorgesehen sein. Hierdurch wird ein besonders einfacher Aufbau des Düsenschaftes erreicht. Die Wandstärke des Hohlzylinders ist vorteilhafterweise über seine gesamte Länge hinweg konstant, sofern keine abgestufte oder konische Ausführung vorliegt.Conveniently, the hollow body or the hollow cylinder is made of steel. In particular, the hollow cylinder can be provided as a steel tube. As a result, a particularly simple construction of the nozzle shaft is achieved. The wall thickness of the hollow cylinder is advantageously constant over its entire length, provided there is no stepped or conical design.

Der Düsenschaft kann vorteilhafterweise einstückig ausgebildet sein, d. h., ein einzelnes Rohr umfassen, das mit seinem einen Ende an einem Düsenring einer Propellerdüse und mit seinem anderen Ende an einem Schwenkantrieb befestigt ist.The nozzle shaft may advantageously be formed in one piece, d. h., Include a single tube, which is fixed with its one end to a nozzle ring of a propeller nozzle and with its other end to a pivot drive.

Zweckmäßigerweise ist der dem Düsenring abgewandte Endbereich des Düsenschaftes derart ausgebildet, dass er an einen Schwenkantrieb, insbesondere eine Rudermaschine, zur Übertragung eines Drehmomentes anschließbar ist. Der Endbereich ist derart ausgebildet, dass er einen Schwenkantrieb für den Düsenschaft aufnehmen kann. D. h., der Schwenkantrieb für den Düsenschaft ist zumindest teilweise im Inneren des Düsenschaftes, d. h. in dessen Hohlraum, angeordnet. Hierbei ist es zweckmäßig, dass die Außenabmaße des Schwenkantriebs im Wesentlichen den Innenabmaßen des Hohlzylinders entsprechen, so dass ein bündiger Einsatz des Schwenkantriebs in den Hohlzylinder möglich ist. Entsprechend hat der Schwenkantrieb bevorzugt einen kreisförmigen Querschnitt und ihr Außendurchmesser entspricht im Wesentlichen dem Innendurchmesser des Düsenschaftes. Hierdurch wird erreicht, dass die gesamte Manövrieranlage insgesamt kompakter ausgestaltet werden kann, da der Schwenkantrieb nunmehr im Düsenschaft vorgesehen ist und somit innerhalb des Schiffskörpers kein gesonderter Raum für den Schwenkantrieb mehr von Nöten ist. Auch wird die Montage erleichtert, da der Düsenschaft zusammen mit dem Schwenkantrieb direkt als ein Modul geliefert und eingebaut werden kann. Zur Befestigung des Schwenkantriebs sind entsprechende Befestigungsmittel vorzusehen. Der Schwenkantrieb kann dabei direkt am Düsenschaft oder auch, beispielsweise durch einen am Ende des Düsenschaftes aufliegenden Flansch o. dgl., am Schiffskörper befestigt sein. Insbesondere ist es vorteilhaft, dass der Schwenkantrieb als Drehflügelantriebseinheit bzw. Drehflügelrudermaschine ausgebildet ist. Diese ist kompakt aufgebaut und eignet sich daher besonders zum Einsatz in den Düsenschaft.Conveniently, the nozzle ring facing away from the end portion of the nozzle shaft is formed such that it can be connected to a rotary actuator, in particular a rowing machine, for transmitting a torque. The end region is designed such that it can receive a pivoting drive for the nozzle shaft. D. h., The pivot drive for the nozzle shaft is at least partially in the interior of the nozzle shaft, that is arranged in the cavity. In this case, it is expedient that the outside dimensions of the pivoting drive substantially correspond to the internal dimensions of the hollow cylinder, so that a flush use of the pivoting drive in the hollow cylinder is possible. Accordingly, the pivot drive preferably has a circular cross-section and its outer diameter substantially corresponds to the inner diameter of the nozzle shaft. This ensures that the entire maneuvering system can be made more compact overall, since the pivot drive is now provided in the nozzle shaft and thus within the hull no separate space for the rotary actuator is more necessary. Also, the assembly is facilitated because the nozzle shaft can be delivered and installed together with the rotary actuator directly as a module. For fastening the rotary actuator corresponding fastening means are provided. The rotary actuator can be directly attached to the nozzle shaft or, for example, by a resting at the end of the nozzle shaft flange o. The like., Attached to the hull. In particular, it is advantageous that the pivot drive as a rotary wing drive unit or rotary wing rudder machine is formed. This is compact and therefore particularly suitable for use in the nozzle shaft.

Ferner kann der Düsenschaft vorteilhafterweise an einem seiner beiden Endbereiche Verbindungsmittel zur Verbindung des Düsenschaftes mit einem Schwenkantrieb, insbesondere einer Drehflügelantriebseinheit o. dgl., aufweisen. Grundsätzlich kann der Düsenschaft einstückig mit den Verbindungsmitteln ausgebildet sein. Bevorzugt sind die Verbindungsmittel jedoch lösbar, insbesondere mittels einer Schraubverbindung, im Endbereich des Düsenschaftes angebracht.
Die Verbindungsmittel können ferner ein Axiallager umfassen, mit dem der Düsenschaft in Axialrichtung gelagert wird. Die Axiallagerung kann beispielsweise durch einen geeignet ausgebildeten Abschlussflansch, der stirnseitig am Endbereich des Düsenschaftes angeordnet ist, ausgebildet sein.
Furthermore, the nozzle shaft can advantageously have at one of its two end regions connecting means for connecting the nozzle shaft to a pivoting drive, in particular a rotary-wing drive unit or the like. In principle, the nozzle shaft can be formed integrally with the connection means. However, the connecting means are preferably detachable, in particular by means of a screw, mounted in the end region of the nozzle shaft.
The connecting means may further comprise a thrust bearing, with which the nozzle shaft is mounted in the axial direction. The axial bearing can be formed, for example, by a suitably designed end flange, which is arranged on the end side of the end region of the nozzle shaft.

Ein dem Düsenring zugewandter Endbereich des Düsenschaftes ist fest mit dem Düsenring verbunden. Insbesondere ist es bevorzugt, dass diese Verbindung mittels Schweißen hergestellt wird. Im Gegensatz hierzu sind beim Stand der Technik die massiven Düsenschäfte mittels Flanschplatten o. dgl. mit dem Düsenring lösbar verbolzt. Eine Schweißverbindung oder sonstige feste Verbindung war aufgrund der geringen Durchmesser der bekannten massiven Düsenschäfte sowie auch aufgrund geforderter Demontierbarkeit der Düsenschäfte bisher nicht möglich. Die erfindungsgemäße Propellerdüse wird bevorzugt kompakt dimensioniert, so dass eine Demontage im Dock möglich ist.An end portion of the nozzle shaft facing the nozzle ring is fixedly connected to the nozzle ring. In particular, it is preferable that this compound is produced by welding. In contrast, in the prior art, the massive nozzle shanks by means of flange plates o. The like. Solved with the nozzle ring. A welded joint or other solid connection was previously not possible due to the small diameter of the known massive nozzle shafts and also due to the required disassembly of the nozzle shafts. The propeller nozzle according to the invention is preferably dimensioned compact, so that disassembly in the dock is possible.

Weiterhin ist für die Herstellung der festen Verbindung der dem Düsenring zugewandte Endbereich des Düsenschaftes in den Düsenring, d. h. in den Düsenkörper, insbesondere bis zur inneren Düsenprofilfläche, durchgeführt. Mit anderen Worten kommt der Düsenschaft nicht einfach an der Außenfläche des Düsenringes zur Anlage, sondern wird in die Struktur, d. h. ins Innere des Düsenringes eingeführt. Der Düsenschaft ist derart in die Wandung des Düsenrings eingeführt, dass ein Abschnitt des Düsenschaftes des dem Düsenring zugewandten Endbereich des Düsenschaftes mit kompletten Düsenschaftumfang im Inneren des Düsenrings angeordnet ist. Mit anderen Worten ist die gesamte Stirnseite des Düsenschaftes vollständig in der Düsenringwandung eingebunden. Zweckmäßigerweise beträgt die Länge des in den Düsenring eingeführten Abschnittes des Düsenschaftes mindestens 25 % der Düsenringdicke, d. h. der Profilstärke des Düsenringes, bevorzugt mindestens 50 %, besonders bevorzugt mindestens 75 %. Dieser Endbereich des Düsenschaftes wird bevorzugterweise auf der Innenseite der inneren Düsenprofilfläche angebunden, d. h. verschweißt und ausgesteift. Hierdurch wird eine extrem feste Verbindung erreicht, die hohen Belastungen widersteht.Furthermore, for the production of the fixed connection of the nozzle ring facing the end portion of the nozzle shaft in the nozzle ring, ie in the nozzle body, in particular to the inner nozzle profile surface, performed. In other words, the nozzle shaft does not simply come into contact with the outer surface of the nozzle ring, but is inserted into the structure, ie into the interior of the nozzle ring. The nozzle shaft is inserted into the wall of the nozzle ring in such a way that a portion of the nozzle shaft of the end of the nozzle shaft facing the nozzle ring is arranged with a complete nozzle shaft circumference in the interior of the nozzle ring. In other words, the entire end face of the nozzle shaft is completely integrated in the nozzle ring wall. Conveniently, the length of the is in the nozzle ring introduced portion of the nozzle shaft at least 25% of the nozzle ring thickness, ie the profile thickness of the nozzle ring, preferably at least 50%, more preferably at least 75%. This end region of the nozzle shaft is preferably connected to the inside of the inner nozzle profile surface, ie welded and stiffened. As a result, an extremely strong connection is achieved, which resists high loads.

Das Profil eines Düsenringes besteht in der Regel aus einer inneren Profilfläche und einer äußeren Profilfläche, die jeweils aus Stahlplatten gebildet werden. Dazwischen werden Verbindungselemente bzw. -rippen u. dgl. zur Versteifung vorgesehen. In einer bevorzugten Ausführungsform wird der Düsenschaft daher durch die äußere Profilfläche bzw. Stahlplatte sowie durch den gesamten Zwischenraum zwischen äußerer und innerer Profilfläche hindurchgeführt, bis er im Wesentlichen an die innere Stahlplattung bzw. Innenwand anstößt bzw. zur Anlage kommt. Hierdurch kann auf einfache Art und Weise eine besonders feste Verbindung geschaffen werden. Bei dieser Ausführungsform entspricht die Länge des eingeführten Ausschnitts des Düsenschafts annähernd der Profildicke des Düsenrings.The profile of a nozzle ring usually consists of an inner profile surface and an outer profile surface, which are each formed from steel plates. In between, connecting elements or ribs u. Like. Provided for stiffening. In a preferred embodiment, the nozzle shaft is therefore passed through the outer profile surface or steel plate and through the entire space between the outer and inner profile surface until it substantially abuts or comes to rest against the inner steel plate or inner wall. As a result, a particularly strong connection can be created in a simple manner. In this embodiment, the length of the inserted section of the nozzle shaft corresponds approximately to the profile thickness of the nozzle ring.

Der Düsenschaft ist gemäß der vorliegenden Erfindung zweckmäßigerweise durchgehend vom Inneren des Schiffskörpers bis zum Düsenring ausgebildet. Mit anderen Worten ist der Düsenschaft in seinem Endbereich mit dem Düsenring und mit seinem anderen Endbereich mit der Rudermaschine verbunden. Besonders zweckmäßig ist hierbei eine einstückige Ausführung des Düsenschaftes. Die erfindungsgemäße Propellerdüse umfasst somit keine Rohrstutzen oder ähnliche Anbindungsstücke, die am Düsenring angeordnet sind und in die dann wiederum ein Düsenschaft eingreift, sondern der erfindungsgemäße Düsenschaft verläuft vom Schiffskörper bis ins Innere des Düsenrings hinein, so dass keine zusätzliche Anbindungsmittel, wie beispielsweise Rohrstutzen, Flanschplatten oder dergleichen, notwendig sind.The nozzle shaft is expediently designed according to the present invention continuously from the interior of the hull to the nozzle ring. In other words, the nozzle shaft is connected in its end region to the nozzle ring and with its other end region to the steering machine. Particularly useful in this case is a one-piece design of the nozzle shaft. The propeller nozzle according to the invention thus does not comprise pipe sockets or similar connection pieces which are arranged on the nozzle ring and in turn engages a nozzle shaft, but the nozzle shaft according to the invention extends from the hull into the interior of the nozzle ring, so that no additional attachment means, such as pipe sockets, flange plates or the like, are necessary.

Des Weiteren ist erfindungsgemäß nicht vorgesehen, dass der Hohlraum des Düsenschaftes als Leitung zur Durchleitung von Wasser oder Öl ausgebildet ist. Auch sind im Inneren des Düsenschaftes keine separaten Leitungen vorgesehen. Der Düsenschaft wird somit einzig zur Lagerung des Düsenrings und als Mittel zur Schwenkung des Düsenrings verwendet und nicht als hohler Leitkörper.Furthermore, the invention does not provide that the cavity of the nozzle shaft is designed as a conduit for the passage of water or oil. Also, no separate lines are provided inside the nozzle shaft. The nozzle shaft is thus used solely for supporting the nozzle ring and as means for pivoting the nozzle ring and not as a hollow guide body.

Der Düsenschaft der Propellerdüse ist erfindungsgemäß nur um seine (vertikale) Längsachse schwenkbar, nicht dagegen um eine Horizontalachse oder sonstige Achse schwenkbar bzw. kippbar. Mit anderen Worten ist der Düsenschaft feststehend ausgebildet bzw. angeordnet und nur um seine eigene Achse schwenkbar. Der maximale Schwenkwinkel, um den der Düsenschaft schwenkbar ist, ist 180°, bevorzugt maximal 140°, besonders bevorzugt maximal 90° oder auch maximal nur 60°. Die erfindungsgemäße Propellerdüse ist somit, insbesondere aufgrund des feststehenden Propellers, nicht um 360° drehbar.The nozzle shaft of the propeller nozzle according to the invention is pivotable only about its (vertical) longitudinal axis, not pivotable about a horizontal axis or other axis or tiltable. In other words, the nozzle shaft is formed stationary or arranged and pivotable only about its own axis. The maximum pivot angle, about which the nozzle shaft is pivotable, is 180 °, preferably a maximum of 140 °, particularly preferably a maximum of 90 ° or even a maximum of only 60 °. The propeller nozzle according to the invention is thus, in particular due to the fixed propeller, not rotatable by 360 °.

Zweckmäßigerweise umschließt der Düsenring den Propeller allseitig. Insbesondere handelt es sich bei der erfindungsgemäßen Propellerdüse nicht um ein Tunnel-Ruder.Conveniently, the nozzle ring surrounds the propeller on all sides. In particular, the propeller nozzle according to the invention is not a tunneling rudder.

Durch die besonders fest ausgeführte Verbindungsstelle zwischen Düsenring und Düsenschaft sowie die hohe Torsionssteifigkeit und Biegefestigkeit des Düsenschaftes gemäß der vorliegenden Erfindung kann die Propellerdüse in einer bevorzugten Ausführungsform nur mittels des Düsenschaftes gelagert sein und muss keine weitere Lagerung, insbesondere keine Lagerung in der Stevensohle im unteren Bereich des Düsenringes, aufweisen. Hierdurch wird zum einen der Aufbau der gesamten Propellerdüse vereinfacht, da das untere Lager wegfällt. Ferner wird der Propellerabstrom strömungstechnisch verbessert, da das untere Lager in der Stevensohle mit dem Schiffskörper verbunden sein muss und hier häufig die Anströmung an der aus dem Schiffskörper herausgezogenen Stevensohle strömungstechnisch ungünstige Verwirbelungen erzeugt.Due to the particularly firm connection between the nozzle ring and nozzle shaft and the high torsional stiffness and bending strength of the nozzle shaft according to the present invention, the propeller nozzle may be stored in a preferred embodiment only by means of the nozzle shaft and no further storage, in particular no storage in the Stevensohle in the lower region of the nozzle ring. As a result, on the one hand, the structure of the entire propeller nozzle is simplified because the lower bearing is eliminated. Furthermore, the propeller effluent is aerodynamically improved, since the lower bearing must be connected in the Stevensohle with the hull and here often generates the flow to the pulled out of the hull Stevensohle aerodynamically unfavorable turbulence.

Ferner ist es bevorzugt, dass in der Wandung des Düsenringes mindestens zwei, im Wesentlichen gegenüberliegend angeordnete Durchbrechungen vorgesehen sind. Die Durchbrechungen verlaufen jeweils durch die gesamte Wandung hindurch und bestehen somit aus einem inneren und einem äußeren Öffnungsbereich und einem diese beiden Bereiche verbindenden mittleren Bereich. Hierdurch kann das Meer- bzw. Seewasser von außerhalb des Düsenringes durch die mindestens zwei Durchbrechungen hindurch in das Innere des Düsenringes strömen. Dies ist vorteilhaft, um Strömungsrezirkulationen im Außenbereich des Propellers und direkt stromabwärts vom Propeller beim Verschwenken bzw. Verdrehen des Düsenringes zu vermeiden, die ohne die Durchbrechungen auftreten können. Um diese Rezirkulationen besonders wirksam zu vermeiden, ist es zweckmäßig, dass die beiden Durchbrechungen jeweils in einem seitlichen Bereich des Düsenringes im eingebauten Zustand angeordnet sind. Der übrige Bereich des Düsenringes ist dabei geschlossen und ohne weitere Durchbrechung versehen. Ferner sind die mindestens zwei Durchbrechungen in Strömungsrichtung betrachtet bevorzugterweise auf Höhe des Propellers oder stromabwärts davon anzuordnen.Furthermore, it is preferred that in the wall of the nozzle ring at least two, substantially oppositely arranged openings are provided. The openings in each case run through the entire wall and thus consist of an inner and an outer opening area and a central area connecting these two areas. As a result, the seawater or seawater can flow from outside the nozzle ring through the at least two openings into the interior of the nozzle ring. This is advantageous to avoid flow recirculation in the outer region of the propeller and directly downstream of the propeller during pivoting or rotation of the nozzle ring, which without the breakthroughs can occur. In order to avoid these recirculations particularly effective, it is expedient that the two openings are each arranged in a lateral region of the nozzle ring in the installed state. The remaining area of the nozzle ring is closed and provided without further opening. Furthermore, the at least two openings, viewed in the flow direction, are preferably to be arranged at the level of the propeller or downstream thereof.

Um die Stabilität und Biegefestigkeit des Düsenschaftes weiter zu verbessern ist es vorteilhaft, dass der Düsenschaft zumindest bereichsweise in einem Kokerrohr angeordnet und in diesem gelagert ist. Das Kokerrohr ist fest mit der Struktur des Wasserfahrzeuges verbunden und kann komplett innerhalb des Wasserfahrzeuges oder auch teilweise außerhalb von diesem angeordnet sein. Insbesondere ist es vorteilhaft, im oberen und im unteren Bereich des Kokerrohrs jeweils ein Lager zwischen Kokerrohr und Düsenschaft vorzusehen. Hierbei ist bevorzugt mindestens ein, insbesondere zylindrisches Gleitlager zwischen Kokerrohr und Düsenschaft vorgesehen. Der dem Düsenring zugewandte Bereich des Düsenschaftes steht zweckmäßigerweise über das Kokerrohr hinaus vor, so dass dessen Endbereich mit dem Düsenring verbunden werden kann. Kokerrohre an sich sind grundsätzlich aus dem Stand der Technik hinlänglich bekannt und typischerweise als Hohlzylinder ausgebildet, dessen Innendurchmesser in etwa dem Außendurchmesser des Düsenschaftes entspricht.In order to further improve the stability and bending strength of the nozzle shaft, it is advantageous that the nozzle shaft is at least partially disposed in a Kokerrohr and stored in this. The Kokerrohr is firmly connected to the structure of the vessel and may be located entirely within the vessel or partially outside of this. In particular, it is advantageous to provide a bearing between the coker tube and the nozzle shaft in each case in the upper and in the lower region of the coker tube. In this case, at least one, in particular cylindrical slide bearing between Kokerrohr and nozzle shaft is preferably provided. The region of the nozzle shaft facing the nozzle ring expediently projects beyond the coker tube, so that its end region can be connected to the nozzle ring. Coker tubes themselves are basically well known from the prior art and typically designed as a hollow cylinder whose inner diameter corresponds approximately to the outer diameter of the nozzle shaft.

Grundsätzlich ist es bevorzugt, dass der schwenkbare Düsenschaft nur an seinem Außenmantel gelagert ist und keine innenliegenden Lager o. dgl. aufweist.In principle, it is preferred that the pivotable nozzle shaft is mounted only on its outer casing and has no inner bearing or the like.

Im Folgenden wird die Erfindung anhand der in den Zeichnungen dargestellten verschiedenen Ausführungsformen näher erläutert. Es zeigen schematisch:

Fig. 1
eine beispielhaft die Erfindung erläuternde perspektivische Frontansicht eines Düsenringes mit außenliegendem Schwenkantrieb und rückseitig angeordneter Flosse,
Fig. 2
eine beispielhaft die Erfindung erläuternde perspektivische Frontansicht einer Propellerdüse mit rückseitig angeordneter Flosse und Anordnung an einem Schiffskörper eines Zweischraubers, nicht dargestellt sind Propellerwelle und Stevenrohr,
Fig. 3
einen Längsschnitt durch eine beispielhaft die Erfindung erläuternde Propellerdüse,
Fig. 4
einen Längsschnitt durch den oberen Endbereich des Düsenschaftes mit im Düsenschaft angeordnetem Schwenkantrieb gemäß einer Ausführungsform der Erfindung, und
Fig. 5
eine Prinzipiendarstellung des hinteren Schiffskörpers mit Propellerdüse und Propellerschaft gemäß einer Ausführungsform der Erfindung.
In the following the invention will be explained in more detail with reference to the various embodiments shown in the drawings. They show schematically:
Fig. 1
an example of the invention illustrative perspective front view of a nozzle ring with external pivot drive and fin arranged rear,
Fig. 2
an example of the invention illustrative perspective front view of a propeller nozzle with rear-mounted fin and arrangement a hull of a twin-screw, not shown are propeller shaft and sterntube,
Fig. 3
a longitudinal section through an exemplary illustrative of the invention propeller nozzle,
Fig. 4
a longitudinal section through the upper end portion of the nozzle shaft with arranged in the nozzle shaft pivot drive according to an embodiment of the invention, and
Fig. 5
a schematic representation of the rear hull with propeller nozzle and propeller shaft according to an embodiment of the invention.

Bei den in den nachfolgenden Figuren darstellten verschiedenen Ausführungsformen sind gleiche Bestandteile mit gleichen Bezugszeichen versehen.In the illustrated in the following figures various embodiments, the same components are provided with the same reference numerals.

Fig. 1 zeigt einen Düsenring 10 einer Propellerdüse mit einem als Hohlzylinder ausgebildeten Düsenschaft 20. Der Propeller ist der Übersichtlichkeit halber weggelassen. In Fig. 2 ist derselbe Düsenring 10 im eingebauten, d. h. an einem Schiff montierten Zustand gezeigt, so dass in Fig. 2 der Schiffspropeller 30 im Inneren des Düsenringes 10 angeordnet ist. Die Propellerwelle ist in Fig. 2 der Übersichtlichkeit halber weggelassen. Der Schiffskörper 31 des Schiffes ist nur in dem Bereich dargestellt, in dem der Düsenschaft am selben montiert ist. Gleichzeitig ist der Schiffskörper 31 teilweise durchsichtig dargestellt, so dass ein auf dem Düsenschaft 20 aufsitzender, als Drehflügelrudermaschine ausgebildeter Schwenkantrieb 40, der im Inneren des Schiffskörpers 31 angeordnet ist, und dessen Anschlußkonstruktion 44 an den Schiffskörper 31, teilweise erkennbar sind. In dieser dargestellten Variante ist jedoch jede beliebige bekannte Ausführungsform von Schwenkantrieb denkbar. Fig. 1 shows a nozzle ring 10 of a propeller nozzle with a designed as a hollow cylinder nozzle shaft 20. The propeller is omitted for clarity. In Fig. 2 the same nozzle ring 10 is shown in the installed, ie mounted on a ship state, so that in Fig. 2 the ship propeller 30 is disposed inside the nozzle ring 10. The propeller shaft is in Fig. 2 omitted for clarity. The hull 31 of the ship is shown only in the area where the nozzle shaft is mounted on the same. At the same time, the hull 31 is shown partially transparent so that a swivel drive 40 mounted on the nozzle shank 20 and designed as a rotary-wing steering machine, which is arranged inside the hull 31, and its connecting structure 44 to the hull 31, are partially recognizable. In this illustrated variant, however, any known embodiment of rotary actuator is conceivable.

Der Düsenring 10 weist an seinem propellerabstromseitigen Ende eine fest installierte Flosse 11 auf, die in etwa mittig angeordnet ist und vom oberen Wandungsbereich 10a des Düsenringes 10 bis zum unteren Wandungsbereich 10b des Düsenringes 10 verläuft. Die Flosse ist mit dem Düsenring 10 fest verbunden. Die Flosse kann grundsätzlich feststehend oder auch teilweise schwenkbar ausgebildet sein.The nozzle ring 10 has at its propeller downstream end a fixed fin 11 which is arranged approximately centrally and extends from the upper wall portion 10 a of the nozzle ring 10 to the lower wall portion 10 b of the nozzle ring 10. The fin is firmly connected to the nozzle ring 10. The fin can basically be fixed or partially pivotable.

Die Propellerdüse 100 an sich weist kein unteres Lager auf und ist nur mittels des im oberen Wandungsbereich 10a des Düsenringes 10 fest angebrachten Düsenschaftes 20 aufgehängt bzw. gelagert (siehe auch Fig. 3). Der als zylindrisches Rohr ausgebildete Düsenschaft 20 ist zumindest teilweise innerhalb eines Kokerrohrs 21 gelagert, welches fest mit dem Schiffskörper 31 verbunden ist. Der Düsenschaft 20 ist innerhalb des feststehenden Kokerrohrs 21 schwenkbar. Im oberen, dem Schiffskörper 31 zugewandten Ende des Kokerrohrs 21 ist ein Abschlussflansch 22 des Düsenschaftes 20 angeordnet, der über den Düsenschaft 20 hinwegsteht. Dieser Flansch 22 liegt wiederum auf dem nach außen ausgeformten Rezess 21b des Kokerrohres 21 auf.The propeller nozzle 100 per se has no lower bearing and is only by means of the upper wall portion 10a of the nozzle ring 10 fixedly mounted nozzle shank 20 suspended or stored (see also Fig. 3 ). The nozzle shaft 20 formed as a cylindrical tube is at least partially supported within a Kokerrohrs 21 which is fixedly connected to the hull 31. The nozzle shaft 20 is pivotable within the fixed Kokerrohrs 21. In the upper, the hull 31 facing the end of the Kokerrohrs 21, a closure flange 22 of the nozzle shaft 20 is arranged, which extends beyond the nozzle shaft 20. This flange 22 in turn rests on the outwardly formed recess 21b of the coker tube 21.

Bei der Darstellung in Fig. 2 ist der obere Teil des Kokerrohrs 21 von einer Abdeckung bzw. einem Skeg 23 verdeckt. Der Schwenkantrieb 40 sitzt auf einem vom Abschlussflansch 22 des Düsenschaftes 20 nach oben vorstehenden, kegelstumpfförmigen Dorn 24 auf und ist mit diesem fest verbunden (siehe auch Fig. 3). Über diesen kegelstumpfförmigen Dorn 24 wird das Drehmoment von dem Schwenkantrieb 40 auf den Düsenschaft 20 übertragen. Der Düsenschaft 20 steht mit seinem unteren, dem Düsenring 10 zugewandten Endbereich 20a über das Kokerrohr 21 hervor.When displayed in Fig. 2 the upper part of the Kokerrohrs 21 is covered by a cover or a skeg 23. The pivot drive 40 is seated on a from the end flange 22 of the nozzle shaft 20 upwardly projecting, frusto-conical mandrel 24 and is firmly connected to this (see also Fig. 3 ). About this frustum-shaped mandrel 24, the torque is transmitted from the pivot drive 40 to the nozzle shaft 20. The nozzle shaft 20 projects with its lower, the nozzle ring 10 facing end portion 20a on the Kokerrohr 21.

Fig. 3 zeigt einen Längsschnitt durch die in den Fig. 1 und 2 dargestellte Propellerdüse 100. Eine Flosse ist der Übersichtlichkeit halber in Fig. 3 nicht dargestellt. Der Düsenschaft 20 ist über ein oberes und ein unteres Lager 25a, 25b, welche beide als Gleitlager ausgebildet sind, im Kokerrohr 21 gelagert. Am unteren Ende des Kokerrohrs 21 sind zwischen Kokerrohr 21 und Düsenschaft 20 ferner Dichtungen 26 vorgesehen. Der untere Endbereich 20a des Düsenschaftes 20 ist in die Wandung des Düsenringes im oberen Wandungsbereich 10a hineingeführt. Dabei grenzt die Stirnfläche 20c des Düsenschaftes 20 an die Wandungsinnenseite 13a an. Die Wandungsaußenseite 13b im oberen Wandungsbereich 10a ist entsprechend im Bereich des Düsenschaftes 20 durchbrochen, so dass dieser ins Innere der Wandung bzw. des Düsenringes 10 hineingeführt werden kann. Der Düsenschaft 20 ist sowohl an seiner Stirnseite 20c als auch im äußeren und inneren Mantelbereich des unteren Endbereiches 20a fest mit der Wandung des Düsenringes 10 mittels Schweißnaht verbunden. Durch den in den oberen Wandungsbereich 10a eingeführten unteren Endbereich 20a des Düsenschaftes 20 ist die Verbindung zwischen Düsenschaft 20 und Düsenring 10 sehr viel stabiler als bei der aus dem Stand der Technik bekannten Verbindungsweise, bei der die Stirnfläche eines Düsenschaftes mit geringen Durchmesser auf der Wandungsaußenseite 13a oder einer darauf angebrachten Verstärkungsplatte o. dgl. anliegt. Fig. 3 shows a longitudinal section through the in the Fig. 1 and 2 illustrated propeller 100. A fin is for clarity in FIG Fig. 3 not shown. The nozzle shaft 20 is mounted in the Kokerrohr 21 via an upper and a lower bearing 25a, 25b, which are both designed as sliding bearings. At the lower end of the Kokerrohrs 21 20 further seals 26 are provided between Kokerrohr 21 and nozzle shank. The lower end portion 20a of the nozzle shaft 20 is guided into the wall of the nozzle ring in the upper wall portion 10a. In this case, the end face 20c of the nozzle shaft 20 adjoins the inner wall side 13a. The outer wall 13b side in the upper wall portion 10a is accordingly broken in the region of the nozzle shaft 20 so that it can be guided into the interior of the wall or of the nozzle ring 10. The nozzle shaft 20 is connected both at its end face 20c and in the outer and inner shell region of the lower end portion 20a fixed to the wall of the nozzle ring 10 by means of weld. By the introduced into the upper wall portion 10a lower end portion 20a of the nozzle shaft 20, the connection between the nozzle shaft 20 and nozzle ring 10 is much more stable than in the known from the prior art connection manner, in which the end face of a nozzle shaft with a small diameter on the outer wall 13a or a reinforcing plate or the like attached thereto.

Auf der Oberseite des Düsenschaftes 20 sitzt eine fest mit dem Düsenschaft verbundene Flanschplatte bzw. ein Abschlussflansch 22 auf, der über den Düsenschaft 20 hervorsteht und in einem dafür vorgesehenen Axiallager 21a im Kokerrohr 21 zur Auflage kommt. Das Kokerrohr 21 ist in diesem Bereich nach außen hin als Rezess 21b ausgeformt, welcher das Axiallager 21a aufnimmt.On the upper side of the nozzle shaft 20 sits a fixedly connected to the nozzle shaft flange plate or a Abschlussflansch 22 which projects beyond the nozzle shaft 20 and comes in a designated axial bearing 21a in Kokerrohr 21 for support. The Kokerrohr 21 is formed in this area to the outside as Rezess 21b, which receives the thrust bearing 21a.

Mittig vom Abschlussflansch 22 steht ein kegelstumpfförmiger Dorn 24 vor, der einstückig mit dem Abschlussflansch 22 ausgebildet ist. Der Anschluss des Dorns 24 an den Schwenkantrieb 40 ist als Konusverbindung ausgeführt, es sind jedoch alle für Rudermaschinen üblichen Verbindungsarten, wie z.B. durch Klemmung, denkbar. Bei der Konusverbindung greift der Dorn 24 in eine korrespondierende Aufnahme 40a des Schwenkantriebs 40 ein. Der als zylindrisches Rohr ausgebildete Düsenschaft 20 weist einen vergleichsweise großen Durchmesser auf, wobei der Außendurchmesser a1 des Düsenschaftes 20 größer oder gleich der Hälfte der Gesamtlänge b1 des Düsenringes 10 ist. Der Düsenschaft 20 ist bevorzugt als einteiliges Stahlrohr ausgebildet.Center of the end flange 22 is a frusto-conical mandrel 24, which is integrally formed with the end flange 22. The connection of the mandrel 24 to the pivot drive 40 is designed as a conical connection, but it is all common for rowing machines connection types, such as. by clamping, conceivable. In the case of the cone connection, the mandrel 24 engages in a corresponding receptacle 40a of the pivot drive 40. The nozzle shaft 20 formed as a cylindrical tube has a comparatively large diameter, wherein the outer diameter a1 of the nozzle shaft 20 is greater than or equal to half the total length b1 of the nozzle ring 10. The nozzle shaft 20 is preferably formed as a one-piece steel tube.

Fig. 4 zeigt einen Längsschnitt durch den oberen Endbereich 20b des Düsenschaftes 20 einer weiteren Ausführungsform. Auch bei dieser Ausführungsform ist der Düsenschaft 20 mittels zweier Lager 25a, 25b in einem Kokerrohr 21 gelagert. Ferner ist ebenfalls der untere Endbereich 20a des Düsenschaftes 20 durch die Wandungsaußenseite 13b hindurch in die Wandung des Düsenringes 10 eingeführt. Im Gegensatz zur vorher beschriebenen Ausführungsform ist bei der Darstellung in Fig. 4 der größte Teil des Schwenkantriebs 40 im Inneren des hohlen Düsenschaftes 20, und insbesondere im oberen Düsenschaftsbereich 20b, angeordnet. Hierfür ist ein Aufnahmeflansch 41a als Traglager vorgesehen, der mit dem als Drehflügelantriebseinheit ausgebildeten Schwenkantrieb 40 verschraubt ist und einen Durchbruch aufweist, durch den der Schwenkantrieb 40 in den Düsenschaft 20 hineinragt. Der Flansch liegt auf dem Düsenschaft 20 bzw. dessen Stirnfläche auf und ist mittels einer Schraubverbindung 42 mit diesem fest verbunden. Ferner weist der Schwenkantrieb 40 einen Stützflansch 43 auf, der auf dem Schiffskörper aufliegt und der das Drehmoment in den Schiffskörper 31 einleitet. Durch die in Fig. 4 dargestellte Konstruktion wird erreicht, dass ein Großteil des für den Schwenkantrieb 40 benötigten Raumvolumens ins Innere des hohlen Düsenschaftes 20 verlegt wird und somit im Schiffskörper kein extra Platzbedarf für den Schwenkantrieb 40 besteht. Fig. 4 shows a longitudinal section through the upper end portion 20b of the nozzle shaft 20 of a further embodiment. Also in this embodiment, the nozzle shaft 20 is mounted by means of two bearings 25a, 25b in a Kokerrohr 21. Further, the lower end portion 20a of the nozzle shaft 20 is also inserted into the wall of the nozzle ring 10 through the outer wall 13b. In contrast to the previously described embodiment is in the illustration in Fig. 4 the largest part of the pivot drive 40 in the interior of the hollow nozzle shaft 20, and in particular in the upper nozzle shaft portion 20b, arranged. For this purpose, a receiving flange 41a is provided as a support bearing which is screwed to the rotary drive unit designed as a pivot drive 40 and has an opening through which the pivot drive 40 projects into the nozzle shaft 20. The flange is located on the nozzle shaft 20 and its end face and is connected by means of a screw 42 with this firmly. Further, the pivot drive 40 has a support flange 43 which rests on the hull and which introduces the torque in the hull 31. By the in Fig. 4 shown construction is achieved that a large part of the space required for the pivot drive 40 volume in the Inside the hollow nozzle shaft 20 is moved and thus no extra space for the pivot drive 40 in the hull.

Fig. 5 ist eine Prinzipiendarstellung einer erfindungsgemäßen Propellerdüse 100 in an einem Schiff eingebautem Zustand. Vom Schiff ist nur der Schiffskörper 31 im Bereich des Hecks teilweise dargestellt. Am Schiffskörper 31 ist ein aus dem Schiffskörper 31 hervorstehendes Kokerrohr 21 vorgesehen, innerhalb dessen ein zylindrischer Düsenschaft 20 gelagert wird. Am oberen Ende des zylindrischen Düsenschaftes 20 ist wiederum ein Schwenkantrieb 40 zum Antrieb des Düsenschaftes gelagert. Der untere Endbereich 20a des Düsenschaftes 20 ist fest mit einem Düsenring 10 verbunden, in dem das untere Ende 20a in die Wandung des Düsenringes 10 hineingeführt und mit der Wandung fest verschweißt wird. Ferner ist der im Inneren des Düsenringes 10 angeordnete Schiffspropeller 30 schematisch angedeutet, sowie die vom Schiffspropeller 30 ins Innere des Schiffskörpers 31 führende Propellerwelle 32. Fig. 5 is a schematic diagram of a propeller nozzle 100 according to the invention in installed state on a ship. From the ship, only the hull 31 in the area of the stern is partially shown. On the hull 31, a protruding from the hull 31 Kokerrohr 21 is provided, within which a cylindrical nozzle shaft 20 is mounted. At the upper end of the cylindrical nozzle shaft 20, in turn, a pivot drive 40 is mounted for driving the nozzle shaft. The lower end portion 20a of the nozzle shaft 20 is fixedly connected to a nozzle ring 10, in which the lower end 20a is guided into the wall of the nozzle ring 10 and firmly welded to the wall. Furthermore, the ship propeller 30 arranged inside the nozzle ring 10 is indicated schematically, as well as the propeller shaft 32 leading from the ship propeller 30 into the interior of the hull 31.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

100100
PropellerdüsePropeller
1010
Düsenringnozzle ring
10a10a
oberer WandungsbereichUpper wall area
10b10b
unterer Wandungsbereichlower wall area
1111
Flossefin
1212
unteres Flossenlagerlower fin bearing
13a13a
Wandungsinnenseitewall inner side
13b13b
WandungsaußenseiteWandungsaußenseite
2020
Düsenschaftnozzle shaft
20a20a
unterer Endbereichlower end area
20b20b
oberer Endbereichupper end area
20c20c
Stirnseite DüsenschaftFront side nozzle shaft
2121
Kokerrohrrudder pipe
21a21a
Axiallagerthrust
21b21b
Rezesswritten settlement
2222
Abschlussflanschend flange
2323
Skegskeg
2424
Dornmandrel
25a25a
oberes KokerlagerUpper Kokerlager
25b25b
unteres KokerlagerLower Koker camp
2626
Dichtungpoetry
3030
Propellerpropeller
3131
Schiffskörperhull
3232
Propellerwellepropeller shaft
4040
SchwenkantriebRotary actuator
40a40a
Aufnahmeadmission
41a41a
Flanschflange
4242
Schraubverbindungscrew
4343
Stützflanschsupport flange
4444
Anschlusskonstruktionadjacent construction
a1a1
Außendurchmesser DüsenschaftOuter diameter nozzle shaft
b1b1
Länge DüsenringLength of nozzle ring

Claims (10)

  1. A propeller nozzle for watercraft, in particular a Kort nozzle, with a fixed propeller (30) and a nozzle ring (10) surrounding the propeller (30), said nozzle ring being pivotable by means of a nozzle shaft (20),
    wherein the nozzle shaft (20) is designed as a hollow body, in particular as a cylindrical tube,
    wherein an end region (20a) of the nozzle shaft (20) facing the nozzle ring (10) is fixedly connected to the nozzle ring (10), in particular by means of welding,
    characterized in that
    the end region (20a) of the nozzle shaft (20) facing the nozzle ring (10) is inserted into the wall of the nozzle ring (10) and preferably contacts the inner wall (13a) of the nozzle ring (10) with its front face (20c), and
    a pivot drive (40) for the nozzle shaft (20) is arranged at least partially in the interior of the nozzle shaft (20).
  2. The propeller nozzle according to claim 1, characterized in that
    the nozzle shaft preferably has a constant diameter in the axial direction across its entire course, and/or
    the nozzle shaft (20) has a diameter in the range from 60 cm to 150 cm, preferably 75 cm to 125 cm, particularly preferably 90 cm to 110 cm, and/or the wall thickness of the nozzle shaft (20) is 1 cm to 10 cm, preferably 2 cm to 8 cm, particularly preferably 3 cm to 5 cm.
  3. The propeller nozzle according to claim 1 or 2,
    characterized in that
    the nozzle shaft (20) is manufactured from steel.
  4. The propeller nozzle according to any one of the preceding claims,
    characterized in that
    the pivot drive (40) for the propeller shaft (20), in particular a rotary-wing drive unit, is arranged in an end region of the nozzle shaft (20), wherein the outer dimensions of the pivot drive (40) preferably correspond substantially to the inner dimensions of the hollow body.
  5. The propeller nozzle according to any one of the preceding claims,
    characterized in that
    connection means are provided at an end region of the nozzle shaft (20) for connecting to a pivot drive (40) for pivoting the nozzle shaft (20), in particular a rotary-wing drive unit, wherein the connection means are preferably detachably connected to the nozzle shaft (20).
  6. The propeller nozzle according to claim 5,
    characterized in that
    the connection means comprise an axial bearing (22) for axially mounting the nozzle shaft (20).
  7. The propeller nozzle according to any one of the preceding claims,
    characterized in that
    the propeller nozzle (100) is mounted only by means of the nozzle shaft (20) and has no other mounting.
  8. The propeller nozzle according to any one of the preceding claims,
    characterized in that
    at least two openings, arranged substantially opposite each other, are provided in the wall of the nozzle ring (10).
  9. The propeller nozzle according to any one of the preceding claims,
    characterized in that
    the region of the nozzle shaft (20) facing the nozzle ring (10) projects out past the trunk pipe (21).
  10. A water vehicle,
    characterized in that
    it comprises a propeller nozzle (100) according to any one of the preceding claims.
EP11705207.6A 2010-02-22 2011-02-22 Pivotable propeller nozzle for a watercraft Active EP2427369B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL11705207T PL2427369T3 (en) 2010-02-22 2011-02-22 Pivotable propeller nozzle for a watercraft
HRP20191832TT HRP20191832T1 (en) 2010-02-22 2019-10-10 Pivotable propeller nozzle for a watercraft

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010002213A DE102010002213A1 (en) 2010-02-22 2010-02-22 Rotatable nozzle propeller for watercraft
DE102010029430A DE102010029430A1 (en) 2010-02-22 2010-05-28 Rotatable nozzle propeller for watercraft
PCT/EP2011/052599 WO2011101489A1 (en) 2010-02-22 2011-02-22 Pivotable propeller nozzle for a watercraft

Publications (2)

Publication Number Publication Date
EP2427369A1 EP2427369A1 (en) 2012-03-14
EP2427369B1 true EP2427369B1 (en) 2019-09-18

Family

ID=44356810

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11705207.6A Active EP2427369B1 (en) 2010-02-22 2011-02-22 Pivotable propeller nozzle for a watercraft

Country Status (13)

Country Link
US (1) US9011088B2 (en)
EP (1) EP2427369B1 (en)
JP (1) JP5596181B2 (en)
KR (2) KR101879522B1 (en)
CN (1) CN102470913B (en)
BR (1) BR112012000442A2 (en)
CA (1) CA2766929C (en)
DE (2) DE102010002213A1 (en)
ES (1) ES2759780T3 (en)
HR (1) HRP20191832T1 (en)
PL (1) PL2427369T3 (en)
SG (1) SG177299A1 (en)
WO (1) WO2011101489A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011053619A1 (en) * 2011-09-14 2013-03-14 Becker Marine Systems Gmbh & Co. Kg Propeller nozzle for watercraft
CA2846137C (en) * 2014-03-14 2015-08-18 Peter Van Diepen Shallow draft propeller nozzle
CN104554684B (en) * 2015-01-06 2017-05-17 舟山欣臻船舶设计有限公司 Multi-functional current guide sleeve for ship
CN105460191B (en) * 2015-12-30 2017-08-25 浙江盛泰防务科技有限公司 A kind of Power Component of aquatic life-saving equipment
JP1562438S (en) * 2016-02-19 2016-11-07
CN109050853B (en) * 2018-08-10 2021-02-19 哈尔滨工程大学 Marine detachable ducted propeller
CN111645838B (en) * 2020-06-15 2021-04-06 中国船舶科学研究中心 Pipe oar supports subregion guiding device that prerevolves

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US123629A (en) * 1872-02-13 Improvement in steering apparatus for vessels
US313733A (en) * 1885-03-10 Leonhaed hbydt
US1306913A (en) * 1919-06-17 John george atjlsebrook kitchen
US899359A (en) * 1908-09-22 Yasuzo Wadagaki Marine propulsion.
US1805597A (en) * 1929-02-28 1931-05-19 Pratt Alexander Mckenzie Method of and means for propelling water craft
US2139594A (en) * 1936-02-08 1938-12-06 Kort Ludwig Combined propelling and steering device for screw propelled ships
GB502564A (en) * 1937-07-20 1939-03-20 Ludwig Kort Improvements in combined propelling and steering device for screw-propelled ships
US2483675A (en) * 1946-06-21 1949-10-04 Garnett G Sheldon Jet flow rudder
DE966830C (en) * 1952-11-11 1957-09-12 Uddevallavarvet Aktiebolag Control device for a ship's rudder with a pressure-actuated rotary wing drive built into the rudder
US2800150A (en) * 1955-06-07 1957-07-23 Sr Frederick F Farwell Rudder for screw driven vessels
DE1018741B (en) 1955-09-03 1957-10-31 L Kort Dipl Ing Propeller stem for ships with jet rudder
DE1110041B (en) * 1958-04-03 1961-06-29 Ruth Kort Geb Baumert Sheathing of propellers
DE1129856B (en) * 1959-11-26 1962-05-17 Ruth Binner Kort Propulsion and steering device for ships
US3082728A (en) * 1961-04-26 1963-03-26 Bailey P Dawes Rudder and rudder-propeller combination
US3179081A (en) * 1963-11-08 1965-04-20 Ingenieur Buro Kort Combined propulsion and steering apparatus for vessels
GB1202873A (en) * 1966-12-02 1970-08-19 Nat Res Dev Improvements in and relating to a method of assembling a marine propulsion propeller in a surrounding duct
US3499412A (en) * 1968-02-08 1970-03-10 Dravo Corp Kort nozzle
US3899992A (en) * 1972-07-20 1975-08-19 Ronald George Fuller Marine steering device
DE2246766C3 (en) 1972-09-23 1981-05-14 Willi Becker Ingenieurbüro GmbH, 2000 Hamburg Control device for ships
DE2809662C2 (en) 1978-03-07 1983-10-20 Willi Becker Ingenieurbüro GmbH, 2000 Hamburg Propulsion for ships consisting of a nozzle-like casing with a propeller and an associated rudder
AT362250B (en) 1978-03-13 1981-04-27 Becker Ingbuero W DRIVES FOR SHIPS
US4773347A (en) * 1983-12-19 1988-09-27 Bruce Winterbottom Boat steering device
DE8422089U1 (en) 1984-07-25 1984-10-18 Jastram-Werke GmbH & Co KG, 2050 Hamburg RUDDER NOZZLE FOR SHIPS
JPS6213799U (en) 1985-07-11 1987-01-27
DE8713479U1 (en) * 1986-10-09 1987-12-03 Waldhauser, Kurt, Graz Ship propulsion unit
JPH078198U (en) 1993-07-06 1995-02-03 川崎重工業株式会社 Marine ladder propeller
JP3555027B2 (en) * 2001-12-26 2004-08-18 川崎重工業株式会社 Platform structure of swing type propulsion device
FR2842784B1 (en) * 2002-07-25 2005-03-11 Alstom SHIP GOVERNOR SECURED IN ANGULAR POSITION BY AN ELECTRIC MOTOR
US7284495B2 (en) 2005-04-04 2007-10-23 Seiford Sr Donald S Shaftless radial vane rotary device and a marine propulsion system using the device
DE202007012480U1 (en) * 2007-09-05 2007-11-29 Becker Marine Systems Gmbh & Co. Kg Oars for ships
DE202007016163U1 (en) 2007-11-16 2008-01-24 Becker Marine Systems Gmbh & Co. Kg Kort nozzle
JP4531828B2 (en) * 2008-06-20 2010-08-25 川崎重工業株式会社 Ship thruster with duct
CN201300986Y (en) * 2008-07-21 2009-09-02 叶锋 A suspension auxiliary ship steering propulsion device with telescopic and horizontally-rotary front bottom

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
HRP20191832T1 (en) 2019-12-27
CA2766929C (en) 2015-04-28
SG177299A1 (en) 2012-02-28
CN102470913A (en) 2012-05-23
KR101879522B1 (en) 2018-08-17
US9011088B2 (en) 2015-04-21
WO2011101489A1 (en) 2011-08-25
PL2427369T3 (en) 2020-04-30
JP5596181B2 (en) 2014-09-24
KR20120129753A (en) 2012-11-28
JP2013520346A (en) 2013-06-06
DE102010029430A1 (en) 2011-08-25
WO2011101489A4 (en) 2011-10-20
KR20160102576A (en) 2016-08-30
BR112012000442A2 (en) 2017-06-06
ES2759780T3 (en) 2020-05-12
EP2427369A1 (en) 2012-03-14
US20120308382A1 (en) 2012-12-06
CA2766929A1 (en) 2011-08-25
DE102010002213A1 (en) 2011-10-06
CN102470913B (en) 2016-08-24

Similar Documents

Publication Publication Date Title
EP2427369B1 (en) Pivotable propeller nozzle for a watercraft
DE2252426C2 (en) Steering device for an angled swiveling outboard drive
EP2473402B1 (en) Upper rudder stock bearing
DE2043802A1 (en) Outboard propulsion unit
EP0140097B1 (en) Pitch changing propeller blade and propulsion for water vehicles
DE3885105T2 (en) COMBINED RUDDER AND SCREW ARRANGEMENT.
EP2060482A1 (en) Kort nozzle
AT507419A4 (en) CROSS-RADIATOR FOR A WATER VEHICLE
DE102011053619A1 (en) Propeller nozzle for watercraft
EP2279940B1 (en) Steering device for flap rudder for aquatic vehicles
DE68913996T2 (en) TRIMMING CONTROL SYSTEM FOR BOAT DRIVES.
DE2100207A1 (en) Boot suspension device
DE2308931A1 (en) MARINE PROPULSION WITH A VARIANT PROPELLER
WO2004050477A1 (en) Watercraft
DE68921077T2 (en) CONTROL DEVICE FOR WATER DRIVE SYSTEMS.
EP1145951B1 (en) Watercraft
DE19949087C2 (en) Oarsman
EP1787904B1 (en) High-load suspended rudder
EP3782901A1 (en) Oar and method for producing same
EP2398697B1 (en) Boat drive comprising auxiliary drives
EP3409576B1 (en) Finned rudder
DE19746853A1 (en) Fully buoyant heavy-duty rudder
EP1074464B1 (en) Boat propulsion with a controllable pitch propeller
EP1902941A2 (en) Ship's propulsion with an adjustable propeller
DE102006045076A1 (en) Marine propulsion unit for use in ship, has variable pitch propeller, adjustment mechanism, wing plates that are supported on cylinder of piston cylinder unit, and drive shaft, whose pivot extends into inner side of hollow hub body

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1168076

Country of ref document: HK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140704

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BECKER MARINE SYSTEMS GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BECKER MARINE SYSTEMS GMBH

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190425

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011016102

Country of ref document: DE

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20191832

Country of ref document: HR

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1180981

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20191832

Country of ref document: HR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 32692

Country of ref document: SK

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20190403180

Country of ref document: GR

Effective date: 20200213

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20191832

Country of ref document: HR

Payment date: 20200213

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200120

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2759780

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011016102

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200119

26N No opposition filed

Effective date: 20200619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200222

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20191832

Country of ref document: HR

Payment date: 20210212

Year of fee payment: 11

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1180981

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200222

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20191832

Country of ref document: HR

Payment date: 20220214

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20191832

Country of ref document: HR

Payment date: 20230213

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230213

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20191832

Country of ref document: HR

Payment date: 20240220

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20240219

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240220

Year of fee payment: 14

Ref country code: ES

Payment date: 20240319

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20240220

Year of fee payment: 14

Ref country code: DE

Payment date: 20240319

Year of fee payment: 14

Ref country code: GB

Payment date: 20240222

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240215

Year of fee payment: 14

Ref country code: IT

Payment date: 20240229

Year of fee payment: 14

Ref country code: HR

Payment date: 20240220

Year of fee payment: 14

Ref country code: FR

Payment date: 20240221

Year of fee payment: 14